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Abstract

How to allocate vaccines over heterogeneous individuals is one of the im-

portant policy decisions in pandemic times. This paper develops a procedure

to estimate an individualized vaccine allocation policy under limited supply,

exploiting social network data containing individual demographic character-

istics and health status. We model the spillover effects of vaccination based

on a Heterogeneous-Interacted-SIR network model and estimate an individual-

ized vaccine allocation policy by maximizing an estimated social welfare (public

health) criterion incorporating these spillovers. While this optimization prob-

lem is generally an NP-hard integer optimization problem, we show that the

SIR structure leads to a submodular objective function, and provide a compu-

tationally attractive greedy algorithm for approximating a solution that has a

theoretical performance guarantee. Moreover, we characterise a finite sample

welfare regret bound and examine how its uniform convergence rate depends

on the complexity and riskiness of the social network. In the simulation, we il-

lustrate the importance of considering spillovers by comparing our method with

targeting without network information.

Keywords: Vaccine allocation, Statistical treatment choice, Submodularity, SIR model, Social

network, Spillovers.
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1 Introduction

Allocation of a resource over individuals who interact within a social network is an important

task in many fields, such as economics, medicine, education, and engineering (Lee et al.

(2020), Banerjee et al. (2013), among others). One of the important policy decisions of

this sort in pandemic times is how to allocate vaccines over heterogeneous individuals to

control the spread of disease and protect the lives of vulnerable. It is crucial for the vaccine

allocation rule to take into account the spillover effect of cutting transmission of the disease.

Since the start of COVID-19 pandemic, governments around the world have gone to great

lengths to collect network data in which one can trace who is contacting whom. Motivated by

these observations, we study how to estimate optimal individualized allocations of vaccines

under capacity constraint, using micro-level social network data. Data is informative about

the covariates of N units, their health status, and their associated neighbors. Using in-

sample information, we evaluate the risk to each unit, calculated from its own covariates and

spillovers from its heterogeneous neighbors, using an individualized Susceptible-Infectious-

Recovered model. The purpose of vaccine allocation is to maximize public health, by selecting

units to be vaccinated. Obtaining an optimal assignment is, however, challenging since

whether a treatment is optimal for an individual depends on which treatments are given to

her neighbors. This implies that the search for an optimal allocation has to be performed

over the entire network jointly, not individually.

This paper makes two main contributions. The first contribution is to develop methods

to estimate vaccine assignment policies that exploit network information at the micro-level.

The second contribution is to show that the empirical welfare criterion built upon the SIR

spillover structure delivers a submodular objective function, which we exploit to obtain com-

putationally attractive algorithms to solve the welfare optimization problem. Distinct from

the existing approach of estimating individualized allocation policies under network inter-

ference (Viviano, 2019; Ananth, 2020), our setting does not assume the availability of Ran-

domized Control Trial (RCT) data. Instead, we assume the availability of estimated values of

these spillover parameters from other sources, which we plug into our SIR model. Exploit-

ing already estimated SIR parameter values for immediate targeting and allocation is useful

when time is of the essence and the need for policy action is pressing, and avoids the cost of

running an RCT.

To optimize the empirical welfare of allocation policies, one naive approach is to evaluate

the value of empirical welfare exhaustively for all possible combinations of vaccine alloca-

tions over individuals. We refer to this as the brute-force approach. Although the brute-force

approach is guaranteed to optimize the empirical welfare, it is not practicable since the

number of possible combinations grows exponentially as the number of individuals in the

network increases. On the other hand, giving up on optimization entirely and implement-

ing random allocation is indeed practicable, but leads to a significant waste of the vaccine
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supply, which we show in our simulation exercises.

Given the challenge in optimizing the empirical welfare, what we recommend in this

paper is an allocation policy obtained by greedy optimization. A greedy optimization al-

gorithm in the current setting is to sequentially allocate a vaccine to an individual in the

network who is most influential for improving the social welfare. In general, greedy algo-

rithms are not guaranteed to yield an optimum. With the current welfare criterion built upon

the SIR spillover structure, however, we can obtain a non-decreasing submodular objective

function. Relying on the seminal result in discrete convex analysis shown by Nemhauser

et al. (1978), we show that the greedy algorithm delivers an allocation policy at which the

value of the objective function is worse than the optimum only up to a universal constant

factor, independent of the spillovers, size, and density of the SIR networks. Our derivation of

the population welfare regret of the greedily estimated allocation policy reflects the potential

loss of welfare due to non-feasibility of obtaining the brute-force allocation policy.

We further illustrate the advantages of our method in our simulation exercises. In a

small network setting (up to 35 individuals in the network), comparisons with the brute-

force allocation rules reveal that our proposed greedy allocation rules leads to an optimal

solution. In a large network setting, we evaluate the performance of our method versus two

different assignment rules : random assignment, and targeting without considering network

information. The welfare improvement relative to these two baselines ranges over 4% -

12%, and this result is insensitive to the values of SIR parameters and the size and density

of network.

To assess how uncertainty in the SIR parameter estimates affect the welfare performance

of the estimated policy, we derive a uniform upper bound of the welfare regret of our vaccine

allocation rule and its convergence rate with respect to the size of the sample used for

obtaining the SIR parameter estimates. The uniform upper bound of regret depends upon

two things. Firstly, n, which is the sample size of the separate dataset used to estimate the

SIR parameters. Secondly, the ratio of the network data sample size N to the maximum

number of neighbors NM plus the minimum between the number of infected units NI and

the number of available vaccine doses d (i.e., (dmin{NM , d}+ 2dNM + min{NI , d})/N). As

NM and NI grow, the complexity and risk of the social network increase, which can reduce

the welfare regret performance of the estimated vaccine allocation rule.

The remainder of this paper is organized as follows. We first discuss the relevant lit-

erature in the rest of this section. Section 2 details various models, and the HI-SIR model

in particular, and the wider setting. Section 3 is concerned with estimation, including the

estimation of SIR parameters and the construction of the QIP problem. The optimization

procedure is contained in section 4. Section 5 contains the theoretical results. Simulation

details are shown in Section 6, and Section 7 concludes. All proofs and derivations are

shown in the appendix.
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1.1 Related Literature

Our work contributes to the literature on statistical treatment rules, which was first intro-

duced into econometrics by Manski (2004). The optimal treatment allocation regime has

been studied in many fields, such as medical statistics (Zhao et al., 2012, 2015), operational

research (Loiola et al., 2007) and economics. Following the pioneering works of Hannan

(1957) and Savage (1951),1 researchers in econometrics and machine learning often use

regret to evaluate the performance of decision rules. The recent literature of statistical treat-

ment rules includes Dehejia (2005), Hirano and Porter (2009), Stoye (2009, 2012), Tetenov

(2012), Bhattacharya and Dupas (2012), Kitagawa and Tetenov (2018), Zhou et al. (2018),

Manski (2019), Kasy and Sautmann (2019), Athey and Wager (2020), Kock et al. (2020),

Mbakop and Tabord-Meehan (2021), Manski and Tetenov (2021), Sakaguchi (2021), and

Kitagawa et al. (2021) among others. The planner’s objective function in the majority of

these works is a sum of individual outcomes under the no-interference assumption (i.e.,

Stable Unit Treatment Value Assumption of Rubin (1974)). This assumption does not hold

in this study because of the network spillover effects that are present. To our knowledge,

there are only two other papers that also consider the network setting in statistical treatment

choice, which are Viviano (2019) and Ananth (2020). These two papers assume the avail-

ability of pilot data from RCT studies performed over networks in order to form empirical

welfare criteria. Their frameworks are not restricted to the SIR setting of the current paper

and cover spillover structures commonly assumed in social science applications. In contrast,

our approach forms welfare estimates by imposing the HI-SIR model structure and plugging

in values of the primitive spillover parameters that are estimated or calibrated in some ex-

ternal study (e.g., Baqaee et al. (2020)). Another notable difference is that we consider

allocation policies that are not constrained other than via the capacity constraint, while Vi-

viano (2019) and Ananth (2020) assume the class of implementable allocation policies has

a finite VC-dimension to control overfitting to the training RCT sample.

The SIR model was originally proposed by Kermack and McKendrick (1927), and is

now the workhorse model in the epidemiological literature. Many extended versions have

been studied in epidemiological analyses, such as the Susceptible-Infected-Susceptible model

(Nåsell, 1996) and the Susceptible-Exposed-Infected-Recovered model (Li and Muldowney,

1995). During the global pandemic, an epidemological literature has sprung up within eco-

nomics. Atkeson (2020) and Stock (2020) introduced the SIR model into economics to

study the implications of the current pandemic on the US economy. We introduce hetero-

geneity into the SIR model, which is similar to what Acemoglu et al. (2020) does in studying

the Multi-Risk SIR model. That paper assumes, however, that the infection rate after the

release of a vaccine equals zero, which means it does not consider the vaccine allocation

problem. Our work contributes to the current literature by studying micro-level vaccine as-

1Hannan (1957) considers regret-minimizing strategies in the context of zero-sum and sequential
games. Savage (1951) introduces minimax-regret rules to the statistical decision theory.
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signment rules in a heterogeneous SIR model with network information. In contrast, the

existing works analyzing vaccine allocation rules focus on solving for the optimal proportion

of vaccinated units in the population (Pastor-Satorras and Vespignani (2002), Manski (2010,

2017)). Chen et al. (2020) analyzes vaccine allocation using a heterogeneous SIR model,

while they consider vaccine allocation policies at the group-level rather than the individual-

level.

We build a connection to the literature on using a submodular function to solve an op-

timization problem. The performance guarantee of a general greedy algorithm for solving

submodular maximization problems with a cardinality constraint was first established by

Nemhauser et al. (1978). The later literature links the cardinality constraint to a more

general constraint : Matroid constraint (Fisher et al., 1978; Cunningham, 1985). See Bach

(2011) and Krause and Golovin (2014) for overviews of papers studying optimization of sub-

modular functions. In this work, we discuss a submodular function with a uniform matroid

constraint (i.e., capacity constraint) and a more general partition matroid constraint.

We notice that our approach to vaccine allocation problem is related to the influence

maximization problem first formulated by Kempe et al. (2003). Chen et al. (2010) investi-

gates submodularity of objective functions and greedy optimization algorithms in this prob-

lem. Applications of the influence maximization problem include targeting for viral market-

ing ((Domingos and Richardson, 2001)) and optimal information spread in social network

((Bakshy et al., 2011)). There are two widely studied information diffusion models in this

literature: Independent Cascade Model (Goldenberg et al., 2001) and Linear Threshold Model

(Granovetter, 1978). Despite some similarity between the diffusion models and our SIR

model, this literature has not considered individualized vaccine allocation problem.

