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ABSTRACT 

Poverty statistics are conventionally compiled using data from household income and expenditure 
survey or living standards survey. This study examines an alternative approach in estimating poverty by 
investigating whether readily available geospatial data can accurately predict the spatial distribution of 
poverty in Thailand. In particular, geospatial data examined in this study include night light intensity, 
land cover, vegetation index, land surface temperature, built-up areas, and points of interest. The study 
also compares the predictive performance of various econometric and machine learning methods such 
as generalized least squares, neural network, random forest, and support vector regression. Results 
suggest that intensity of night lights and other variables that approximate population density are highly 
associated with the proportion of an area’s population who are living in poverty. The random forest 
technique yielded the highest level of prediction accuracy among the methods considered in this 
study, perhaps due to its capability to fit complex association structures even with small and medium-
sized datasets. Moving forward, additional studies are needed to investigate whether the relationships 
observed here remain stable over time, and therefore, may be used to approximate the prevalence of 
poverty for years when household surveys on income and expenditures are not conducted, but data on 
geospatial correlates of poverty are available. 
 
 
Keywords: big data, computer vision, data for development, machine learning algorithm, 
multidimensional poverty, official statistics, poverty, SDG, Thailand 
 
JEL codes: C19, D31, I32, O15 
 
 
 
 
  



 
 
 
 
 
 
 

 



 

 

I. INTRODUCTION 

Over the past 3 decades, real gross domestic product per capita of Thailand has grown by more than 
twofold. The country’s economic growth is accompanied by declining household poverty rates, 
dropping from 61.41% in 1988 to 5.04% in 2019 (Figure 1). However, there are areas in the country 
where significant pockets of poverty still exist. For instance, about 6.76% of households living in rural 
areas are still considered poor (NSO 2020). Furthermore, the pandemic brought by the coronavirus 
disease (COVID-19) may undermine some of the gains in poverty reduction in the country. 
 
 
 

Figure 1: Proportion of Thailand’s Population Living Below its National Poverty Line 

 

Notes: Thailand’s poverty line is calculated based on the minimum standard required by an individual to fulfill one’s basic 
food and nonfood commodities. Details are provided in the National Economic and Social Development Council (2015). 
Source: National Statistical Office of Thailand. 

 
 
 

The concentration of poverty in rural areas is possibly driven by Bangkok’s high agglomeration 
force and the fact that most economic activities are concentrated in Bangkok and its suburbs (OECD 
2018). Since rural provinces have a limited variety of economic activities, they have a constraint of 
creating nonagriculture jobs. Trends in nonpecuniary indicators of development are also concerning 
(Figure 2). For instance, half of the country’s working population are still in precarious employment. 
There is also ample room for improvement in the education sector as rural migrants and urban poor 
generally lack the skills demanded by modern jobs. 
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Figure 2: The Human Achievement Index in 2017 

 

Note: The Human Achievement Index value ranges from 0 (worst outcome) to 1 (best outcome). 
Source: National Economic and Social Development Council. 2017. Human Achievement Index Report 2017. Bangkok. 

 
 
 

Given that poverty is still prevalent in select areas of Thailand, particularly rural areas, poverty 
monitoring remains an important task for the country’s development practitioners. At present, the 
National Economic and Social Development Council and National Statistical Offices are the 
government agencies responsible for compiling poverty statistics in Thailand. In particular, these 
agencies rely on the Household Socio-economic Survey (HSES), in which the household’s income is 
surveyed every two years. In addition, HSES results are compiled at the national and provincial levels 
only, as the sample size of the aforementioned survey is not large enough to yield reliable estimates 
beyond provincial level, yet demand for granular data on poverty and other socioeconomic indicators 
continues to expand. 

 
Given the high cost of increasing the frequency and scope of such surveys, an option which 

government agencies with limited resources may be unable to sustain in the long run, a number of 
initiatives within Thailand and elsewhere are exploring alternative data collection strategies which 
entail tapping other data sources. For instance, small area estimation techniques which combine 
survey with census and other types of administrative data have been widely used to facilitate 
estimation at levels more granular than what working with surveys alone can afford. More recently, 
efforts to use innovative data coming from call detail records, social media data, digital transactions, 
and remote sensing for compilation of development statistics are expanding too. 

