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Abstract

This paper is about the ability and means to root-n consistently and efficiently es-

timate linear, mean-square continuous functionals of a high dimensional, approximately

sparse regression. Such objects include a wide variety of interesting parameters such as

the covariance between two regression residuals, a coefficient of a partially linear model,

an average derivative, and the average treatment effect. We give lower bounds on the

convergence rate of estimators of such objects and find that these bounds are substantially

larger than in a low dimensional, semiparametric setting. We also give automatic debiased

machine learners that are 1/
√
n consistent and asymptotically efficient under minimal con-

ditions. These estimators use no cross-fitting or a special kind of cross-fitting to attain

efficiency with faster than n−1/4 convergence of the regression. This rate condition is sub-

stantially weaker than the product of convergence rates of two functions being faster than

1/
√
n, as required for many other debiased machine learners.
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1 Introduction

This paper is about the ability and means to 1/
√
n consistently and efficiently estimate lin-

ear, mean-square continuous functionals of a high dimensional, approximately sparse regression.

Such objects include a wide variety of interesting parameters such as the covariance between

two regression residuals, a coefficient of a partially linear model, an average derivative, and the

average treatment effect. We give lower bounds on the convergence rate of estimators of such

objects and find that these bounds are substantially larger than in a low dimensional, semi-

parametric setting. We also give automatic debiased machine learners that are 1/
√
n consistent

and asymptotically efficient under minimal conditions. These estimators use no cross-fitting

or a special kind of cross-fitting to attain efficiency with faster than n−1/4 convergence of the

regression. This rate condition is substantially weaker than the product of convergence rates of

two functions being faster than n−1/2, as assumed for many other debiased machine learners

High dimensional regressions are potentially important in many applications. There may

be many covariates of interest for the covariance between two regression residuals, a coefficient

of a partially linear model, an average derivative, or an average treatment effect. This variety

of important examples motivates interest in high dimensional regressions. Modern regression

models and methods are flexible in ways that are useful with high dimensional regressors. In

particular, approximately sparse models specify that the regression function can be well ap-

proximated by a linear combination of relatively few important regressors but the identity of

the important regressors is unknown. This specification is different than nonparametric models

where the identity of important functions in a series approximation is known. Approximate

sparsity is also different than sparsity in allowing all coefficients to be nonzero rather than only

a few, making approximate sparsity a more plausible assumption in many settings.

There has been a recent growth of the literature on inference of high dimensional models

as cited later in the Introduction. A major development has been the use of debiasing meth-

ods based on ideas dating back to Neyman orthogonalization for inference based on regularized

regression learners. The typical assumptions of these recent methods require rate double ro-

bustness, where the product of the regression rate and another rate is faster than 1/
√
n. This

condition is stronger than needed for classical semiparametric settings. This leads to a natural

question: Are we sure that the debiasing approach is the ultimate solution, rather than a specific

fix? We shed light on this question by deriving the necessary conditions for 1/
√
n estimation

and showing that these conditions are also sufficient for achieving the 1/
√
n rate if we carefully

design the debiasing formulation. These results also reveal a fundamental difference between

the high dimensional models and the classical semiparametric models.

We find that necessary conditions for 1/
√
n consistent estimation under approximate sparsity

are substantially stronger than in low dimensional semiparametric models where the identity of

important regressors is known. These necessary conditions depend on the sparse approximation
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rates s−ξ1 for the regression and s−ξ2 for another function α0, where s is the number of important

regressors and α0 is specified in Section 2. The necessary condition is that max{ξ1, ξ2} > 1/2.

In the classic nonparametric setting where the identity of the important regressors is known the

corresponding necessary condition for partially linear regression is ξ1 + ξ2 ≥ 1/2; see Ritov and

Bickel (1990), Robins et al. (2009), and Section 2. The difference between the approximately

sparse condition and the classic nonparametric condition is illustrated in Figure 1. The red line is

the boundary for the necessary condition ξ1 + ξ2 ≥ 1/2 for attaining 1/
√
n consistency when the

identity of the important regressors is known. The blue box is the boundary for the necessary

condition max{ξ1, ξ2} > 1/2 given here for attaining 1/
√
n consistency under approximate

sparsity where the identity of the important regressors is unknown. The requirement for 1/
√
n

consistency for the approximately sparse case is stronger, in that the approximation rates must

be outside the square, than the requirement for when the identity of the important functions is

known, where the rates must be on or above the triangle.

We also give a lower bound for convergence rates when ξ̃ = max{ξ1, ξ2} ≤ 1/2. We find

that the lower bound is (ln(p)/n)2ξ̃/(2ξ̃+1) which is illustrated in Figure 2. Here the lower bound

is also determined by the maximum of the sparse approximation rates. One can think of the

difference of this lower bound with the minimal condition ξ1 + ξ2 ≥ 1/2 for 1/
√
n consistency

with known important regressors as a cost of not knowing the important regressors. For example

when ξ1 = ξ2 = 1/4, where 1/
√
n may be possible with known important regressors, the rate

lower bound with approximate sparsity is (ln(p)/n)1/3, a smaller power of (ln(p)/n). This cost is

additional to the well known, slightly slower attainable convergence rates of regression learners

when the identity of important regressors is unknown, e.g. see Bickel, Ritov, and Tsybakov

(2009), Belloni et al. (2012), and Cai and Guo (2017). The attainable mean-square convergence

rate for a regression is a power of sample size n when the identity of important regressors is

known but is the same power of ln(p)/n when the identity of important regressors is unknown,

where p is the number of potential regressors. If p grows no faster than a power of n this only

reduces the rate of convergence from a power of n to the same power of ln(p)/n. In contrast,

for ξ1 = ξ2 = 1/4 the attainable rate of convergence for the parameters we consider drops from

1/
√
n to larger than n−1/3 when the identity of the important regressors becomes unknown.

We give estimators of objects of interest that are 1/
√
n consistent and efficient when max{ξ1, ξ2} >

1/2. These estimators are based on Lasso regression and Lasso minimum distance estimation

of the other function α0. We give an estimator of an average product that is 1/
√
n consistent

under minimal conditions. This estimator uses special cross fitting, where the regressor second

moments use the same observations as the sample average of regression products. We also give

an automatic debiased machine learner (Chernozhukov, Newey, and Singh, 2018) of a linear

functional of a regression, where the functional of interest depends only on regressors, that is

1/
√
n consistent when ξ1 > 1/2, a minimal condition. This estimator uses no cross-fitting.
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We obtain 1/
√
n consistency by combining special or no cross-fitting with the Lasso first order

conditions to ensure that the size of a key second order vanishes faster than 1/
√
n.

The condition max{ξ1, ξ2} > 1/2 is substantially weaker than conditions previously imposed

to obtain 1/
√
n consistency of estimators under approximate sparsity. For example ξ1 > 1/2

corresponds to the rate of convergence of Lasso regression being faster than n−1/4. Previous

conditions require that the product of convergence rates for the learners of the regression and

α0 is faster than n−1/2, that is ξ1/(2ξ1 + 1) + ξ2/(2ξ2 + 1) > 1/2 for Lasso. This is the rate

double robustness condition of Belloni, Chernozhukov, and Hansen (2014) and Farrell (2015)

that is stronger than ξ1 > 1/2. Figure 1 illustrates the difference between these conditions. The

hyperbola gives the lower boundary of the set where ξ1/(2ξ1 + 1) + ξ2/(2ξ2 + 1) > 1/2. The box

is the lower boundary of the set where max{ξ1, ξ2} > 1/2, as before. The exterior of the box is

well inside the points above the hyperbola, especially along each of the axes near the box.

We find that there is a robustness and efficiency trade-off between the estimators of linear

functionals with and without cross-fitting. The estimator without cross fitting attains 1/
√
n

consistency under just ξ1 > 1/2 but does require that Lasso estimates the conditional expectation

of the outcome variable given the regressors. When the Lasso dictionary can approximate any

function of the regressors this requirement is not restrictive but otherwise it is. When the

conditional expectation cannot be approximated by the Lasso dictionary we show that the

estimator without sample splitting is still 1/
√
n consistent under the strong condition that

ξ2 > 1/2 in addition to ξ1 > 1/2 . The estimator with cross fitting is 1/
√
n consistent under the

weaker condition that ξ1/(2ξ1 + 1) + ξ2/(2ξ2 + 1) > 1/2 and in this sense is more robust to Lasso

not estimating the conditional expectation.

Our results show that orthogonal moment functions with optimal regression learners provide

efficient estimators under minimal conditions for approximate sparsity. When the important

regressors are known orthogonal moment functions are not needed for efficient estimation but

undersmoothing is required, meaning the bias of the regression learner vanishes fast than the

variance, e.g. see Newey and Robins (2018). Thus we find that orthogonal moment functions

with optimal regression learners seem particularly well suited to approximately sparse models.

The approximately sparse specification we consider is a special case of those of Belloni et al.

(2012) and Belloni, Chernozhukov, and Hansen (2014). Some of the estimators we consider use

orthogonal moment functions from Chernozhukov et al. (2016) but with special sample splitting.

The estimator of α0 we use is a Lasso minimum distance estimator like Chernozhukov, Newey,

and Singh (2018) with special or no cross-fitting.

The debiased machine learning we consider is based on the zero derivative of the estimating

equation with respect to each nonparametric component, as in Belloni, Chernozhukov, and

Hansen (2014), Farrell (2015), and Robins et al. (2013), and Chernozhukov et al. (2018). This

kind of debiasing is different than bias correcting the regression learner, as in Zhang and Zhang
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(2014), Belloni Chernozhukov, and Wang (2014), Belloni, Chernozhukov, and Kato (2015),

Javanmard and Montanari (2014a,b; 2015), van de Geer et al. (2014), Ren et al. (2015), Bradic

and Kolar (2017), and Zhu and Bradic (2018). The functionals we consider are different than

those analyzed in Cai and Guo (2017). The continuity properties of functionals we consider

provide additional structure that we exploit, namely a Riesz representer, an object that was

not considered in Cai and Guo (2017) Targeted maximum likelihood (van der Laan and Rubin,

2006) based on machine learners has been considered by van der Laan and Rose (2011) and

large sample theory given by Luedtke and van der Laan (2016), Toth and van der Laan (2016),

and Zheng, Luo, and van der Laan (2016).

Mackey, Syrgkanis, and Zadik (2018) showed that weak sparsity conditions would suffice

for 1/
√
n consistency of a certain estimator of a partially linear conditional mean when certain

variables are independent and non Gaussian. The estimator given there will not be consistent

for the objects and model we consider.

Recently Hirshberg and Wager (2020) showed in independent work that their minimax es-

timator of a regression functional is 1/
√
n consistent for a finite and high dimensional model

under weak rate conditions similar to those considered here. The Lasso based estimator we give

is relatively simple to compute, is doubly robust, has simple standard errors that are robust to

Lasso estimating the conditional mean, and allows for an infinite dimensional model.

In summary, the contributions of this paper are a lower bound on the convergence rate of

certain linear, mean-square continuous functionals of an approximately sparse regression and es-

timators that attain 1/
√
n consistency under minimal conditions with weaker rate requirements

than previous estimators.

In Section 2 we describe the objects of interest here. Section 3 describes approximately

sparse models. Section 4 gives lower bounds on convergence rates. Estimators that are efficient

under minimal conditions are given in Sections 5 and 6.

2 Linear Functionals of a Regression

We consider parameters that depend linearly on a conditional expectation. To describe such an

object, let W denote a data observation, and consider a subvector (Y,X ′)′ of W , where Y is a

scalar outcome with finite second moment and X is a covariate vector. Denote the conditional

expectation of Y given X as

ρ0(x) = E[Y |X = x].

Let m(w, ρ) denote a function of the function ρ (i.e. a functional of ρ), where ρ denotes a

possible conditional expectation function. The objects of interest here have the form

θ0 = E[m(W, ρ0)]. (2.1)
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This parameter of interest is an expectation of some known formulam(W, ρ) of a data observation

w and a regression function ρ.

We focus on objects where there is α0(X) with E[α0(X)2] <∞ such that

E[m(W, ρ)] = E[α0(X)ρ(X)] for all ρ(X) with E[ρ(X)2] <∞. (2.2)

By the Riesz representation theorem, existence of such a α0(X) is equivalent to E[m(W, ρ)] being

a mean-square continuous functional of ρ, i.e. there is C > 0 such that E[m(W, ρ)] ≤ C ‖ρ‖2 for

all ρ ∈ B, where ‖ρ‖2 =
√
E[ρ(X)2]. We will refer to this α0(X) as the Riesz representer (Rr).

Existence of the Rr is equivalent to the semiparametric variance bound for θ0 being finite, as

mentioned in Newey (1994) and shown in Hirshberg and Wager (2020).

There are many important examples of this type of object.

Example 1: (Average Product) A leading example for our results is the average product

θ0 = E[Zρ0(X)].

Here m(W, ρ) = Zρ(X). By iterated expectations for any ρ(X) with E[ρ(X)2] <∞,

E[Zρ(X)] = E[E[Z|X]ρ(X)] = E[α0(X)ρ(X)], α0(X) = E[Z|X].

The object θ0 is the part of the covariance between two regression residuals that depends on an

unknown function. That covariance is

E[{Z − α0(X)}{Y − ρ0(X)}] = E[ZY ]− E[Zρ0(X)] = E[ZY ]− θ0,

where the first equality follows by orthogonality of α0(X) and Y − ρ0(X). This covariance is

useful in the analysis of covariance while controlling for nonparametric regression on X. We

focus on θ0 as the part of the covariance between two regression residuals that depends on the

regression ρ0(X).

Example 2: (Weighted Average Derivative). Here X = (D,Z) for a continuously dis-

tributed random variable D, ρ0(x) = ρ0(d, x), ω(d) is a pdf, and

θ0 = E

[∫
ω(u)

∂ρ0(u, Z)

∂d
du

]
= E

[∫
S(u)ρ0(u, Z)ω(u)du

]
,

where S(u) = −ω(u)−1∂ω(u)/∂u is the negative score for the pdf ω(u) and the second equality

follows by integration by parts. Here m(w, ρ) =
∫
S(u)ρ(u, z)ω(u)du. This θ0 can be interpreted

as an average treatment effect on Y of a continuous treatment D; see Chernozhukov, Newey,

6



and Singh (2021). Multiplying and dividing by the conditional pdf f(d|z) of D = d given Z = z

we find that for any ρ(X) with E[ρ(X)2] <∞,

E[m(W, ρ)] = E[

∫
S(u)ρ(u, Z)ω(u)du] = E[f(D|Z)−1S(D)ω(D)ρ(X)] = E[α0(X)ρ(X)],

α0(X) = f(D|Z)−1S(D)ω(D).

Example 3: (Average Treatment Effect). Here X = (D,Z) and ρ0(x) = ρ0(d, z), where

D ∈ {0, 1} is the treatment indicator and Z are covariates. The object of interest is

θ0 = E[ρ0(1, Z)− ρ0(0, Z)].

If potential outcomes are mean independent of treatment D conditional on covariates Z, then θ0

is the average treatment effect (Rosenbaum and Rubin, 1983). Here m(w, ρ) = ρ(1, z)− ρ(0, z).

Let π0(Z) = Pr(D = 1|Z) be the propensity score. Note that E[ρ(1, Z)] = E[π(Z)−1Dρ(d, Z)] =

E[π0(Z)−1Dρ(X)] and similarly E[ρ(0, Z)] = E[{1−π0(Z)}−1(1−D)ρ(X)] Then for any ρ ∈ B

E[m(W, ρ)] = E[ρ(1, Z)− ρ(0, Z)] = E[α0(X)ρ(X)], α0(X) =
D

π0(Z)
− 1−D

1− π0(Z)

Our results are based on a dictionary of random variables

(b1(X), b2(X), ...), E[bj(X)2] = 1,

where X can be infinite dimensional. An important example has bj(X) = Xj for X =

(X1, X2, ...). We will assume for most of our results that the conditional expectation E[Y |X] can

be well approximated by a linear combination of this dictionary. Let B denote the set of function

with finite second moment that is the closure in mean square of the set of linear combinations

of dictionary functions, i.e. the set of functions that can be approximated arbitrarily well in

mean square by
∑∞

j=1 γ̃jbj(X) where only a finite number of γ̃j are nonzero. We will maintain

through much of this paper that

ρ0(X) = E[Y |X] ∈ B. (2.3)

In this way E[Y |X] is assumed to be an infinite dimensional linear regression. If B contains all

measurable functions with finite second moment then ρ0(X) ∈ B does not impose any restrictions

on ρ0 but otherwise it does.