We also note that there is a growing literature on estimation of treatment effects un-

der network interference. Manski (2013) discusses identification of treatment effects and

spillover effects under a deterministic interference graph and a set of relevant potential out-

comes. The increased number of network datasets that have recently become available has

motivated further work on this topic, including Sävje et al. (2017), Aronow et al. (2017),

Athey et al. (2018), Basse et al. (2019), and Leung and Moon (2019). Li and Wager (2020)

non-parametrically estimates direct and indirect effects of treatment in a random network

setting. Vazquez-Bare (2020) analyzes estimation of spillover effects using an instrument

variable. See Kline and Tamer (2020) and Graham and De Paula (2020) for recent reviews

on econometric analysis in the presence of social interactions.

2 Setup and Identification

We consider a basic model to study the vaccination allocation problem. Let us first introduce

the timeline and data setting that we consider in this work.
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1st period 2nd period

time

t=0 t=1

Vaccine

t=2
A [Xi, H0i]

N
i=1 [H1i]

N
i=1

As shown in the illustration, we suppose there are two periods. At t = 0, policymakers

initially observe the network structure A (i.e., adjacency matrix) linking N individuals, for

which we provide further details below. Policymakers then observe covariates Xi ∈ X ⊂ Rdx

and current period health state H0 ∈ {S, I,R} for each of the N individuals. The health

states {S, I,R} stand for Susceptible, Infected, and Recovered. We assume the network struc-

ture A is observed before personal health status to avoid the impact of self-isolation on the

network structure. At t = 1, policymakers start to assign the vaccine. After a short vaccina-

tion period, people begin to meet their neighbors, which we call the interaction period. The

health state during that period is defined as H1 ∈ {S, I,R,D}, where D stands for death.

Since at the time of assigning vaccination, H1 is not yet observed by researchers, a stochastic

health state will be used to evaluate personal risk. The ultimate goal of policymakers is to

maximize the expected social health situation via the allocation of vaccines.

In our setting, units are connected through a social network. We assume the following

property on network structure holds :

Assumption 2.1. (Undirected Relationships) The interference graph is undirected. i.e., Aij =

Aji.

The symmetric N×N adjacency matrix A specifies who contacts with whom, with the (i, j)th

element of A, denoted by Aij , equal to one if unit i and unit j has positive contact time, and

zero otherwise. By convention, all the diagonal elements Aii are equal to zero. If Aij = 1,

then we say that i and j are neighbors. Let Ni indicate the neighbors of unit i, then we

write Aij = 1 if j ∈ Ni and i ∈ Nj . The size of spillover (i.e., the probability of disease

transmission) between the units i and j depends not only on Aij but also on the amount of

their contact time and the transmission rates which are allowed to be asymmetric between

them. We accordingly have a directed weighted network structure for the spillovers, as

shown in later sections.

Now, let us introduce the notation that we use in the following sections. First, vi is the

individual vaccine assignment rule (i.e., vi = 1 if unit i gets the vaccine). Let v denote

(v1, ..., vN ) ∈ {0, 1}N , and X denote (X1, ..., XN ) ∈ RN×dx . Let Si be the susceptible state

indicator in the first period (i.e., Si = 1{H0i=S}), let Ii be the infected state indicator in

the first period (i.e., Ii = 1{H0i=I}), and let Ri be the recovered state indicator in the first

period (i.e., Ri = 1{H0i=R}). Moreover, let |Ni| denote the number of neighbors of unit i

(i.e., |Ni| =
∑

j Aij).

6



2.1 Heterogeneous-Interacted-SIR model

To measure the personalized transition probability, we use a HI-SIR model. Our model is

defined in discrete time within a simplified setting of two time periods. In the first period,

we observe the health state of each unit H0, which belongs to S(Susceptible), I(Infected), or

R(Recovered),

Si + Ii +Ri = 1. (1)

In the second period, the state variable is H1. Compared with H0, H1 includes one more

state D(Death).

1{H1i=S} + 1{H1i=I} + 1{H1i=R} + 1{H1i=D} = 1. (2)

Without the vaccine, the state can move from susceptible to infected, then to either recovery

or death. Now, we consider the setting after introducing the vaccine. Generally, vaccination

has two purposes : the first is limiting the spread of disease, and the second is treatment.

Vaccination builds up the immune system, which leads to recovery. However, the effective-

ness of vaccination (i.e., the percentage of vaccinated units that recover) is not clear. For

simplicity, we assume that assumption 2.2 holds.

Assumption 2.2. (PT) Perfect Treatment : A vaccinated unit enters the Recovered state, regard-

less of its previous state (i.e., Pr(H1i = R|vi = 1) = 1).

To further simplify the setting, we split all units into a finite number of disjoint groups

based on their characteristics. The infection rate between each group varies. This setting

could be extended to the individual level, but the micro level infection rate would need to

be known in this case. Here, we consider two groups and use age as a binary indicator : G1

(Young) and G2 (Old). We now define ai and bi as the group indicators (i.e., ai = 1{Xi∈G1}

and bi = 1{Xi∈G2}).

We specify one of the key components in SIR models, the infection rate of unit i, as :

qi =
[
β11

∑
j∈Ni Ij(1− vj)aj

|Ni|
+ β12

∑
j∈Ni Ij(1− vj)bj

|Ni|

]
· ai

+
[
β21

∑
j∈Ni Ij(1− vj)aj

|Ni|
+ β22

∑
j∈Ni Ij(1− vj)bj

|Ni|

]
· bi,

(3)

where βsk = −κs ln(1− csk), csk is the probability of successful disease transmission follow-

ing a contact between group s and group k (i.e., c11 measures the transmission probability

from one unit to another within the young group, c12 is the corresponding probability of

transmission from a unit in the old group to a unit in the young group, with similar defi-

nitions for c21 and c22), and κs is the average number of contacts in group s at each time

period. βsk describes the effective contact rate of the disease between group s and group k.

The derivation of equation 3 can be found in the appendix.

In the above expression, Ij(1 − vj) means a susceptible individual can only be infected
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by neighbors who were infected and not vaccinated.2 Those neighbors may come from

various groups. We calculate the fraction of neighbors in each group and multiply them

by the associated risk parameters. The risk parameter βsk measures the probability that a

susceptible individual in group k is infected by an infected individual from group s in one

time period.

We now define {γ1, γ2} as the recovery rate and {δ1, δ2} as the mortality from infection

in group 1 and group 2 respectively. Given this, we can formulate the probability of staying

in the infection state for the infected unit i as :

pi = 1− ai(γ1 + δ1)− bi(γ2 + δ2). (4)

Since the probability of recovery and death purely depend on personal physical fitness,3

there is no interactive part in equation 4. The transition probability to the infected state is

then :

PIi(v) ≡ Pr(H1i = I|X,v, A,H0) = Siqi · (1− vi) + Iipi · (1− vi). (5)

In the above expression, the probability of an unvaccinated unit being infected has two

components. The first is the probability of a healthy unit being infected. The second is

the probability of staying in the infected state for those infected in the first period. Under

Assumption 2.2, a vaccinated unit has zero probability of being infected. Similarly, the

transition probability to the susceptible state is :

PSi(v) ≡ Pr(H1i = S|X,v, A,H0) =
[
1− vi − qi(1− vi)

]
· Si. (6)

An unvaccinated unit can only exit the susceptible state by infection. Therefore, the proba-

bility of staying in the susceptible state decreases with the risk parameter βsk, which depends

on the number of infected neighbors and the number of contacts with them. The remain-

ing two states do not rely on the network structure. First, the transition probability to the

recovered state :

PRi(v) ≡ Pr(H1i = R|X,v, A,H0) = vi +
[
Ri + Ii(aiγ1 + biγ2)

]
· (1− vi). (7)

In the above expression,4 recovery has two different sources. One is the vaccine, and the

other is self-immunity. The effect of self-immunity is heterogeneous and varies with personal

characteristics. The probability of building immunity in each group is γ1, γ2. The last state is

2This can also be thought of as an underlying assumption, which is commonly used in the epi-
demiological literature (e.g., Pesaran and Yang (2020)).

3This can be thought as a simplified assumption, which indicates the death rate does not depend
on the availability of hospital spare capacity.

4A maintained assumption in this equation is that the probability of being reinfected for the
recovered units is zero. We relax this assumption in Section 7.
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death, which occurs with probability

PDi(v) ≡ Pr(H1i = D|X,v, A,H0) = Ii(aiδ1 + biδ2) · (1− vi). (8)

2.2 Optimal Vaccine Allocation Problem

In Emanuel et al. (2020), a group of medical ethics experts suggest a successful vaccine is

needed to reduce death and morbidity from infection, and is also needed for the restoration

of economic and social activity. Following that suggestion, we choose our baseline outcome

variable as the weighted average of the probability of being healthy in the second period.

The idea of using weighted probability is to allow a flexible policy target of the planner. For

example, if the planner wants to incorporate the importance of economic recovery into the

policy objective, she may want to weight more the probabilities of being healthy of those

who can contribute more to the economic output. For instance, the planner could specify the

weights on the individuals to depend on their individuals characteristics including working

hours and other socioeconomic characteristics (i.e., gi = g(Xi)).5 We assume the weight is

non-negative for every unit. Taking these into consideration, equation (9) specifies the goal

of the vaccine allocation policy as a constrained optimization problem:

max
v∈{0,1}N

1

N

N∑
i=1

gi
∑

h∈{S,R}

Phi(v), (9)

s.t.
N∑
i=1

vi ≤ d, (10)

where

Phi(v) = Pr(H1i = h|X,v, A,H0), (11)

and d ≥ 1 is a positive integer for the exogenous cardinality constraint. The main idea of the

above objective function is to maximize the weighted probability of being in the susceptible

or recovered state in the second period by appropriately assigning the d doses of vaccine at

the end of the first period.

In equation (9), Phi is the heterogeneous state transition function, which describes the

probability of h ∈ {S,R} in the second period. This transition probability depends on the

individuals’ covariates and previous state including whether being vaccinated or not, and the

associated network structure. We adopt the HI-SIR model to formulate the above transition

function, which has been provided in the previous subsection.

One relevant question is : Will vaccine allocation change the network structure? Yes, it

5A maintained assumption in this expression is that for every unit, the weight is same for both
susceptible and recovered states. This is a simplifying assumption that can be relaxed if we want to
weight differently the susceptible and recovered states.
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would change the behaviour of vaccinated units. For example, vaccinated units prefer to go

out as compared to unvaccinated units. Given this, the number of contacts at each time

period κs and the network structure A would change after the vaccine allocation. Our

framework allows the network structure to vary without affecting the optimal allocation

of vaccines in a special case where only the vaccinated units change their behaviours. This

is because under our perfect treatment assumption, the vaccinated units no longer spread

the disease or be infected, and their behavioral changes do not affect the health statuses

of the neighbors and themselves. On the other hand, our framework cannot accommodate

a general case where the unvaccinated units also change their behaviours, since if so the

heterogeneous SIR parameters in the objective function change in response to the vaccine

allocation. To allow this scenario, we could incorporate uncertainty as to the values of κs
and A in the second period, for instance, by optimizing an objective function that takes

the expectation of the SIR parameters the adjacency matrices conditional on v. We do not,

however, consider such an extension in this paper and leave this topic for future research.