 
Mapping the spatial distribution of poverty is an area which could greatly benefit from the 

integration of multiple data sources. In this context, two types of analytical frameworks are worth 
pointing. First, by capitalizing on ongoing developments in computer vision techniques and satellite 
imagery, several researchers have shown that it is feasible to develop an algorithm that can 
automatically predict survey-based estimates of poverty with satisfactory levels of accuracy (Jean et al. 
2016; Hofer et al. 2020; ADB 2020; Piaggesi et al. 2019). Such approach is quite attractive for 
instances wherein collecting survey data, particularly in remote and/or hard-to-reach areas, is onerous, 
and no other types of supplementary data are readily available. However, since the features extracted 
by computer vision techniques are relatively abstract (ADB 2020), it is difficult to manually pinpoint 
exactly which features are being picked up by the computer when predicting poverty. Consequently, 
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it is also difficult to validate what could have triggered an unexpectedly low or high estimate of poverty, 
if such instances arise. Alternatively, if structured geospatial data are readily available, one can develop 
a more tractable econometric model for predicting poverty. Whereas in the first approach, one is 
letting the computer extract abstract features or patterns from satellite images that are potentially 
correlated with poverty, in the second approach, one is leveraging on quantitative data that have 
already been precompiled. In principle, the former approach can draw vast number of potential 
predictors of poverty as a computer can directly extract numerous features from the satellite images 
whereas the latter approach is limited to structured precompiled data. However, presumably, it is 
easier to validate the results of the second approach since the data used for predicting poverty are 
more structured and tractable. 

 
This study explores the second approach where poverty is predicted by identifying correlates 

from precompiled geospatial data. It contributes to the existing literature by assessing whether it is 
feasible to develop a model with satisfactory predictive performance even if we are solely depending 
on precompiled geospatial datasets which theoretically, can be considered as just a fraction of the 
number of covariates that the first approach can potentially generate, a feat that has not been explored 
thoroughly in the context of Thailand, in previous studies. Up to some extent, it may be considered as 
follow up to the ADB (2020) study which examined the first approach of using geospatial data to 
predict poverty. However, there are slight differences in research objectives. Whereas, the main 
objective of the ADB (2020) study is to examine the feasibility of providing poverty estimates that are 
more granular than government-published estimates by using artificial intelligence on data from 
survey, census, and satellite imagery, our focus here is to examine whether we can develop a 
reasonably good poverty prediction model even if we limit ourselves in using covariates from readily 
available or precompiled geospatial dataset(s). Furthermore, this study’s objective is to briefly compare 
the performance of different machine learning techniques, a topic that has not been well explored in 
previous studies of poverty estimation using nontraditional data sources. By doing so, the study aims to 
contribute to the literature that explores other cost-effective methods of predicting poverty through 
integrating the use of innovative data with surveys and register-based data which in turn, could provide 
rich inputs as relevant government agencies aim to meet the growing data requirements of economic 
planners and policymakers. 

 
The rest of this paper is structured as follows. The second section reviews related literature 

while the third and fourth sections introduce the data and research methodologies, respectively. The 
fifth section presents the key findings of the econometric and machine learning methods adopted in 
this study. The last section summarizes lessons learned and draws brief recommendations for future 
studies. 

 
 
 
 

II. LITERATURE REVIEW 

Using Precompiled Geospatial Data for Predicting Socioeconomic Indicators 
 

The existing literature offers a wide range of case studies showcasing various applications of satellite 
imagery and geospatial data for development-related analyses. For instance, data on night light 
intensity compiled through Defense Meteorological Satellite Program Operational Linescan System 
and Suomi National Polar-Orbiting Partnership Visible and Infrared Imaging Radiometer Suite are 
widely used. Elvidge et al. (1997); Doll, Muller, and Elvidge (2000); Doll, Muller, and Morley (2006); 
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Sutton, Elvidge, and Tilottama (2007); Chen and Nordhaus (2011); Henderson, Storeygard, and Weil 
(2012); Bickenbach et al. (2013); Forbes (2013); Li et al. (2013); and Li, Zhao, and Li (2016) found 
statistically significant relationship between the density of night lights and various ground data such as 
gross domestic product, electricity consumption, inequality, and infant mortality rate. 
 