3 Approximate Sparsity

In this Section we describe the approximate sparsity condition that determines the achievable

convergence rate for estimators of θ0. We also clarify the distinction between approximately
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sparse models and those where identity of the important regressors is known and explain the

key conditions on which our results are based. For the dictionary of functions (b1(x), b2(x), ...)

discussed in the previous Section let b(x) = (b1(x), ..., bp(x))′ denote the p×1 vector of the first p

components. For a scalar random variable a(X) let ‖a‖2 =
√
E[a(X)2] denote the mean square

norm. For a p× 1 constant vector d let ‖d‖0 denote the number of nonzero elements of d. For

any constants C, ξ > 0, and positive integer t ∈ N we define

MC,ξ :=

{
v ∈ Rp : min

‖a‖0≤t
‖b(·)′(v − a)‖2 ≤ Ct−ξ ∀t ∈ N

}
.

In this definition t is the number of nonzero elements of a. This MC,ξ is the set of p × 1

coefficients v such that b(X)′v can be approximated in mean square by b(X)′a, at a rate t−ξ,

where t is the number of nonzero components of a. The idea is that b(X)′v is the true regression

and a are the coefficients of a sparse approximation to b(X)′v with approximation rate t−ξ.

Approximately sparse specifications are different than more familiar nonparametric specifica-

tions in ways that are useful in high dimensional settings. Approximate sparsity allows for very

many potential regressors (possibly many more than sample size) when relatively few important

regressors give a good approximation but the identity of those few is not known. In contrast,

series approximations are based on relatively few regressors, often many fewer than the sample

size. Approximately sparse and series approximations are similar in that they both depend on

a few regressors giving a good approximation. They differ in that series regression requires that

the identity of the important regressors is known, while with approximate sparsity their identity

need not be known. This difference is useful in high dimensional settings, where there are po-

tentially very many regressors needed to approximate a function of many variables. Typically,

economics and statistics provide little guidance about which regressors are important. With

approximate sparsity, such information is not needed, since very many terms can be included

among the potential regressors.

We can be precise about this key difference between approximate sparsity and series approx-

imations by comparing MC,ξ with a class of functions corresponding to series approximations.

For MC,ξ the nonzero components of a are allowed to be coefficients of any of the p dictionary

functions, where p can be large, even larger than sample size. In the definition of MC,ξ it is

unknown which dictionary functions are used in the sparse approximate at rate Ct−ξ. A series

approximation from the semiparametric literature would require that the unknown function be

well approximated by a linear combination of the first t functions. The set of unknown v allowed

here would be

SC,ξ =

{
v ∈ Rp : min

{(a1,...,at,0,...,0}
‖b(·)′(v − a)‖2 ≤ Ct−ξ ∀t ∈ N

}
For example, suppose that X is continuously distributed with compact support and that dictio-

nary functions are products of all nonnegative powers of x that are weakly increasing in order
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with j. If x has dimension d and v is such that b(x)′v has bounded derivatives of order s then it

is well known that there is C and an ordering of b(x) such that the inequality in the definition

of SC,ξ is satisfied with ξ = s/d. This ξ is the well known rate for approximation of functions

in a Holder class. Comparing SC,ξ with MC,ξ we see that the approximately sparse class MC,ξ

extends the notion of a series approximation to allow the best approximating functions to be

unknown. Approximate sparsity means there is an t−ξ approximation rate without specifying

the order/direction/location of the elements of b(x) that give this rate. Notice that if ξ ≥ ξ̃,

then MC,ξ ⊆MC,ξ̃, similarly to SC,ξ shrinking with ξ.

In the rest of the paper, we find a major difference betweenMC,ξ and SC,ξ for estimating the

functional E[m(W, ρ0)] = E[α0(X)ρ0(X)]. Robins et al. (2009) showed that for Holder classes

a necessary condition for existence of a 1/
√
n estimator is ξ1 + ξ2 ≥ 1/2 (i.e. the region that

is not below the triangle in Figure 1). It can be shown that this requirement is also necessary

for existence of a 1/
√
n estimator of the average product for the class SC,ξ. For brevity we omit

this demonstration from the paper. We demonstrate here that for (ρ(·), α(·)) ∈MC,ξ1 ×MC,ξ2 ,

the 1/
√
n rate is only possible outside the box in Figure 1, i.e. where max{ξ1, ξ2} > 1/2.

4 Lower Bound on Convergence Rate

In this Section we give a lower bound on the rate of convergence of learners of θ0 = E[m(W, ρ0)]

for the expected product, partially linear regression, and the weighted average derivative. We

work with data {Wi}ni=1 that is i.i.d. where the distribution of Wi can change with n. This setup

is common for results on lower bounds for convergence rates where the lower bound is uniform

across a set of data generating processes.

4.1 Average Product

We first consider the average product θ0 = E[Zρ0(X)]. We will derive the bound for the

case where X is an infinite dimensional vector and bj(X) = Xj, (j = 1, 2, ...). Let b(X) =

(b1(X), ..., bp(X))′ and for notational simplicity let Xi = b(Xi). We make the following assump-

tion:

Assumption 1: For each n the data (Yi, Zi, Xi
′) is jointly Gaussian with mean zero,

EXiX
′
i = Ip, and

E[Yi|Xi] = X ′iγ, E[Zi|Xi] = X ′iπ.

The lower bound derived under this condition is a minimax lower bound in any model where

Assumption 1 is satisfied as a special case. A lower bound on a convergence rate obtained for a
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particular model is a lower bound over any class of models that include the particular model as

a special case. In this model the average product for sample size n is

θ = E[ZiE[Yi|Xi]] = E[E[Zi|Xi]E[Yi|Xi]] = π′E[XiX
′
i]γ = π′γ,

where the second equality follows by iterated expectations. We will consider the supremum of

the expected length of confidence intervals as the data generating process varies over a range of

possible parameter values for models satisfying Assumption 1, so we do not regard θ as fixed at

a value θ0 or θn for any sample size.

Let

Ω = E(QiQ
′
i), Qi = (Yi −X ′iγ, Zi −X ′iπ).

For ξ1, ξ2 > 0 we define the parameter space

Θξ1,ξ2 :=
{
β = (γ, π,Ω) : γ ∈MC0,ξ1 , π ∈MC0,ξ2 , eigenvalues of Ω belong to [M−1,M ].

}
where C0, M > 0 are constants. For β = (γ, π,Ω), we consider the functional φ(β) = γ′π.

Let C(Θ) be the set of 1−α confidence intervals for φ(β) that are valid uniformly over β ∈ Θ.

We are interested in the following

L(Θ, Θ̃) = inf
CI∈C(Θ̃)

sup
β∈Θ

Eβ|CI|

for Θ ⊆ Θ̃, where |CI| denotes the length of a confidence interval. If L(Θ, Θ̃) depends on Θ̃

instead of Θ, then there is no adaptivity between Θ and Θ̃. If Θ = Θ̃, then L(Θ,Θ) is the

minimax rate over Θ. The primary goal is to study this object with Θ = Θξ1,ξ2 and Θ̃ = Θξ̃1,ξ̃2
,

where ξ1 ≥ ξ̃1 and ξ2 ≥ ξ̃2. This means Θξ1,ξ2 ⊆ Θξ̃1,ξ̃2
. We will assume that we are in a

high-dimensional setting where p > n for large enough n by imposing the condition that there

exists a constant κ > 0 such that n ≤ p1−κ ln p for large enough n.

Theorem 1: If Assumption 1 is satisfied and there exists a constant κ > 0 such that n ≤
p1−κ ln p for large enough n then for any ξ1 ≥ ξ̃1 ≥ 0, ξ2 ≥ ξ̃2 ≥ 0, and ξ̃ = max{ξ̃1, ξ̃2} ≤ 1/2,

L
(
Θξ1,ξ2 ,Θξ̃1,ξ̃2

)
≥ D

(
ln p

n

)2ξ̃/(2ξ̃+1)

,

where D > 0 is a constant depending only on ξ̃1, ξ̃2, κ, α, C0,M .

Theorem 1 has two important implications. First, when ξ̃ = max{ξ̃1, ξ̃2} is much smaller

than 1/2, the rate L
(
Θξ1,ξ2 ,Θξ̃1,ξ̃2

)
can be much slower than the parametric rate n−1/2. Second,

Theorem 1 implies that adaptivity to smoothness is not possible. Notice that in Theorem 1,

the lower bound for L
(
Θξ1,ξ2 ,Θξ̃1,ξ̃2

)
only depends on max{ξ̃1, ξ̃2} and has nothing to do with
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(ξ1, ξ2). This means that any confidence interval that is valid over Θξ̃1,ξ̃2
with max{ξ̃1, ξ̃2} ≤ 1/2

cannot have expected width n−1/2 even at points in a smaller parameter space Θξ1,ξ2 , no matter

how small Θξ1,ξ2 is. Hence, there does not exist a confidence interval that satisfies both of the

following properties: (1) being valid over Θξ̃1,ξ̃2
with max{ξ̃1, ξ̃2} < 1/2 and (2) having expected

width O(n−1/2) on a smaller (potentially much smaller) space Θξ1,ξ2 .One implication is that it

is not possible to distinguish between max{ξ1, ξ2} ≤ 1/2 and max{ξ1, ξ2} > 1/2 from the data.

Consequently, the condition of max{ξ1, ξ2} > 1/2 that is necessary in order to obtain the 1/
√
n

rate on Θξ1,ξ2 cannot be tested in the data.

4.2 Partial Linear Coefficient and Average Derivative

We now consider the coefficient of a partially linear model under the following condition. The

data generating process is i.i.d. with (Yi, Zi, X
′
i) satisfying

Assumption 2: (Yi, Zi, X
′
i) is jointly Gaussian with mean zero, E[XiX

′
i] = Ip,

Yi = Ziθ +X ′iµ+ εi, Zi = X ′iπ + ui, (4.1)

where E[Xiεi] = E[Xiui] = 0 and E[Ziεi] = 0.

Let σ2
u = Eu2

i and σ2
ε = Eε2

i . The distribution of the data is now parameterized by λ =

(θ, µ, π, σ2
u, σ

2
ε). Let C1, C2, ξ1, ξ2 > 0, we define the following parameter space

Λξ1,ξ2 =
{
λ = (θ, µ, π, σ2

u, σ
2
ε) : θ ∈ R, µ ∈MC0,ξ1 , π ∈MC0,ξ2 , {σ2

u, σ
2
ε} ⊂ [M−1,M ]

}
,

where M ≥ 2 is a constant.

We notice that the conditional covariance model can be written in the partial linear form.

Assume that (Yi, Zi, Xi) has the distribution indexed by β = (γ, π,Ω) as in Assumption 1.

Then by straight-forward algebra, we can see that the model in Assumption 2 can be written

in terms of the model in Assumption 1 with λ = f(β) = (θ, µ, π, σ2
u, σ

2
ε), where θ = Ω1,2/Ω2,2,

µ = γ − πΩ1,2/Ω2,2, σ2
u = Ω2,2 and σ2

ε = Ω1,1 − Ω2
1,2/Ω2,2. It turns out that this relationship

allows us to translate the lower bound in Theorem 1 to a lower bound for θ in Assumption 2.

Theorem 2: If Assumption 2 is satisfied and there exists a constant κ > 0 such that n ≤
p1−κ ln p for large enough n then for any ξ1 ≥ ξ̃1 ≥ 0, ξ2 ≥ ξ̃2 ≥ 0, and ξ̃ = max{ξ̃1, ξ̃2} ≤ 1/2,

L(Λξ1,ξ2 ,Λξ̃1,ξ̃2
) ≥ D(n−1 ln p)2ξ̃/(2ξ̃+1),

where D > 0 is a constant depending only on ξ̃1, ξ̃2, κ, α, C0.
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By Theorem 2 the condition ξ̃ = max{ξ̃1, ξ̃2} > 1/2 is also a necessary condition for attaining

the 1/
√
n rate in partial linear models. The same adaptivity discussions apply. We would also

like to point out that although L(Λξ1,ξ2 ,Λξ̃1,ξ̃2
) and L(Θξ1,ξ2 ,Θξ̃1,ξ̃2

) measure the expected length

of confidence intervals, the rates are not due to the possibility of |CI| taking extreme values

with a small probability because the object of interest is bounded over the parameter set.

The average derivative is a harder problem than partial linear models and hence the lower

bound in Theorem 2 applies to the problem of average derivative. To see this, consider a function

of (Zi, Xi). A special case is when the partial derivative with respect to Zi is constant. In this

special case, the average derivative problem becomes learning a coefficient in a partial linear

model. By Theorem 2, even in this special problem, max{ξ̃1, ξ̃2} > 1/2 is a necessary condition

for attaching the parametric rate. Therefore, in general, one needs to impose max{ξ̃1, ξ̃2} > 1/2

to obtain the 1/
√
n rate for the average derivative.

An implication of this Section is that when max{ξ1, ξ2} ≤ 1/2 an estimator of θ0 can con-

verge no faster than
√

ln(p)/n. In the next two Sections we give estimators that attain 1/
√
n

consistency when max{ξ1, ξ2} > 1/2.

5 Efficient Estimation of the Average Product Via Spe-

cial Cross-Fitting

The estimators we consider are based on an orthogonal moment function of the form

m(W, ρ)− θ + α(X)[Y − ρ(X)], α ∈ B, ρ ∈ B,

as in Chernozhukov et al. (2016) and Chernozhukov, Newey, and Singh (2018). The ρ̂ and α̂ we

use to construct θ̂ have probability limits

ρ̄(X) = proj(Y |B) = proj(ρ0(X)|B), ᾱ(X) = proj(α0(X)|B)

respectively. The orthogonal moment functions are doubly robust for the parameter θ0 in that

θ0 = E[m(W, ρ̄) + ᾱ(X){Y − ρ̄(X)}] if either E[Y |X] ∈ B or α0(X) ∈ B.

Most of the results of this Section and the next will assume that E[Y |X] ∈ B. The influence

function for the estimators we consider will be

ψ̄(w) = m(w, ρ̄)− θ̄ + ᾱ(x)[y − ρ̄(x)].

This is the efficient influence function for the parameter θ̄ = E[m(W, ρ̄)] = E[ᾱ(X)ρ̄(X)] in

a model where the data generating process is unrestricted except for regularity conditions, as

shown in Chernozhukov, Newey, and Singh (2019). We will give conditions for estimators of θ
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to have the influence function ψ̄(w) and hence be asymptotically efficient for θ̄, mostly where

E[Y |X] ∈ B and hence θ0 = θ̄.

In this Section we give an estimator of the average product of Example 1 that is efficient

under the minimal condition max{ξ1, ξ2} > 1/2 when E[Y |X] ∈ B. This estimator uses special

cross-fitting. To describe the estimator we partition the observations into two sets of about

equal size I1 and I2 and let ` index the sets. For a p × 1 vector d let ‖d‖1 =
∑p

j=1 |dj| and let

r > 0 be a Lasso penalty to be specified later in this Section. The estimator will be constructed

using

ρ̂`(x) = b(x)′γ̂`, γ̂` = arg min
γ
γ′Σ̂`γ − 2µ̃′`γ + 2r ‖γ‖1 , (` = 1, 2)

α̂`(x) = b(x)′π̂`, π̂` = arg min
π
π′Σ̂`π − 2M̃ ′

`π + 2r ‖π‖1 ,

Σ̂` =
1

n`

∑
i∈I`

b(Xi)b(Xi)
′, µ̃` =

1

n− n`

∑
i/∈I`

b(Xi)Yi, M̃` =
1

n− n`

∑
i/∈I`

b(Xi)Zi,

Here ρ̂`(x) and α̂`(x) are L1 penalized high dimensional regression estimators that differ from

conventional Lasso estimates in the dictionary second moment matrix Σ̂` and the cross moment

matrices µ̃` and M̃` being constructed from different samples. The average product estimator is

θ̂ =
1

n

2∑
`=1

∑
i∈I`

{ρ̂`(Xi)Zi + α̂`(Xi)Yi − α̂`(Xi)ρ̂`(Xi)}. (5.1)

This estimator has a familiar doubly robust form (e.g. see Robins et al. 2008), but differs from

previous estimators in the way cross-ftting is done. Here the sum in equation (5.1) is over the

same observations used to form Σ̂` whereas previous estimators use different observations for

these components. An asymptotic variance estimator for this θ̂ is

V̂ =
1

n

2∑
`=1

∑
i∈I`

ψ̂2
i`, ψ̂i` = ρ̂`(Xi)Zi + α̂`(Xi)Yi − α̂`(Xi)ρ̂`(Xi)− θ̂.

