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Abstract: Theories of intertemporal price discrimination imply that prices must be 
chosen using mixed strategies, with retailers changing their prices randomly over time. 
Otherwise, consumers will learn which retailer has the lowest price, and eventually, all 
customers will patronize the lowest price retailer, or all retailers will charge the same 
price. We test whether price dispersion is explained by intertemporal price discrimination 
strategies using a dataset of identical products sold through the PriceSpy price comparison 
website. Our results show that there are clusters of retailers with similar pricing within 
each cluster but different price levels between clusters even after controlling for retailer 
heterogeneity. Retailers also remain in the same price cluster over time, suggesting that 
consumers have ample opportunities to learn which retailers belong to which price cluster. 
Intertemporal price discrimination is thus unlikely to have caused the observed price 
dispersion. 
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1. Introduction 

In his seminal article, Stigler (1961) pointed out the pervasive price dispersion for homogeneous 
products sold in well-developed markets. The most widely used models for explaining such 
price dispersion, even in markets with low search costs, are so-called clearinghouse models. 
The most widely cited clearinghouse model was presented by Varian (1980), but there have 
been several followers (Rosenthal, 1980; Narasimhan, 1988), and these models have also been 
used to explain price dispersion in online markets (Bayliss and Perloff, 2002; Lach, 2002; Baye 
et al., 2004). 

In a clearinghouse model, retailers must simultaneously appeal to two types of customers: 
shoppers who search and use the available price list to buy from the retailer offering the lowest 
price and non-shoppers who do not engage in search but learn prices over time as they visit 
stores’ or retailers’ webpages. The reasons for not being a shopper can differ. Consumers might 
have strong preferences for a specific retailer (Rosenthal, 1980; Narasimhan, 1988) or not have 
access to the clearinghouse price list (Varian, 1980). 

For price dispersion to remain in these models, there must be some consumers who are 
non-shoppers, and prices must be chosen using mixed strategies, with retailers changing their 
prices randomly (Varian, 1980; Lach, 2002). Otherwise, consumers will eventually learn which 
retailer has the lowest price, and all customers will either patronize the lowest price retailer, or 
all retailers will charge the same price. 

The use of mixed strategies in these models has some empirically testable implications. 
First, there can be no grouping of retailers having similar, and thus predictable, price strategies 
that remain over time. Second, the position of individual retailers within a cross-sectional price 
distribution will change randomly over time. Therefore, there will be no distinguishable patterns 
in a transition matrix of prices, and the probability of remaining in the same position in the 
transition matrix should be low. 

Evidence from previous studies is mixed, with some studies rejecting the clearinghouse 
model (Bayliss and Perloff, 2002) but others supporting it (Lach, 2002; Baye et al., 2004). 
However, Bayliss and Perloff (2002) and Baye et al. (2004) do not account for retailer 
heterogeneity in their analysis, while Lach (2002) arbitrarily groups retailers into quartiles when 
investigating price movements in a transition matrix analysis. 

We test the predictions from clearinghouse models using a dataset of identical products 
sold through the PriceSpy price comparison website. In contrast to previous studies, we account 
for retailer heterogeneity and use cluster analysis to determine the size and number of retail 
clusters with similar prices. We show that even under such conditions, pricing does not follow 
the pattern suggested by theories of intertemporal price discrimination. 



 

2. Method 

Compared to previous studies (Bayliss and Perloff, 2002; Lach, 2002; Baye et al., 2004), we 
consider a large set of products (14) that are observed with a higher frequency (daily) and for a 
longer period (up to 42 months). An important feature of our data is that the products are 
identical between retailers and that there is no ambiguity in product representation on the price 
comparison website. However, the average coefficient of variation for the price of these 
products (Table 1) still reveals substantial price dispersion. 

Following Lach (2002), we control for time-invariant retailer heterogeneity using the 
following model: 

log𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝜎𝜎𝑡𝑡 + 𝜖𝜖𝑖𝑖𝑖𝑖 (1) 

where 𝑝𝑝𝑖𝑖𝑖𝑖 is the CPI-adjusted price of product i on day t, 𝛼𝛼𝑖𝑖  is a retailer-specific fixed effect 
and 𝜎𝜎𝑡𝑡   is a day-specific fixed effect. The residual variation 𝜖𝜖𝑖𝑖𝑖𝑖  for each individual retailer 
represents the percentage deviation of a retailer’s price from the geometric mean in the group 
of retailers when controlling for both retailer and time heterogeneity (Lach, 2002). 