3 Estimation

In order to measure the individual risk level using the HI-SIR model, we need to know the

associated SIR parameters : transmission rate (i.e., β11, β12, β21, β22), and recovery rate (i.e.,

γ1, γ2). Given that we cannot observe the true value of those parameters, it is infeasible to

evaluate the objective function (9) based on the in-sample information of (H0, X) and A of

the target network. We therefore assume access to a separate dataset with sample size n

or an external study analyzing it, from which we can form estimates for these exogenous

parameters. We construct an empirical version of the population welfare (9) and maximize

over the feasible allocation policies. To reflect the precision of the SIR parameter estimates

in the welfare performance of an estimated allocation rule, we explicitly take into account

the sampling uncertainty of the parameter estimates in our derivation of the welfare regret

upper bound.

3.1 Estimation of SIR Parameters

The estimation of infection rate and death rate always faces severe missing data problems

as discussed in Manski and Molinari (2020). Keeling and Rohani (2011) points out that,

usually, researchers first estimate the reproductive ratio R0, which is the average number of

individuals that one sick person infects.

R0 = β × 1

γ
. (12)
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Then, the infection rate can be derived from the estimated recovery rate γ̂ and R̂0. In our

case, the reproductive ratio is heterogeneous at group level.

R0sk = βsk ×
1

γs
∀s, k = 1, 2, (13)

where R0sk is the number of infectious individuals in group s resulting from one sick person

in group k. We need to estimate the average number of younger infectious and older infec-

tious from one sick person in group 1 and group 2, and also the recovery rate in each group.

Given these values, we can estimate β11, β12, β21, β22 from equation (13).

Remark 3.1. We do not discuss what is a desirable procedure for estimating the model

parameters in this work, since the choice of estimator depends on the type of data (e.g.,

Seroprevalence data, Reported cases data, etc.). See Keeling and Rohani (2011) for further

details. For the COVID-19 transmissions, estimation of homogeneous R0 and other SIR

parameters has been performed in several papers including Fernández-Villaverde and Jones

(2020), Ferguson et al. (2020), and Korolev (2021). They note the difficulty in calibrating

critical parameters at an early stage of the pandemic due to the lack of credible data, which

motivates partial identification analysis of Manski and Molinari (2020) and Stoye (2021).

Our approach, however, assumes availability of credible point estimates and does not allow

identified-set estimates for the SIR parameters. See Ellison (2020) and Akbarpour et al.

(2020) for recent estimates of heterogeneous SIR parameters.

3.2 Quadratic Integer Programming

Plugging the parameter estimates into our HI-SIR model, we now have the sample analog of

the population maximization problem (9), which is

max
v∈{0,1}N

Wn(v), s.t.
N∑
i=1

vi ≤ d, where

Wn(v) =
1

N

N∑
i=1

gi
∑

h∈{S,R}

P̂hi(v).

(14)

We can formulate this optimization as a quadratic integer programming (QIP) problem,

which in the context of an assignment problem over a network is synonymous with the

Quadratic Assignment Problem (QAP) of Koopmans and Beckmann (1957). We can express

Wn(v) as

Wn(v) =
1

N

N∑
i=1

gi

[
vi +

[
Ri + (aiγ̂1 + biγ̂2)Ii

]
(1− vi) +MiSi(1− vi)

]
︸ ︷︷ ︸

Probability of being healthy

(15)
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where

Mi = 1−
∑N

j=1(β̂11aiaj + β̂12aibj + β̂21biaj + β̂22bibj)AijIj(1− vj)
|Ni|

. (16)

For the probability of being healthy in equation (15), there are two linear terms and one

quadratic term in v. The first term measures the direct effect of vaccination. A vaccinated

unit is safe from infection with 100% probability. The last two terms describe the probabil-

ity of being free of infection for unvaccinated units. Infected units naturally recover with

probability {γ1, γ2}, which depends on their own characteristics. For those units who are

already recovered in the first period, they are free from infection in the second period. The

last component takes into account the indirect effect of vaccination. For susceptible units,

the probability of being infected by their infected neighbors is summarized by the interaction

term.

After removing all the constant parts in equation (15), we obtain a simplified objective

function (i.e.,Wn(v) = Fn(v) + constant) :

Fn(v) =

N∑
i=1

ĉivi +
1

N

N∑
i=1

1

|Ni|

N∑
j=1

Tij(vi + vj − vivj), (17)

where

ĉi = gi
[
1−Ri − (aiγ̂1 + biγ̂2)Ii − Si

]
/N, (18)

Tij = gi
(
β̂11aiaj + β̂12aibj + β̂21biaj + β̂22bibj

)
AijIjSi. (19)

Since Fn differs fromWn only by an additive constant (conditional on the network struc-

ture and individual characteristics in the first period), maximizing Fn is equivalent to max-

imizing the original empirical welfare function Wn. Therefore, from now on, we will focus

on Fn(v) as our new objective function. Within Fn(v), there is a quadratic term plus linear

components in v. Current software is available to solve general QIP problems, such as CPLEX

and Gurobi. However, both applications require a symmetric weighting matrix, which does

not hold in our case. This asymmetric property comes from the infectious process, since dis-

ease can only be transmitted from infected units to susceptible units, but the reverse is not

true. We discuss how to solve this QIP problem with showing and exploiting the submodular

property of our objective function in the next section.

4 Optimization

4.1 Submodularity

We showed in the last section that we can formulate our objective function as QAP. This kind

of problem is well known as an NP-hard and NP-hard to approximate problem (Cela, 2013).
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In general, we cannot solve QAP in polynomial time, which is an issue in practice. We shall,

however, show that the quadratic integer programming in our vaccine allocation problem can

be linked to the submodular optimization problem. The benefit of submodularity is that there

exist off-the-shelf algorithms that can solve a submodular minimization problem in exact

polynomial time and approximately solve a submodular maximization problem with capacity

constraint in polynomial time. The seminal result of Nemhauser et al. (1978) provides a

universal bound for the quality of approximation as detailed below in Section 4.2.

Definition 4.1 (Submodular function). Let N = {1, 2, . . . , N}. A real-valued set-function

F : 2N → R is submodular if and only if, for all subsets A,B ⊆ N , we have : F (A)+F (B) ≥
F (A ∩B) + F (A ∪B).

In simple terms, submodularity describes the diminishing returns property. The marginal

increase in the average probability of being healthy decreases in the number of vaccinated

units. This property is crucial for the maximization algorithm. For ease of exposition, we

express the simplified empirical welfare Fn as a set function with argument V ∈ 2N , where

the binary vector of vaccine allocation v ∈ {0, 1}N and V correspond by V = {i ∈ N : vi =

1}:
Fn(V ) = vᵀŴv + Ĉᵀv − 1ᵀN×1Ŵv − vᵀŴ1N×1, (20)

where

Ĉ =


ĉ1

...

ĉN

 , 1N×1 =


1

...

1

 , Ŵ =



ŵ11 ŵ12 · · · ŵ1N

ŵ21 ŵ22 · · · ŵ2N

...
...

. . .
...

ŵN1 ŵN2 · · · ŵNN


, (21)

ŵij = − Aijgi
|Ni|N

(β̂11aiSiajIj + β̂12aiSibjIj + β̂21biSiajIj + β̂22biSibjIj). (22)

We then denote the class of feasible allocation sets V subject to the cardinality constraint

|V | ≤ d by Vd ≡ {V ∈ 2N : |V | ≤ d}. Since vaccinating additional individuals cannot reduce

welfare, Fn is a non-decreasing set function, i.e., for any V ⊂ V ′, Fn(V ) ≤ Fn(V ′).6

The quadratic functional form of Fn shown in (20) can be linked to one classic submod-

ular function called a cut function. Cut functions have been well studied in combinatorial

optimization and graph theory. We apply some of the results from that literature (e.g., Bach

(2011)).

Lemma 4.1. Let Ŵ ∈ RN×N and Ĉ ∈ RN . Then the set function Fn : V 7→ vᵀŴv + Ĉᵀv −
1ᵀN×1Ŵv − vᵀŴ1N×1 is submodular if and only if ŵij ≤ 0 ∀i 6= j.

6See the proof of Theorem 4.1 for a formal proof for the non-decreasing property of Fn.
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The proof is shown in the appendix. Note that the necessary and sufficient condition for

submodularity shown in this lemma is distinct from negative semidefiniteness of the matrix

Ŵ . Since all the parameters in ŵij are non-negative, we must have ŵij ≤ 0,∀i, j = 1, ..., N .

This immediately leads to the following theorem:

Theorem 4.1. The objective function Fn(V ) is a non-decreasing submodular function for any

adjacency matrix, covariate values, and parameter estimates.

Theorem 4.1 is the key result in our paper. It describes two important properties of

our objective function; monotonicity and submodularity. We exploit these two properties to

justify the uses of greedy maximization algorithms shown in the next subsection.

4.2 Greedy Maximization Algorithm

Greedy maximization algorithms for submodular functions have been studied and frequently

used for well over forty years. The performance guarantee of the algorithm that we study

was first introduced by Nemhauser et al. (1978). This algorithm essentially uses the dimin-

ishing returns property of the submodular function. The idea is to iteratively select the most

valuable element until the capacity constraint is reached. At each round, the algorithm eval-

uates O(N) functions to identify the marginal gain of each element. The number of rounds

depends on the capacity constraint d. As a result, the computational complexity of the greedy

algorithm is of order O(N · d), well below the computational complexity of the brute-force

search. Algorithm 1 presents the greedy maximization algorithm applied to maximization of

the empirical welfare (20).