An important advantage of the cross-fitting here is realized in the treatment of a key quadratic

remainder

T1 = (π̂` − π)′Σ̂`(γ̂` − γ), (5.2)

where γ and π are coefficients of the population least squares regression of Y and Z on b(X)

respectively. In previous work this type of remainder is often bounded by the product of con-

vergence rates of ρ̂` and α̂` similarly to Belloni, Chernozhukov, and Hansen (2014) and Farrell

(2015). Under approximate sparsity that type of bound on R̂ requires that (ξ1, ξ2) are located

above the hyperbola in Figure 1, where ξ1/(2ξ1 + 1) + ξ2/(2ξ2 + 1) > 1/2, in order to guarantee
√
nT1

p−→ 0. When ξ1 > 1/2 we replace those previous remainder bounds with a smaller one by

using the Lasso first order conditions for π̂` and a bound on ‖γ̂` − γ‖1 to show that
√
nT1

p−→ 0
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under very weak conditions for π̂`. We also use the special cross fitting where Σ̂` is from a

sample independent of µ̃` and M̃` to ensure that another remainder is small. These two features

of θ̂ lead to efficiency of θ̂ under the minimal condition ξ1 > 1/2.

Because the estimator θ̂ is the same when we swap the positions of (ρ̂`(Xi), Yi) and (α̂`(Xi), Zi)

it will also be efficient when ξ2 > 1/2 and very weak conditions are satisfied for γ̂`. In this way it

will follow that θ̂ is efficient under the minimal condition max{ξ1., ξ2} > 1/2 for 1/
√
n consistent

estimation given in Section 4. We focus on the condition ξ1 > 1/2 with the understanding that

the estimator will also be efficient when ξ2 > 1/2.

We consider the properties of θ̂ under two possible data generating processes with a corre-

sponding average product parameter for each. For one of the processes the distribution of W

can change with n so that

E[Y |X] = ρn(X) = b(X)′γ, µ− Σγ = 0, µ = E[b(X)Y ], Σ = E[b(X)b(X)′],

where we suppress an n subscript on the expectations for notational convenience. Here we

impose that the conditional expectation E[Y |X] is a linear combination of the p×1 vector b(X)

for each n. The true average product for this data generating process is

θn = E[Zρn(X)] = E[αn(X)ρn(X)], αn(X) = b(X)′π, M − Σπ = 0, M = E[b(X)Z].

Here αn(X) is the linear projection of Z on the p×1 vector b(X). We do not require that αn(X)

is a conditional expectation, unlike ρn(X).

This data generating process is like that considered for the lower bound of Section 4 with

E[Y |X] being a linear combination of the p× 1 dictionary b(X). Section 4 allowed the average

product to range over a set of possible values for each sample size, so the lower bound given

there will apply to estimation of θn. We show that θ̂ is a 1/
√
n consistent estimator of θn under

the minimal condition ξ1 > 1/2. This result provides an upper bound for the convergence rate

of estimators of θn.

The parameter θn only depends on finite dimensional regressions. In the second data gener-

ating process the parameter of interest depends on an infinite dimensional regression. For this

second data generating process Wi will have the same distribution for each n and

E[Y |X] = ρ0(X) ∈ B.

Here E[Y |X] may depend on an infinite number of the basis functions (b1(X), b2(X), ...). The

average product for this data generation process is

θ0 = E[Zρ0(X)] = E[α0(X)ρ0(X)] = E[ᾱ(X)ρ0(X)], ᾱ(X) = proj(Z|B)(X).

We do not require that ᾱ(X) be a conditional expectation. Under ξ1 > 1/2 and additional

conditions we show that θ̂ is an asymptotically efficient estimator of θ0 and V̂ is a consistent

estimator of asymptotic variance of θ̂.

14



This data generating process is different than that considered for the lower bound Section

4. Here E[Y |X] is infinite dimensional rather than finite dimensional. We account for nonpara-

metric infinite dimensional E[Y |X] by restricting the bias in approximating ρ0(X) and ᾱ(X)

by linear combinations of b(X), as further discussed following Assumption 9 below. With this

and other conditions the 1/
√
n consistency of θ̂ serves as an upper convergence rate bound for

estimating θ0 over a wider range of data generating processes than considered in Section 4. The

asymptotic efficiency of θ̂ and consistency of V̂ are also of interest for asymptotic inference for

θ0.

To specify conditions for θ̂ we begin with an approximate sparsity condition for the regression

of Y on b(X). For a p × 1 vector d let ‖d‖2 =
√∑p

j=1 d
2
j . For any nonincreasing function

f : N 7→ [0,∞), we define

Mf :=

{
v ∈ Rp : min

‖a‖0≤t
‖v − a‖2 ≤ f(t) ∀t ∈ N

}
.

We impose the following approximate sparsity condition on the least squares coefficients γ that

satisfy µ− Σγ = 0.

Assumption 3: There is C > 0 and ξ1 > 1/2 such that for all n large enough γ ∈ Mf for

f(t) = Ct−ξ1 and t ≤ C(ln(p)/n)−2/(2ξ1+1).

When the maximum eigenvalue of Σ = E[b(X)b(X)′] is bounded, which we will assume, this

condition strengthens the sparse approximation rate condition of Section 4 to apply to the vector

of population least squares coefficients γ rather the mean-square projection b(X)′γ. Assumption

3 is equivalent to the sparse approximation rate of Section 4 when the smallest eigenvalue of Σ is

bounded away from zero. Since Σ = I for the model from which the lower bound is constructed,

the lower bound continues to hold under this Assumption 3. Therefore, a result showing 1/
√
n

consistency under Assumption 3 is sharp in that the assumed sparsity condition is no stronger

than the minimal condition max{ξ1, ξ2} > 1/2.

We will impose weak conditions on αn(X) and ᾱ(X). In particular we do not require a

sparse approximation rate for αn(X) or ᾱ(X). In many settings, such as Example 3, conditions

on ᾱ(X) embody common support restrictions for treatment effects. Imposing weak conditions

on ᾱ(X) allows weak common support conditions. For some of our results we will only require

that E[α0(X)2] <∞, which is a minimal condition for 1/
√
n consistent estimation.

We do require that ᾱ(X) or αn(X) has a sparse mean-square approximation but we do not

require any rate. When the distribution W does not vary with n a sparse approximation always

exists by the definition of ᾱ as an element of B. When the distribution of W varies with n we

impose the following sparse approximation existence condition.
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Assumption 4: There is C > 0, δn −→ 0, and π̃ with ‖π̃‖0 = O(δ2
nn/ ln(p)) such that

(π − π̃)′Σ(π − π̃) = O(δ2
n).

This condition is weaker than the sparse approximation rate assumed for the bounds in

Section 4. Consequently imposing it does not affect the sharpness of our convergence rates for

θ̂. Also, this Assumption is automatically satisfied when the distribution of W does not vary

with n, as demonstrated in the following result.

Lemma 3: If the distribution of Wi does not vary with n then Assumption 4 is satisfied.

This is a simple result that follows from the definition of B as the set of functions that

can be approximated arbitrarily well by a finite linear combination of (b1(X), b2(X), ...). The

convergence δn −→ 0 follows by that condition. The rate at which δn −→ 0 is not restricted in

any way.

The following condition imposes restrictions on the Lasso penalty r. Let εn =
√

ln(p)/n.

Assumption 5: εn = o(r), r = o(εnδ
−1
n ), and r = o(ncεn) for every c > 0.

Here we allow r to be slightly larger than εn which simplifies the statements of the results

without affecting their sharpness. The penalty size r is restricted to go to zero faster than

εnδ
−1
n . One can guarantee that such a bound is satisfied in a wide variety of cases by choosing

r to be proportional to εn times several compositions of ln(n) (e.g. r ≈ ln(ln(ln(n)))εn). This

assumption could be avoided by specifying that r ≈ Cεn for a large enough C and that all

results hold with large probability. We impose Assumption 5 for simplicity.

The next condition imposes that the elements of the dictionary b(X) are uniformly bounded.

For a p× 1 vector d let ‖d‖∞ = maxj≤p |dj| , ‖d‖1 =
∑p

j=1 |dj| , and εn =
√

ln(p)/n.

Assumption 6: There is C > 0 such that for all n, ‖b(X)‖∞ ≤ C, and the largest eigenvalue

of Σ = E[b(X)b(X)′] is bounded uniformly in p and n.

This condition simplifies the analysis considerably. It could be relaxed to allow for sub

Gaussian regressors as in the lower bounds of Section 4, although that seems to require a

different asymptotic variance estimator where α̂(X) is trimmed. We will maintain Assumption

6 for simplicity.

We will also make use of a sparse eigenvalue condition as in much of the Lasso literature.

Let J denote a subvector of (1, ..., p), γJ be the vector consisting of γJj = γj for j ∈ J and

γJj = 0 otherwise, and γJc be the corresponding vector for J c (e.g. so that γ = γJ + γJc).
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Assumption 7: There are c, C > 0 such that with probability approaching one for all

s = O(n/ ln(p)),

min
|J |≤s

min
‖γJc‖1≤3‖γJ‖1

γ′Σ̂γ

γ′JγJ
≥ c.

We first consider the case where the distribution of Wi can change with n and show that the

estimator θ̂ is 1/
√
n consistent for θn = E[Zρn(X)]. The next condition specifies that ρn(X) is

a conditional expectation

Assumption 8: E[Y |X] = ρn(X) = b(X)′γ for γ satisfying µ = Σγ and there is C > 0

such that V ar(Y |X) ≤ C.

This condition was imposed in Section 4 so the lower bound from there applies here. In this

case the parameter of interest is

θn = E[ZE[Y |X]] = E[Zb(X)′]γ = M ′γ = π′Σγ.

Let

ρn(x) = b(x)′γ, αn(x) = b(x)′π, ψn(w) = ρn(x)z + αn(x)y − αn(x)ρn(x)− θn.

Theorem 4: If Assumptions 3-8 are satisfied and there is C > 0 with E[Z2|X] ≤ C,

E[ρn(X)2] ≤ C, E[αn(X)2] ≤ C then

θ̂ = θn +
1

n

n∑
i=1

ψn(Wi) + op(n
−1/2) = θn +Op(n

−1/2).

For ξ2 > 1/2 this conclusion also is satisfied with Z, π, and M interchanged with Y, γ, and µ

in Assumptions 3–5 and 8.

Theorem 4 shows that θ̂ is a 1/
√
n consistent estimator of θn under the minimal approximate

sparsity condition max{ξ1, ξ2} > 1/2 and a few additional regularity conditions, thus providing

a sharp upper bound on the convergence rate of estimators of θn.

Next we consider the second data generating process where the distribution of Wi does not

vary with n and the parameter of interest is θ0 = E[Zρ0(X)]. We impose the following additional

condition

Assumption 9: i) E[Y |X] ∈ B; ii)
√
n ‖ρ0 − b′γ‖2 [‖ᾱ− b′π‖2 + ε−1

n rδn] −→ 0;

The condition that
√
n ‖ρ0 − b′γ‖2 ‖ᾱ− b′π‖2 −→ 0 is a kind of ”tail bias” condition that

requires that the product of approximation errors from the least squares regression of ρ0(X)

and ᾱ(X) respectively on b(X) goes to zero faster than 1/
√
n. This condition is different than
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analogous tail bias conditions in the classic semiparametric setting. The condition here concerns

the bias from using all the potential regressors p and p is allowed to be much bigger than n.

In semiparametric settings the analogous product bias condition only uses s elements of b with

s < n. The condition here is much weaker than in the standard semiparametric setting. For

example suppose that ‖ρ0 − b′γ‖2 = o(p−c) for some c > 0. Then by choosing p = n1/2c we would

have
√
n ‖ρ0 − b′γ‖2 =

√
no(n−1/2) −→ 0 and Assumption 8 ii) would be satisfied. Assumption

8 ii) is more general in allowing ‖ρ0 − b′γ‖2 to shrink slower than n−1/2 when ‖ᾱ− b′π‖2 and

ε−1
n rδn shrink fast enough.

We impose an additional condition for consistency of the asymptotic variance estimator V̂ .

Assumption 10: i) ρ0(X) =
∑∞

j=1 γj0bj(X) with
∑∞

j=1 |γj0| <∞; ii) there is a constant C

such that for all positive integers t ≤ C(ln(p)/n)−2/(2ξ1+1) there is J such that γ̃0 = (γ10, ..., γp0)′

satisfies ‖γ − γ̃0J‖2 ≤ Ct−ξ1 and ‖γ̃0Jc‖1 −→ 0.

Let

ψ0(w) = zρ0(x)− θ0 + ᾱ(x)[y − ρ0(x)].

Theorem 5: If Assumptions 3,5–7, and 9 are satisfied and E[Z2|X] and V ar(Y |X) are

bounded then

θ̂ = θ0 +
1

n

n∑
i=1

ψ0(Wi) + op(n
−1/2),

√
n(θ̂ − θ0)

d−→ N(0, V ), V = E[ψ0(W )2].

If Assumption 10 is also satisfied then V̂
p−→ V. These conclusions also hold under the same

conditions with Z and Y interchanged.

Theorem 5 shows that efficient estimation of the average product θ0 is possible under the

approximate sparsity condition max{ξ1, ξ2} > 1/2 under the conditions given here. It is inter-

esting to compare this result with the efficient estimation results for the average product when

identity of important regressors is known. Newey and Robins (2018) gave such results when the

elements of b(x) are splines and ρ0(X) and α0(X) are elements of Holder classes of functions

with sparse approximation rates of ξ1 and ξ2 respectively implied by the Holder assumptions.

There it was found that an estimator like θ̂ but with a different type of cross fitting was asymp-

totically efficient when ξ1 + ξ2 > 1/2. With approximate sparsity as allowed by Theorem 5 the

condition for efficiency is max{ξ1, ξ2} > 1/2. This difference in minimal conditions for efficiency

is expected from the lower bound in Section 4.

It is also interesting to compare the respective estimators. The estimator here is based on

Lasso which results in ρ̂` and α̂` estimating ρ0 and ᾱ at optimal respective rates. In contrast the

efficient estimator in Newey and Robins (2018) uses a spline estimator of ρ0 and specifies that
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the number of series terms grows faster than is optimal for estimating the function. The results

here show that such undersmoothing is not needed for asymptotic efficiency in approximately

sparse models.

6 Efficient Estimation of Functionals Without Cross-fitting

In this Section we give an estimator for general linear functionals of the type considered in

Section 2. The estimator is debiased machine learning with a Lasso regression and estimator of

ᾱ(X) without cross-fitting. We show that the estimator is 1/
√
n consistent and asymptotically

efficient under ξ1 > 1/2, one of the minimal conditions of Section 4, when the functional of

interest depends just on X. These results depend on E[Y |X] being a linear combination of the

dictionary (b1(X), b2(X), ...). We also show that this estimator is doubly robust and that when

ξ2 > 1/2 in addition to ξ1 > 1/2 it is 1/
√
n consistent when E[Y |X] is not a linear combination

of (b1(X), b2(X), ...) and/or the functional of interest depends on W and not just X.

The estimator is

θ̂ =
1

n

n∑
i=1

{m(Wi, ρ̂) + α̂(Xi)[Yi − ρ̂(Xi)]}, (6.1)

ρ̂(x) = b(x)′γ̂, γ̂ = arg min
γ
γ′Σ̂γ − 2µ̂′γ + 2r ‖γ‖1 ,

α̂(x) = b(x)′π̂, π̂ = arg min
π
π′Σ̂π − 2M̂ ′π + 2r ‖π‖1 ,

M̂ =
1

n

n∑
i=1

m(Wi, b), µ̂ =
1

n

n∑
i=1

b(Xi)Yi, Σ̂ =
1

n

n∑
i=1

b(Xi)b(Xi)
′.