In addition to night lights intensity, Landsat, National Oceanic and Atmospheric 
Administration Polar Orbiting Environmental Satellites and Terra-Moderate Resolution Imaging 
Spectroradiometer satellites have been scanning the Earth’s surface with multi-spectrum sensors. 
These multi-spectrum data have been used by various researchers to compile a number of geospatial 
indicators such as the building density, water coverage, Normalized Difference Vegetation Index 
(NDVI), Land Surface Temperature (LST), Normalized Difference Water Index, Normalized 
Difference Snow Index, Normalized Difference Soil Index, and Normalized Difference Built-up Index. 
Specifically, NDVI represents the spatio-temporal pattern of forest and cultivated areas and is 
considered one of the conventional indices commonly used in remote-sensing analysis of vegetation. 
NDVI is calculated by measuring the difference between near infrared (which vegetation reflects) and 
red light (which vegetation absorbs). The studies of Sun et al. (2010), Li et al. (2015) and Jin et al. 
(2008) demonstrated correlation between urban expansion and decreasing NDVI. Similarly, the 
research of Kristjanson et al. (2005), Bhattacharya and Innes (2006), Morikawa (2014), and Aburas 
et al. (2015) showed the statistical relationship between NDVI and the spatial distribution of income 
inequality. 

 
Data on land surface temperature is another type of precompiled geospatial information which 

researchers are using to predict income. For instance, Weng (2001); Buyantuyev and Wu (2010); 
Huang, Zhou, and Cadenasso (2011); Li et al. (2014); Ruthirako, Darnsawasdi, and Chatupote (2014); 
Youneszadeh, Kruger geb. Amiri, and Pilesjo (2015); Cooper et al. (2017); and Dissanayake et al. 
(2019) saw statistically significant relationship between land surface temperature and income. 
Richardson (2007); Maccini and Yang (2009); Barrios, Strobl, and Bertinelli (2010); Arezki and 
Bruckner (2012); Thiede (2014); Sarsons (2015); Shah and Steinberg (2017) Amare et al. (2018); and 
Gilmont et al. (2018) also found statistically significant correlation between rainfall on income, human 
capital, and economic activity in developing countries. In addition, Leroux et al. (2016) and Sruthi and 
Aslam (2015) documented the formulation of forecast models using both temperature and NDVI for 
predicting drought and in turn, forecasting the loss of agricultural output and its effect on farmers’ 
incomes. 

 
Efforts to crowd source geospatial data are also expanding. A good example is OpenStreetMap 

(OSM), a collaborative project producing a crowdsourced geographic database, and one of the major 
platforms promoting the use of geospatial data in the fields of global humanitarian action and 
community development. OSM database also features other types of geospatial data as presence of 
road, river, built-up area and point of interest (POI), enabling the investigation on the association 
among the geographical characteristics and socioeconomic conditions. Studies such as those by Hu 
et al. (2016), Ye et al. (2019), and Deng et al. (2019) demonstrate that OSM can provide details of 
spatial distribution of population and economic activities. 

 
 

Poverty Mapping in Thailand 
 
As mentioned earlier, official poverty statistics in Thailand are based on the HSES which provides 
reliable estimates from national down to provincial levels. However, recognizing the importance of 
having more geographically disaggregated poverty data as inputs for policy targeting, National 
Statistical Office (NSO) of Thailand started compiling small area (tambon or subdistrict level) poverty 
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estimates in 2003 in collaboration with other development partners like the then National Economic 
and Social Development Board (NESDB), Thailand Development Research Institute (TDRI),1 and the 
World Bank. Since then, small area poverty estimates in the country have been compiled for the 
following years: 2005, 2007, 2008, 2011, 2012, 2015 and 2017.2 The outputs in 2003 and 2005 were 
jointly prepared by three local institutions, namely, NESDB, NSO, and TDRI, together with the 
technical advisory from the World Bank. In 2015, the World Bank provided further technical assistance 
to NSO, to build capacity to implement small area estimation among more NSO staff. Additional 
technical details on the process of compiling poverty maps are documented by Jitsuchon (2004), 
Healy and Jitsuchon (2007), and Jitsuchon and Richter (2007). 
 