Algorithm 1: Capacity Constrained Greedy Algorithm
1 : Input : Dataset {Si, Ii, Ri, ai, bi}Ni=1, {Aij}Ni,j=1, estimated parameters
{β̂11, β̂12, β̂21, β̂22, γ̂1, γ̂2}, weight {gi}Ni=1 and capacity constraint d;

2 : Initialization : Starting from the empty set V = ∅ ;

if |V | < d then

3 : for each i ∈ N\V do

4 : Compute the marginal gain Fn(V + {i}) − Fn(V );

5 : Select i which maximizes the marginal gain and add it into the set V ;

else

return the set V ;
end

In general, there is no performance guarantee of the greedy algorithm. However, as

shown by Nemhauser et al. (1978) for a non-decreasing submodular function with cardi-

nality constraint (i.e., capacity constraint in our case), the greedy maximization algorithm

is guaranteed to yield an allocation rule V̂ ∈ Vd that satisfies Fn(V̂ ) ≥ (1 − αd)Fn(V̂ ∗),

14



where V̂ ∗ ∈ Vd is a constrained optimum under the capacity constraint, and αd is a positive

constant that depends only on d ≥ 1 and αd ≥ 1/e for all d ≥ 1. This seminal result im-

plies that the greedy maximization algorithm provides a universal optimization guarantee

for non-decreasing submodular functions, Fn(V̂ ) ≥ (1 − 1/e)Fn(V̂ ∗) ≈ 0.63Fn(V̂ ∗). Since

we show in Theorem 4.1 that our objective function is non-decreasing and submodular, we

obtain the following theorem as an immediate corollary of our Theorem 4.1 and Nemhauser

et al. (1978).

Theorem 4.2 (Nemhauser et al. 1978). Let Fn : 2N → R be the simplified empirical welfare

function as defined in (20) and V̂ ∗ ∈ arg maxV ∈Vd Fn(V ), d ≥ 1. The greedy algorithm shown

in Algorithm 1 outputs V̂ ∈ Vd such that

Fn(V̂ ) ≥ (1− αd)Fn(V̂ ∗) ≥ (1− 1/e)Fn(V̂ ∗), (23)

where 1 − αd ≡ 1 −
(

1− 1
d

)d
is monotonically decreasing in d and converges to 1 − e−1 as

d→∞.

4.3 Targeting Constraint

Up until now, we have only considered a simple capacity constraint in the vaccine assignment

rule. In reality, Beyond the weight specification in the objective function, policymakers may

want to prioritize some group over the others by limiting the number of vaccines that are

administered in each group.7 For example, policymakers may limit access to vaccines for

those people that can work at home. If we are able to divide individuals into two groups

based on their job categories, into a group that can work at home and a group that cannot

say, then policymakers can set an upper bound on the number of vaccines that are available

for the work at home group.

We call this kind of constraint a targeting constraint, and impose it in our model in such

way that each of the two age groups has a capacity constraint for the number of available

vaccines: ∑
i : Xi∈G1

vi =
N∑
i=1

aivi ≤ d1,
∑

i : Xi∈G2

vi =
N∑
i=1

bivi ≤ d2. (24)

This targeting constraint belongs to a general class of constraints : the so called matroid

class. First, we use I to describe the subset of 2N that is compatible with all of the constraints

imposed. If we restrict the set of vaccinated agents V to belong to I, which is part of a

matroid (Y, I), this constraint is called a matroid constraint.

7A group in this section does not need to coincide with the group defining the heterogeneity of
the SIR parameters. For example, we could divide units based on their job category, geographical
location, or community.
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Definition 4.2 (Matroid). Let I be a nonempty family of allowable subsets of N . Then the

tuple (N , I) is a matroid if it satisfies :

• (Heredity) For any D ⊂ E ⊂ N , if E ∈ I, then D ∈ I.

• (Augmentation) For any D,E ∈ I, if |D| < |E|, then there exists an x ∈ E\D such

that D ∪ {x} ∈ I.

LetN1 andN2 be the disjoint subsets partitioned by Xi (N1∪N2 = N ). We can represent

the targeting constraint by

I ≡ {V : V ⊆ N , |V ∩N1| ≤ d1, |V ∩N2| ≤ d2}. (25)

We can show that this (N , I) is a matroid referred to as a partition matroid. First, we show

heredity. For any D ⊂ E, we must have |D ∩ N1| ≤ |E ∩ N1| and |D ∩ N2| ≤ |E ∩ N2|. If

E ∈ I, then it means D must satisfy the targeting constraint in I. Next, for any D,E ∈ I,

we must have |D ∩ N1|, |E ∩ N1| ≤ d1 and |D ∩ N2|, |E ∩ N2| ≤ d2. If |D| < |E|, then either

|D ∩N1| < |E ∩N1| or |D ∩N2| < |E ∩N2| or both. As a result, there must exist an element

x that belongs to E\D such that|D ∪ {x} ∩ N1| ≤ d1 and |D ∪ {x} ∩ N2| ≤ d2.
This problem of optimal treatment assignment subject to a partition matroid constraint

is to maximize Fn(V ) over V ∈ I. The following Algorithm 2 is guaranteed to produce a

solution V̂ ′ ∈ I. Greedy maximization algorithms subject to a partition matroid constraint

performed for non-decreasing submodular functions attain at least 50% of the optimal wel-

fare.
Algorithm 2: Targeting Constraint Greedy Algorithm

1 : Input : Dataset {Si, Ii, Ri, ai, bi}Ni=1, {Aij}Ni,j=1, estimated parameters
{β̂11, β̂12, β̂21, β̂22, γ̂1, γ̂2}, weight {gi}Ni=1, capacity constraint d, and targeting
constraints d1, d2;

2 : Initialization : Starting from the empty set V = ∅ ;

if |V | < d then

3 : for each i ∈ N\V do

4 : Compute the marginal gain Fn(V + {i}) − Fn(V );

5 : Sort i in order of decreasing marginal gain

6. if
∑

j∈V aj + ai(1) ≤ d1 ∩
∑

j∈V bj + bi(1) ≤ d2 then

7 : Add the 1st element of i into V ;
else

8 : Repeat step 6 with remaining i;
end

else

return the set V ;
end
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Proposition 4.1 (Fisher et al. 1978). Let Fn : 2N → R be the simplified empirical welfare

function as defined in (20) and V̂ ∗∗ ∈ arg maxV ∈I Fn(V ). The greedy maximization algorithm

shown in Algorithm 2 outputs V̂ ′ ∈ I such that

Fn(V̂ ′) ≥ 1

2
Fn(V̂ ∗∗). (26)

The performance guarantee of the greedy algorithm with targeting constraint is worse

than the performance guarantee of Algorithm 1. This implies a trade-off between additional

constraints and the accuracy of computation. In the next section, we discuss the welfare

regret bounds of the allocation rules estimated by the above greedy algorithms.

4.4 Perfect Treatment Assumption and Submodularity

Recall Assumption 2.2 (Perfect Treatment) : A vaccinated unit enters the Recovered state,

regardless of its previous state (i.e., Pr(H1i = R|vi = 1) = 1). There are three possible ways

to relax this assumption :

• The recovered units can still spread disease.

• The recovered units will become susceptible after one period (few periods).

• Some percentage of vaccinated units remain susceptible or infected.

In the first case, if the person is recovered at H0, she will spread the disease during the first

period. In that case, the recovered neighbors of unit i will be taken into account by the

infection rate qi. This will not, however, change the sign of our weighting matrix, hence

submodularity (by Theorem 4.1) still holds. In the second case, if unit i is recovered in the

first period (i.e.,H0i = R), she could become susceptible in the second period (i.e.,H1i = S).

Then, she may be infected in the next period (i.e., H2i = I). However, we only consider a

one time period setting in this work, which rules out this risk. In the third case, varying this

percentage only affects the coefficient of the linear term in the objective function (i.e., ĉi in

equation 17), which is irrelevant to submodularity.

5 Regret Bounds

Following Manski (2004) and the subsequent literature on statistical treatment rules, we use

regret to evaluate the performance of our algorithm for vaccine allocation. Let F : 2N → R
be the population analogue of Fn(·) in (20), where the estimated parameters are replaced by

the truth. The expected regret measures the average difference in the welfare between using

the constrained optimal assignment rule V ∗ ∈ arg maxV ∈Vd F (V ) and using the constrained

estimated greedy algorithm V̂ obtained from Algorithm 1:

F (V ∗)− EPn
[
F (V̂ )

]
= EPn

[
F (V ∗)− F (V̂ )

]
≥ 0, (27)
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where EPn is the expectation with respect to the sampling uncertainty of the parameter

estimates in the external studies.

In this work, we assume that consistent estimators of effective contact rate and recovery

rate are available from other studies. Generally, there is no requirement on the estimator

except that Assumption 5.1 needs to hold.

Assumption 5.1. Let β̂sk denote the estimate of effective contact rate between group s and

group k, and γ̂s denote the estimate of recovery rate in group s. The following properties need

to hold:

P

{∣∣∣β̂sk − βsk∣∣∣ ≥ ε} ≤ 2e−2nε
2 ∀s, k = 1, 2. (28)

P

{
|γ̂s − γs| ≥ ε

}
≤ 2e−2nε

2 ∀s = 1, 2, (29)

where P is the sampling distribution in another study that has sample size n.

The above assumption is an exponential tail bound obtained by applying Hoeffding’s

large deviation inequality (Hoeffding, 1963). Since βsk is the effective contact rate of the

disease between group s and k, and γs is the recovery rate in group s, both are naturally

bounded in [0, 1]. Hence, common estimators (e.g., sample analog) meet the above con-

dition. However, other tail bounds might apply for some other estimators, which do not

necessarily have the same form as the above tail bound. Our approach can accommodate

various tail bounds, such as the tail bound associated with the maximum likelihood estimator

(Miao, 2010).

The estimators for the contact rates and recovery rates may come from different studies

with different sample sizes. In this case, we can view n in Assumption 5.1 as the smallest

sample size among the studies.

In order to derive the uniform convergence rate of the welfare regret, we decompose

regret into three components as follows.

F (V ∗)− F (V̂ ) = F (V ∗)− Fn(V̂ ∗)︸ ︷︷ ︸
1

+Fn(V̂ ∗)− Fn(V̂ )︸ ︷︷ ︸
2

+Fn(V̂ )− F (V̂ )︸ ︷︷ ︸
3

, (30)

where V ∗ is an oracle optimum V ∗ = arg maxV ∈Vd F (V ), V̂ ∗ is a constrained optimal solu-

tion to the estimated welfare V̂ ∗ = arg maxV ∈Vd Fn(V ), and V̂ is the output from the greedy

maximization algorithm under the capacity constraint. Therefore, 1 describes the regret we

would attain if the constrained optimum could be computed exactly. 2 measures the wel-

fare loss introduced by the greedy algorithm. 3 indicates the loss from using the estimated

objective function instead of the true objective function. We compute the upper bound of

each component separately and then combine them.

First, we start from the derivation of the upper bound of 1 . This part is similar to the

approach in Kitagawa and Tetenov (2018). Before looking at V ∗, consider the following
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inequality, which holds for any Ṽ ∈ Vd :

F (Ṽ )− Fn(V̂ ∗) ≤ F (Ṽ )− Fn(Ṽ )(
∵ Fn(V̂ ∗) ≥ Fn(Ṽ )

)
≤ sup

V ∈Vd
|Fn(V )− F (V )|.