This ρ̂(X) is Lasso regression and the α̂(X) is the Lasso minimum distance learner of ᾱ(X)

given in Chernozhukov, Newey, and Singh (2018). An asymptotic variance estimator for this θ̂

is

V̂ =
1

n

n∑
i=1

ψ̂2
i , ψ̂i = m(Wi, ρ̂) + α̂(Xi)[Yi − ρ̂(Xi)]− θ̂.

The estimators θ̂ and V̂ are like the automatic debiased machine learning estimator in Cher-

nozhukov, Newey, and Singh (2018) with Lasso ρ̂. They do not use cross-fitting in that θ̂ uses

the same observations in the average as are used to construct ρ̂(X) and α̂(X).

This absence of cross fitting makes this estimator computationally convenient because γ̂ and

α̂ only need to be computed once rather than the multiple times required for cross-fitting. It

would be interesting to explore finite sample consequences of not using cross-fitting though that

is beyond the scope of this version of the paper.

The absence of cross-fitting has the same important role here as does the special cross fitting

in Section 5 in helping to control the size of the remainder T1 in equation (5.2). Also dependence
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of m(X, γ) on only X will mean that π̂ will depend only on X which helps control an additional

remainder.

The first additional condition we impose in this Section is:

Assumption 11: There is ᾱ(X) ∈ B such that E[m(W, ρ)] = E[α0(X)ρ(X)] for all ρ ∈ B
and there is C > 0 such that maxj≤p |m(X, bj)| ≤ C for all p.

Similarly to Section 5 we will first show that the estimator θ̂ is 1/
√
n consistent for θn =

E[m(W, ρn)] in the first data generating process with E[Y |X] = ρn(X) where the distribution

of W can change with n. Here let M = E[m(X, b)], π be a p× 1 vector of coefficients satisfying

M − Σπ = 0, θn = E[m(W, ρn)] = M ′γ, ρn(x) = b(x)′γ, αn(x) = b(x)′π, and

ψn(w) = m(w, ρn)− θn + αn(x)[y − ρn(x)].

Theorem 6: If m(W, ρ) depends only on X, Assumptions 3-8 and 11 are satisfied and there

is C > 0 with E[m(X, ρn)2] ≤ C and E[αn(X)2] ≤ C then

θ̂ = θn +
1

n

n∑
i=1

ψn(Wi) + op(n
−1/2) = θn +Op(n

−1/2).

This result shows 1/
√
n consistency of θ̂ for the parameter θn for the first data generating

process that changes with n. We also show asymptotic efficiency with the second data generating

process where parameter of interest is θ0 = E[m(W, ρ0)] = E[α0(X)ρ0(X)].

Assumption 12: Either i) |m(W, ρ)| ≤ a(W ) supx |ρ(x)|, E[a(W )2] < ∞ and Assumption

10 is satisfied or ii) E[m(W, ρ)2] ≤ CE[ρ(X)2] for all ρ ∈ B and ᾱ(X) is bounded.

Part i) of this condition does not restrict ᾱ(X) while part ii) requires that ᾱ(X) is bounded.

Let

ψ0(w) = m(w, ρ0)− θ0 + ᾱ(x)[y − ρ0(x)].

Theorem 7: If m(W, ρ) depends only on X and Assumptions 3, 5–7, 9, 11, and 12 are

satisfied then

θ̂ = θ0 +
1

n

n∑
i=1

ψ0(Wi) + op(n
−1/2),

√
n(θ̂ − θ0)

d−→ N(0, V ), V = E[ψ0(W )2].

If Assumption 10 is also satisfied then V̂
p−→ V.

The same conclusion was obtained by Chernozhukov, Newey, and Singh (2018) under stronger

approximate sparsity conditions. Here the only approximate sparsity condition assumed is
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ξ1 > 1/2, i.e. that (ξ1, ξ2) is to the right of the box in Figure 1. Chernozhukov, Newey, and

Singh (2018) require that (ξ1, ξ2) is above the hyperbola in Figure 1. When (ξ1, ξ2) is below the

hyperbola and to the right of the box the estimator here will be asymptotically efficient whereas

the one in Chernozhukov, Newey, and Singh (2018) is not known to be. Also Theorem 7 requires

no approximately sparse approximation rate for ᾱ(X) which is required in Chernozhukov, Newey,

and Singh (2018). This feature of Theorem 7 will be useful when approximate sparsity for ᾱ(X)

is deemed a strong condition.

Theorem 7 does assume that ρ0(X) = E[Y |X], i.e. that the regression function is a linear

combination of the dictionary (b1(X), b2(X), ...), which is not assumed in Chernozhukov Newey

and Singh (2018). This condition is not restrictive when (b1(X), b2(X), ...) can approximate any

function of X in mean square but otherwise is restrictive. We do not know whether it is possible

to attain asymptotic efficiency without ρ0(X) = E[Y |X] when the only approximate sparsity

condition is ξ1 > 1/2 but this is a topic of ongoing research. Theorem 7 is also specific to Lasso

regression while Chernozhukov, Newey, and Singh (2018) applies to any regression learner that

converges at a power of the sample size.

Theorem 7 applies to many interesting objects of interest including the weighted average

derivative of Example 2 and the average treatment effect of Example 3. To illustrate Theorem 7

we give results for these two examples. These and the rest of the following results are given for

the 2nd data generating process where the object of interest is θ0 = E[m(W, ρ0)]. For simplicity

we only give results where Assumption 10 is satisfied.

Here is an asymptotic efficiency result for the weighted average derivative of Example 2:

Corollary 8 (Example 2): If Assumptions 3, 5–7, 9, and 10 are satisfied, there is C > 0

such that |S(u)| ≤ C for all u ∈ R and E[fD|Z(D|Z)−1ω(D)] <∞ then
√
n(θ̂−θ0)

d−→ N(0, V )

and V̂
p−→ V .

This result imposes weaker conditions on approximate sparsity and on ᾱ(X) than imposed

in Chernozhukov, Newey, and Singh (2020). It imposes a stronger condition in requiring that

ρ0(X) = E[Y |X].

Here is an asymptotic efficiency result for the average treatment effect of Example 3.

Corollary 9 (Example 3): If Assumptions 3, 5–7, 9, and 10 are satisfied and E[Pr(D =

1|Z)−1{1− Pr(D = 1|Z)}−1] <∞ then
√
n(θ̂ − θ0)

d−→ N(0, V ) and V̂
p−→ V .

This result is notable in imposing no restrictions on the propensity score Pr(D = 1|Z) other

than the minimal condition for existence of a 1/
√
n consistent estimator and in having weaker

approximate sparsity conditions than in Chernozhukov, Newey, and Singh (2020). It imposes a

stronger condition in requiring that ρ0(X) = E[Y |X].
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An important property of the estimator θ̂ is that it is doubly robust, meaning that it may be

consistent for an object of interest even when E[Y |X] is not in B. To explain let ρ̄(X) = E[Y |X]

and suppose that the object of interest is

θ̄ = E[m(X, ρ̄)].

Let ᾱ(X) = proj(α0|B)(X). Then we have

Theorem 10: If Assumptions 3, 5–7, 9, 11, and 12 are satisfied then θ̂
p−→ θ0 = E[α0(X)ρ0(X)]

and θ̄ = θ0 if either E[Y |X] ∈ B or α0(X) ∈ B.

This result shows that the probability limit θ̄ of θ̂ will be equal to the parameter of interest

θ0 if either E[Y |X] is in B or if α0(X) is in B. For instance in the average treatment effect of

Example 3 the probability limit of θ̂ is the average treatment effect if either the projection of

Y on B is E[Y |X] or if α0(X) = D/Pr(D = 1|Z) − (1 − D)/[1 − Pr(D = 1|Z)] is a linear

combination of the dictionary (b1(X), b2(X), ...).

If population least square coefficients π satisfying M − Σπ = 0 have a ξ2 > 1/2 sparse

approximation rate, in addition to ξ1 > 1/2 and the other conditions previously imposed, then θ̂

will be an asymptotically efficient estimator for θ0 and V̂ a consistent estimator of its asymptotic

variance without ρ0(X) = E[Y |X] and without m(W, ρ) depending only on X.

Theorem 11: If Assumptions 3, 5–7, 11, and 12 ii) are satisfied, Assumption 3 is sat-

isfied with π substituted for γ and ξ2 > 1/2, and
√
n ‖ρn − ρ̄‖ ‖αn − ᾱ‖ −→ 0 then for θ̄ =

E[m(W, ρ̄)], √
n(θ̂ − θ̄) d−→ N(0, V ), V̂

p−→ V.

Thus we see that if there is a sparse approximation rate ξ2 > 1/2 for π and other conditions

previously discussed are satisfied then θ̂ will be consistent and asymptotically normal estimator

of θ̄ and V̂ will be a consistent estimator of its asymptotic variance. This result does not require

that E[Y |X] ∈ B nor does it require that m(W, ρ) depends only on X.

In summary, Theorem 7 showed that the automated debiased machine learner without sample

splitting θ̂ is asymptotically efficient under a minimal condition ξ1 > 1/2. Theorem 10 showed

that this θ̂ is doubly robust, providing a consistent estimator of an object that may be equal to a

parameter of interest when ρ0(X) 6= E[Y |X]. Theorem 11 rounds out these properties by showing

that θ̂ is consistent and asymptotically normal for the parameter θ̄ and the variance estimator V̂

is consistent when π is also approximately sparse with ξ2 > 1/2 when ρ0(X) 6= E[Y |X] and/or

when m(W, ρ) does not depend on just X. Thus we find that θ̂ and V̂ have several attractive

properties. They are simpler to compute than the cross-fit version. The θ̂ is asymptotically

efficient under a minimal sparsity condition when E[Y |X] ∈ B, is doubly robust, and inference
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based on θ̂ and V̂ is asymptotically correct even when ρ0(X) 6= E[Y |X] if π has ξ2 > 1/2. That

is, θ̂ is asymptotically efficient under a minimal condition, is doubly robust, and θ̂ and V̂ provide

specification robust large sample inference when ξ2 > 1/2.
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Figure 1: Minimal conditions for the root-n rate
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Figure 2: Minimal conditions for the root-n rate

The above figure displays 2ξ̃/(2ξ̃ + 1), where ξ̃ = max{ξ1, ξ2}.
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A Online Appendix: Proofs of Theorems

Proof of Theorem 1: Notice that for β = (γ, π,Ω), the distribution of Wi = (Yi, Zi, X
′
i)
′ ∈

Rp+2 is Pβ, which is N(0,Σβ), where

Σβ :=

Ω11 + ‖γ‖2
2 Ω12 + γ′π γ′

Ω12 + γ′π Ω22 + ‖π‖2
2 π′

γ π Ip

 with Ω =

(
Ω11 Ω12

Ω12 Ω22

)
. (A.1)

We define β∗ = (0, 0, I2). Clearly, Σβ∗ = Ip+2 and β∗ ∈ Θf1,f2 .

Let k =
⌊
c1

√
n/ ln p

⌋
, where c1 > 0 is a constant to be determined below. Define Qk =

{v ∈ {0, 1}p : ‖v‖0 = k}. Let N = |Qk|. Clearly, N =
(
p
k

)
. We list elements in Qk, i.e.,

Qk = {δ1, ..., δN}. For 1 ≤ j ≤ N , define γj = cnδj and πj = cnδj, where cn = c0

√
n−1 ln p and

c0 is a constant chosen as follows. Now we choose any constants c0, c1 > 0 that satisfy

c0 ≤
√
κ/12, c0c1 ≤ min {M1, 2C0} and c2

0c1 ≤
√
n/ ln p

2
(1−M−1

2 ). (A.2)

One can easily verify that (A.2) guarantees

c2
0kn

−1 ln p ≤ 1/2 and k2/p1−6c20 = o(1). (A.3)

Now we define

βj = (γj, πj, Ω̄) with Ω̄ =

(
1− c2

nk −c2
nk

−c2
nk 1− c2

nk

)
.

We have

Σβj :=

 1 0 cnδ
′
j

0 1 cnδ
′
j

cnδj cnδj Ip

 . (A.4)

Let ψ be an arbitrary random variable satisfying P (|ψ| ≤ 1) = 0 to be chosen later. Notice

that∣∣∣∣∣N−1

N∑
j=1

Eβjψ − Eβ∗ψ

∣∣∣∣∣ =

∣∣∣∣∣Eβ∗N−1

N∑
j=1

ψ

(
dPβj
dPβ∗

− 1

)∣∣∣∣∣ ≤ Eβ∗

∣∣∣∣∣N−1

N∑
j=1

(
dPβj
dPβ∗

− 1

)∣∣∣∣∣
≤

√√√√Eβ∗

(
N−1

N∑
j=1

(
dPβj
dPβ∗

− 1

))2

=

√√√√N−2

N∑
j2=1

N∑
j1=1

Eβ∗
dPβj1
dPβ∗

dPβj2
dPβ∗

− 1. (A.5)

The rest of the proof proceeds in three steps. We first verify that βj ∈ Θξ̃1,ξ̃2
and then

conduct computations to bound (A.5). Then we derive the desired result.
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Step 1: show βj ∈ Θξ̃1,ξ̃2
for 1 ≤ j ≤ N .

By (A.2), we have that

‖γj‖1 ∨ ‖πj‖1 = cnk = c0k
√
n−1 ln p ≤ c0c1 ≤M1.

To verify γj ∈MC0,ξ̃1
, we need to show that cn

√
k − t ≤ C0t

−ξ̃1 ∀1 ≤ t ≤ k. Since ξ̃1 ≤ 1/2,

we only need to show cn
√
k − t ≤ C0t

−1/2 ∀1 ≤ t ≤ k. Equivalently, this is to show that

C2
0 t
−1 + c2

nt ≥ c2
nk ∀1 ≤ t ≤ k.

Notice that C2
0 t
−1 + c2

nt ≥ 2C0cn. It suffices to show 2C0cn ≥ c2
nk. This holds by cn =

c0

√
n−1 ln p, k ≤ c1

√
n/ ln p and c0c1 ≤ 2C0 (due to (A.2)).

Similarly, the analogous argument can verify that πj ∈MC0,ξ̃2
.

Notice that the eigenvalues of Ω̄ are 1 and 1− 2c2
nk. Since cn = c0

√
n−1 ln p, k = c1

√
n/ ln p

and c2
0c1 ≤ (1−M−1

2 )
√
n/ ln p/2 (due to (A.2)), we have that 1−2c2

nk ≥M−1
2 . Thus, eigenvalues

of Ω̄ are between M−1
2 and M2. Therefore, βj ∈ Θξ̃1,ξ̃2

.

Step 2: computing likelihood.

By Lemma 3 in Cai and Guo (2017), we have that

Eβ∗
dPβj1
dPβ∗

dPβj2
dPβ∗

=
[
det
(
Ip+2 − (Σ−1

β∗
Σβj1

− Ip+2)(Σ−1
β∗

Σβj2
− Ip+2)

)]−n/2
. (A.6)

By (A.4) and Σβ∗ = Ip+2, we have that

Σ−1
β∗

Σβj − Ip+2 =

 0 0 cnδ
′
j

0 0 cnδ
′
j

cnδj cnδj 0

 .

Then we have

Ip+2 − (Σ−1
β∗

Σβj1
− Ip+2)(Σ−1

β∗
Σβj2

− Ip+2)

= Ip+2 −

 0 0 cnδ
′
j1

0 0 cnδ
′
j1

cnδj1 cnδj1 0


 0 0 cnδ

′
j2

0 0 cnδ
′
j2

cnδj2 cnδj2 0


= Ip+2 −

c2
nδ
′
j1
δj2 c2

nδ
′
j1
δj2 0

c2
nδ
′
j1
δj2 c2

nδ
′
j1
δj2 0

0 0 2c2
nδj1δ

′
j2

 =

1− c2
nδ
′
j1
δj2 −c2

nδ
′
j1
δj2 0

−c2
nδ
′
j1
δj2 1− c2

nδ
′
j1
δj2 0

0 0 Ip − 2c2
nδj1δ

′
j2

 .
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Therefore,

det
[
Ip+2 − (Σ−1

β∗
Σβj1

− Ip+2)(Σ−1
β∗

Σβj2
− Ip+2)

]
= det

(
Ip − 2c2

nδj1δ
′
j2

)
× det

(
1− c2

nδ
′
j1
δj2 −c2

nδ
′
j1
δj2

−c2
nδ
′
j1
δj2 1− c2

nδ
′
j1
δj2

)
(i)
=
(
1− 2c2

nδ
′
j1
δj2
)
× det

(
1− c2

nδ
′
j1
δj2 −c2

nδ
′
j1
δj2

−c2
nδ
′
j1
δj2 1− c2

nδ
′
j1
δj2

)
=
(
1− 2c2

nδ
′
j1
δj2
)
×
{(

1− c2
nδ
′
j1
δj2
)2 −

(
−c2

nδ
′
j1
δj2
)2
}

=
(
1− 2c2

nδ
′
j1
δj2
)2
,

where (i) follows by Sylvester’s determinant identity. By (A.6), we have that

Eβ∗
dPβj1
dPβ∗

dPβj2
dPβ∗

=
(
1− 2c2

nδ
′
j1
δj2
)−n (i)

≤ exp
(
6nc2

nδ
′
j1
δj2
)
, (A.7)

where (i) follows by c2
nδ
′
j1
δj2 ≤ c2

nk ≤ 1/2 and the fact that (1 − x)−n < exp(3xn) for any

x ∈ [0, 1/2]. (To see this, define f(x) = −3x− ln(1− x). Notice that f(·) is convex on [0, 1/2]

by checking f ′′(·). Also notice that f(0) < 0 and f(1/2) < 0. Hence, f(x) < 0 on [0, 1/2].