Lach (2002) divided the residuals from the estimation of equation (1) into quartiles and 
then investigated the frequency and likelihood of price movements between these quartiles to 
determine whether price movements followed the predictions of intertemporal price 
discrimination models. However, the grouping of prices into quartiles is arbitrary, and both the 
number and size of retailer price clusters are likely to differ between products. Therefore, we 
adopt clustering techniques to let the data identify the number and size of retail price clusters 
instead of arbitrarily dividing the data into quartiles. If there are groups of retailers gathered in 
well-defined price clusters, these clusters remain over long periods, and the ranking of an 
individual retailer in a Markovian transition matrix of these clusters is likely to stay the same, 
indicating that retailers do not follow an intertemporal price discrimination strategy. 

 There are some characteristics common to retail price series that might confound this 
analysis. For example, if a retailer changes price in advance of competitors, even by a day, it 
can influence whether that store belongs to a cluster of retailers or not, even if a similar pricing 
pattern is otherwise clearly visible. To mitigate this issue, we use the methods of dynamic time 
warping (Rath & Manmatha, 2003) and piecewise aggregation approximation (Keogh et al., 
2001). We then use the “elbow method” (Thorndike, 1953) to determine the appropriate number 
of clusters and the number of retailers belonging to each cluster. Finally, we determine the 
degree to which individual retailers transition between clusters using Markovian transition 
matrices.1 A pattern of retailer transition probabilities that align with the diagonal of a K x K 
                                                        
1 These methods are explained in more detail in appendices A and B in the supplemental online material. 



transition matrix would indicate that intradistribution mobility is low. The retailer transition 
probabilities are contingent on the time horizon considered, and following Lach (2002), we use 
monthly transition matrices. 

3. Results 

Table 1 shows that there are between 2 and 5 price clusters, depending on the product considered, 
and that the average amount of time that a retailer spends in a specific cluster ranges from 19 
to 246 days. We also present the likelihood of observing an individual retailer along the diagonal, 
i.e., remaining in the same price cluster as in the month before, in Table 1. In a K x K transition 
matrix, the likelihood of randomly being observed in the diagonal will equal 1/K, while the 
likelihood of being observed in the off-diagonal will equal [(K-1) x K)/(K x K)]. Thus, in a 2 x 
2 transition matrix, pricing using mixed strategies should give a likelihood for the diagonal of 
0.5, while in our data, the likelihood for the diagonal for the two-cluster products ranges from 
0.72 to 0.85. For a 3 x 3 transition matrix, we expect to observe the diagonal in 1/3 of all cases 
(0.33), but the averages instead range from 0.43 to 0.78. For no product do we reach the 
expected number according to intertemporal price discrimination models.2 

4. Discussion 

We tested the predictions from clearinghouse models using data from a price comparison 
website. Our results showed that substantial price dispersion remains even after controlling for 
heterogeneity in retailer offerings and that there are clusters of retailers that maintain 
persistently high, mid-range, or low prices. One possible explanation is that the share of 
consumers using price comparison websites in Sweden is still low enough to make it profitable 
for some retailers to focus on the group of uninformed consumers while also listing their 
products on the price comparison website. 
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2 Since the results are contingent on the time horizon considered, we also present results using biweekly and bimonthly 
transition matrices in appendix B in the online material. Except for the bimonthly result for the Apple iPhone, we observe the 
above expected probabilities along the diagonal of the transition matrices for all products. Additionally, for a direct comparison 
with Lach (2002), we present results for retailer prices divided into quartiles in appendix C in the online material. This analysis 
also shows higher than expected probabilities along the diagonal of the transition matrices. 



 

 

Table 1: Cluster characteristics and transition matrix results. 

 

   Cluster sizes   Cluster rank characteristics Monthly transition matrix characteristics 

 

Category 

 

Product 

 

