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Non-Technical Summary

This paper presents and compares three classes of time-series models for returns of
broad-based stock indices: empirical, classical and behavioral models.

Empirical models usually have no sound economic foundation and have been
derived from a purely statistical reasoning. As a representative of this class the
NGARCH (1,1)-in-mean model is used. This model assumes that the (time-varying)
volatility is the only factor that influences the stock returns.

Classical economic return models are consistent with an equilibrium with rational
expectations and von Neumann-Morgenstern utility functions. We propose a time-
series model which is consistent with a representative investor with a general HARA
utility function. This type of utility function allows for decreasing and increasing
relative risk aversion. Thus, for example, an investor with decreasing relative risk
aversion likes to invest relatively more in risky assets when his wealth is higher.

Finally, recent experimental studies provide evidence that people do not act
rationally and their choices often do not seem consistent with von Neumann-
Morgenstern utility functions. One of these behavioral phenomena is loss aversion.
This means that risk aversion of an investor is not constant but depends on past
stock returns. The classical model is augmented to account for such behavioral
aspects.

All models are tested and compared in a consistent empirical framework. We find
that the standard NGARCH (1,1)-in-mean model performs well. However, the
augmented model derived from an equilibrium model performs better for Germany.
For this country decreasing (relative) risk aversion has been found, whereas for the
other countries (France, UK, USA) the relative risk aversion is constant. For Japan
the estimated negative risk aversion coefficient is in conflict with the HARA-utility
model. But this conflict exists only for the period until the stock market crash in
1990: Estimates for the sub-period after the crash result in a non-negative risk
aversion coefficient.

The behavioral components are not significant and, thus, do not improve the model
performance.

Future research should be devoted to the derivation of economically founded and
empirically tractable time-series models. This paper shows that equilibrium return
models can lead to interesting time-series models which also empirically outperform
ad-hoc specifications.
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Abstract

This paper presents and compares several time-series models for returns of broad-
based stock indices. These models nest a nonlinear asymmetric GARCH
(NGARCH) model as a special case. Some of these models are empirically
motivated ad-hoc specifications others are derived from a representative investor
economy with HARA-utility and some are behavioral, i.e. are based on recent
findings in behavioral finance. To compare these models we use the inflation
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Introduction∗

Although over the past decades we have observed a tremendous interest in new
time-series models for asset returns, the geometric Brownian motion might still be
considered as the predominant model for stock prices. This is on the one hand
certainly due to the fact that the Black-Scholes option pricing model is derived from
the assumption that the underlying asset is governed by a geometric Brownian
motion, but on the other hand the geometric Brownian motion is also empirically
tractable and it has a sound economic foundation. This makes it very interesting for
researchers to use. However, there is empirical evidence against the geometric
Brownian motion and more flexible models perform much better. In empirical
applications researchers often use “statistical models”. These purely empirically
motivated time-series models as (G)ARCH models or empirically motivated multi-
factor models usually fit the data better. However, these stochastic processes do not
only lack an equilibrium foundation but some of them have been even proved to be
inconsistent with such an equilibrium. The so-called viability discussion (see, e.g.
Bick, 1990 and He and Leland, 1993) has shown that widely used time-series
models as the Ornstein-Uhlenbeck process and the constant elasticity of variance
model, originally proposed by Cox and Ross (1976), are not viable models of the
market portfolio in a representative investor economy. Other empirically motivated
time-series models as the long-memory processes are in general not arbitrage-free
(see, e.g. Beran, 1994, Beran, 1999, Rogers, 1997, and Beran et al., 2002). Recently,
research focusing on behavioral aspects of asset pricing has been very popular.
These models try to explain asset return characteristics by deviations from the
classical assumption of rational expectations and von Neumann-Morgestern utility
functions. Kahneman and Tversky (1979), and more recently Benartzi and Thaler
(1995), Barberis and Huang (2001) and Barberis, Huang and Santos (2001) argue in
favor of loss aversion. But also mental accounting, overconfidence and many other
“behavioral explanations” for asset return characteristics are used. Thus, the current
state of the literature leaves us basically with the choice between three classes of
models: empirical, classical and behavioral.

This paper does not attempt to resolve this problem by providing a unifying model
but we aim to bridge the gap between these classes of models. We start by deriving
in a representative investor economy with rational expectations and HARA-utility an
extension to the geometric Brownian motion. We compare this model to a standard

                                          
∗ We are grateful for helpful discussions with Antonio Camara, Ephraim Clark, Günter Franke

and Jens Jackwerth. Financial support by the Center of Finance and Econometrics (CoFE), the
Centre for European Economic Research (ZEW) and the Institut de Finance Mathématique de
Montréal is gratefully acknowledged.
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NGARCH-in-mean model1 and to some behavioral ad-hoc specifications. These
behavioral models capture the loss aversion phenomenon by relating the risk
premium, and hence the representative investor’s risk aversion, to past returns, i.e.
recent gains and losses.

The empirical evidence against the geometric Brownian motion as a model for index
returns and returns of individual stocks is compelling. Many studies document
(conditional) heteroskedasticity of asset returns and the asymmetric volatility
phenomenon, i.e. negative correlation between asset returns and volatility. Thus
empirical studies document non-constant volatility of asset returns, this indeed is
inconsistent with the geometric Brownian motion as a model for asset prices.2
Moreover, asset returns seem to be weakly predictable. Many studies document
positive serial correlation of asset returns on shorter horizons and negative serial
correlation on longer horizons. Related to this are the predictive power of financial
ratios and the success of trading strategies as momentum strategies and the Winner-
Loser Effect. Though many studies find return predictability it is still controversial
whether it is economically significant or simply a statistical artifact.3 However, there
is compelling empirical evidence against the geometric Brownian motion and
researchers have proposed uncountable many alternative, mainly empirically
motivated, time-series models. The class of (G)ARCH models has been most
successful. Especially the NGARCH model captures both aspects, the persistence in
return volatility and the negative correlation with asset returns.