This means − ln(1 − x) ≤ 3x. Multiplying both sides by n and taking exponential, we obtain

(1− x)−n ≤ exp(3xn).)

Now we combine (A.5) and (A.7), obtaining(
N−1

N∑
j=1

Eβjψ − Eβ∗ψ

)2

≤ N−2

N∑
j2=1

N∑
j1=1

exp
(
6nc2

nδ
′
j1
δj2
)
− 1

(i)
< exp

(
exp

(
6nc2

n + ln(k2/p)
))
− 1 = exp

(
k2

p1−6c20

)
− 1

(iii)
= o(1),

(A.8)

where (i) follows by Lemma A.1, (ii) follows by cn = c0

√
n−1 ln p and (iii) follows by (A.3).

Step 3: derive the desired result.

Let CIn = [ln, un] be an arbitrary confidence interval for γ′π with nominal coverage proba-

bility 1− α on Θξ̃1,ξ̃2
. In other words,

inf
β∈Θξ̃1,ξ̃2

Pβ (ln ≤ φ(β) ≤ un) ≥ 1− α. (A.9)

We now choose the random variable

ψ = 1
{
c2
nk /∈ CI

}
.

By (A.8), we have

N−1

N∑
j=1

Eβjψ ≤ Eβ∗ψ + o(1). (A.10)
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Notice that φ(βj) = γ′jπj = c2
nk and φ(β∗) = 0. We observe that

Pβ∗
(
un − ln ≥ c2

nk
)
≥ Pβ∗

(
0 ∈ [ln, un] and c2

nk ∈ [ln, un]
)

(i)

≥ Pβ∗ (0 ∈ [ln, un])− Pβ∗
(
c2
nk /∈ [ln, un]

)
= Pβ∗ (φ(β∗) ∈ [ln, un])− Eβ∗ψ
(ii)

≥ 1− α− Eβ∗ψ
(iii)

≥ 1− α−N−1

N∑
j=1

Eβjψ + o(1)

= 1− α−N−1

N∑
j=1

Pβj(c
2
nk /∈ CI) + o(1)

= 1− α−N−1

N∑
j=1

Pβj(φ(βj) /∈ CI) + o(1)

(iv)

≥ 1− α− α + o(1), (A.11)

where (i) follows by P (A
⋂
B) ≥ P (A) − P (Bc) for any events A,B, (ii) follows by (A.9) and

β∗ ∈ Θξ̃1,ξ̃2
, (iii) follows by (A.10) and (iv) follows by (A.9) and βj ∈ Θξ̃1,ξ̃2

.

Now we observe that

Eβ∗ |CI| = Eβ∗(ln − un) ≥ c2
nkPβ∗

(
un − ln ≥ c2

nk
)
≥ c2

nk(1− 2α + o(1)).

Notice that c2
nk &

√
n−1 ln p. Since CI is an arbitrary confidence interval, the proof is

complete. Q.E.D.

Lemma A.1 Let k ∈ N and define Qk = {v ∈ {0, 1}p : ‖v‖0 = k}. Let v and u be two

independent vectors that have a uniform distribution on Qk. Then for any D ≥ 0,

E exp (Du′v) < exp
(
exp

(
D + ln(k2/p)

))
.

Proof: Let N = |Qk|. We list elements in Qk, i.e., Qk = {x1, ..., xN}. Then

E exp (Du′v) = N−2

N∑
j2=1

N∑
j1=1

exp
(
Dx′j1xj2

) (i)
= N−1

N∑
j=1

exp (Dx′1xj) = E exp(Dx′1v),

(i) follows by the observation that
∑N

j1=1 exp(Dx′j1xj2) does not depend on j2. Without loss of

generality, we take x1 = (1, ..., 1, 0, ..., 0)′, i.e., the vector whose first k entries are nonzero.

Let Cn,k be the population that consists of n elements with n− k elements being 0 and the

remaining k being 1. Let {ξi}ki=1 be a random sample without replacement from the population
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of Cn,k. We observe that x′1v has the same distribution as
∑k

i=1 ξi. Then

E exp(Dx′1v) = E exp

(
D

k∑
i=1

ξi

)
.

Let {ζi}ki=1 be a random sample with replacement from Cn,k. In other words, {ζi}ki=1 is i.i.d

Bernoulli with E(ζi) = k/p. Since x 7→ exp(Dx) is a convex function, we can use Theorem 4 of

Hoeffding (1963) and obtain that

E exp

(
D

k∑
i=1

ξi

)
≤ E exp

(
D

k∑
i=1

ζi

)
= [E exp(Dζ1)]k

(i)
=

(
1− k

p
+
k

p
exp(D)

)k
(ii)

≤ exp

(
k2

p
[exp(D)− 1]

)
< exp

(
k2

p
exp(D)

)
= exp

(
exp

(
D + ln(k2/p)

))
,

where (i) follows by the moment generating function of Bernoulli distributions, (ii) follows by

the elementary inequality 1 + x ≤ exp(x) for x ≥ 0. The proof is complete. Q.E.D.

Proof of Theorem 2: Let β∗ = (γ, π,Ω) with γ = π = 0 and Ω = I2. Let

Θ(1) =

{
β = (γ, π,Ω) : γ = π = cnδ, δ ∈ {0, 1}p, ‖δ‖0 = k, Ω =

(
1− c2

nk −c2
nk

−c2
nk 1− c2

nk

)}
,

where cn = c0

√
n−1 ln p and k =

⌊
c1

√
n/ ln p

⌋
with c0, c1 satisfying (A.2) in the proof of Theorem

1. Notice that c2
nk ≤ c1c

2
0

√
n−1 ln p = o(1) is smaller than 1/4 for large n.

In (A.8) from the proof of Theorem 1, we have already proved that for any random variable

ψ satisfying |ψ| ≤ 1, we have that

inf
β∈Θ(1)

Eβψ ≤ Eβ∗ψ + o(1). (A.12)

Recall that for any β = (γ, π,Ω), we can formulate it in the corresponding partial linear

form with λ = f(β) = (θ, µ, π, σ2
u, σ

2
ε), where θ = Ω1,2/Ω2,2, µ = γ − πΩ1,2/Ω2,2, σ2

u = Ω2,2 and

σ2
ε = Ω1,1 − Ω2

1,2/Ω2,2. We denote λ∗ = f(β∗). We use the notation f1(β) = θ = Ω1,2/Ω2,2.

Notice that Pβ and Pλ with λ = f(β) are the same probability measure. For this reason, we use

Pβ and Pλ exchangeably. Now let CI∗(·) = [u∗(·), l∗(·)] be an arbitrary confidence interval for θ

that has uniform coverage 1− α over Λξ̃1,ξ̃2
.

Recall that c2
nk ≤ 1/4 for large n. Therefore, for β ∈ Θ(1) and for large n, we have θ =

f1(β) = −c2
nk/(1 − c2

nk) ≤ −2c2
nk, 3/4 ≤ σ2

u ≤ 1, 1/2 ≤ σ2
ε ≤ 1 and ‖ρ‖1 ∨ ‖π‖1 ≤ 2M1.
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Moreover, for β ∈ Θ(1) and for large n, µ = γ − πΩ1,2/Ω2,2 = (1− θ)γ ∈ MC0,ξ̃1
since θ = o(1)

and we can always shrink c1 to c1/2 if needed. Therefore, for large n, f(Θ(1)) ⊂ Λξ̃1,ξ̃2
. Therefore,

CI∗ has uniform 1− α coverage over Θ(1) for large n.

Now we consider

ψ∗ = 1 {CI∗\A 6= ∅} ,

where A = [−c2
nk, c

2
nk]. By (A.12), we have

inf
β∈Θ(1)

Eβψ∗ ≤ Eβ∗ψ∗ + o(1).

Notice that for β ∈ Θ(1), we have

Eβψ∗ = Eλψ∗ (with λ = f(β))

= Pλ (CI∗\A 6= ∅)
≥ Pλ (f1(β) ∈ CI∗ and f1(β) /∈ A)

(i)
= Pλ (f1(β) ∈ CI∗) = Pλ(θ ∈ CI∗)

(ii)

≥ 1− α,

where (i) follows by the fact that f1(β) ≤ −2c2
nk and thus f1(β) /∈ A and (ii) follows by the fact

that CI∗ is a confidence interval for θ. Hence, the above displays imply

Pλ∗ (CI∗\A 6= ∅) = Eλ∗ψ∗ = Eβ∗ψ∗ ≥ 1− α− o(1). (A.13)

On the other hand, we notice that

Pλ∗ (CI∗\A 6= ∅)
= Pλ∗ (CI∗\A 6= ∅ and 0 ∈ CI∗) + Pλ∗ (CI∗\A 6= ∅ and 0 /∈ CI∗)
(i)

≤ Pλ∗ (CI∗\A 6= ∅ and 0 ∈ CI∗) + α
(ii)

≤ Pλ∗
(
|CI∗| ≥ c2

nk
)

+ α, (A.14)

where (i) follows by the fact that θ = 0 at λ∗ = f(β∗) and that CI∗ is a confidence interval

for θ and (ii) follows by the fact that {CI∗\A 6= ∅}
⋂
{0 ∈ CI∗} ⊂ {|CI∗| ≥ c2

nk}. (To see

this last step, let CI∗ = [l∗, u∗]. Notice that 0 ∈ CI∗ means l∗ ≤ 0 ≤ u∗. Also notice that

CI∗\A 6= ∅ means the event {l∗ < −c2
nk}

⋃
{u∗ > c2

nk}. If l∗ < −c2
nk, then 0 ≤ u∗ would imply

u∗ − l∗ ≥ c2
nk; if u∗ > c2

nk, then l∗ ≤ 0 implies u∗ − l∗ ≥ c2
nk. Thus, in both cases, we have

|CI∗| = u∗ − l∗ ≥ c2
nk.)

Now we combine (A.13) and (A.14), obtaining Pλ∗ (|CI∗| ≥ c2
nk) ≥ 1− 2α− o(1). Q.E.D.

For the proof of results in Sections 5 and 6 let εn =
√

ln(p)/n, s0 ≥ Cε
−2/(2ξ2+1)
n , and π be

coefficients of the least squares projection of α0(X) on b(X), satisfying

M − Σπ = E[b(X){α0(X)− b(X)′π}] = 0.
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By Assumption 3 we can define J0 ⊂ {1, ..., p} as indices of a sparse approximation with |J0| = s0,

where |A| denotes the number of elements of a matrix, and coefficients π̃j for j ∈ J0 such that

for π̃ = (π̃1, ..., π̃J)′, with π̃j = 0 for j /∈ J0,

‖π − π̃‖2 ≤ Cs−ξ20 ≤ Cε−2ξ2/(2ξ2+1)
n

Also define π∗ as

π∗ ∈ arg min
v

(π − v)′Σ(π − v) + 2εn
∑
j∈Jc0

|vj|. (A.15)

Lemma A1: ‖Σ(π∗ − π)‖∞ ≤ Cεn.

Proof: Let ej ∈ Rp denote the j-th column of Ip. The first-order condition for π∗ imply

that for j ∈ J0, we have e′jΣ(π∗ − π) = 0; for j ∈ J c0 , we have that e′jΣ(π∗ − π) + εnzj = 0,

where zj = sign(π∗,j) if π∗,j 6= 0 and zj ∈ [−1, 1] if π∗,j = 0. Therefore, for any j, we have that

|e′jΣ(π∗ − π)| ≤ εn. Hence, ‖Σ(π∗ − π)‖∞ ≤ εn. Q.E.D.

Lemma A2: (π − π∗)′Σ(π − π∗) ≤ Cε
4ξ2/(2ξ2+1)
n .

Proof: By the definition of π∗, we have that by the largest eigenvalue of Σ bounded,

(π − π∗)′Σ(π − π∗) + εn
∑
j∈Jc0

|π∗,j| ≤ (π − π̃)′Σ(π − π̃) + εn
∑
j∈Jc0

|π̃j| = (π − π̃)′Σ(π − π̃)

≤ C ‖π − π̃‖2
2 ≤ Cε−4ξ2/(2ξ2+1)

n . Q.E.D.

Let J be the vector of indices of nonzero elements of π∗.

Lemma A3: |J | ≤ Cε
−2/(2ξ2+1)
n .

Proof: For all j ∈ J\J0 the first order conditions to equation (A.15) imply |e′jΣ(π∗−π)| = εn.

Therefore, It follows that ∑
j∈J\J0

(
e′jΣ(π∗ − π)

)2
=

1

4
ε2
n|J\J0|.

In addition,

∑
j∈J\J0

(
e′jΣ(π∗ − π)

)2 ≤
p∑
j=1

(
e′jΣ(π∗ − π)

)2
= (π∗ − π)′Σ

(
p∑
j=1

eje
′
j

)
Σ(π∗ − π)

= (π∗ − π)′Σ2(π∗ − π) ≤ λmax(Σ){(π − π∗)′Σ(π − π∗)} ≤ Cε4ξ2/(2ξ2+1)
n ,

where the last inequality follows by Lemma A2 and λmax(Σ) ≤ C. Combining the above two

displays, we obtain
1

4
ε2
n|J\J0| ≤ Cε4ξ2/(2ξ2+1)

n .
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Dividing through by ε2
n gives |J\J0| ≤ Cε

−2/(2ξ2+1)
n . Thus by s0 ≤ Cε

−2/(2ξ2+1)
n ,

|J | = |J0|+ |J\J0| = s0 + |J\J0| ≤ s0 + Cε−2/(2ξ2+1)
n ≤ Cε−2/(2ξ2+1)

n . Q.E.D.

Lemma A4: If ξ2 > 1/2 then ‖π∗ − π‖1 . ε
(2ξ2−1)/(2ξ2+1)
n .

Proof: By Lemma B1 and ξ2 > 1/2, we have that∥∥πJc0∥∥1
≤ s

1/2−ξ2
0 ≤ Cε(2ξ2−1)/(2ξ2+1)

n .

Let J1 = J ∪ J0 note that J ⊂ J1 and J0 ⊂ J1 imply J c1 ⊂ J c and J c1 ⊂ J c0 , so that∥∥(π∗)Jc1 − πJc1
∥∥

1
=
∥∥πJc1∥∥1

≤
∥∥πJc0∥∥1

.

Also, by Lemma A3,

|J1| ≤ |J |+ |J0| ≤ Cε−2/(2ξ2+1)
n + s0 ≤ Cε−2/(2ξ2+1)

n

Therefore we have

‖π∗ − π‖1 = ‖(π∗)J1 − πJ1‖1 +
∥∥(π∗)Jc1 − πJc1

∥∥
1
≤ ‖(π∗)J1 − πJ1‖1 +

∥∥πJc0∥∥1

≤
√
|J1| ‖(π∗)J1 − πJ1‖2 + Cε(2ξ2−1)/(2ξ2+1)

n

≤ Cε−1/(2ξ2+1)
n ‖π∗ − π‖2 + Cε(2ξ2−1)/(2ξ2+1)

n ≤ Cε(2ξ2−1)/(2ξ2+1)
n . Q.E.D.

Lemma A5: ‖Σ̂π∗ − Σπ∗‖∞ = Op(εn), ‖Σ̂π − Σπ‖∞ = Op(εn).