However, despite availability of analytical tools for compiling granular estimates of poverty, it is 
important to identify alternative methods due to limitations associated with the conventional poverty 
mapping technique which heavily relies on availability of census data. For instance, since censuses are 
usually conducted every 5 to 10 years only, poverty mapping models that use covariates derived from 
census have restrictively strong assumptions (Bedi, Coudouel, and Simlaer 2007). 

 
In a study published recently, researchers from ADB extended the conventional small area 

poverty estimation framework by tapping geospatial data extracted from daytime and nighttime 
imagery through machine learning algorithms to create granular poverty maps of the Philippines and 
Thailand (ADB 2020, Hofer et al. 2020). The adopted method was inspired specifically by Jean et al. 
(2016) which was further used and/or enhanced in subsequent studies (e.g., Babenko et al. 2017; 
Tingzon et al. 2019; Heitmann and Buri 2019; Yeh et al. 2020). These studies fall under the strand of 
literature that broadly aim to explore applications of artificial intelligence and computer vision 
techniques for estimating poverty. However, as hinted earlier, this methodology has several technical 
issues. First, validating aberrant or unexpected predictions becomes challenging because of the fact 
that the features being used to correlate poverty are abstract. Second, instead of directly predicting 
poverty, the method employs an intermediate step wherein an algorithm is first trained to predict the 
intensity of night lights. The intermediate step is necessary in this context because sources of night 
light data, particularly satellite imagery, are readily accessible and can cost-effectively provide large 
volumes of labelled images on which to train a computer vision algorithm, something that cannot be 
easily done if we were to predict poverty outright since readily available poverty data are not quite 
granular. Using data on night lights as a proxy for poverty during the intermediate step is arguably valid 
if it is assumed that places that are brighter at night are less poor than those places that are less well lit. 
However, if there are places that are equally lit but show varying levels of poverty on the ground, such 
an intermediate step could potentially lead to loss of vital information by not predicting poverty 
outright. 

 
This study contributes to the existing literature of poverty measurement in Thailand by 

developing a prediction model whose correlates were derived from precompiled geospatial data. 
By doing so, we aim to assess whether it is feasible to develop a model with satisfactory predictive 
performance even if we are solely depending on precompiled geospatial dataset(s) instead of applying 
computer vision techniques to automatically extract satellite image features that are potentially 
correlated with poverty, a feat that has not been thoroughly explored in previous studies. 
 
 
 

 
1 In 2019, NESDB has been renamed as the National Economic and Social Development Council. TDRI is an independent 

think tank foundation. 
2 For years when census was not conducted, small area poverty estimates were calculated using data from the latest census 

(See http://www.nso.go.th/sites/2014/lists/ebook_thailand_poverty_maps/allitems.aspx). 
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III. DATA 

Satellite Data 
Google Earth Engine 
 
Google Earth Engine (GEE) is an open cloud-based data storage and computing platform which 
provides access to satellite imagery for free. In this study, we extracted the following information from 
GEE: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)’s rainfall data. 
 

• Land Surface Temperature (LST) 

• Normalized Difference Vegetation Index (NDVI). NDVI is widely used as an indicator 
representing the land cover of forest and agricultural activity.   

• Intensity of Night Lights 

 
Table 1 summarizes the range of data that can be obtained from GEE. 
 