In addition to these empirically motivated time-series models we derive an
alternative equilibrium asset price process which is consistent with HARA-utility of
the representative investor. This process is interesting for several reasons. First, from
a theoretical point of view, it is an interesting extension of the geometric Brownian
motion since it does not imply constant elasticity of the asset specific pricing kernel
but is consistent with declining, constant and increasing elasticity of the asset
specific pricing kernel. To say it in other words, in a representative investor
economy where the asset specific pricing kernel is equal to the standardized
marginal utility of the representative investor, the geometric Brownian motion
implies constant relative risk aversion of the representative investor (see Bick, 1990,
Franke, Stapleton and Subrahmanyam, 1999, Camara, 2001, and Camara, 2003).
The extension proposed in this paper allows also for decreasing and increasing
relative risk aversion. Secondly, as will be shown, this stochastic process is more
                                          
1 NGARCH is the abbreviation of nonlinear asymmetric GARCH. The model was developed by

Engle and Ng (1993) and is due to its flexible news impact curve a suitable model for stock
markets. The NGARCH-model is also often used for option pricing models, see e.g. Duan
(1995).

2 For an overview, see for example Ghysels, Harvey and Renault (1996).
3 For an overview, see for example Cochrane (2001).
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flexible than the geometric Brownian motion since it allows for non constant
volatility and non constant drift. Finally, this equilibrium based stochastic process is
the same as the displaced diffusion which has been proposed by Rubinstein (1983).
However, Rubinstein did not derive the process in an equilibrium and he proposed
the displaced diffusion as a model for single stocks and not as a model for the
market portfolio. Hence, the derivation in this paper provides an equilibrium
justification to use the displaced diffusion as an alternative model for the market
portfolio. Finally, as a third class of models we consider some ad-hoc specifications.
These stochastic processes account for some sort of loss aversion. In contrast to the
equilibrium based models, the risk premium of these models depends also on past
returns. Hence, if the market went up, i.e. investors gained, the risk premium might
be different than if investors suffered losses.

We analyze the empirical performance of the models for the inflation adjusted
monthly total return MSCI indices for USA, United Kingdom, Germany, France and
Japan for the time period January 1972 to March 2003. We find that the standard
NGARCH-in-mean model performs quite well. However, the equilibrium based
displaced diffusion with a (conditionally) heteroskedastic error term fits better for at
least one stock index. Hence, based on our results we would suggest the displaced
diffusion with (conditionally) heteroskedastic error term to model broad-based
market indices and to test for significant deviations from this model. The NGARCH-
in-mean model which is nested in this model seems to be a good alternative.

The organization of the paper is as follows. The following section presents the
alternative time-series models. In Section 2 the data and the methodology are
presented. Empirical results are shown in Section 3. Section 4 concludes.

1 Alternative Return Models

1.1 The equilibrium return model
The predominant model for asset prices S is the geometric Brownian motion

     0,   0 ,   0t t t tdS S dt S dW t T Sµ= + Σ ≤ ≤ >             (1)

where µ  and Σ  are constant parameters and W is a one-dimensional standard
Brownian motion defined on a filtered probability space ( ), , ,tF F PΩ  where
( ) [0, ]t t T
F

∈
 is the filtration generated by W augmented by all the F-null sets, with

TF F= . It has been shown, that this process implies constant elasticity of the asset
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specific pricing kernel which equals 2

µ
Σ

.4 In this case, the representative agent’s

utility function has constant relative risk aversion, i.e. 

( )
( )

( )

2

2
constant

U x
xRRA x x

U x
x

� �∂
� �∂= − =� �

∂� �
� �∂� �

.

Since the utility function with constant relative risk aversion is a special case of the
HARA-class, a natural generalization would be a stochastic process which is
consistent with a general HARA-utility function, i.e.

               ( ) 1 ,  0,   1,  .
1

xU x
γ

γ θ γ γ θ
γ γ

� �−= + ≠ ≠ ∈� �−� �
� (2)

The HARA-class of utility functions as defined in (2) is the predominant class of
utility functions in financial economics.5 Thus, if one wants to compare popular
empirical time-series models to an equilibrium founded time-series model, it is
natural to consider asset price processes which are consistent with equation (2).

Note that although the HARA-class of utility functions is very widespread in
financial economics and its appealing property that it captures declining, constant
and increasing relative risk aversion, it has the drawback that it is only defined over

the domain 0.
1

x θ
γ

+ >
−

 Moreover 1γ >  implies an upper bound for wealth. This

case is not very sensible in asset pricing since asset price distributions would have to
be bounded from above. Hence, for the further derivation we also restrict 1γ < . In
this case, we have to impose the restriction on wealth ( )1 .x θ γ> − −  It follows that
for 0θ >  (increasing relative risk aversion) and 0θ <  (declining relative risk
aversion) this lower bound is negative or positive, respectively. To avoid any
problems of inconsistency we will therefore derive equilibrium asset prices for an
information process which generates a terminal distribution of the asset price with
lower bound ( )1 .θ γ− −  An information process I characterizes the conditional
expectations of a representative investor about the value of the shares at time T.
Since this process characterizes expectations, it has to be a martingale in a model
with rational expectations. Starting from an information process to derive asset
                                          
4 See for example Bick (1990).
5 To be precise, we also exclude the case of an infinite γ . This excludes also the negative

exponential utility function.
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prices is a parsimonious way of modeling the information structure in the economy.
It avoids modeling a complete economy with assumptions on production functions
and information flow (for detailed discussions of information processes see,
Brennan and Xia, 2003, Franke, Stapleton and Subrahmanyam, 1999, and Lüders
and Peisl, 2001). Assuming that asset prices are governed by a geometric Brownian
motion implies that the information process is also governed by a geometric
Brownian motion, i.e.