Proof: By (π − π∗)′Σ(π − π∗) −→ 0 and π′Σπ ≤ E[α0(X)2] it follows that E[(b(X)′π∗)
2] =

π′∗Σπ∗ ≤ C. The first conclusion then follows by uniform boundedness of the elements of b(X)

and Lemma B2 with Xi,j = bj(Xi) and Xi0 = b(X)′π∗. The second conclusion follows similarly

Q.E.D.

Next let

π̂ = arg min
π
{−2M̂ ′π + π′Σ̂π + 2r ‖π‖1},

for M̂ to be specified later in this appendix.

Lemma A6: If
∥∥∥M̂ −M∥∥∥

∞
= Op(εn) and εn = o(r) then for ∆ = π̂ − π∗ and any Ĵ such

that (π∗)Ĵc = 0, with probability approaching one,

∆′Σ̂∆ ≤ 3r‖∆‖1, ‖∆Ĵc‖1 ≤ 3‖∆Ĵ‖1.
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Proof: By the definition of the estimator, we have

π̂′Σ̂π̂ − 2M̂ ′π̂ + 2r‖π̂‖1 ≤ π′∗Σ̂π∗ − 2M̂ ′π∗ + 4r‖π∗‖1.

Plugging π̂ = π∗ + ∆ into the above equation and rearranging the terms gives

∆′Σ̂∆ + 2r‖π∗ + ∆‖1 ≤ 2r‖π∗‖1 + 2(M̂ − Σ̂π∗)
′∆. (A.16)

Note that ‖M̂ −M‖∞ = Op(εn) and by Lemma A5 ‖Σ̂π∗ − Σπ∗‖∞ = Op(εn). Then by Lemma

1, M = Σπ, and the triangle inequality,

‖M̂ − Σ̂π∗‖∞ ≤ ‖Σ̂π∗ − Σπ∗‖∞ + ‖M̂ −M‖∞ + ‖M − Σπ∗‖∞
≤ Op(εn) + ‖M − Σπ‖∞ + ‖Σ(π∗ − π)‖∞ = Op(εn),

Therefore, by the Holder inequality we have
∣∣∣(M̂ − Σ̂π∗)

′∆
∣∣∣ ≤ ‖M̂ − Σ̂π∗‖∞‖∆‖1, so that

∆′Σ̂∆ + 2r‖π∗ + ∆‖1 ≤ 2r‖π∗‖1 + 2εn‖∆‖1.

By εn = o(r) it follows that with probability approaching one 2εn ≤ r and

∆′Σ̂∆ + 2r‖π∗ + ∆‖1 ≤ 2r‖π∗‖1 + r‖∆‖1.

The triangle inequality implies ‖π∗‖1 = ‖π∗ + ∆ − ∆‖1 ≤ ‖π∗ + ∆‖1 + ‖∆‖1 so subtracting

2r‖π∗ + ∆‖1 from both sides gives the first conclusion.

Next, since ∆′Σ̂∆ ≥ 0 it also follows from equation (A.16) that 2r‖π∗ + ∆‖1 ≤ 2r‖π∗‖1 +

r‖∆‖1 with probability approaching one, so dividing through by r gives

2‖π∗ + ∆‖1 ≤ 2‖π∗‖1 + ‖∆‖1.

It follows by (π∗)Ĵc = 0 that ‖π∗ + ∆‖1 = ‖(π∗)Ĵ + ∆Ĵ‖1 + ‖∆Ĵc‖1 and ‖π∗‖1 = ‖(π∗)Ĵ‖1.

Substituting in the previous display then gives

2‖(π∗)Ĵ + ∆Ĵ‖+ 2‖∆Ĵc‖1 ≤ 2‖(π∗)Ĵ‖1 + ‖∆‖1 = 2‖(π∗)Ĵ‖1 + ‖∆Ĵ‖1 + ‖∆Ĵc‖1

≤ 2 (‖(π∗)Ĵ + ∆Ĵ‖1 + ‖∆Ĵ‖1) + ‖∆Ĵ‖1 + ‖∆Ĵc‖1

= 2‖(π∗)J + ∆J‖1 + 3‖∆J‖1 + ‖∆Jc‖1.

Subtracting 2‖(π∗)J + ∆J‖1 + ‖∆Jc‖1 from both sides gives the second conclusion. Q.E.D.

Lemma A7: If
∥∥∥M̂ −M∥∥∥

∞
= Op(εn) and εn = o(r) then ∆′Σ̂∆ = Op((r/εn)2ε

4ξ2/(2ξ2+1)
n ),

‖∆‖1 = Op((r/εn)ε
(2ξ2−1)/(2ξ2+1)
n ), ‖∆‖2 = Op((r/εn)ε

2ξ2/(2ξ2+1)
n ).
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Proof: For Ĵ = J it follows from the sparse eigenvalue condition and Lemma A6 that with

high probability

‖∆J‖2
2 ≤ C∆′Σ̂∆ ≤ Cr ‖∆‖1 ≤ Cr ‖∆‖1 = Cr(‖∆J‖1 + ‖∆c

J‖1) ≤ Cr ‖∆J‖1

≤ Cr
√
|J | ‖∆J‖2 ≤ Crε−1/(2ξ2+1)

n ‖∆J‖2 = C(r/εn)ε2ξ2/(2ξ2+1)
n ‖∆J‖2 .

Dividing through by ‖∆J‖2 then gives

‖∆J‖2 ≤ C(r/εn)ε2ξ2/(2ξ2+1)
n .

Plugging this back in the final expression in the previous inequality gives the first conclusion.

For the second conclusion note that by Lemma A6,

‖∆‖1 = ‖∆Jc‖1 + ‖∆J‖1 ≤ 4 ‖∆J‖1 ≤ 4
√
|J | ‖∆J‖2

≤ Cε−1/(2ξ2+1)
n (r/εn)ε2ξ2/(2ξ2+1)

n = C(r/εn)ε(2ξ2−1)/(2ξ2+1)
n .

For the third conclusion let N denote the indices corresponding to the largest |J | entries in ∆Jc ,

so that N ⊂ J c, |N | = |J | and |∆j| ≥ |∆k| for any j ∈ J c ∩ N and k ∈ J c\N . By Lemma A6

for Ĵ = J ∪N it follows exactly as in second previous display that

‖∆Ĵ‖2 ≤ C(r/εn)ε2ξ2/(2ξ2+1)
n .

By Lemma 6.9 of van de Geer and Buhlmann (2011) and Lemma A6,

‖∆Ĵc‖2 ≤ (|J |)−1/2‖∆Ĵc‖1 ≤ (|J |)−1/23‖∆Ĵ‖1 ≤ 3(|J |)−1/2
√
|J |‖∆J‖2 ≤ C(r/εn)ε2ξ2/(2ξ2+1)

n .

Therefore, by the triangle inequality,

‖∆‖2 ≤ ‖∆Ĵ‖2 + ‖∆Ĵc‖2 ≤ C(r/εn)ε2ξ2/(2ξ2+1)
n ,

giving the third conclusion. Q.E.D.

Lemma A8: If
∥∥∥M̂ −M∥∥∥

∞
= Op(εn) and εn = o(r) then

∥∥∥Σ̂(π̂ − π)
∥∥∥
∞

= Op(r).

Proof: The Lasso first order conditions imply
∥∥∥Σ̂π̂ − M̂

∥∥∥
∞

= O(r). By Lemma A5
∥∥∥Σ̂π − Σπ

∥∥∥
∞

=

Op(εn). Then by the triangle inequality,∥∥∥Σ̂(π̂ − π)
∥∥∥
∞
≤
∥∥∥Σ̂π̂ − M̂

∥∥∥
∞

+
∥∥∥M̂ −M∥∥∥

∞
+ ‖M − Σπ‖∞ +

∥∥∥∥(Σ− Σ̂
)′
π

∥∥∥∥
∞

= Op(r) +Op(εn) + 0 +Op(εn) = Op(r). Q.E.D.

Lemma A9: If Assumptions 4-7 are satisfied then ∆′Σ̂∆ = Op((rε
−1
n δn)2) = op(1).
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Proof: Consider π̃ from Assumption 4 or Lemma 3 and let π∗ be as defined in equation

(A.15) for J0 = {j : π̃j 6= 0}. By the definition of π∗, we have

(π − π∗)′Σ(π − π∗) + εn
∑
j∈Jc0

|π∗,j| ≤ (π − π̃)′Σ(π − π̃) + εn
∑
j∈Jc0

|π̃j| ≤ (π − π̃)′Σ(π − π̃)

= O(δ2
n).

Let J be the vector of indices of nonzero elements of π∗. For all j ∈ J\J0 the first order conditions

to equation (A.15) imply |e′jΣ(π∗ − π)| = εn. Therefore, it follows that∑
j∈J\J0

(
e′jΣ(π∗ − π)

)2
= ε2

n|J\J0|.

In addition

∑
j∈J\J0

(
e′jΣ(π∗ − π)

)2 ≤
p∑
j=1

(
e′jΣ(π∗ − π)

)2
= (π∗ − π)′Σ

(
p∑
j=1

eje
′
j

)
Σ(π∗ − π)

= (π∗ − π)′Σ2(π∗ − π) ≤ λmax(Σ){(π − π∗)′Σ(π − π∗)} ≤ Cδ2
n.

Then from the previous equation ε2
n|J\J0| ≤ Cδ2

n implying |J\J0| ≤ Cδ2
nε
−2
n . By Lemma 3 we

also have |J0| ≤ Cδ2
nε
−2
n , so by summing

|J | ≤ Cδ2
nε
−2
n .

Then by Lemma A6, we have

∆′Σ̂∆ ≤ 3r‖∆‖1 = 3r(‖∆Jc‖1 + ‖∆J‖1) ≤ 12r‖∆J‖1 ≤ Cr
√
|J | ‖∆J‖2 ≤ Crε−1

n δn ‖∆J‖2 .

By Assumption 6, ‖∆J‖2
2 ≤ C∆′Σ̂∆ with probability approaching one. Then dividing through

by ‖∆J‖2 gives ‖∆J‖2 ≤ Crε−1
n δn with probability approaching one. Plugging this inequality in

the previous equation gives

∆′Σ̂∆ ≤ C(rε−1
n δn)2

with probability approaching one, implying the conclusion. Q.E.D.

Proof of Lemma 3: By ᾱ(X) ∈ B there exists a sequence ᾱk(x) consisting of finite

dimensional linear combinations of (b1(x), b2(x), ...) such that ‖ᾱk − ᾱ‖2 −→ 0. Since each ᾱk(x)

is a finite dimensional linear combination there exists pk such that for bk(x) = (b1(x), ..., bpk(x))′

we have ᾱk(x) = bk(x)′γk for some γk. Let αk(X) be the least square projection of ᾱ(X) on

bk(X). Then by ‖ᾱ− αk‖2 ≤ ‖ᾱ− ᾱk‖2 it follows that

‖ᾱ− αk‖2 −→ 0.
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Let δk = ‖ᾱ− αk‖2 . By n/ ln(p) −→∞ and p −→∞ we can choose kn so that pkn ≤ p and

pkn ≤ δ2
kn

n

ln(p)
.

Let δn = δkn and π̃ = (π′kn , 0
′)′ where π′kn are the coefficients for αkn . Then ‖π̃‖0 ≤ pkn ≤

δ2
nn/ ln(p) and ‖αn − ᾱ‖2 ≤ ‖αkn − ᾱ‖

2 so that

(π − π̃)′Σ(π − π̃) = ‖αn − αkn‖
2 = ‖αn − ᾱ− (αkn − ᾱ)‖2

≤ 2 ‖αn − ᾱ‖2 + 2 ‖αkn − ᾱ‖
2 ≤ 4δ2

kn = 4δ2
n. Q.E.D.

Proof of Theorem 4: Let θn = γ′Σπ = µ′π, ρn(x) = b(x)′γ, and αn(x) = b(x)′π. Let

Û = µ̂− Σ̂γ, R̂ = M̂ − Σ̂π.

Then by adding and subtracting terms, for m(w, ρn) = zρn(x),

θ̂ − θn = M̂ ′γ̂ + π̂′(µ̂− Σ̂γ̂)− µ′π = (µ̂− µ)′π + µ̂′(π̂ − π) + M̂ ′γ̂ − π̂′Σ̂γ̂ (A.17)

= (µ̂− µ)′π + (Û + Σ̂γ)′(π̂ − π) + M̂ ′γ̂ − π̂′Σ̂γ̂
= (µ̂− µ)′π + Û ′(π̂ − π) + γ′Σ̂(π̂ − π) + M̂ ′γ̂ − π′Σ̂γ̂ − (π̂ − π)′Σ̂γ̂
= (µ̂− µ)′π + Û ′(π̂ − π) + (γ − γ̂)′Σ̂(π̂ − π) + R̂′γ̂

= M̂ ′γ + π′(µ̂− Σ̂γ)− θn + (γ − γ̂)′Σ̂(π̂ − π) + Û ′(π̂ − π) + R̂′(γ̂ − γ)

=
1

n

n∑
i=1

ψn(Wi) + T1 + T2 + T3, ψn(w) = m(w, ρn)− θn + αn(x)[y − ρn(x)],

T1 = (γ − γ̂)′Σ̂(π̂ − π), T2 = R̂′(γ̂ − γ), T3 = Û ′(π̂ − π).

It follows by Lemma B2 that
∥∥∥M̂ −M∥∥∥

∞
= Op(εn) and ‖µ̂− µ‖∞ = Op(εn). By Lemmas A4

and A7 applied to γ̂, γ∗, γ in place of π̂, π∗, and π and the triangle inequality, ‖γ̂ − γ‖1 =

Op((r/εn)ε
(2ξ−1)/(2ξ+1)
n ). Then by Lemma A8, the Holder inequality, and r/εn = o(nc) for any

c > 0,

|T1| ≤
∥∥∥Σ̂(π̂ − π)

∥∥∥
∞
‖γ̂ − γ‖1 = Op(r)Op((r/εn)ε(2ξ−1)/(2ξ+1)

n )

= Op((r/εn)2ε4ξ/(2ξ+1)
n ) = op(n

−1/2).

Also, ∥∥∥R̂∥∥∥
∞
≤
∥∥∥M̂ −M∥∥∥

∞
+
∥∥∥(Σ− Σ̂)π

∥∥∥
∞

+ ‖M − Σπ‖∞ (A.18)

= Op(εn) +Op(εn) + 0 = Op(εn).
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Therefore it follows that

|T2| ≤
∥∥∥R̂∥∥∥

∞
‖γ̂ − γ‖1 = Op(εn)Op((r/εn)ε(2ξ−1)/(2ξ+1)

n )

= Op((r/εn)ε4ξ/(2ξ+1)
n ) = op(n

−1/2).

Next, note that for εi = Yi − ρn(Xi),

T3 =
1

n

∑
i

εi{b(Xi)
′(π̂ − π)}.

Then for X̃ = (X1, ..., Xn) and W̃ the observations not in I` it follows by ρn(Xi) = E[Yi|Xi]

that E[εi|X̃, W̃ ] = 0. Then by π̂ depending only on X̃ and W̃ and V ar(Y |X) ≤ C,

E[T3|X̃, W̃ ] =
1

n

∑
i

E[εi|X̃, W̃ ]{b(Xi)
′(π̂ − π)} = 0,

V ar(T3|X̃, W̃ ) =
1

n2

∑
i

V ar(Yi|Xi){b(Xi)
′(π̂ − π)}2 ≤ C

1

n2

∑
i

{b(Xi)
′(π̂ − π)}2

= C(π̂ − π)′Σ̂(π̂ − π)/n ≤ C∆′Σ̂∆/n+ C(π − π∗)′Σ̂(π̂ − π∗)/n
= op(1) +Op(E[(π − π∗)′Σ̂(π − π∗)]/n)

= op(n
−1) +Op((π − π∗)′Σ(π − π∗)/n) = op(n

−1),

where the second inequality follows by the triangle and Cauchy-Schwartz inequalities, the fourth

equality by the conclusion of Lemma A7 and the Markov inequality, and the last equality by

Lemma A2. Then by conditional Markov inequality it follows that

|T3| = op(n
−1/2).

The triangle inequality then gives T1 + T2 + T3 = op(n
−1/2), giving the first conclusion.

For the second conclusion note that

ψn(W ) = ρn(X)Z + αn(X)Y − αn(X)ρn(X)− θn
= T4 + T5 − θn, T4 = ρn(X)Z, T5 = αn(X)[Y − ρn(X)].