 

Table 1: Technical Specification of Data Obtained from Google Earth Engine 

Data Satellite Data Full Name Resolution 
Area 

(approximate) 
Data 

availability Duration Frequency 
1 Rainfall 

 
CHIRPS Pentad: 
Climate Hazards Group 
InfraRed Precipitation 
with Station Data 
(version 2.0 final) 

0.05 arc 
degree 

110 m2/Pixel 1 Jan 1981– 
26 Jul 2019 

38y Monthly 

2 Nighttime Light 
(Old) 

DMSP 
OLS 

DMSP OLS: Nighttime 
Lights Time Series 
Version 4, Defense 
Meteorological 
Program Operational 
Linescan System 

30 arc 
seconds 

1 km2/Pixel 1 Jan 1992– 
1 Jan 2014 

27y Yearly 

3 Nighttime Light 
(New) 

VIIRS VIIRS Nighttime 
Day/Night Band 
Composites Version 1 

15 arc 
seconds 

375 m2/Pixel 1 Apr 2012– 
1 Jun 2019 

8y Monthly 

4 Land Surface 
Temperature 
(day) 

MODIS MOD11A1.006 Terra 
Land Surface 
Temperature and 
Emissivity Daily Global 
1 km 

30 arc 
seconds 

1 km2/Pixel 5 Mar 2000– 
22 Aug 2019 

20y Daily 

5 Land Surface 
Temperature 
(Night) 

MODIS MOD11A2.006 Terra 
Land Surface 
Temperature and 
Emissivity 8-Day 
Global 1 km 

30 arc 
seconds 

1 km2/Pixel 5 Mar 2000– 
13 Aug 2019 

20y 8 day 

6  NDVI MODIS MODIS Combined  
16-Day NDVI 

15 arc 
seconds 

375 m2/Pixel 18 Feb 2000– 
14 Mar 2017 

18y 16 day 

CHIRPS = Climate Hazards Group InfraRed Precipitation with Station, DMSP OLS = Defense Meteorological Satellite 
Program Operational Linescan System, km = kilometer, m = meter, MODIS = Terra-Moderate Resolution Imaging 
Spectroradiometer, NDVI = Normalized Difference Vegetation Index, VIIRS = Visible and Infrared Imaging/Radiometer Suite. 
Source: Google Earth Engine. 
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Global Urban Footprint 
 
The Global Urban Footprint project by the German Remote Sensing Data Center of the German 
Aerospace Center compiles geocoded data which identify urban areas, land surface, and water bodies. 
Geocoded data on built-up and nonbuilt-up areas are also available from the Global Urban Footprint. 
 
Global Human Settlement Layer 
 
Mainly supported and supervised by the Directorate General Joint Research Centre of the European 
Commission, the Global Human Settlement Layer project has produced a fully open and free 
geospatial spatial dataset. The generated geospatial database provides informative evidence and the 
broadened insight of global human presence.  
 
United States Geological Survey 
 
This geospatial dataset has been generated based on the ten years (2001–2010) collection of Terra-
Moderate Resolution Imaging Spectroradiometer-based Global Land Cover maps (MCD12Q1 land 
cover type data). There are 16 classifications for each pixel, identifying the type of land cover based on 
the method of highest confidence during 2001-2010, as described in Broxton et al. (2014). 
 
European Space Agency Land Cover 
 
Initially, the main objective of the European Space Agency (ESA)’s Climate Change Initiative is to 
produce an accurate land-cover classification that can serve the climate modeling community. This 
project has developed the Essential Climate Variable spatial dataset based on the extensive archives of 
remote-sensing data (ESA 2017). The database covers time series from 1992 to 2017 and contains 38 
land cover classes, which are based on the United Nations Land Cover Classification System. 
 
 
Crowd-Sourced Geospatial Database 
Open Street Map 
 
OpenStreetMap features crowd-sourced data on locations of infrastructures, human settlements and 
economic activities. In this study, we extract the following information from OSM: road count, road 
length, POI, and built-up area. We categorized POIs into 16 types based on its economic activity 
matched to the official classifications of 16 production and service sectors published by the NESDB. 
 

Tables A.1 and A.2 of the Appendix provide the list of variables obtained from geospatial data 
of 2015 and 2017, respectively. 
 
 
Poverty Data 
Income-Based Poverty 
 
As mentioned earlier, poverty mapping is a regular initiative conducted by Thai government. In this 
study, the ratio of the population living below the national poverty line per total population in each 
tambon (i.e., subdistrict) is used as one of the dependent variables in our computations. 
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Multidimensional Poverty 
 
As an alternative metric of poverty, the Office of the National Economic and Social Development 
Committee and National Electronics and Computer Technology Center also compile statistics on 
prevalence of multidimensional poverty starting 2017. The data are based on: 
 

(i) a census-based Basic Minimum Need data, supervised by the Community Development 
Department, Ministry of Interior, which includes approximately 36 million population.  