( ), 0 ,t T tI E S F t T= ≤ ≤ (3)

is governed by

0, 0 ,   0t t tdI I dW t T Iσ= ≤ ≤ > (4)

where σ  is a constant parameter. This stochastic process I however allows for
terminal wealth [ )0,T TI S= ∈ ∞ . To avoid terminal wealth ( )1TS θ γ< − −  we
assume that investors’ expectations are governed by

( )ˆ ˆ1 , 0 ,   t t T TI I t T I Sθ γ= − − ≤ ≤ = (5)

Since in this study we concentrate on broad-based total return indices we can focus
on the pricing of assets without dividend payments. In this case, the price of the
asset at time t is the expected future value of the asset under the equivalent
martingale measure Q, discounted at the risk-free interest rate r

exp , 0 .
t

Q
t t t

t

S E rds S F t t T
τ

τ τ
+

+

� �� �
= − ≤ ≤ + ≤� �� �

� �	 
� �
� (6)

Since equation (6) is true for any 0 t t Tτ≤ ≤ + ≤  it holds also for time T with T̂ TI S= ,

ˆexp , 0 .
T

Q
t T t

t

S E rds I F t T
� �� �

= − ≤ ≤� �� �
� �	 
� �

� (7)

Equation (7) can be rewritten in the usual pricing kernel notation. For a constant
interest rate r equation (7) can then be written as

( )( ) ,
ˆexp , 0 ,t T t T tS r T t E I F t T� �= − − Φ ≤ ≤

� �
(8)



6

with 0,
,

0,

T
t T

t

Φ
Φ =

Φ
 the forward pricing kernel and ( )0, 0,t T tE FΦ = Φ . In a

representative investor economy the pricing kernel is equal to the standardized
marginal utility, i.e.

( )

( )0,

T

T
T

T

T

U S
S

U S
E

S

∂
∂Φ =

∂� �
� �∂� �

. (9)

Inserting equations (2) and (9) into equation (8) yields6

( )( ) ( )( )( ) ( )2exp exp 1 1t tS r T t Y T tσ γ θ γ� �= − − − − − −� � (10)

It follows from equation (10) that we have the following return-model

( )
( )( )( )

( )
( )( )

( )

( )

1

2 2
1

1

1
exp 1 1ln 1

21
exp

with 0,1 .

t

t

t

t

S
r T t

r
S

r T t

N

θ γ

σ γ σ ε
θ γ

ε

+

+

+

� �� �−
� �� �+

� �� �− +
� �� � = + − − +
� �� �−

+ � �� �� �−� �� �� �

�

(11)

This can be rewritten as

( ) ( )( )
( )( )

( )

( )( )( )

1 2
1

1

1 exp 1ln
21

with 0,1 ,

and 
exp 1

t
t

t

t

S r
r

S

N

r T t

θ γ
σ γ ε

θ γ

ε
θθ

+
+

+

� �+ − � �= + − +� � � �� �+ − � �� �

=
− +

� (12)

Of course even this extension of the standard Black-Scholes economy to non-
constant elasticity of the pricing kernel is a very simplified model. At least one
would argue that the information process should have stochastic volatility as argued
for example by Lüders and Peisl (2001). Introducing stochastic volatility of the
                                          
6 A proof is given in the appendix. This result is also derived in Lüders (2002).
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information process would capture the phenomenon that the information flow is
more intense in certain periods than in others and hence investors’ uncertainty about
the fair value of the assets is higher during certain periods. A straight-forward way
to account for this randomness in uncertainty would be to model the volatility term
by a GARCH process. We choose the NGARCH(1,1) model since it nests the
GARCH(1,1) model and it makes it possible to test for the asymmetric component
i.e. the leverage effect in the volatility of stock returns. This yields the following
return model

( ) ( )( )
( )( )

( )
( )

1 2
0 1 1

1

22 2
1 0 1

1 exp 1ln
21

with 0,1 and

t
t t

t

t

t t t t

S r
r

S

N

c

θ γ
κ σ γ ε

θ γ

ε

σ α α ε σ βσ

+
+ +

+

+

� �+ − � �− − − − =� � � �� �+ − � �� �

= + − +

� (13)

In the volatility equation 0c ≠ causes an asymmetric news impact curve.7 In case of
0c < the volatility of the stock returns exhibits a leverage effect i.e. a negative tε  has

a higher impact on 2
1tσ + than a positive value. The mean equation of (13) contains, in

addition, the constant term 0κ . In equation (12) the constant of the mean is
represented by 2γσ , but as the volatility in (13) is time-varying an additional
constant term is needed.

Equations (12) and (13) are our “equilibrium return models” which we might call the
HARA-processes or displaced diffusions.8 Recent research has more and more
questioned the assumptions of von Neumann-Morgenstern utility functions and
rational expectations. Therefore, in the following section we present several
specifications which take into account some of these behavioral patterns.

1.2 Behavioral models
Many articles have recently argued in favor of loss aversion, i.e. people behave
differently if they have suffered losses recently. Hence, their risk attitude does not

                                          
7 See Engle and Ng (1993).
8 Note that due to discounting, our displaced diffusion differs slightly from the version derived

by Rubinstein (1983). Note also that Camara (1999) discusses option prices in a one-period
model when the underlying is three-parameter lognormally distributed. Though Camara (1999)
does not consider stochastic processes in this one period model, the underlying is also governed
by a displaced diffusion since this generates a three-parameter lognormally distributed asset
price.
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only depend on their wealth but also on the change in their wealth level.9 Loss
aversion would imply that investors increase their risk taking after suffering losses.
Here we do not make such strong assumptions. We are only interested in whether
past returns influence the risk premium. To test for such a behavioral component we
allow the risk premium to depend on past returns. For example, if the market has
risen recently, investors (the representative investor) made profits and thus might be
more willing to take further risks i.e. the representative investor would be less risk
averse. Also, if investors faced losses recently, they might require a higher risk
premium to take risks which implies that the representative investor would be more
risk averse. However, we do not restrict the relationship between past returns and
risk aversion to be either positive or negative. The question we analyze is whether
there is an impact of past returns on the risk premium.

This motivates to model the risk premium tµ  as
2

1 1 2
1 1

ln lnt t
t

t t

S S
S S

µ γ κ κ
− −

� �� �� � � �
� �= + + � �� � � �
� �	 
 	 
	 
� �

.