Note that

E[T 2
4 ] = E[ρn(X)2E[Z2|X]] ≤ CE[ρn(X)2] ≤ C,

E[T 2
5 ] = E[αn(X)2{Y − ρn(X)}2] = E[αn(X)2V ar(Y |X)] ≤ CE[αn(X)2] ≤ C,

|θn| = E[αn(X)ρn(X)] ≤
√
E[αn(X)2]

√
E[ρn(X)2] ≤ C.

It then follows that E[ψn(W )2] ≤ C, so the second conclusion follows by E[ψn(W )] = 0. Q.E.D.

Before proving Theorem 5 we give two additional Lemmas.
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Lemma A10: If
√
n ‖ρ0 − ρn‖ ‖ᾱ− αn‖ −→ 0 then

√
n |E[αn(X)ρn(X)]− E[ᾱ(X)ρ0(X)]| −→

0.

Proof: Note that ρn(X) and αn(X) are least squares projections of ρ0(X) and ᾱ(X) on b(X)

respctively so that E[αn(X)ρn(X)] = E[αn(X)ρ0(X)] = E[ᾱ(X)ρn(X)]. Then

|E[ᾱ(X)ρ0(X)]− E[αn(X)ρn(X)]|
= |E[ᾱ(X)ρ0(X)]− E[αn(X)ρ0(X)]− E[ᾱ(X)ρn(X)] + E[αn(X)ρn(X)]|
= |E[{ᾱ(X)− αn(X)}{ρ0(X)− ρn(X)}]| ≤ ‖ᾱ− αn‖2 ‖ρ0 − ρn‖2 = o(1/

√
n).

where the last inequality is Cauchy-Schwartz and the final equality follows by hypothesis.

Q.E.D.

Lemma A11: If Assumptions 6 and 10 are satisfied then supx |ρn(x)− ρ0(x)| −→ 0 and

supx |ρ̂(x)− ρ0(x)| = op(1).

Proof: Let γ̃0 be the p× 1 vector consisting of the first p elements of γ0 = (γ01, γ02, ...). For

J as in Assumption 10 it follows by Lemma B1 and the first inequality in the proof of Lemma

A4 that

‖γ − γ̃0‖1 ≤ ‖γ − γ0J‖1 + ‖γ0Jc‖1 ≤ ‖γJ − γ0J‖1 + ‖γJc‖1 + o(1)

≤
√
|J | ‖γJ − γ0J‖2 + o(1) ≤

√
|J | ‖γ − γ0J‖2 + o(1)

≤ C |J |−ξ1+1/2 + o(1) = o(1).

By Assumptions 6 and 10 it then follows that

sup
x
|ρn(x)− ρ0(x)| ≤ C

p∑
j=1

|γj − γj0|+ C
∞∑

j=p+1

|ρ0j| ≤ C ‖γ − γ̃0‖1 + o(1) −→ 0,

giving the first conclusion.

For the second conclusion note that it was shown previously that
∥∥∥M̂ −M∥∥∥

∞
= Op(εn).

Then by Lemmas A4 and A7, the triangle inequality, and ξ1 > 1/2

‖γ̂ − γ̃0‖1 ≤ ‖γ̂ − γ∗‖1 + ‖γ∗ − γ‖1 + ‖γ − γ̃0‖1 = op(1).

The second conclusion then follows by

sup
x
|ρ̂n(x)− ρ0(x)| ≤ C

p∑
j=1

|γ̂j − γj0|+ C

∞∑
j=p+1

|ρ0j| ≤ C ‖γ̂ − γ̃0‖1 + o(1) = op(1). Q.E.D.

Proof of Theorem 5: It follows exactly as in the Theorem 4 that T1 = op(n
−1/2) and

T2 = op(n
−1/2). For T3 let εi = Yi − ρ0(Xi) and din = ρ0(Xi)− ρn(Xi). Then

T3 = T31 + T32, T31 =
1

n

∑
i

εi{b(Xi)
′(π̂ − π)}, T32 =

1

n

∑
i

din{b(Xi)
′(π̂ − π)}.
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It follows as in the proof of Theorem 4 that T31 = op(n
−1/2). Also by the Cauchy-Schwartz and

Markov inequalities and Assumption 8,

|T32| ≤
√

1

n

∑
i

d2
in

√
(π̂ − π)′Σ̂(π̂ − π) = Op(

√
E[{d2

in}])Op(rε
−1
n δn)

= Op(‖ρ0 − ρn‖2 rε
−1
n δn) = op(n

−1/2).

Then it follows as in the proof of Theorem 4 that

√
n(θ̂ − θn) =

1√
n

n∑
i=1

ψn(Wi) + op(1).

Next note that |θn − θ0| = o(n−1/2) by Lemma A10. Also, note that

ψn(w)− ψ(w) = z[ρn(x)− ρ0(x)] + y[αn(x)− ᾱ(x)]− αn(x)ρn(x) + ᾱ(x)ρ0(x)− θn + θ0

= T4n(w) + T5n(w) + T6n(x)− θn + θ0

T4n(w) = [z − ᾱ(x)][ρn(x)− ρ0(x)], T5n(w) = [y − ρ0(x)][αn(x)− ᾱ(x)],

T6n(x) = −[ρn(x)− ρ0(x)][αn(x)− ᾱ(x)].

Note that for T4 =
∑n

i=1 T4n(Xi)/
√
n it follows by V ar(Z|X) ≤ C that

E[T 2
4 ] = E[{Z − ᾱ(X)}2{ρn(X)− ρ0(X)}2] ≤ CE[{ρn(X)− ρ0(X)}2] −→ 0.

It then follows by the Markov inequality that T4
p−→ 0 and similarly T5

p−→ 0. Also by the

triangle and Cauchy-Schwartz inequalities T6 =
∑n

i=1 T6n(Xi)/
√
n satisfies

E[|T6|] ≤
√
nE[T6n(X)] ≤

√
n ‖ρn − ρ0‖2 ‖αn − ᾱ‖2 −→ 0.

It then follows from Theorem 4 that

√
n(θ̂ − θ0) =

√
n(θ̂ − θn) +

√
n(θn − θ0) =

1√
n

n∑
i=1

ψn(Wi) + op(1) + o(1)

=
1√
n

n∑
i=1

ψ(Wi) +
1√
n

n∑
i=1

[ψn(Wi)− ψ(Wi)] + op(1) =
1√
n

n∑
i=1

ψ(Wi) + op(1).

The first conclusion of Theorem 5 conclusion then follows by the central limit theorem.

Recall that for ` ∈ {1, 2} and i ∈ I`, ψ̂i` = ρ̂`(Xi)Zi + α̂`(Xi)(Yi − ρ̂`(Xi)) − θ̂. Let ψi =

ρ0(Xi)Zi + ᾱ(Xi)(Yi − ρ0(Xi)) − θ0. By the law of large numbers, |I`|−1
∑

i∈I` ψ
2
i = V + op(1).

Thus, it suffices to show that |I`|−1
∑

i∈I`(ψ̂
2
i` − ψ2

i ) = op(1). Defining δi` = ψ̂i` − ψi, we need to

show that

|I`|−1
∑
i∈I`

δ2
i` + 2|I`|−1

∑
i∈I`

ψiδi` = op(1). (A.19)
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Notice that∣∣∣∣∣|I`|−1
∑
i∈I`

ψiδi`

∣∣∣∣∣ ≤
√
|I`|−1

∑
i∈I`

ψ2
i ×

√
|I`|−1

∑
i∈I`

δ2
i`

(i)
=
√
Op(1)×

√
|I`|−1

∑
i∈I`

δ2
i`,

where (i) follows by E(|I`|−1
∑

i∈I` ψ
2
i ) = V = O(1). Therefore, to show (A.19), we only need to

verify

|I`|−1
∑
i∈I`

δ2
i` = op(1). (A.20)

Let εi = Yi − ρ0(Xi). Notice that E(εi | Xi) = 0. We observe that

δi` = (ρ̂`(Xi)− ρ0(Xi))Zi + (α̂`(Xi)− ᾱ(Xi))εi − α̂`(Xi)(ρ̂`(Xi)− ρ0(Xi)) + (θ0 − θ̂). (A.21)

We now bound these terms. For the first term, we notice that ρ̂` depends on (Σ̂`, µ̃`) and

µ̃` is computed using {Wi}i/∈I` . Therefore, for i ∈ I`, E(Z2
i | ρ̂`(Xi), Xi) = E(Z2

i | Xi), which is

assumed to be bounded. It follows that

E

[
|I`|−1

∑
i∈I`

(ρ̂`(Xi)− ρ0(Xi))
2Z2

i | ρ̂`, {Xi}i∈I`

]

= Op(1)× |I`|−1
∑
i∈I`

(ρ̂`(Xi)− ρ0(Xi))
2 (i)

= Op(1)× op(1) = op(1), (A.22)

where (i) follows by Lemma A11. Similarly, we notice that α̂` depends on (Σ̂`, M̃`) and M̃`

is computed using {Wi}i/∈I` . Therefore, for i ∈ I`, E(ε2
i | α̂`(Xi), Xi) = E(ε2

i | Xi), which is

assumed to be bounded. It follows that

E

[
|I`|−1

∑
i∈I`

(α̂`(Xi)− ᾱ(Xi))
2ε2
i | α̂`, {Xi}i∈I`

]
= Op(1)× |I`|−1

∑
i∈I`

(α̂`(Xi)− ᾱ(Xi))
2.

Since α̂`(Xi)− ᾱ(Xi) = α̂`(Xi)−αn(Xi)+αn(Xi)− ᾱ(Xi) = b(Xi)
′(π̂`−π)+αn(Xi)− ᾱ(Xi),

we have that

|I`|−1
∑
i∈I`

(α̂`(Xi)− ᾱ(Xi))
2 ≤ 2|I`|−1

∑
i∈I`

(b(Xi)
′(π̂` − π))

2
+ 2|I`|−1

∑
i∈I`

(αn(Xi)− ᾱ(Xi))
2

= 2(π̂` − π)′Σ̂`(π̂` − π) + 2|I`|−1
∑
i∈I`

(αn(Xi)− ᾱ(Xi))
2

(i)
= 2(π̂` − π)′Σ̂`(π̂` − π) + op(1)

(ii)

≤ 2
(
‖Σ̂1/2

` (π̂` − π∗)‖2 + ‖Σ̂1/2
` (π∗ − π)‖2

)2

+ op(1)

≤ 4‖Σ̂1/2
` (π̂` − π∗)‖2

2 + 4‖Σ̂1/2
` (π∗ − π)‖2

2 + op(1)

= 4(π̂` − π∗)′Σ̂`(π̂` − π∗) + 4(π∗ − π)′Σ̂`(π∗ − π) + op(1)

(iii)
= op(1), (A.23)
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where (i) follows by E(αn(Xi)−ᾱ(Xi))
2 = o(1), (ii) follows by

√
(π̂` − π)′Σ̂`(π̂` − π) = ‖Σ̂1/2

` (π̂`−
π)‖2 ≤ ‖Σ̂1/2

` (π̂` − π∗)‖2 + ‖Σ̂1/2
` (π∗ − π)‖2 and (iii) follows by Lemmas A2 and A9. The above

two displays imply that

|I`|−1
∑
i∈I`

(α̂`(Xi)− ᾱ(Xi))
2ε2
i = op(1). (A.24)

By (A.23), we have that

|I`|−1
∑
i∈I`

α̂`(Xi)
2 = |I`|−1

∑
i∈I`

(α̂`(Xi)− ᾱ(Xi) + ᾱ(Xi))
2

≤ 2|I`|−1
∑
i∈I`

(α̂`(Xi)− ᾱ(Xi))
2 + 2|I`|−1

∑
i∈I`

ᾱ(Xi)
2 = Op(1).

Therefore, Lemma A11 implies that

|I`|−1
∑
i∈I`

α̂`(Xi)
2(ρ̂`(Xi)− ρ0(Xi))

2 ≤ sup
x
|ρ̂(x)− ρ(x)|2|I`|−1

∑
i∈I`

α̂`(Xi)
2 = op(1). (A.25)

Since θ̂ − θ0 = op(1), we now combine (A.21) with (A.22), (A.24) and (A.25), obtaining

|I`|−1
∑
i∈I`

δ2
i` ≤ 4|I`|−1

∑
i∈I`

(ρ̂`(Xi)− ρ0(Xi))
2Z2

i + 4|I`|−1
∑
i∈I`

(α̂`(Xi)− ᾱ(Xi))
2ε2
i

+ 4|I`|−1
∑
i∈I`

α̂`(Xi)
2(ρ̂`(Xi)− ρ0(Xi))

2 + 4(θ̂ − θ0)2 = op(1).

We have proved (A.20)..Q.E.D.

Proof of Theorem 6: By Assumption 8 and Lemma B2 it follows that M̂ =
∑n

i=1m(Xi, b)/n

satisfies
∥∥∥M̂ −M∥∥∥

∞
= Op(εn). It then follows exactly as in the proof of Theorem 3 that the

remainder decomposition given there is satisfied and that T1 = op(n
−1/2) and T2 = op(n

−1/2).

Here π̂ depends only on X̃ = (X1, ..., Xn), so that

E[T3|X̃] =
1

n

∑
i

E[εi|X̃]{b(Xi)
′(π̂ − π)} = 0,

V ar(T3|X̃) =
1

n2

∑
i

V ar(Yi|Xi){b(Xi)
′(π̂ − π)}2 ≤ C(π̂ − π)′Σ̂(π̂ − π)/n = op(n

−1),

where the last inequality follows as in the proof of Theorem 3. The conditional Markov inequality

then gives T3 = op(n
−1), so the first equality in the conclusion follows as in the proof of Theorem

3. Also note that E[m(W, ρn)2] ≤ C and E[{αn(X)[Y − ρn(X)]}2] = E[αn(X)2V ar(Y |X)] ≤
CE[αn(X)2] ≤ C, so the second equality follows by Chebyshev’s inequality. Q.E.D.

Proof of Theorem 7: It follows exactly as in the proof of Theorem 5 that

√
n(θ̂ − θn) =

1√
n

n∑
i=1

ψn(Wi) + op(1).
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Next note that |θn − θ0| = o(n−1/2) by Lemma A10. Also, note that

ψn(w)− ψ0(w) = m(x, ρn − ρ0) + αn(x)[y − ρn(x)]− ᾱ(x)[y − ρ0(x)]− θn + θ0

= T4n(w) + T5n(w) + T6n(w) + T7n(w)− θn + θ0

T4n(w) = m(x, ρn − ρ0)− θn + θ0, T5n(w) = [αn(x)− ᾱ(x)][y − ρ0(x)],

T6n(w) = −[ρn(x)− ρ0(x)][αn(x)− ᾱ(x)], T7n(w) = ᾱ(x)[ρn(x)− ρ0(x)].

Let Tj =
∑n

i=1 Tjn(Wi)/
√
n, (j = 4, 5, 6, 7). It follows as in the proof of Theorem 5 that T5 =

op(1) and T6 = op(1). Also we have E[T4n(W )] = 0. By Lemma A11, E[m(W, ρn − ρ0)2] ≤
CE[a(W )2] supx |ρn(x)− ρ0(x)|2 −→ 0 if Assumption 12 i) is satisfied and E[m(W, ρn− ρ0)2] ≤
C ‖ρn − ρ0‖2 −→ 0 if Assumption 12 ii) is satisfied. Therefore

E[T4n(W )2] ≤ 2E[m(W, ρn − ρ0)2] + 2 |θn − θ0|2 −→ 0,

so that T4 = op(1).

Next, by Lemma A11, E[ᾱ(X)2{ρn(X)− ρ0(X)}2] ≤ E[ᾱ(X)2] supx |ρn(x)− ρ0(x)|2 −→ 0 if

Assumption 12 i) is satisfied and E[ᾱ(X)2{ρn(X)−ρ0(X)}2] ≤ C ‖ρn − ρ0‖2 −→ 0 if Assumption

12 ii) is satisfied. Therefore

E[T7n(W )2] ≤ E[ᾱ(X)2{ρn(X)− ρ0(X)}2] −→ 0.

Define T8n(W ) = T7n(W )− (θn − θ0). Note that E[T8n(W )] = 0 and

E[T8n(W )2] ≤ 2E[T7n(W )2] + 2 |θn − θ0|2 −→ 0.