(31)

Since the above inequality applies to F (Ṽ ) for all Ṽ , it also applies to V ∗ :

F (V ∗)− Fn(V̂ ∗) ≤ sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣ . (32)

For the second component, we can obtain an upper bound by applying Theorem 4.2 :

Fn(V̂ ∗)− Fn(V̂ ) ≤ 1

e
Fn(V̂ ∗)

≤ 1

e
(Fn(V̂ ∗)− F (V̂ ∗)) +

1

e
F (V ∗)

≤ 1

e

∣∣∣Fn(V̂ ∗)− F (V̂ ∗)
∣∣∣+

1

e
F (V ∗)

≤ 1

e
sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣+

1

e
F (V ∗).

(33)

Similarly to the first component, the third component can be bounded as :

Fn(V̂ )− F (V̂ ) ≤ |Fn(V̂ )− F (V̂ )| ≤ sup
V ∈Vd

|Fn(V )− F (V )|. (34)

Combining all the previous results, we obtain the upper bound of regret :

F (V ∗)− F (V̂ ) ≤
(

2 +
1

e

)
sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣+

1

e
F (V ∗). (35)

Compared with the regret upper bound when one could compute V̂ ∗, the regret upper

bound shown in (35) has one additional term 1
e supV ∈Vd

∣∣Fn(V )− F (V )
∣∣ + 1

eF (V ∗). This

additional term comes from equation (33) and captures the welfare loss induced by the use

of greedy algorithm. As we characterize below, the first term converges to zero as n →
∞ under Assumption 5.1, while the second term remains independent of the accuracy of

the parameter estimates. A simulation study in Section 6 assesses the magnitude of the

optimization error of the greedy algorithm, and shows numerically that the greedy algorithm

yields an exact optimum for small network cases (N = 35) at least. Based on this, we believe

that the optimization error term of the greedy algorithm is much smaller than the universal

theoretical bound 1
eF (V ∗).

In the partition matroid (targeting constraint) case, by applying Proposition 4.1 and
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repeating the arguments to derive (35), we obtain

F (V ∗∗)− F (V̂ ′) ≤ 5

2
sup
V ∈I

∣∣Fn(V )− F (V )
∣∣+

1

2
F (V ∗∗), (36)

where V ∗∗ is an oracle optimum under the targeting constraint, V ∗∗ ∈ arg maxV ∈I F (V ).

In order to bound supV ∈Vd
∣∣Fn(V )− F (V )

∣∣, we use the triangle inequality to find the

bound of
∣∣Fn(V )− F (V )

∣∣ :∣∣Fn(V )− F (V )
∣∣ =
∣∣∣vᵀ(Ŵ −W )v + (Ĉᵀ − Cᵀ)v − 1ᵀ

N×1(Ŵ −W )v − vᵀ(Ŵ −W )1N×1

∣∣∣
≤
∣∣∣vᵀ(Ŵ −W )v

∣∣∣+
∣∣∣(Ĉᵀ − Cᵀ)v

∣∣∣+
∣∣∣1ᵀ

N×1(Ŵ −W )v
∣∣∣+
∣∣∣vᵀ(Ŵ −W )1N×1

∣∣∣
≤ vᵀ

∣∣∣Ŵ −W ∣∣∣v +
∣∣∣(Ĉᵀ − Cᵀ)

∣∣∣v + 1ᵀ
N×1

∣∣∣Ŵ −W ∣∣∣v + vᵀ
∣∣∣Ŵ −W ∣∣∣1N×1,

(37)

where the absolute value of a matrix or vector stands for the element-wise absolute val-

ues. Therefore, we can decompose the maximal deviation supV ∈V
∣∣Fn(V )− F (V )

∣∣ into four

parts :

sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣ ≤ sup

V ∈Vd
vᵀ
∣∣∣Ŵ −W ∣∣∣v + sup

V ∈Vd

∣∣∣Ĉᵀ − Cᵀ
∣∣∣v

+ sup
V ∈Vd

1ᵀN×1

∣∣∣Ŵ −W ∣∣∣v + sup
V ∈Vd

vᵀ
∣∣∣Ŵ −W ∣∣∣1N×1. (38)

Under Assumption 5.1, we can obtain an upper bound for the mean of each element in

Ŵ −W and Ĉ − C, as shown in the next lemma.

Lemma 5.1. Under Assumption 2.1, 2.2, and 5.1, we have

EPn
∣∣ŵij − wij∣∣ ≤√1 + ln(2)

2n

Aijgi
N

, EPn |ĉi − ci| ≤
√

1 + ln(2)

2n

Iigi
N

. (39)

Combining this lemma with equations (35) and (38), we obtain the following theorem:

Theorem 5.1. Let NM = maxi∈N |Ni|, NI be the total number of infected units, and g =

maxi∈N gi. Under Assumptions 2.1, 2.2, and 5.1, we have

EPn
[
F (V ∗)− F (V̂ )

]
≤ C̄ ·

g
[
dmin{NM , d}+ 2dNM + min{NI , d}

]
N

√
1

n
+

1

e
F (V ∗), (40)

where C̄ is a universal constant and d is the number of available vaccine doses.

Proof of the above theorem is shown in the appendix. In Theorem 5.1, we provided a

distribution-free upper bound on the expected regret. We show that the convergence rate

of the upper bound depends on the network data sample size N and also the sample size n

for estimating the SIR parameters. At the same time, the regret upper bound is increasing

in the complexity and the riskiness of the network. The intuition is that our algorithm finds

it harder to identify the most valuable units when the maximum number of edges and the
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number of infected individuals in the network increases. The maximum individual weight

g also boosts the upper bound of regret. Moreover, our algorithm finds it harder to identify

the best allocation rule when the number of possible combinations increase, which occurs

when the capacity constraint is relaxed. This also implies the benefit of quarantine. Since

quarantine controls the maximum number of connections in the network, the effectiveness

of vaccine allocation is boosted by such government policy. Therefore, there is advantage

to complementing a vaccine assignment policy with quarantine, which is evidenced by our

simulation exercises.

6 Simulation Exercises

In this section, we use an Erdös-Renyi model to generate random social networks. In each

of the following tables, we use 100 different networks and take the average of the outcome

variable across all of the networks. We further show the standard deviation of in-sample

welfare to understand the variation of network structure. We choose the probability of

allocating a unit to group 1 to be 40% and the probability of allocating a unit to group 2 to

be 60% (i.e., P(Xi = G1) = 0.4 and P(Xi = G2) = 0.6). In the epidemiological literature,

researchers usually find the steady state of the SIR parameters. In order to identify the

impact of varying the SIR parameters, we choose two different sets of parameter values to

run the simulation. Throughout our simulation studies, we do not consider sampling errors

in the parameter estimates and focus on optimizing welfare with the true parameter values

plugged in. Table 1 summarizes all the values of the SIR parameters that we have used.

Parameters set 1 set 2 Parameters set 1 set 2

β11 0.7 0.8 β12 0.5 0.5

β21 0.5 0.7 β22 0.6 0.7

γ1 0.1 0.1 γ2 0.05 0.025

Table 1: Summary of the SIR parameter values

In addition, we choose three different densities, 0.1, 0.5 and 1, in order to identify the

effect of network complexity. Here, density = 1 means that the network is fully connected

(i.e., complete graph). We choose full to understand the behaviour of our heuristic algorithm

not only in the sparse network case but also in the densest case. We also compare three

capacity constraints, d = 7%N, 10%N, 20%N , to evaluate the marginal performance gain of

our greedy algorithm. We choose equal weight in the following comparisons. We, however,

show the impact of changing weights on the number of vaccinated younger units in Table 5.

In the following sections, we compare our greedy algorithm with three familiar alloca-

tion rules. We first compare our algorithm with a brute force method in order to find the

difference between the potentially sub-optimal greedy solution and the brute-force optimal
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solution. However, the number of possible combinations dramatically increases with the

number of nodes and the capacity constraint. We cannot use a large number of agents to

compute the brute force optimum in the simulation. Given this, in Section 6.2, we use a

random assignment rule as a baseline to evaluate the performance of our algorithm in a

large network setting. The third allocation rule that we compare our greedy algorithm with

is an allocation rule which assigns the vaccine without considering network information. We

compare the greedy algorithm with this third rule in Section 6.3.

6.1 Comparing with Brute Force

Allocation Rule Greedy Algorithm Brute Force8

Capacity Constraint d = 7%N d = 10%N d = 20%N d = 7%N d = 10%N d = 20%N

Parameter set 1
N = 500, density = 0.1 0.60 0.65 0.77 0.60 0.65 0.77

(0.21) (0.22) (0.26) (0.21) (0.22) (0.26)
N = 500, density = 0.5 0.47 0.51 0.63 0.47 0.51 0.63

(0.40) (0.39) (0.39) (0.40) (0.39) (0.39)
N = 500, density = 1 0.33 0.37 0.49 0.33 0.37 0.49

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 800, density = 0.1 0.58 0.66 0.76 0.58 0.66 0.76

(0.23) (0.25) (0.26) (0.23) (0.25) (0.26)
N = 800, density = 0.5 0.44 0.52 0.62 0.44 0.52 0.62

(0.38) (0.38) (0.38) (0.38) (0.38) (0.38)
N = 800, density = 1 0.30 0.36 0.46 0.30 0.36 0.46

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Parameter set 2
N = 500, density = 0.1 0.59 0.64 0.77 0.59 0.64 0.77

(0.27) (0.29) (0.32) (0.27) (0.29) (0.32)
N = 500, density = 0.5 0.42 0.46 0.59 0.42 0.46 0.59

(0.49) (0.49) (0.49) (0.49) (0.49) (0.49)
N = 500, density = 1 0.25 0.29 0.41 0.25 0.29 0.41

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 800, density = 0.1 0.57 0.65 0.76 0.57 0.65 0.76

(0.28) (0.30) (0.31) (0.28) (0.30) (0.31)
N = 800, density = 0.5 0.40 0.47 0.58 0.40 0.47 0.58

(0.47) (0.47) (0.47) (0.47) (0.47) (0.47)
N = 800, density = 1 0.22 0.29 0.40 0.22 0.29 0.40

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 2: The value of welfare (the sum of probabilities of being healthy in the second
period) averaged over 100 random networks (standard errors in parentheses). We use the
Greedy Algorithm or the Brute Force algorithm to determine who in each network should be
vaccinated.