If 1κ  is negative, then the drift is smaller after positive past returns and higher after
negative past returns. The quadratic term is included to capture potential nonlinear
effects. 1γ  represents the constant part of the risk premium which is equal to
(0.5 )γ−  in the equations (12) and (13). We add this “behavioral component” to our
two return models from the previous section, i.e. equation (12) and equation (13).
This yields the following two models, where we can, in addition, test for the
“behavioral components”, i.e. 1 20, 0κ κ≠ ≠ :

( ) ( )( )
( )( )

( )

2
1 2

1 1 2 1
1 1

1

1 exp
ln ln ln

1

with 0,1 .

t t t
t

t tt

t

S r S Sr
S SS

N

θ γ
γ κ κ σ ε

θ γ

ε

+
+

− −

+

� �� �+ − � �� � � �
� �− − + + =� � � �� � � �� �+ − � �	 
 	 
	 
	 
 � �

�

     (14)

( ) ( )( )
( )( )

( )
( )

2
1 2

0 1 1 2 1 1
1 1

1

22 2
1 0 1

1 exp
ln ln ln

1

with 0,1 and

t t t
t t

t tt

t

t t t t

S r S Sr
S SS

N

c

θ γ
κ γ κ κ σ ε

θ γ

ε

σ α α ε σ βσ

+
+ +

− −

+

+

� �� �+ − � �� � � �
� �− − − + + =� � � �� � � �� �+ − � �	 
 	 
	 
	 
 � �

= + − +

� (15)

                                          
9 See Barberis and Huang (2001) and Barberis, Huang and Santos (2001).
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Hence, our behavioral model (15) nests the models (12), (13) and (14). Finally, if θ
is zero, model (15) simplifies to

( )
( )

2
21

0 1 1 2 1 1
1 1

1

22 2
1 0 1

ln ln ln

with 0,1 and

t t t
t t

t t t

t

t t t t

S S Sr
S S S

N

c

κ γ κ κ σ ε

ε

σ α α ε σ βσ

+
+ +

− −

+

+

� �� �� � � � � �
� �− − − + + =� �� � � � � �
� �	 
 	 
 	 
	 
� �

= + − +

� (16)

which would be the purely “behavioral model”.

1.3 Empirical models
In the last two sections we proposed several behavioral respectively equilibrium
models. In empirical research on asset pricing, statistical models for return processes
have been prevalent. Especially the (G)ARCH and (G)ARCH-in-mean models are
very common and researchers have been quite successful in fitting these models to
asset returns. As, for example, the exponential GARCH (EGARCH)-model of
Nelson (1991), the asymmetric GARCH (AGARCH)-model (see Engle and Ng
(1993)) and the GJR-GARCH-model (see Glosten, Jagannathan and Runkle (1993))
the NGARCH-model is particularly designed to consider an asymmetric behavior of
volatility with regard to return innovations, particularly the so called leverage effect.
Therefore we also fit a pure NGARCH(1,1)-in-mean model

( )
( )

21
0 1 1 1

1

22 2
1 0 1

ln

with 0,1 and

t
t t

t

t

t t t t

S r
S

N

c

κ γ σ ε

ε

σ α α ε σ βσ

+
+ +

+

+

� �
− − − =� �

� �

= + − +

� (17)

which we will also compare to the models proposed in the two previous sections. In
section 3 we report inter alia the results of Likelihood Ratio-tests that compare the
six models (12)-(17) and show which of them has the best fit regarding the empirical
behavior of the inflation-adjusted stock indices.
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2 Data and Methodology
We use inflation adjusted stock indices to measure the real wealth of the
representative investor.10 An economic justification for the use of the real country
stock indices as a representation of the real wealth of the investors is the well-known
home bias, which means that investors prefer domestic stocks to international stocks
and, thus, hold most of their equity portfolio in domestic assets.11 The stock indices
are the country indices of MSCI (Morgan Stanley Capital International Inc.) for
France, Germany, Japan, UK and US. Hence, we consider the five largest stock
markets in the world. All indices are total return indices and, thus, include all cash
flows, for example dividends, paid to the investor. The real stock index tS  is defined
as /t t tS MSCI CPI= , where MSCI indicates the nominal country stock index and
CPI is the seasonally adjusted country specific consumer price index from the
OECD. CPIt is equal to 1.0 in the first period (January 1972). As risk free nominal
interest rate we use the money market rate from the IMF.12 This interest rate has
been converted into real terms (=r) using the ex-post consumer price inflation to the
same month one the year before. In the equations (12) – (17) r(t) is substituted for r.
r(t) is the real money market rate for the period from t until (t+1)), and is known in t.

Table 1: Characteristics of the Real Excess Stock Returns (Annualized)
Mean Standard

Deviation
Skewness Excess

Kurtosis
Jarque-Bera
Test Statistic

USA 0.0300 0.551 -0.52*** 2.35*** 103.3***
UK 0.0392 0.729 0.27** 8.72*** 1177.5***
Japan 0.0209 0.652 -0.26* 1.38*** 34.0***
Germany 0.0184 0.694 -0.83** 2.48*** 139.8***
France 0.0328 0.745 -0.39*** 1.17*** 31.4***
Notes: The significance levels are indicated by *** = 1%, ** = 5%, * = 10%. Sample period =
March 1972 – March 2003, 373 observations.

Our sample is from January 1972 until March 2003. Table 1 gives an overview of
the time series characteristics of the real excess stock returns, which are defined as
log X(t)–log X(t-1)–r(t-1), where X is the real stock index and r is the inflation-
adjusted risk-free interest rate.

                                          
10 Approximating representative investor’s wealth by the value of a broad based stock index is

very common, see e.g. also Rosenberg and Engle (2002) who use the S&P500-index. For recent
critical discussions of this approximation see Camara (2001) and Camara (2003).

11 See e.g. Carmichael and Coen (2003) for the latest developments in this field of research.
12 International Financial Statistics, line 60b.
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The real mean excess returns over the sample period 1972 to 2003 are all positive.
But these mean returns are not significantly different from zero. The returns exhibit
a significant excess kurtosis, i.e. so called fat tails of the return distribution and there
is also a significantly negative skewness. For the British real excess returns the
skewness is positive. The Jarque-Bera test indicates for all five countries a
significant deviation from the normal distribution.

The equations (12) to (17) are estimated using maximum likelihood (ML). As the
tables in the appendix reveal, the distribution of the residuals is in all countries and
all models significantly different from the normal distribution.13 Nevertheless, we
assume normally distributed residuals in the ML-estimation and apply a pseudo- or
quasi-ML estimation and calculate robust asymptotic covariance matrices.14

In (12)-(15) the mean equations cannot be expressed in the usual form y=f(x,β),
where the dependent variable y is a function of some exogenous variables x and the
parameter vector β. Instead, the mean equation can only be expressed as
g(y,ω)=f(x,β), where ( ) ( )( )1( ) ln[ 1 exp ]tg S rθ γ+⋅ = + − . Therefore, to receive
unbiased estimates the likelihood equation has to be augmented by the following
Jacobian term Jt:15 

( ) ( )( )
1

1 1

( ) ( )( , )
(ln ) 1 exp

t
t

t t

g g SJ y
y S S r

ω
θ γ

+

+ +

∂ ⋅ ∂ ⋅= = =
∂ ∂ + −

.