(ii) a register-based data source of approximately 11.4 million individuals gathered by the 
Ministry of Finance through the national welfare card program. 

 
The criteria used in identifying a multidimensionally poor person is inspired by the 

Multidimensional Poverty Index method developed by the Oxford Poverty and Human Development 
Initiative and United Nations Development Programme. 
 
Reference Period 
 
Our target reference period coincides with two most recent years where tambon-level estimates of 
poverty in Thailand are available: 2015 and 2017 for income poverty, and 2017 for multidimensional 
poverty index. 
 
 
 
 

IV. METHODS 

In this study, we consider Generalized Least Squares (GLS) method, and three other widely used 
machine learning algorithms: neural network, random forest estimation, and support vector regression 
(SVR). To assess whether the models have satisfactory generalization performance, 50% of the data 
were allocated for training while the remaining 50% constituted the validation set. Based on this 
allocation, we resampled the data 100 times. The values of metrics used to compare machine learning 
algorithms are based on averages from these 100 datasets. 
 
Generalized Least Squares 
 
GLS is considered a modification of the Ordinary Least Squares (OLS) as it relaxes the assumption 
that the variance of an observation is homogeneous regardless of the explanatory variables associated 
with it. 
 
Neural Network 
 
A neural network is an example of a machine-learning model inspired by the biological neural network 
that constitutes the human brain. As with other types of machine-learning models, a neural network 
can learn to perform different tasks without being explicitly programmed to do so (ADB 2020). 
 

Structurally, a neural network is composed of numerous nodes and edges. A node can be a 
variable or a mathematical function connected by edges. These nodes combine together to form 
different layers within the neural network. The input layer takes in the raw data. In the hidden layers, 
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each node or neuron serves as filter and is activated each time it detects a specific pattern or feature. 
The output layer simply organizes the identified features into an appropriate category. The best way to 
represent these connections is through computational graphs as shown in Figure 3 (ADB 2020). 
 
 
 

Figure 3: Illustration of a Sample Neural Network 

 
Source: Graphics generated by the study team. 

 
 
 
Random Forest 
 
Random forests are an ensemble method based on decision trees, with each tree building on a random 
subset of the training data and a random subset of the independent variables. It can perform 
classification and/or prediction-related tasks and by using averaging, it can improve a model’s 
predictive accuracy and control overfitting. 
 

In this study, variable importance (VIMP) and minimal depth (MD) were used to conduct 
further analyses. These metrics use the main features obtained from all decision trees to assess the 
relative significance of explanatory variables in selecting the final predictors in the model. 
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Support Vector Regression 
 
Typically, the main objective in a linear regression framework is to minimize a specific loss function. 
For instance, OLS method aims to minimize the sum of squared errors. Methods like lasso or ridge 
regression extend this framework by introducing additional penalty parameters to minimize complexity 
and/or reduce the number of covariates that marginally contribute to the model’s predictive 
performance. 
 

On the other hand, a method like the support vector regression provides an alternative 
framework wherein instead of minimizing a specific loss function, one is only concerned about 
reducing it to a certain degree. This gives greater flexibility in the estimation and helps in dealing with 
the limitations pertaining to distributional properties of the variables included in the analyses. 
In general, flexibility with allowable error renders SVR superior than other conventional estimation 
methods that are fixated on minimizing a loss function. 

 
In this study, neural network, random forest estimation, and support vector regression were 

implemented using R software. Table 2 lists the details of relevant R packages, including links to the 
main sources of technical references. 

 
 

Table 2: R Packages Used in Machine Learning Computations 

Method Package’s name Technical reference 
Neural Network (NN) Nnet https://cran.r-project.org/web/packages/nnet/nnet.pdf 
Random Forest (RF) randomForestSRC https://cran.r-project.org/web/packages/randomForestSRC/ 

randomForestSRC.pdf 
Support Vector Regression (SVR) e1071 https://cran.r-project.org/web/packages/e1071/e1071.pdf 

Source: The Comprehensive R Archive Network. 
 