Mean 

CoV* 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Total days sold Frequency of shifts 

between clusters 

Average days 

within a cluster 

Average diagonal Expected value 

diagonal 

Cellphones  Apple iPhone 5s 16GB 0.72 13 24 13   787 29 26 0.43 0.33 

Consoles  Sony PlayStation 4 Pro 1TB 0.54 8 5    544 6 78 0.85 0.50 

Headphones  Bose QuietComfort 35 1.46 16 10 62 5  1623 14 108 0.67 0.25 

Laptops  Apple MacBook Pro 0.62 8 6 11 6 3 719 31 22 0.44 0.20 

Mobile Speakers  Sonos Play:1 1.44 6 21    1231 4 246 0.72 0.50 

Nintendo 3DS Pokémon Sun 0.29 4 4 6   728 3 182 0.58 0.33 

Nintendo Wii U tLoZ: BotW 0.28 7 1 7   422 6 60 0.78 0.33 

PC Battlefield 1 1.28 2 8 4 3  422 4 84 0.61 0.25 

PlayStation 3 Grand Theft Auto V 0.64 8 5 3   1274 13 91 0.52 0.33 

PlayStation 4 FIFA 17 0.26 8 13 2   301 16 18 0.59 0.33 

Tablets nVidia Shield Tablet K1 

16GB 

0.83 9 13 6 
  

638 13 46 0.52 0.33 

TV Samsung UE55KS7005 1.02 6 1 1 1 1 270 13 19 0.59 0.20 

Xbox 360 Grand Theft Auto V 0.66 6 3    1274 9 127 0.79 0.50 

Xbox One Grand Theft Auto V 0.34 9 4    483 7 60 0.81 0.50 

*Coefficient of Variation. 
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Appendix A: Hierarchical clustering and cluster evaluation. 

Analysis was conducted in R (R Core Team, 2019). We apply Piecewise Aggregate 
Approximation (PAA) using the jmotif package (Keogh et al., 2001) to reduce dimensionality 
of our residual price series. This method entails averaging over equal-sized segments of the 
price series and is useful in similarity searches, in our main case 30-day windows were chosen. 
The commonly used and package default option of the Euclidean distance is used in our 
clustering, and we scale our residual time series as is commonly advised in time series data 
mining (Keogh & Kasetty, 2003). When calculating the distance matrix we use Dynamic Time 
Warping (Sakoe & Chiba, 1978) using the dtw package (Giorgino, 2009) for aligning our 
retailer heterogeneity adjusted price series, the reason being that if a retailer reduces the price 
in advance of competitors, even by a single day, it will have a disproportionally large effect on 
whether that retailer belongs to the cluster of retailers, even if the price patterns are otherwise 
visibly similar. The resulting distance matrices were then analysed using the hierarchical 
clustering algorithm which is part of base R (R Core Team, 2019). 
  
A fundamental question in clustering techniques is how to choose the number of clusters, and 
we  choose to use the “elbow method” (Thorndike, 1953), where in our case the height of the 
dendrogram in the hierarchical clustering described above is used as the entropy measure. The 
elbow is found when the height of the dendrogram branches sharply reduces, at this point the 
number of clusters are selected. To find the elbow, we use a novel stopping rule by calculating 
the point of sharpest decline in height of the dendrogram, e.g. the elbow itself. This is done by 
iteratively calculating the delta of heights between cluster solutions k and k + 1, and thereafter 
calculating the difference between these delta values. These in turn represents the first and 
second order difference which is then subtracted to give a numerical indication of the strength 
of the elbow. The cluster number K is then chosen according to the largest numerical strength.    
  



Appendix B: Transition matrices between clusters. 
 
To assess retailer transition between clusters, we create Markovian transition matrices using the 
markovchain package (Spedicato, 2017). A Markovian K x K transition matrix has elements 
which contain probabilities of transitioning from one state to another, in our case for an 
individual retailer to transition between retailer price clusters. To distinguish whether a 
particular retailer transitions from one cluster to another, we needed to create a boundary 
between the cluster centroids, our choice was the straightforward midpoint between these 
centroids. That is, if a retailer belonging to a certain cluster passes the midpoint boundary across 
to another cluster this would register as a transition between these two clusters in the 
corresponding transition matrix. 
 
The assumption of time-homogeneity in transition matrices should always be subject to scrutiny. 
In this paper, we use the 𝜒𝜒2 test designed by Anderson and Goodman (1957) to investigate 
whether transition probabilities are constant. Rejecting the null hypothesis of time-homogeneity 
would therefore entail that transition probabilities are not constant. We find that the only 
products that fail the test at the 5 % level is FIFA 17 when considering the monthly and biweekly 
transition matrices, and the Xbox One version of Grand Theft Auto for the biweekly transition 
matrix, implying that we have evidence that the assumption of time-homogeneity holds for the 
majority of our data.  
 