For the models (16) and (17) the dependent variable can be expressed directly by
1ln tS +  and therefore ( ) 1J ⋅ = . The likelihood equation to be maximized in the case of

a time-varying conditional variance (models (13), (15)-(17)) is:

                                          
13 The tables in the appendix exhibit the results of the Jarque-Bera test applied to the standardized

residuals.
14 See e.g. Greene (2000), chapter 11.5.6. According to Weiss (1986) a quasi-ML estimation leads

to a consistent estimation of the parameters if the equations for the (conditional) means and
variances are specified correctly. But as this estimator is inefficient in case of non-normal
standardized residuals some authors choose a distribution that takes leptokurtosis explicitly into
account, as e.g. the standardized multivariate t-distribution. However, when a distribution
different from the normal distribution is used and this distribution is not the true distribution
then the estimates are in most cases not consistent (see Newey and Steigerwald (1997)).
Therefore, we prefer to apply the (conditional) normal distribution.

15 See e.g. Greene (2000), chapter 10.3.1.
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1
ln ln

T

t
t

L L
=

=�  with 
2

2
2

1 1 ( )ln ln 2 ln ln
2 2 2

t
t t t

t

L J επ σ
σ

= − − + − , 

where T is the total number of observations. In case of a constant variance i.e. for the
models (12) and (14) 2

tσ  has to be replaced by 2σ .

3 Empirical Results

3.1 Definitions and structure of the tables in the appendix
The results are reported in detail in the tables (1) – (5). Each of the five tables is
divided into two parts. Part a) shows the parameter estimates of the models (12)–
(17) and some tests regarding important characteristics of the standardized residuals,
namely, tests on normality, tests on ARCH-effects and tests on autocorrelation. The
estimated parameters of the mean are: 0κ , 1κ , 2κ , 1 (0.5 )γ γ= −  and 1 (1 )θ θ γ= − . In
equation (12) and equation (14) the term 2

1γ σ  represents the constant of the mean
equation and therefore no additional 0κ  is estimated. 1γ  is the “classical” part of the
risk premium whereas 1κ  and 2κ  are the “behavioral”, autoregressive parts. 1θ
indicates the lower bound of the asset price distribution. If 1 0θ <  the lower bound is
positive (see section 1.1). The sign of 1θ  gives information about the elasticity of the
asset pricing kernel. For example, 1 0θ <  implies declining elasticity of the pricing
kernel if 1γ < .

0α , 1α , β  and c  are the parameters of the variance equation. For the models (12)
and (14) only the constant variance 0α  is estimated. A significant parameter c
indicates an asymmetric reaction of the volatility to negative and positive stock
return innovations. In case of nominal stock returns the literature reports a negative c
which measures the leverage effect i.e. a stronger impact of negative return
innovations. As we estimate a model for real stock returns this need no longer be the
case. Like is the value of the likelihood function in the maximum. The pseudo R2

compares the explanatory power of the models with a basic model that only consists
of a constant mean and a constant variance. The pseudo R2 is defined as

( )1
( )

Like Basis
Like Model

−  which guarantees that the value is between zero and one.

The Jarque-Bera (JB) test investigates the hypothesis that the (standardized)
residuals are normally distributed. The ARCH tests use one or four lagged squared
residuals and are equal to the test of Engle (1982). The null hypothesis is “no ARCH
effects”. In addition, the results of the Ljung-Box (LB)-Q test using one and four
lagged residuals are reported. Here, the null hypothesis is “no autocorrelation”. For
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all of these tests the table shows the p-value in percent. Like is the basis for the
likelihood ratio (LR) tests reported in part b) of the tables. For the LR tests the
following relationships between the models are used (applying the equation
numbering of section 1):

12 14 15;   12 13 15;   17 16 15;   17 13⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

This means that, for example, that model (12) is nested in model (14) and both are
nested in model (15). The other rows are to be interpreted similarly.

Part b) of each table shows the results for the nine bilateral LR-tests that stem from
these relationships. Thus we can analyze which of the five different models is the
best one in terms of explained variance. The test statistic of the LR-tests is
calculated as 2*[ (  ) (  )]Like Model A Like Model B−  which is 2

nχ -distributed with n
degrees of freedom. Model B is nested in Model A and n is equal to the number of
restrictions of Model B compared to Model A. Thus the LR-tests investigate whether
the restrictions of Model B are rejected. The null hypothesis is that both models have
the same explanatory power in which case the restrictions are not rejected.

3.2 Interpretation of the empirical results
Which of the proposed models performs best and what are the conclusions for future
empirical research?

The LR-tests reported in part b) of the tables show three different results. For US,
UK and France it turns out that model (17), the pure NGARCH (1,1)-in-mean
model, is the best one. Although model (13) has a slightly (but not significantly)
higher explanatory power, model (17) is more parsimonious and should therefore be
chosen for these countries. For Germany, in contrast, model (13) is clearly the best
one and dominates all other models. The reason for this result is that the threshold
parameter 1θ  is highly significant for Germany but not for the US and France. The
results for Japan, i.e. the negative estimated risk aversion coefficient 1γ , cannot be
reconciled with the HARA-model and remain a challenge for future research,
although additional estimates show that this problem seems to exist only for the
period before the stock market crash in 1990.16

                                          
16 More generally, risk seeking behaviour of the representative investor is hard to reconcile with

equilibrium models.
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The result that 1θ  is not significant for USA, UK and France could be interpreted as
constant relative risk aversion.17 For Germany 1θ  is significantly negative indicating
a decreasing relative risk aversion. For UK it turned out that 1θ  is significantly
positive in the models (12)-(15), but in the two models (16) and (17) where 1θ  is not
part of the model, 1γ  becomes significant, instead. Overall, the pure NGARCH-in-
mean model (17) seems to be the best one for UK in terms of the LR-test.