Since Theorem 4.2 shows the gap between the optimal solution and the heuristic result is

at most 37%, we want to explore this theoretical difference using numerical study. We list

all the possible combinations and use brute force to search for the optimal solution given a

8We compare all possible combinations given the capacity constraint and select the set V that
maximizesWn.
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manageable number of units. We specify the maximum number of units to be N = 35, which

is limited by computer performance. As the number of nodes increases, the possible number

of combinations grows exponentially. The memory requirement and running time become

impractical in a more realistic case. We recognize that the results from a small network may

not be accurate in a large network setting, but help us to understand the regret of our greedy

algorithm to some degree. We summarize the in-sample welfareWn of these two approaches

in Table 2.

In the small network case, we find that our greedy algorithm finds optimal allocation

rules in all cases that we consider, which indicates a good performance of our method. We

also notice that the welfare that is associated with the optimum decreases with the number

of edges. As we relax the capacity constraint, welfare increases rapidly. The main purpose

of this comparison is to get an idea of how much worse the empirical welfare at the greedy

solution can be relative to the brute force optimum. More results are illustrated in the

following two sections.

6.2 Comparing With Random Assignment

In this section, we use a random assignment rule to define the baseline of vaccine allocation.

We randomly draw an allocation 10, 000 times and calculate the average value of the outcome

variable. Random allocation is one common assignment rule for policymakers. The purpose

of this simulation is to learn about the improvement of our greedy allocation rule. In order

to evaluate its performance in a relatively large network setting, we choose N = 500 and

800. Table 3 records the main differences in terms of in-sample welfare between these two

methods.

From Table 3, we find that the performance of both methods decreases with the number

of edges, which is also true for the first comparison. As the number of edges increase, the

greedy algorithm finds it harder to identify who is relatively crucial in the network, which

supports our interpretation of Theorem 5.1 in the previous section. This effect becomes more

pronounced as the capacity constraint is relaxed. In the most extreme case, when everyone

is connected with each other, the performance of our method is still better than the random

assignment rule. This performance gap widens with the capacity constraint. We also find

that the average welfare increases by 12% when the capacity constraint increases by 0.1N .

Moreover, this improvement is robust with respect to the variation of number of nodes and

the changes of density levels of network. The number of nodes decreases the performance

of our method in a sparse network setting. For N = 800, welfare in the densest network

is 14% lower than the welfare with density = 0.5, no matter which capacity constraint and

parameter set we use.
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Allocation Rule Greedy Algorithm Random Assignment9

Capacity Constraint d = 7%N d = 10%N d = 20%N d = 7%N d = 10%N d = 20%N

Parameter set 1
N = 500, density = 0.1 0.61 0.65 0.77 0.57 0.59 0.66

(0.00) (0.01) (0.01) (0.00) (0.00) (0.00)
N = 500, density = 0.5 0.61 0.64 0.76 0.57 0.59 0.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 500, density = 1 0.61 0.64 0.76 0.57 0.59 0.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 800, density = 0.1 0.59 0.63 0.75 0.55 0.57 0.64

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
N = 800, density = 0.5 0.48 0.51 0.63 0.44 0.46 0.53

(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)
N = 800, density = 1 0.34 0.37 0.49 0.30 0.32 0.39

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Parameter set 2
N = 500, density = 0.1 0.60 0.64 0.77 0.56 0.59 0.66

(0.01) (0.01) (0.01) (0.00) (0.00) (0.00)
N = 500, density = 0.5 0.60 0.64 0.76 0.56 0.59 0.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 500, density = 1 0.60 0.64 0.76 0.56 0.59 0.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 800, density = 0.1 0.58 0.62 0.74 0.54 0.56 0.63

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
N = 800, density = 0.5 0.44 0.48 0.60 0.40 0.43 0.50

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
N = 800, density = 1 0.26 0.30 0.42 0.23 0.25 0.32

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 3: The value of welfare (the sum of probabilities of being healthy in the second period)
averaged over 100 random networks (standard errors in parentheses). We use the Greedy
Algorithm or the Random allocation to determine who in each network should be vaccinated.

If we look at the random assignment rule in Table 3, its performance is much worse than

the performance of the greedy algorithm. This difference increases when the complexity

of and the number of nodes in the network increase. The performance of the random as-

signment rule improves as we relax the capacity constraint. However, this improvement is

only about 7% when the capacity constraint increases by 0.1N. Compared with the greedy

algorithm, random assignment is less effective. Given its scarcity, we waste considerable

resources by randomly assigning the vaccine. Looking at the situation of full edges, the

performance of random allocation is inferior. The ratio of the welfare attained by random

allocation to the welfare attained by the greedy algorithm is illustrated in Figure 1. This

ratio increases slowly with the number of edges and deceases with the number of nodes in

the network. In addition, the ratio decreases in an obvious way with the number of vaccines

that are available.
9In Random allocation, We randomly select an assignment 10, 000 times for each network and

take the average value of the outcome variable.
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Figure 1: Comparison between Greedy Algorithm and Random allocation

6.3 Comparing With Targeting Without Network Information

Allocation Rule Greedy Algorithm TWNI10

Capacity Constraint d = 7%N d = 10%N d = 20%N d = 7%N d = 10%N d = 20%N

Parameter set 1
N = 500, density = 0.1 0.61 0.65 0.77 0.57 0.59 0.65

(0.00) (0.01) (0.01) (0.00) (0.01) (0.01)
N = 500, density = 0.5 0.61 0.64 0.76 0.57 0.59 0.65

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 500, density = 1 0.61 0.64 0.76 0.57 0.59 0.65

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 800, density = 0.1 0.59 0.63 0.75 0.56 0.58 0.65

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
N = 800, density = 0.5 0.48 0.51 0.63 0.44 0.47 0.54

(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)
N = 800, density = 1 0.34 0.37 0.49 0.30 0.33 0.40

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Parameter set 2
N = 500, density = 0.1 0.60 0.64 0.77 0.56 0.58 0.65

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
N = 500, density = 0.5 0.60 0.64 0.76 0.56 0.58 0.65

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 500, density = 1 0.60 0.64 0.76 0.56 0.58 0.65

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
N = 800, density = 0.1 0.58 0.62 0.74 0.55 0.57 0.64

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
N = 800, density = 0.5 0.44 0.48 0.60 0.41 0.43 0.50

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
N = 800, density = 1 0.26 0.30 0.42 0.23 0.26 0.33

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 4: The value of welfare (the sum of probabilities of being healthy in the second period)
averaged over 100 random networks (standard errors in parentheses). We use the Greedy
Algorithm or the Targeting Without Network Information allocation to determine who in
each network should be vaccinated
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Usually, in the literature on treatment assignment, researchers use observational data or

experimental data without network structure information to study the optimal policy. As

a result, the allocation regime assigns the treatment without considering spillover effects,

which could lead to a sub-optimal result. We call this kind of regime Targeting Without

Network Information (TWNI). In this simulation, we want to learn the welfare loss from

using TWNI versus our method.

Generally, TWNI assigns treatment based on personal characteristics. In this study, we

only have one covariate : age. This means either the old group receives the vaccine or the

young group receives the vaccine. Under the previous setting (i.e., older people are more

likely to be infected and to die), group 2 will consume the entire vaccine allocation. Given

different capacity constraints, this assignment rule selects units to be vaccinated from group

2 until the upper bound is reached. Table 4 indicates the results for TWNI allocation are

similar to those for random allocation. In addition, despite the outcome value varying with

the SIR parameters, the sizable improvement from using network information to allocate

vaccination is quite robust to variations in the size and density of network.
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Figure 2: Comparison between Greedy Algorithm and Targeting Without Network Informa-
tion

Our numerical study shows that if the number of available vaccine doses is small, the loss

from ignoring network information is relatively small too (around 4%). This loss increases

dramatically, however, with the number of available vaccines. In addition, the performance

gap between our greedy algorithm and the other two allocation methods decreases with

the network complexity (i.e., the number of edges). Under what might be described as a

lockdown policy, the density of the network is maintained at a relatively low level, which

raises the cost of ignoring spillovers. This cost also increases with the number of units in the

population, which is a problem in a more realistic setting. The performance improvement

10We assign the vaccine only to the second group (i.e., only older people receive the vaccine).
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from considering network information is robust to variation of the SIR parameters, and an

allocation rule which ignores spillovers waste a sizeable proportion of a scarce resource.

In Table 5, we illustrate the impact on the percentage of vaccinated younger units by

varying the weight choice gi (In this simulation exercise, we choose equal weight for the units

in same group). If we assign weight g1 = 1.5 for G1, we find all the vaccines are consumed

by younger units. Comparing with the equal weight case, this number changes dramatically.

Moreover, we find our greedy algorithm offers more vaccines to younger units in the case of

parameter set 2 than parameter set 1, i.e., when the transmission rate parameters are higher

within and across the groups.

Weight Choice Weight g1 = 1, g2 = 1 Weight g1 = 1.1, g2 = 1 Weight g1 = 1.5, g2 = 1

Capacity Constraint d = 7%N d = 20%N d = 7%N d = 20%N d = 7%N d = 20%N

Parameter set 1
N = 500, density = 0.1 9% 17% 80% 61% 100% 100%
N = 500, density = 0.5 0% 1% 100% 94% 100% 100%
N = 500, density = 1 9% 17% 80% 61% 100% 100%
N = 800, density = 0.1 11% 14% 84% 69% 100% 100%
N = 800, density = 0.5 0% 1% 100% 95% 100% 100%
N = 800, density = 1 0% 0% 100% 100% 100% 100%
Parameter set 2
N = 500, density = 0.1 31% 27% 89% 64% 100% 100%
N = 500, density = 0.5 3% 13% 100% 95% 100% 100%
N = 500, density = 1 31% 27% 89% 64% 100% 100%
N = 800, density = 0.1 23% 26% 91% 71% 100% 100%
N = 800, density = 0.5 5% 10% 100% 98% 100% 100%
N = 800, density = 1 0% 0% 100% 100% 100% 100%

Table 5: The percentage of vaccinated younger units in the second period under the vaccine
allocation policies obtained by Greedy Algorithm, averaged over 100 random networks. We
choose three different sets of weights in this comparison

7 Conclusion

In this work, we have introduced a novel method to estimate individualized vaccine allo-

cation rules under network interference. We introduce the heterogeneous-interacted-SIR

model to specify the spillover effects of infectious disease. We show that the welfare objec-

tive function of the vaccine allocation problem is non-decreasing and submodular, and so is

its empirical analogue formed by plugging in the estimates of the SIR parameters. Based on

this specific diminishing returns property, we provide a greedy algorithm with performance

guarantee under two different exogenous constraints, which can easily accommodate various

targets that policymakers commonly face in reality. Moreover, we show that this algorithm

implies an upper bound for regret that converges uniformly at O(n−1/2). Using simulation,

we point out the importance of considering network information in the allocation problem.
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Several open questions and extensions are worth considering in future work. First, this

paper considered a one-time vaccine allocation. We did not consider if there are multiple

allocation periods, and how to decide the allocation dynamically. A relevant important ques-

tion is how to jointly optimize allocations and timing of first- and second-doses of vaccines,

as recently discussed for Covid-19 vaccines in Maier et al. (2021), Tuite et al. (2021), and

Wang et al. (2021)). Moreover, we do not study how the vaccine allocation rule impacts on

the outcome variables after multiple periods. As discussed in Bu et al. (2020), changes to

the network structure should be considered in a dynamic setting. Second, we only compare

the greedy algorithm with the brute-force optimum in a small network. Other than the uni-

versal bounds of Theorem 5.1, we do not know the performance of our method relative to

the optimal solution in the large network data setting. Third, we did not impose any other

constraints than the capacity constraint and the targeting constraint. For interpretability and

fairness, we may want to additionally restrict the policy rule as a simple function of observed

covariates. We regard these as interesting questions that are worthy of consideration.
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KEMPE, D., J. KLEINBERG, AND É. TARDOS (2003): “Maximizing the spread of influence

through a social network,” in Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, 137–146.