Therefore
∑n

i=1 T8n(Wi)/
√
n = op(1). Then by

√
n(θn − θ0) −→ 0,

T7 =
1√
n

n∑
i=1

T8n(Wi) +
√
n(θn − θ0) = op(1) + o(1) = op(1).

Recall ψ̂i = m(Xi, ρ̂) + α̂(Xi)(Yi− ρ̂(Xi))− θ̂. Let ψi = m(Xi, ρ0) + ᾱ(Xi)(Yi− ρ0(Xi))− θ0.

Define δi = ψ̂i − ψi. Following essentially the same argument as in the proof of Theorem 5, we

only need to verify

n−1

n∑
i=1

δ2
i = op(1).

Notice that

δi = m(Xi, ρ̂− ρ0) + (α̂(Xi)− ᾱ(Xi))εi − α̂(Xi)(ρ̂(Xi)− ρ0(Xi)) + (θ0 − θ̂),

where εi = Yi − ρ0(Xi).
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Following almost the same arguments as in the proof of Theorem 5, we have

n−1

n∑
i=1

(α̂(Xi)− ᾱ(Xi))
2ε2
i = op(1)

and

n−1

n∑
i=1

α̂(Xi)
2(ρ̂(Xi)− ρ0(Xi))

2 = op(1).

It suffices to show

n−1

n∑
i=1

m(Xi, ρ̂− ρ0)2 = op(1). (A.26)

To do so, we observe that

n−1

n∑
i=1

m(Xi, ρ̂− ρ0)2 = n−1

n∑
i=1

(m(Xi, ρ̂− ρn) +m(Xi, ρn − ρ0))2

≤ 2n−1

n∑
i=1

m(Xi, ρ̂− ρn)2 + 2n−1

n∑
i=1

m(Xi, ρn − ρ0)2.

By Assumption 9 and supx |ρn(x)− ρ0(x)| = o(1), we have that

Em(Xi, ρn − ρ0)2 ≤
[
Ea(Xi)

2
]
× sup

x
|ρn(x)− ρ0(x)|2 = o(1).

Therefore,

n−1

n∑
i=1

m(Xi, ρ̂− ρ0)2 ≤ 2n−1

n∑
i=1

m(Xi, ρ̂− ρn)2 + op(1).

By Assumption 9, we notice that

|m(Xi, ρ̂− ρn)| = |m(Xi, b)
′(γ̂ − γ)| ≤ max

j
|m(Xi, bj)| · ‖γ̂ − γ‖1 ≤ C‖γ̂ − γ‖1.

The above two displays imply

n−1

n∑
i=1

m(Xi, ρ̂− ρ0)2 ≤ 2C2‖γ̂ − γ‖2
1 + op(1).

We define γ∗ similar to the definition of π∗. Recall that ξ1 > 1/2. Then by the same

argument as Lemmas A4 and A7 with (π, π∗, π̂) replaced by (γ, γ∗, γ̂), we have ‖γ∗ − γ‖1 =

Op(ε
(2ξ1−1)/(2ξ1+1)
n ) and ‖γ̂ − γ∗‖1 = Op((r/εn)ε

(2ξ1−1)/(2ξ1+1)
n ). By ξ1 > 1/2 and Assumption 5,

we have ‖γ̂ − γ‖1 = op(1). By the above display, we have proved (A.26). Q.E.D.

Proof of Corollary 8: We proceed to verify that Assumptions 11 and 12 i) are satisfied so

that the result follows by Theorem 7. In Example 2

m(X, ρ) = S(U)ρ(U,Z).
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By hypothesis and iterated expectations

E[ᾱ(X)2] = E[E[fD|Z(D|Z)−2S(D)2ω(D)2|Z]] = E[

∫
fD|Z(U |Z)−1S(U)2ω(U)dU ]

≤ CE[

∫
fD|Z(U |Z)−1ω(U)du] <∞.

Note that for ρ ∈ B by multiplying and dividing by f(D|Z)

E[m(X, ρ)] = E[

∫
S(u)ρ(u, Z)ω(u)du] = E[E[f(D|Z)−1S(D)ω(D)ρ(D,Z)|Z]]

= E[ᾱ(X)ρ(X)] = E[ᾱ(X)ρ(X)], ᾱ(X) = proj(ᾱ|B)(X),

giving the first condition of Assumption 11. Also |m(X, bj)| = |S(U)| |bj(U,Z)| ≤ C by S(u)

and bj(x) bounded, giving the second condition of Assumption 11.

To show that Assumption 12 i) is satisfied note that f(U |Z)−1ω(U) is finite with probability

one for the joint distribution of (U,Z), so that the support of (U,Z) is a subset of the support

of (D,Z). Then by S(u) bounded over the real line,

|m(W, ρ)| = |S(U)ρ(U,Z)| ≤ C sup
x∈X
|ρ(x)| . Q.E.D.

Proof of Corollary 9: We proceed to verify that Assumptions 11 and 12 i) are satisfied so

that the result follows by Theorem 7. In Example 3,

m(X, ρ) = ρ(1, Z)− ρ(0, Z).

Define α0(X) := π0(1, Z)−1D − π0(0, Z)−1(1−D). By hypothesis and iterated expectations

E[ᾱ(X)2] ≤ 2E[π0(1, Z)−2D2] + 2E[π0(0, Z)−2(1−D)2]

= 2E[π0(1, Z)−2D] + 2E[π0(0, Z)−2(1−D)] = 2E[π0(1, Z)−1] + 2E[π0(0, Z)−1]

≤ 4E[π0(1, Z)−1π0(0, Z)−1] <∞.

Note that for ρ ∈ B by E[π0(d, Z)−11(D = d)|Z] = 1,

E[m(X, ρ)] = E[ρ(1, Z)]− E[ρ(0, Z)] = E[
1(D = 1)

π0(1, Z)
ρ(1, Z)]− E[

1(D = 0)

π0(0, Z)
ρ(0, Z)]

= E[
1(D = 1)

π0(1, Z)
ρ(D,Z)]− E[

1(D = 0)

π0(0, Z)
ρ(D,Z)] = E[α0(X)ρ(X)]

= E[ᾱ(X)ρ(X)], α0(X) = proj(ᾱ|B)(X).

giving the first condition of Assumption 11. Also |m(X, bj)| ≤ |bj(1, Z)| + |bj(0, Z)| ≤ C and

bj(x) bounded, giving the second condition of Assumption 11.
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To show that Assumption 12 i) is satisfied note that π0(1, Z) > 0 and π0(0, Z) > 0 with

probability one, so that the support of (1, Z) and (0, Z) are subsets of the support of (D,Z).

Then |m(X, ρ)| ≤ |ρ(1, Z)|+ |ρ(0, Z)| ≤ 2 supx∈X |ρ(x)|. Q.E.D.

Proof of Theorem 10: In the proof of Theorems 5 and 7 the only place that E[Y |X] ∈ B
is used is in showing that T3 = op(n

−1/2). The expansion in equation (A.17) continues to hold

and T1 = op(n
−1/2) and T2 = op(n

−1/2) are satisfied as in the proof of Theorem 4. Note that

E[{Y − ρn(X)}2] ≤ 2E[Y 2] + 2E[ρn(X)2] ≤ C.

Also it follows as in the proof of Theorem 4 that (π̂ − π)′Σ̂(π̂ − π) = op(1). Then by the

Cauchy-Schwartz and Markov inequalities and εi = Yi − ρn(Xi),

|T3| ≤

(
1

n

n∑
i=1

ε2
i

)1/2 {
(π̂ − π)′Σ̂(π̂ − π)

}1/2

= Op(1)op(1) = op(1).

It then follows as in the proof of Theorem 6 and 7 that

θ̂ = θn +
1

n

n∑
i=1

ψn(Wi) + op(1) = θ̄ +
1

n

n∑
i=1

ψ0(Wi) + op(1),

so θ̂ = θ̄ + op(1) by the law of large numbers, for θ̄ = E[m(W, ρ̄)] = E[ᾱ(X)ρ̄(X)], giving the

first conclusion

Because ρ̄(X) and ᾱ(X) are projections of ρ0(X) and α0(X) on B respectively, we have

θ0 = E[α0(X)ρ̄(X)] = E[ᾱ(X)ρ0(X)],

so the second conclusion follows from θ̄ = E[ᾱ(X)ρ̄(X)]. Q.E.D.

Proof of Theorem 11: In the proof of the previous results the only place that ρ0(X) =

E[Y |X] and m(W, ρ) depending only on X were required was in the proof that T3 = op(n
−1/2).

Therefore the conclusion will follow from the proof that T3 = op(n
−1/2) under the hypotheses of

this Theorem.

Note that T3 = Û ′(π̂ − π) for Û = µ̂ − Σ̂γ as in the proof of Theorem 4. It follows

similarly to equation (2.2) that
∥∥∥Û∥∥∥

∞
= Op(εn). Also it follows similarly to ‖γ̂ − γ‖1 =

Op((r/εn)ε
(2ξ1−1)/(2ξ1+1)
n ), as shown in the proof of Theorem 4, that

‖π̂ − π‖1 = Op((r/εn)ε(2ξ2−1)/(2ξ2+1)
n ).

Therefore

|T3| =
∣∣∣Û ′(π̂ − π)

∣∣∣ ≤ ∥∥∥Û∥∥∥
∞
‖π̂ − π‖1 = Op((r/εn)ε4ξ2/(2ξ2+1)

n ) = op(n
−1/2). Q.E.D.
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A.1 Appendix B: Some General Lemmas

Lemma B1: For any a ∈ Rp such that ‖a− bs‖2 ≤ Cs−r for any s ≥ 0, where C, r > 0 are

constants and bs = arg min‖v‖0≤s ‖a− v‖2 . If r > 1/2 and s ≥ 2 then ‖a− bs‖1 ≤ Ds1/2−r,

where D > 0 is a constant depending only on C and r.

Proof: Without loss of generality, we assume that |a1| ≥ |a2| ≥ · · · ≥ |ap| ≥ 0. Then clearly,

a− bk = (0, 0, . . . , 0, ak+1, ak+2, . . . , ap)′ for k ≥ 0. By assumption, we have that for any k ≥ 0,

p∑
j=k+1

a2
j ≤ C2k−2r. (A.27)

Let g ∈ N be defined as 2g < p/s ≤ 2g+1. With a slight abuse of notation, we extend a to be a

2g+1s-dimensional vector with aj = 0 for j > p. Then we have that

p∑
j=s+1

aj =

g∑
m=0

2m+1s∑
j=2ms+1

aj ≤
g∑

m=0

√√√√2ms
2m+1s∑

j=2ms+1

a2
j ≤

g∑
m=0

√√√√2ms

p∑
j=2ms+1

a2
j

(i)

≤
g∑

m=0

√
2msC2(2ms)−2r = Cs1/2−r

g∑
m=0

(
21/2−r)m < Cs1/2−r

∞∑
m=0

(
21/2−r)m (ii)

= C
1

1− 21/2−r s
1/2−r,

where (i) follows by () applied to k = 2ms and (ii) follows by the fact that 21/2−r < 1 (since

r > 1/2). Q.E.D

Let Xi = (Xi,1, ..., Xi,p)
′ ∈ Rp and Xi,0 be a scalar, with all random variables allowed to

depend on n.

Lemma B2: If there is C such that max1≤j≤p |Xi,j| ≤ C and E[X2
0,i] ≤ C then for Di =

XiX0,i − E[XiX0,i] and D̄ =
∑n

i=1Di/n,∥∥D̄∥∥∞ = Op(
√

ln(p)/n).

Proof: We prove this result using symmetrization. Note that

E[D2
i,j] ≤ E[X2

i,jX
2
i,0] ≤ CE[X2

i,0] ≤ C.

Let ε1, ..., εn be i.i.d Rademacher random variables independent of Xi for for all observations,

i.e., P (εi = 1) = P (εi = −1) = 1/2. Define the symmetrized quantity W∗,j =
∑n

i=1Di,jεi Since

εi is sub-Gaussian (due to εi ∈ {−1, 1}), there exists a constant κ > 0 such that for any t ∈ R,
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E exp(tεi) ≤ exp(κt2). By Hoeffding’s lemma, we can simply take κ = 1/2. Since {εi}ni=1 is

independent of X we have

E [exp(tW∗,j)|X] = E

[
n∏
i=1

exp[tDi,jεi] | X

]
=

n∏
i=1

E [exp[tDi,jεi] | X]

≤
n∏
i=1

exp
(
t2D2

i,j/2
)

= exp

(
t2

n∑
i=1

D2
i,j/2

)
.

Similarly, apply the same argument to−W∗,j to obtain E [exp(−tW∗,j) | X] ≤ exp
(
t2
∑n

i=1D
2
i,j/2

)
.

Since exp(t|W∗,j|) ≤ exp(tW∗,j) + exp(−tW∗,j), we have

E [exp(t|W∗,j|) | X] ≤ 2 exp

(
t2

n∑
i=1

D2
i,j/2

)
.

Next let z > 0 be a non-random quantity to be chosen later and ‖W∗‖∞ = max1≤j≤p |W∗,j|.
By Lemma 2.3.7 of van der Vaart and Wellner (1996) we have

(1− βn(z))P

(
max
1≤j≤p

∣∣∣∣∣
n∑
i=1

Di,j

∣∣∣∣∣ > z

)
≤ 2P (‖W∗‖∞ > z/4) , (A.28)

where

βn(z) = 1− 4z−2n max
1≤j≤p

E[D2
i,j] ≥ 1− Cz−2n.

Note that |E[Di,j]|2 ≤ E[D2
i,j] ≤ C, so that

D2
i,j ≤ C(X2

i0 + 1).

For any Mn −→ ∞ let A =
{
n−1

∑n
i=1X

2
i,0 > Mn

}
. Since E[X2

i,0] is bounded uniformly in n

the Markov inequality, for any Mn −→ ∞ we have P (A) = o(1). On the event Ac we have

D2
ij ≤ C(Mn + 1) := M̃n for all j, so that

E [exp (t‖W∗‖∞) | X] = E

[
exp

(
t max

1≤j≤p
|W∗,j|

)
| X
]
≤

p∑
j=1

E (exp(t|W∗,j|) | X)

≤ 2

p∑
j=1

exp

(
t2

n∑
i=1

D2
i,j/2

)
≤ 2p exp

(
M̃nt

2n
)
,

Let t > 0 be a non-random quantity to be chosen. By the Markov inequality we have

P (‖W∗‖∞ > z/4 | X) 1Ac ≤ P (exp(t‖W∗‖∞) > exp(tz/4) | X) 1Ac

≤ exp(−tz/4)E [exp(t‖W∗‖∞) | X] · 1Ac

≤ exp(−tz/4) · 2p exp
(
M̃nt

2n
)

= exp

(
−1

4
tz + ln(2p) + M̃nt

2n

)
.
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Now choose t = z/[8nM̃n] to obtain

P (‖W∗‖∞ > z/4 | X) 1Ac ≤ exp
(
−z2/(nKn) + ln(2p)

)
,

where Kn = 64M̃n. Therefore we have

P (‖W∗‖∞ > z/4 | X) = P (‖W∗‖∞ > z/4 | X) (1Ac + 1A)

≤ exp
(
−z2/(nKn) + ln(2p)

)
+ 1A.

Then by iterated expectations and E[1A] = Pr(A) −→0,

P (‖W∗‖∞ > z/4) ≤ exp
(
−z2/(nKn) + ln(2p)

)
+ o(1).

Finally choose zn = 2
√
Knn ln(2p) and note that

βn(z) := 1− Cz−2n = 1− C

4Kn ln(2p)
−→ 1.

Define Bn :=
√
n/ ln(p)

∥∥D̄∥∥∞ . Then by equation (A.28) we have for large enough n

Pr(Bn ≥ 2

√
Kn

ln(2p)

ln(p)
) = Pr(

∥∥nD̄∥∥∞ > zn) ≤ CP
(
‖W∗‖∞ >

zn
4

)
≤ exp

(
−z2

n/(nKn) + ln(2p)
)

+ o(1) = exp (−4 ln(2p) + ln(2p)) + o(1) −→ 0

Note that this equation will hold for any Kn going to infinity and that ln(2p)/ ln(p) −→ 1, so

that Pr(Bn ≥ kn) −→ 0 for all kn −→∞, i.e. Bn is bounded in probability. Q.E.D.
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