The parameter 1γ  is in most cases (models and countries) not significantly different
from zero. This is also true for 1κ  and 2κ . Thus, the real stock returns for our
observation period are for most cases not characterized by a positive or time-varying
risk premium: the risk premium is not significantly different from zero. An
exception is only model (17) for the UK where 1γ  is significantly positive.
Interestingly, the behavioral components of the model, 1κ  and 2κ , are also not
significant and can therefore be eliminated from the models.

For Japan, 1γ  is significantly negative in model (13), which is the best model with
regard to the LR-tests.18 This result is not consistent with the HARA-utility model
and is therefore not interpretable. But separate estimations of the periods before and
after the stock market crash in 1990 show that the stock market bubble and the
subsequent crash may have caused this strange result. For both tentative sub-periods
(March 1972 – July 1990) and (August 1990 – March 2003) model (13) again is the
best one regarding the results of the LR-tests. In the first sub-period 1γ  is
significantly negative whereas in the second sub-period this parameter is positive
(but not significant). Thus, the conflict with HARA-utility seems only to exist for
the first sub-period.

It is no surprise that for most countries the models with NGARCH dominate the
models with constant variance. Only for the US no significant GARCH parameters
could be found. Nevertheless, the models with GARCH also perform best for the US
real stock returns. In contrast to nominal stock returns the leverage parameter c is
not negative but either insignificant or significantly positive which could be
interpreted as a reverse leverage effect in the real returns: positive news have a
stronger impact on volatility compared to negative news. There is only one
exception: for Germany the models (16) and (17) exhibit a significantly negative c.
But these two models are dominated by model (13) where c is not significant.
Finally, note also that a significant parameter 1θ  also implies a correlation between
volatility and asset returns which is the case of Germany. More precisely, the
                                          
17 The same result has been found for Japan in the second sub-period (August 1990 – March

2003).
18 The risk aversion coefficient is also significantly negative for the models (15), (16) and (17).
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negative 1θ  induces a positive correlation between returns and volatility. Overall we
can conclude that in contrast to nominal returns, real returns are if at all, then
positively correlated with volatility.

The residual tests show that ARCH effects have to be considered in general by the
models. But in all cases the residuals seem to exhibit no autocorrelation of order one
or of order four. For all models the residual series show clear signs of deviations
from the (standard) normal distribution which is due to a significant leptokurtosis.
Another feature of the empirical results is that the models have only a very low
explanatory power: the pseudo R2 is between 1.3% and 3.2% for the best performing
models of each country.

What can be learned from the models (12) – (17)? The NGARCH (1,1)-in mean
model (17) and the model (13) which also contains an NGARCH (1,1)-in-mean
specification are clearly the dominant models. For both models the residuals are
well-behaved with the only exception of leptokurtosis. The augmented model (13) is
preferable for Germany. For this country the economically derived threshold
parameter 1θ  is significantly negative. Such a negative threshold parameter leads to
relatively high volatility when asset prices are high, i.e. positive correlation between
asset returns and volatility.

As a conclusion of these results the following modeling strategy can be derived: for
real stock returns first the augmented model (13) should be estimated and then a test
on the parameter 1θ  can be applied which leads in some cases to a reduction of the
model complexity (= model (17)).

4 Conclusion
This paper compares representatives of three model classes for asset returns:
empirical, classical, behavioral. Empirical models usually have no economic
foundation and have been derived from a purely statistical reasoning. As a
representative of this class the NGARCH(1,1)-in-mean model is used. Classical
economic return models are consistent with an equilibrium with rational
expectations and von Neumann-Morgenstern utility functions. We propose a time-
series model which is consistent with a representative investor with a general HARA
utility function. Finally, recent experimental studies provide evidence that people do
not act rationally and their choices often do not seem consistent with von Neumann-
Morgenstern utility functions. One of these behavioral phenomena is loss aversion.
The classical model is augmented to account for such behavioral phenomenon. All
models are tested. We find that the standard NGARCH(1,1)-in-mean model
performs well. However, the augmented model which includes a threshold
parameter derived from an equilibrium model performs better for Germany. For
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Japan the estimated negative risk aversion coefficient is in conflict with the HARA-
utility model. But this conflict exists only for the period until the stock market crash
in 1990: Estimates for the sub-period after the crash result in a non-negative risk
aversion coefficient.

The behavioral components do not improve the model performance. Hence, for
future empirical studies, we suggest to estimate an NGARCH(1,1)-in-mean model
which is augmented by theoretically derived parameters (see model (13)) and then
test for the significance of these parameters (i.e. 1θ  and 1γ ).

From a theoretical point of view, this study advocates in favor of an equilibrium
model with general HARA utility function of the representative investor. However,
the theoretical model should be augmented to an information flow which generates
stochastic volatility of the information process, i.e. the representative investor’s
expectations. In this paper we accounted for the stochastic volatility of the
information process heuristically by introducing an NGARCH (1,1) error term.

Future research should be devoted to the derivation of economically founded and
empirically tractable time-series models. This paper has shown, that equilibrium
return models can lead to interesting time-series models which also empirically
outperform ad-hoc specifications.
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Appendix A Proof of Proposition 1

Let ( )ˆ 1t tY I θ γ= + − , then ( ) ( )ˆ 1 1T T TY I Sθ γ θ γ= + − = + − . It follows from Ito’s

Lemma that , 0 .t t tdY Y dW t Tσ= ≤ ≤  Furthermore, we have that T̂I  is three-
parameter lognormally distributed with threshold ( )1θ γ− −  and that TY  is two-
parameter lognormally distributed. Using equations (2), (8) and (9) we get
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Since TY  is lognormally distributed, this yields
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(A.2)

Applying Ito’s Lemma yields

( ) ( )( ){ } ( )( )2 ˆ1 1 1 , 0 ,   .t t t t T TdS r S dt S dW t T S Iσ γ θ γ σ θ γ= + − + − + + − ≤ ≤ = (A.3)



18

Literature
Barberis, N. and M. Huang (2001), Mental Accounting, Loss Aversion, and

Individual Stock Returns, Journal of Finance 56, 1247-1292.
Barberis, N., M. Huang and T. Santos (2001), Prospect Theory and Asset Prices,

Quarterly Journal of Economics 116, 1-53.
Bick, A. (1990), On Viable Diffusion Price Processes of the Market Portfolio,

Journal of Finance 45, 673-689.
Beran, J. (1994), Statistics for Long-Memory Processes, Chapman & Hall.
Beran, J. (1999), SEMIFAR Models – a Semiparametric Framework for Modelling

Trends, Long-Range Dependence and Nonstationarity, Working Paper
University of Konstanz.