KERMACK, W. O. AND A. G. MCKENDRICK (1927): “A contribution to the mathematical theory

of epidemics,” Proceedings of the royal society of london. Series A, Containing papers of a

mathematical and physical character, 115, 700–721.

30



KITAGAWA, T., S. SAKAGUCHI, AND A. TETENOV (2021): “Constrained Classification and

Policy Learning,” arXiv preprint arXiv:2106.12886.

KITAGAWA, T. AND A. TETENOV (2018): “Who should be treated? empirical welfare maxi-

mization methods for treatment choice,” Econometrica, 86, 591–616.

KLINE, B. AND E. TAMER (2020): “Econometric analysis of models with social interactions,”

in The Econometric Analysis of Network Data, Elsevier, 149–181.

KOCK, A. B., D. PREINERSTORFER, AND B. VELIYEV (2020): “Functional sequential treatment

allocation,” Journal of the American Statistical Association, 1–36.

KOOPMANS, T. C. AND M. BECKMANN (1957): “Assignment problems and the location of

economic activities,” Econometrica: journal of the Econometric Society, 53–76.

KOROLEV, I. (2021): “Identification and Estimation of the SEIRD Epidemic Model for COVID-

19,” Journal of econometrics, 220, 63–85.

KRAUSE, A. AND D. GOLOVIN (2014): “Submodular function maximization.” .

LEE, L.-F., X. LIU, E. PATACCHINI, AND Y. ZENOU (2020): “Who is the key player? A network

analysis of juvenile delinquency,” Journal of Business & Economic Statistics, 1–9.

LEUNG, M. P. AND H. R. MOON (2019): “Normal Approximation in Large Network Models,”

Available at SSRN 3377709.

LI, M. Y. AND J. S. MULDOWNEY (1995): “Global stability for the SEIR model in epidemiol-

ogy,” Mathematical biosciences, 125, 155–164.

LI, S. AND S. WAGER (2020): “Random Graph Asymptotics for Treatment Effect Estimation

under Network Interference,” arXiv preprint arXiv:2007.13302.

LOIOLA, E. M., N. M. M. DE ABREU, P. O. BOAVENTURA-NETTO, P. HAHN, AND T. QUERIDO

(2007): “A survey for the quadratic assignment problem,” European journal of operational

research, 176, 657–690.

LUGOSI, G. (2002): “Pattern classification and learning theory,” in Principles of nonparametric

learning, Springer, 1–56.

MAIER, B. F., A. BURDINSKI, A. H. ROSE, F. SCHLOSSER, D. HINRICHS, C. BETSCH, L. KORN,

P. SPRENGHOLZ, M. MEYER-HERMANN, T. MITRA, ET AL. (2021): “Potential benefits of

delaying the second mRNA COVID-19 vaccine dose,” arXiv preprint arXiv:2102.13600.

MANSKI, C. F. (2004): “Statistical treatment rules for heterogeneous populations,” Econo-

metrica, 72, 1221–1246.

31



——— (2010): “Vaccination with partial knowledge of external effectiveness,” Proceedings

of the National Academy of Sciences, 107, 3953–3960.

——— (2013): “Identification of treatment response with social interactions,” The Econo-

metrics Journal, 16, S1–S23.

——— (2017): “Mandating vaccination with unknown indirect effects,” Journal of Public

Economic Theory, 19, 603–619.

——— (2019): “Treatment choice with trial data: statistical decision theory should supplant

hypothesis testing,” The American Statistician, 73, 296–304.

MANSKI, C. F. AND F. MOLINARI (2020): “Estimating the COVID-19 infection rate: Anatomy

of an inference problem,” Journal of Econometrics.

MANSKI, C. F. AND A. TETENOV (2021): “Statistical Decision Properties of Imprecise Trials

Assessing Coronavirus Disease 2019 (COVID-19) Drugs,” Value in Health, 24, 641–647.

MBAKOP, E. AND M. TABORD-MEEHAN (2021): “Model selection for treatment choice: Pe-

nalized welfare maximization,” Econometrica, 89, 825–848.

MIAO, Y. (2010): “Concentration inequality of maximum likelihood estimator,” Applied

mathematics letters, 23, 1305–1309.
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Appendix A The Transmission Term

Consider a susceptible individual iwith κs contacts which depends on his own characteristics

at each period. Of these contacts, a fraction
∑

j∈Ni Ij(1−vj)aj/|Ni| are contacts with infected

neighbors from group 1, and a fraction
∑

j∈Ni Ij(1 − vj)bj/|Ni| are contacts with infected

neighbors from group 2. If we define cij as the probability of successful disease transmission

at each contact, then 1− csk is the probability that transmission between group s and group

k does not take place. Therefore, we have the probability that a unit i is not infected in one

time period :

1− qi = (1− c11)
κ1

∑
j∈Ni Ij(1−vj)ajai
|Ni| · (1− c12)

κ1
∑
j∈Ni Ij(1−vj)bjai
|Ni|

· (1− c21)
κ2

∑
j∈Ni Ij(1−vj)ajbi
|Ni| · (1− c22)

κ2
∑
j∈Ni Ij(1−vj)bjbi
|Ni| .

(41)

We now define βsk = −κs ln(1− csk) and plug it into the expression for 1− qi, which allows

us to rewrite the above equation as :

qi = 1− e−z, (42)

where

z =
β11
|Ni|

∑
j∈Ni

Ij(1− vj)ajai +
β12
|Ni|

∑
j∈Ni

Ij(1− vj)bjai

+
β21
|Ni|

∑
j∈Ni

Ij(1− vj)ajbi +
β22
|Ni|

∑
j∈Ni

Ij(1− vj)bjbi.
(43)

Recalling that ex = 1 + x+ x2

2! + x3

3! + · · · , we now have the probability of infection at each

time period is

qi ' z. (44)

Appendix B Lemmas

B.1 Preliminary Lemma

In this section we collect a set of lemmas from past literature that we use in our proofs.

Lemma B.1 (Proposition 6.3 Bach (2011)). LetQ ∈ Rp×p, q ∈ Rp, andN = {1, 2, . . . , p}. For

A ∈ 2N , define 1A = (11∈A, . . . , 1p∈A)′. The function F : A 7→ qᵀ1A + 1
21ᵀAQ1A is submodular

if and only if all off-diagonal elements of Q are non-positive.

Lemma B.2 (Theorem 2.2 Cunningham (1985)). Function F is a cut function if and only if :
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For any three disjoint subsets A, B, C of S,

F (A ∪B ∪ C) = F (A ∪B) + F (A ∪ C) + F (B ∪ C)− F (A)− F (B)− F (C) + F (∅).

The following lemmas are some common techniques that are often used in the statis-

tical learning literature, as reviewed in Lugosi (2002).

Lemma B.3 (Hoeffding’s inequality Hoeffding (1963)). LetX1, ..., Xn be independent bounded

random variables such thatXi falls in the interval [ai, bi] with probability one. Denote their sum

by Sn =
∑n

i=1Xi. Then for any ε > 0 we have

P{Sn − ESn ≥ ε} ≤ e−2e
2/

∑n
i=1(bi−ai)2 ,

and

P{Sn − ESn ≤ −ε} ≤ e−2e
2/

∑n
i=1(bi−ai)2 .

B.2 Proof of Lemma 4.1

Let Ŵ ∈ RN×N and Ĉ ∈ RN . Then the function Fn : V 7→ vᵀŴv + Ĉᵀv − 1ᵀN×1Ŵv −
vᵀŴ1N×1 is submodular if and only if ŵij ≤ 0 ∀i 6= j.

Proof. The first step is to show our objective function is a cut function based on Lemma B.2.

In our case, simply consider three arbitrary disjoint sets A,B,C ⊆ N .

Fn(A) =
∑
j∈A
{ŵjj + ĉj}+

∑
i 6=j∈A

{ŵij} −
∑
j∈A

N∑
m=1

{ŵmj + ŵjm}, (45)

Fn(B) =
∑
j∈B
{ŵjj + ĉj}+

∑
i 6=j∈B

{ŵij} −
∑
j∈B

N∑
m=1

{ŵmj + ŵjm}, (46)

Fn({A ∪B}) =
∑

j∈{A∪B}

{ŵjj + ĉj}+
∑

i 6=j∈{A∪B}

{ŵij} −
∑

j∈{A∪B}

N∑
m=1

{ŵmj + ŵjm}

=
∑
j∈A
{ŵjj + ĉj}+

∑
i 6=j∈A

{ŵij} −
∑
j∈A

N∑
m=1

{ŵmj + ŵjm}

+
∑
j∈B
{ŵjj + ĉj}+

∑
i 6=j∈B

{ŵij} −
∑
j∈B

N∑
m=1

{ŵmj + ŵjm}

= Fn(A) + Fn(B).

(47)
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Therefore, we have :

Fn({A ∪B} ∪ C) = Fn({A ∪B}) + Fn(C)

= Fn(A) + Fn(B) + Fn(C)
(48)

Combining the previous results, we get :

Fn({A ∪B} ∪ C) = Fn(A ∪B) + Fn(A ∪ C) + Fn(B ∪ C)

− Fn(A)− Fn(B)− Fn(C)− Fn(∅),
(49)

since Fn(∅) = 0.

Now, we have shown that Fn(V ) is a cut function. The next step is to find the sufficient

and necessary conditions for submodularity of the cut function. Lemma B.1 indicates, for any

cut function which can be written as a quadratic function plus a linear part, submodularity

holds if and only if all off-diagonal elements of the weighting matrix are non-positive. That

requires ŵij ≤ 0, ∀i 6= j.