We provide results for K x K transition matrices for monthly transitions in the main article, 
while also providing the same results for biweekly and bimonthly transitions in Table B.1 below, 
the former being measured on Mondays every odd week while the latter is measured on the 1st 
of each odd month. In a K x K transition matrix, the likelihood of randomly being observed in 
the diagonal will equal 1/K, which is calculated and presented in the last column of Table B.1. 
Comparing the biweekly and bimonthly diagonal probabilities to the expected ones, the results 
show that, except for the bimonthly result for the Apple iPhone, we observe above expected 
probabilities along the diagonal of the transition matrices for all products.     

 

 



Table B.2: Cluster characteristics and transition matrix results with biweekly and bimonthly transition. 

 
       

 

Category 

 

Product 

 

Mean CoV* 

 

Total days sold 

Biweekly transition matrix 

Average diagonal 

Bimonthly transition matrix 

Average diagonal 

Expected value diagonal 

Cellphones  Apple iPhone 5s 16GB 0.72 787 0.45 0.25 0.33 

Consoles  Sony PlayStation 4 Pro 1TB 0.54 544 0.86 0.71 0.50 

Headphones  Bose QuietComfort 35 1.46 1623 0.59 0.51 0.25 

Laptops  Apple MacBook Pro 0.62 719 0.69 0.42 0.20 

Mobile Speakers  Sonos Play:1 1.44 1231 0.88 0.74 0.50 

Nintendo 3DS Pokémon Sun 0.29 728 0.67 0.58 0.33 

Nintendo Wii U tLoZ: BotW 0.28 422 0.86 0.74 0.33 

PC Battlefield 1 1.28 422 0.66 0.52 0.25 

PlayStation 3 Grand Theft Auto V 0.64 1274 0.71 0.59 0.33 

PlayStation 4 FIFA 17 0.26 301 0.72 0.43 0.33 

Tablets nVidia Shield Tablet K1 16GB 0.83 638 0.65 0.43 0.33 

TV Samsung UE55KS7005 1.02 270 0.73 -# 0.20 

Xbox 360 Grand Theft Auto V 0.66 1274 0.85 0.68 0.50 

Xbox One Grand Theft Auto V 0.34 483 0.84 0.75 0.50 

*Coefficient of Variation. #This probability was not calculated due to the short time period of only 270 days, or 4 bimonthly transitions. 

 

 
 



Appendix C: Transition matrices between quartiles. 
 
Our study adopts clustering techniques to determine the number of groups of retailers with 
similar pricing (price clusters), and then calculate transition matrices using the number of 
clusters found, instead of arbitrarily dividing prices into quartiles as in Lach (2002). However, 
for a direct comparison to Lach (2002), we present results for the heterogeneity adjusted retailer 
prices divided into quartiles in Table C.1. We compare at the lowest frequency of data that Lach 
(2002) has available, which is the one-month horizon, and our data is divided into monthly 
intervals by using the first day of the months as subset.   

In a 4 x 4 transition matrix, pricing using mixed strategies should give a likelihood for the 
diagonal of 0.25, while in our data the likelihood for the diagonal for the quartile separated 
retailer prices range between 0.47 and 0.86. As such, the results from the main analysis remain, 
even if using the quartile analysis of Lach (2002).    

 
Table C.1: Cluster characteristics and transition matrix results with quartiles. 

 
  

 

Category 

 

Product 

 

Mean CoV* 

 

Total days sold 

 

Average diagonal Expected value diagonal 

Cellphones  Apple iPhone 5s 16GB 0.72 787 0.58 0.25 

Consoles  Sony PlayStation 4 Pro 1TB 0.54 544 0.55 0.25 

Headphones  Bose QuietComfort 35 1.46 1623 0.80 0.25 

Laptops  Apple MacBook Pro 0.62 719 0.66 0.25 

Mobile Speakers  Sonos Play:1 1.44 1231 0.77 0.25 

Nintendo 3DS Pokémon Sun 0.29 728 0.80 0.25 

Nintendo Wii U tLoZ: BotW 0.28 422 0.86 0.25 

PC Battlefield 1 1.28 422 0.64 0.25 

PlayStation 3 Grand Theft Auto V 0.64 1274 0.61 0.25 

PlayStation 4 FIFA 17 0.26 301 0.47 0.25 

Tablets nVidia Shield Tablet K1 16GB 0.83 638 0.45 0.25 

TV Samsung UE55KS7005 1.02 270 0.47 0.25 

Xbox 360 Grand Theft Auto V 0.66 1274 0.60 0.25 

Xbox One Grand Theft Auto V 0.34 483 0.53 0.25 
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