Beran, J., Y. Feng, G. Franke and E. Lüders (2002), Simultaneous Modeling of
Trend, Non-Stationarity and Long-Range Dependence in Exchange Rates,
Working Paper University of Konstanz.

Brennan, M. J. and Y. Xia (2003), Risk and Valuation Under an Intertemporal
Capital Asset Pricing Model, Working Paper No. 8-03, Anderson Graduate
School of Management, University of California, Los Angeles.

Camara, A. (1999), An Extended Set of Risk Neutral Valuation Relationships for the
Pricing of Contingent Claims, Review of Derivatives Research 3, 67-83.

Camara, A. (2001), Option Prices Sustained by Risk-Preferences, forthcoming
Journal of Business.

Camara, A. (2003), A Generalization of the Brennan-Rubinstein Approach for the
Pricing of Derivatives, Journal of Finance 58, 805-819.

Carmichael, B. and A. Coen, 2003, International Portfolio Choice in an Overlapping
Generations Model with Transaction Costs. Economics Letters 80, 269-275.

Cochrane, J. H. (2001), Asset Pricing, Princeton University Press.
Duan, J.C. (1995), The GARCH Option Pricing Model, Mathematical Finance 5, 13-

32.
Engle, R.F. (1982), Autoregressive Conditional Heteroskedasticity with Estimates of

the Variance of U.K. Inflation, Econometrica 50, 987-1008.
Engle, R.F. and V.K. Ng (1993), Measuring and Testing the Impact of News on

Volatility, Journal of Finance 48, 1749-1778.
Franke, G., R.C. Stapleton, and M.G. Subrahmanyam (1999), When Are Options

Overpriced? The Black-Scholes Model and Alternative Characterisations of
the Pricing Kernel, European Finance Review 3, 79-102.



19

Ghysels, E., A.C. Harvey and E. Renault (1996), Stochastic Volatility, Handbook of
Statistics 14, 119-191, Elsevier.

Glosten, L.R., R. Jagannathan and D.E. Runkle (1993), On the Relation Between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks,
Journal of Finance 48, 1779-1801.

Greene, W.H. (2000), Econometric Analysis, 4th edition. Prentice Hall.
He, H. and H. Leland (1993), On Equilibrium Asset Price Processes, Review of

Financial Studies 6, 593-617.
Kahneman, D. and A. Tversky (1979), Prospect Theory: An Analysis of Decision

Under Risk, Econometrica 47, 263-291.
Lüders, E. (2002), Asset Prices and Alternative Characterizations of the Pricing

Kernel, ZEW Discussion Paper.
Lüders, E. and B. Peisl (2001), How Do Investors’ Expectations Drive Asset

Prices?, Financial Review 36, 75-98.
Nelson, D.B. (1991), Conditional Heteroskedasticity in Asset Returns: A New

Approach, Econometrica 59, 347-370.
Newey, W. and D. Steigerwald (1997), Asymptotic Bias for Quasi-Maximum

Likelihood Estimators in Conditional Heteroskedasticity Models,
Econometrica 65, 587-599.

Rosenberg, J.V. and R.F.  Engle (2002), Empirical Pricing Kernels, Journals of
Financial Economics 64, 341-372.

Rubinstein, M. (1983), Displaced Diffusion Option Pricing, Journal of Finance 38,
213-217.

Weiss, A. (1986), Asymptotic Theory for ARCH Models: Estimation and Testing,
Econometric Theory 2, 107-131.



20

Table A-1: USA
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0κ -- 0.0046 -- -0.0039 -0.005 0.0043

1κ -- -- 9.20 24.48 27.76 --

2κ -- -- -257.0 -15.43 -6.17 --

1γ 1.096 -1.005 1.60 3.29 3.90 -0.961

1θ 5.78 -3.70 5.71 -3.90 -- --

0α 0.00196*** 0.00128*** 0.00195*** 0.00135*** 0.0013*** 0.0012***

1α -- 0.029 -- 0.012 -0.0035 0.0197
β -- 0.09 -- 0.098 0.095 0.088
c -- 1.839 -- 1.70 1.72 1.85

Like 963.4 976.19 963.96 976.41 976.32 976.11
R2 (in %) 0.028 1.34 0.086 1.36 1.35 1.33
JB test 0.00 0.00 0.00 0.00 0.00 0.00
ARCH (1) 2.05 55.3 13.4 43.1 46.9 58.5
ARCH (4) 13.4 89.6 29.1 84.1 85.0 89.8
LB-Q (1) 60.5 75.3 91.3 76.7 74.5 74.6
LB-Q (4) 81.9 92.7 82.8 89.8 88.1 91.5

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships:
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 25.59*** 4
(14) vs. (12) 1.12 2
(15) vs. (12) 26.02*** 6
(15) vs. (14) 24.90*** 4
(15) vs. (13) 0.43 2
(15) vs. (17) 0.61 3
(15) vs. (16) 0.19 1
(16) vs. (17) 0.42 2
(13) vs. (17) 0.18 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table A-2: Japan
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0κ -- 0.037*** -- 0.07*** 0.053*** 0.053***

1κ -- -- 21.35 -28.4 -7.44 --

2κ -- -- 62.70 160.1 264.41** --

1γ 0.50 -8.23** 0.26 -17.16*** -19.15*** -18.12***

1θ -40.69*** -47.41*** -40.88*** -47.87*** -- --

0α 0.0041*** 0.0014** 0.004*** 0.0013** 0.00038** 0.00034***

1α -- 0.44** -- 0.46** 0.78*** 0.80***
β -- 0.05 -- 0.05* 0.034* 0.023
c -- 1.95 -- 1.93* 1.30 1.52