B.3 Proof of Lemma 5.1

Under Assumption 2.1, 2.2, and 5.1, we have

EPn
∣∣ŵij − wij∣∣ ≤√1 + ln(2)

2n

Aijgi
N

, EPn |ĉi − ci| ≤
√

1 + ln(2)

2n

Iigi
N

. (50)

Proof. We first prove the upper bound of EPn
∣∣ŵij − wij∣∣ .

ŵij − wij =
SigiAijIj
|Ni|N

[
(β11 − β̂11)aiaj + (β12 − β̂12)aibj + (β21 − β̂21)biaj + (β22 − β̂22)bibj

]
.

(51)

If we take the absolute value and expectation of each side, by the triangle inequality, we get

EPn
∣∣ŵij − wij∣∣ = EPn

∣∣∣∣SigiAijIj|Ni|N

[
(β̂11 − β11)aiaj + (β̂12 − β12)aibj

+(β̂21 − β21)biaj + (β̂22 − β22)bibj
]∣∣∣∣

≤ SigiAijIjaiaj
|Ni|N

EPn
∣∣∣β̂11 − β11∣∣∣+

SigiAijIjaibj
|Ni|N

EPn
∣∣∣β̂12 − β12∣∣∣

+
SigiAijIjbiaj
|Ni|N

EPn
∣∣∣β̂21 − β21∣∣∣+

SigiAijIjbibj
|Ni|N

EPn
∣∣∣β̂22 − β22∣∣∣ .

(52)

Since βsk is the effective contact rate of the disease between group s and k, it is naturally
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bounded in [0, 1]. We can apply Lemma B.3 to get the upper bound of each component :

P

{∣∣∣β̂sk − βsk∣∣∣ ≥ ε} ≤ 2e−2nε
2 ∀s, k = 1, 2. (53)

Now we can bound E(|β̂ − β|). Recall that for any nonnegative random variable Y, E(Y ) =∫∞
0 P(Y ≥ t)dt. Hence, for any a > 0,

E(|β̂ − β|2) =

∫ ∞
0
P(|β̂ − β|2 ≥ t)dt

=

∫ a

0
P(|β̂ − β|2 ≥ t)dt+

∫ ∞
a
P(|β̂ − β|2 ≥ t)dt

≤ a+

∫ ∞
a
P(|β̂ − β|2 ≥ t)dt.

(54)

Equation (53) implies that P(|β̂ − β| ≥
√
t) ≤ 2e−2nt. Hence,

E(|β̂ − β|2) ≤ a+

∫ ∞
a
P(|β̂ − β|2 ≥ t)dt

= a+

∫ ∞
a
P(|β̂ − β| ≥

√
t)dt

≤ a+ 2

∫ ∞
a

e−2ntdt

= a+
e−2na

n
.

(55)

Set a = ln(2)/(2n) and we have

E(|β̂ − β|2) ≤ ln(2)

2n
+

1

2n
=

1 + ln(2)

2n
. (56)

Therefore, we have

E(|β̂ − β|) ≤
√

(E(|β̂ − β|2) ≤
√

1 + ln(2)

2n
. (57)

Plugging this upper bound back to equation (52), we get

E
∣∣ŵij − wij∣∣ ≤√1 + ln(2)

2n
(aiSiAijajIj + aiSiAijbjIj + biSiAijajIj + biSiAijbjIj)

gi
|Ni|N

(∵ |Ni| ≥ 1 and by treating 0 neighbor as equal to 1)

≤
√

1 + ln(2)

2n

Aijgi
N

.

(58)

The steps to prove the upper bound for EPn |ĉi − ci| are exactly the same,

ĉi − ci = −(γ̂1 − γ1)
aiIigi
N
− (γ̂2 − γ2)

biIigi
N

. (59)
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Take the absolute value and expectation of both sides,

E|ĉi − ci| = E
∣∣∣∣(γ̂1 − γ1)aiIigiN

+ (γ̂2 − γ2)
biIigi
N

∣∣∣∣
≤ E|γ̂1 − γ1|

aiIigi
N

+ E|γ̂2 − γ2|
biIigi
N

.

(60)

With the same idea as for β, γ is also bounded in [0, 1]. By using Lemma B.3, we get

E|γ̂ − γ| ≤
√

1 + ln(2)

2n
∀γ̂ = γ̂1, γ̂2. (61)

Plugging this upper bound back into equation 60, we get

E|ĉi − ci| ≤
√

1 + ln(2)

2n
(ai + bi)

Iigi
N

=

√
1 + ln(2)

2n

Iigi
N

.

(62)

Appendix C Proofs for Theorems

C.1 Proof of Theorem 4.1

The objective function Fn(V ) is a non-decreasing submodular function for any adjacency

matrix, covariate values, and parameter estimates.

Proof. Recall

Fn(V ) = vᵀŴv + Ĉᵀv − 1ᵀN×1Ŵv − vᵀŴ1N×1. (63)

Here, v is a vector of integers. Let us first, instead, look at this function in the continu-

ous case. Imagine now we have a vector ṽ with continuous elements. Then, this function

becomes :

F̃n(V ) = ṽᵀŴ ṽ + Ĉᵀṽ − 1ᵀN×1Ŵ ṽ − ṽᵀŴ1N×1. (64)

We can write the derivative of Fn(V ) with respect to ṽ :

∂F̃n(V )

∂ṽ
= ṽᵀŴ ᵀ + ṽᵀŴ + Ĉᵀ − 1ᵀN×1Ŵ − 1ᵀN×1Ŵ

ᵀ

= (ṽᵀ − 1ᵀN×1)︸ ︷︷ ︸
≤0

Ŵ ᵀ︸︷︷︸
≤0

+ (ṽᵀ − 1ᵀN×1)︸ ︷︷ ︸
≤0

Ŵ︸︷︷︸
≤0

+ Ĉᵀ︸︷︷︸
≥0

≥ 0.
(65)

Given all the elements in ∂F̃n(V )
∂ṽ are non-negative, this non-decreasing property also holds

under the integer increment in every element of v. Therefore, Fn(V ) is a non-decreasing set
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function. Combining this with Lemma 4.1, we complete the proof.

C.2 Proof of Theorem 5.1

Let NM = maxi∈N |Ni|, NI be the total number of infected units, and g = maxi∈N gi. Under

Assumptions 2.1, 2.2, and 5.1, we have

EPn
[
F (V ∗)− F (V̂ )

]
≤ C̄ ·

g
[
dmin{NM , d}+ 2dNM + min{NI , d}

]
N

√
1

n
+

1

e
F (V ∗), (66)

where C̄ is a universal constant and d is the number of available vaccine doses.

Proof.

EPn
[

sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣ ] ≤ EPn

[
sup
V ∈Vd

vᵀ
∣∣∣Ŵ −W ∣∣∣v]+ EPn

[
sup
V ∈Vd

∣∣∣Ĉᵀ − Cᵀ
∣∣∣v]

+ EPn
[

sup
V ∈Vd

1ᵀN×1

∣∣∣Ŵ −W ∣∣∣v]+ EPn
[

sup
V ∈Vd

vᵀ
∣∣∣Ŵ −W ∣∣∣1N×1]

= sup
V ∈Vd

vᵀ EPn
∣∣∣Ŵ −W ∣∣∣v + sup

V ∈Vd
EPn

∣∣∣Ĉᵀ − Cᵀ
∣∣∣v

+ sup
V ∈Vd

1ᵀN×1 EPn
∣∣∣Ŵ −W ∣∣∣v + sup

V ∈Vd
vᵀ EPn

∣∣∣Ŵ −W ∣∣∣1N×1.
(67)

From equation (67), EPn
[

supV ∈Vd
∣∣Fn(V )− F (V )

∣∣ ] can be decomposed into four compo-

nents. Since v only contains {0, 1} and the absolute value must be non-negative, V that

maximizes each component under capacity constraint must select units with a greater num-

ber of edges, as compare to those that are not selected. We define the maximum number of

edges for each unit as NM . Hence, the number of edges for selected units must be lower or

equal to NM . Next, we look at each term in equation 67 separately. Using Lemma 5.1, the

first term is bounded as :

sup
V ∈Vd

vᵀ EPn
∣∣∣Ŵ −W ∣∣∣v ≤ sup

V ∈Vd

√
1 + ln(2)

2n

∑
i∈V

∑
j∈V

Aijgi
N

≤
√

1 + ln(2)

2n

∑
i∈V

gi min{NM , d}
N(

∵
∑
j∈V

Aij ≤ min{NM , d} ∀i ∈ N
)

≤
√

1 + ln(2)

2n

dg ·min{NM , d}
N

.

(68)
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The second term is bounded as :

sup
V ∈Vd

EPn
∣∣∣Ĉᵀ − Cᵀ

∣∣∣v ≤ sup
V ∈Vd

√
1 + ln(2)

2n

∑
i∈V

Iigi
N
≤
√

1 + ln(2)

2n

gmin{NI , d}
N

. (69)

The third term is bounded as :

sup
V ∈Vd

1ᵀN×1 EPn
∣∣∣Ŵ −W ∣∣∣v ≤ sup

V ∈Vd

√
1 + ln(2)

2n

∑
i∈N

∑
j∈V

Aijgi
N

≤
√

1 + ln(2)

2n

∑
j∈V gNM

N

=

√
1 + ln(2)

2n

dgNM

N
.

(70)

The fourth term is bounded as :

sup
V ∈Vd

vᵀ EPn
∣∣∣Ŵ −W ∣∣∣1N×1 ≤ sup

V ∈Vd

√
1 + ln(2)

2n

∑
i∈V

∑
j∈N

Aijgi
N

≤
√

1 + ln(2)

2n

∑
i∈V gNM

N

=

√
1 + ln(2)

2n

dgNM

N
.

(71)

Combining the bounds of the four terms, we get

EPn
[

sup
V ∈Vd

∣∣Fn(V )− F (V )
∣∣ ] ≤√1 + ln(2)

2n

dgmin{NM , d}
N

+ 2

√
1 + ln(2)

2n

dgNM

N

+

√
1 + ln(2)

2n

gmin{NI , d}
N

=
dgmin{NM , d}+ 2dgNM + gmin{NI , d}

N

√
1 + ln(2)

2n
.

(72)

Therefore, we have from equation (35)

EPn [F (V ∗)− F (V̂ )] ≤
(

2 +
1

e

)
dgmin{NM , d}+ 2dgNM + gmin{NI , d}

N

√
1 + ln(2)

2n

+
1

e
F (V ∗)

=

(
2 +

1

e

)
g
[
dmin{NM , d}+ 2dNM + min{NI , d}

]
N

√
1 + ln(2)

2n

+
1

e
F (V ∗)

(73)

Setting C̄ = (2 + 1/e)

√
1+ln(2)

2 completes the proof.
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