Like 906.17 917.54 907.21 919.6 914.14 912.52
R2 (in %) 0.59 1.82 0.70 2.05 1.46 1.28
JB test 0.00 0.52 0.00 0.22 0.00 0.00
ARCH (1) 0.22 99.8 0.13 55.7 75.0 54.6
ARCH (4) 1.80 75.2 0.76 69.9 68.1 45.1
LB-Q (1) 19.5 91.1 88.1 54.9 47.6 80.9
LB-Q (4) 52.0 99.8 86.7 69.2 72.6 84.8

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 22.74*** 4
(14) vs. (12) 2.08 2
(15) vs. (12) 26.94*** 6
(15) vs. (14) 24.85*** 4
(15) vs. (13) 4.20 2
(15) vs. (17) 14.23*** 3
(15) vs. (16) 11.0*** 1
(16) vs. (17) 3.24 2
(13) vs. (17) 10.0*** 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table A-3: UK
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0κ -- -0.004 -- -0.003 -0.014** -0.0086

1κ -- -- 17.62 9.58 10.63 --

2κ -- -- 184.83** 38.15 -22.08 --

1γ 1.67 3.07 0.92 2.56 5.61** 3.69**

1θ 59.84*** 26.60** 58.6*** 30.84** -- --

0α 0.0018*** 0.0006*** 0.0018*** 0.0005** 0.0008*** 0.0008***

1α -- 0.62*** -- 0.63*** 0.54*** 0.58***
β -- 0.10* -- 0.084 0.13** 0.12**
c -- 0.79* -- 0.87 0.78** 0.84**

Like 885.34 892.16 887.33 892.57 891.19 890.82
R2 (in %) 3.06 3.80 3.28 3.85 3.70 3.66
JB test 0.00 0.00 0.00 0.00 0.00 0.00
ARCH (1) 2.69 93.3 6.8 84.6 52.7 80.0
ARCH (4) 22.8 98.6 35.0 98.4 94.3 98.0
LB-Q (1) 26.4 35.1 72.4 69.8 46.0 23.8
LB-Q (4) 32.9 49.7 29.9 55.1 32.7 33.6

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 13.63*** 4
(14) vs. (12) 3.97 2
(15) vs. (12) 14.46** 6
(15) vs. (14) 10.49** 4
(15) vs. (13) 0.82 2
(15) vs. (17) 3.5 3
(15) vs. (16) 2.77* 1
(16) vs. (17) 0.73 2
(13) vs. (17) 2.68 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table A-4: Germany
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0κ -- 0.0159 -- 0.002 0.008 0.009

1κ -- -- 6.12 0.63 3.24 --

2κ -- -- -159.8* -79.8 -37.12 --

1γ 0.55 -2.35 1.07 0.68 -1.78 -2.3

1θ -36.23*** -35.70*** -35.8*** -36.26*** -- --

0α 0.0055*** 0.02*** 0.0054*** 0.002*** 0.0004*** 0.0004***

1α -- 0.483*** -- 0.471*** 0.72*** 0.72***
β -- 0.15** -- 0.162** 0.17*** 0.17***
c -- 0.041 -- 0.002 -0.27* -0.25**

Like 895.28 903.29 896.89 903.66 896.5 896.28
R2 (in %) 2.02 2.89 2.19 2.93 2.15 2.13
JB test 0.00 0.00 0.00 0.00 0.00 0.00
ARCH (1) 0.05 73.7 0.4 99.9 57.6 45.0
ARCH (4) 0.37 89.1 1.2 87.9 93.3 88.1
LB-Q (1) 39.6 44.8 93.1 64.2 22.6 10.3
LB-Q (4) 45.2 53.1 60.3 50.6 50.1 31.7

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 16.03*** 4
(14) vs. (12) 3.22 2
(15) vs. (12) 16.77** 6
(15) vs. (14) 13.55*** 4
(15) vs. (13) 0.74 2
(15) vs. (17) 14.76*** 3
(15) vs. (16) 14.32*** 1
(16) vs. (17) 0.44 2
(13) vs. (17) 14.02*** 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).
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Table A-5: France
a) Model Comparison: Parameter Estimates and Model Characteristics

Equation No.
(12) (13) (14) (15) (16) (17)

0κ -- 0.014 -- 0.037 0.048* 0.0164*

1κ -- -- 25.85* -27.2 -34.84 --

2κ -- -- -76.38 16.3 1.85 --

1γ 0.70 -3.4 0.88 -10.61 -12.32 -3.47

1θ 9.49 11.01 9.39 8.89 -- --

0α 0.0034*** 0.0022*** 0.0034*** 0.0026*** 0.003*** 0.0027***

1α -- 0.0073 -- -0.097 -0.131 -0.041
β -- 0.158* -- 0.14* 0.131** 0.146*
c -- 1.11** -- 1.26** 1.34** 1.24**

Like 850.73 862.91 852.65 863.11 862.44 862.01
R2 (in %) 0.11 1.52 0.33 1.53 1.46 1.41
JB test 0.00 11.4 0.00 15.6 12.6 9.4
ARCH (1) 6.7 72.2 13.7 98.2 93.6 71.6
ARCH (4) 0.7 32.2 0.48 20.1 18.3 24.0
LB-Q (1) 6.3 44.9 94.0 63.0 72.2 58.9
LB-Q (4) 22.7 43.9 64.1 51.4 55.0 49.4

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Like = maximum value of the
likelihood function. JB test = Jarque-Bera test, ARCH = test on ARCH effects for one or four
lagged squared residuals, LB-Q = Ljung-Box Q test on autocorrelation for one or four lagged
residuals. The results for the tests report the p-value in %.

b) Model Comparison: Likelihood-Ratio Tests of bilateral Relationships: 
Is Model (B) equal to Model (A)?

Test: (A) vs. (B) Test Statistic Degrees of Freedom
(13) vs. (12) 24.34*** 4
(14) vs. (12) 3.82 2
(15) vs. (12) 24.73*** 6
(15) vs. (14) 20.90*** 4
(15) vs. (13) 0.384 2
(15) vs. (17) 2.17 3
(15) vs. (16) 1.31 1
(16) vs. (17) 0.86 2
(13) vs. (17) 1.79 1

Notes: Significance level: *, **, *** = 10%, 5%, 1%, respectively. Likelihood-Ratio 
tests for the null hypothesis model (A) = model (B), where model (B) is nested in (A).