 
 
 

V. ANALYTICAL RESULTS 

Preliminary Analysis 
 

As preliminary estimation tools, we first estimated a full model and various model specifications using 
OLS and stepwise regression. In general, we found that the proportion of people living below income-
based poverty line and the value of the multidimensional poverty index are negatively associated with 
geospatial indicators that represent the degree of an area’s urbanization, i.e., intensity of night lights, 
building density, and number of points of interest which are associated with manufacturing and  
utility sectors. On the other hand, poverty outcomes are positively correlated with rainfall, NDVI, and 
other land cover classes that are typically associated in rural areas. While the directions of these 
correlations align with our expectations, the resulting adjusted R2 values are relatively low, ranging 
from 0.13 to 0.33. 
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Using Machine Learning Algorithms to Predict Income-Based Poverty Rate 
 
Comparison of the RMSE (averaged across 100 trials) from the four computational methods (Figure 4) 
shows that the random forest method yielded the lowest RMSE value. Graphical illustration of the 
goodness-of-fit (Figures 5 and 6) also confirms that the Random Forest (RF) has the best predictive 
performance among the four methods that we have considered—generating predicted values that are 
closest to the actual ones. SVR and GLS performed second and third under the same criteria. Notably, 
neural network generated the highest RMSE. 

 
 

Figure 4: Comparison of Average Root Mean Squared Error Obtained  
from Four Machine Learning Algorithms 

 
GLS = Generalized Least Squares, NN = Neural Network, RF = Random Forest, SVR = Support Vector Regression. 
Source: Calculation and graphics generated by the study team. 

 
 

Figure 5: Scatter Plot of Published and Predicted Income Poverty Rates, 2015 

 

GLS = Generalized Least Squares, NN = Neural Network, RF = Random Forest, SVR = Support Vector Regression. 
Source: Calculation and graphics generated by the study team. 
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Figure 6: Scatter Plot of Published and Predicted Income Poverty Rates, 2017 

 

GLS = Generalized Least Squares, NN = Neural Network, RF = Random Forest, SVR = Support Vector Regression. 
Source: Calculation and graphics generated by the study team. 

 
 
 

VIMP and MD were further conducted to identify the significance of each variable. Figure 7 
shows the result of VIMP for 2015 and 2017, while Figure 8 illustrates the outcomes of computing MD. 

 
VIMP identified intensity of night lights and population density-related variables as the biggest 

contributors to the model. Meanwhile, five variables were identified as false positive in the VIMP’s 
results for 2015 and 2017, indicating the irrelevance of these variables in predicting the poverty 
headcount rate. Alternatively, it is also possible that the information provided by these variables is 
already captured by other variables. The ‘unimportant’ variables are the area covered by tree or shrub 
(ESALC_12), the area covered by tree, broadleaved and deciduous more than 40% (ESALC_61), the 
area covered by mosaic herbaceous more than 50% (ESALC_110), the area covered by tree, flooded, 
fresh or brackish water (ESALC_160) and the bare areas (ESALC_200). 

 
The results obtained from MD calculation generated similar outcomes, confirming that 

intensity of night lights and population density-related variables are highly associated with poverty 
headcount. Similarly, the results show that five variables possess very low predictive power—the same 
five variables identified by VIMP results as irrelevant to the model. These variables can therefore be 
excluded from the model in further analysis. 

 
 
 
 
 
 
 
 
 



Predicting Poverty Using Geospatial Data in Thailand 13 
 

Figure 7: Results of Variable Importance Computation 

 
Source: Calculation and graphics generated by the study team. 
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Figure 8: Results of Minimal Depth Computation 

 
Source: Calculation and graphics generated by the study team. 
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Using Machine Learning Algorithms to Predict Multidimensional Poverty Index 
 
In addition to income-based poverty rate, we also applied GLS, neural network, random forest, and 
support vector machine to predict the multidimensional poverty index (MPI). 
 

Figure 9 depicts the comparison of RMSE obtained from four Machine Learning methods. 
Similar to the case of income poverty rates, the random forest method yielded the lowest RMSE. 
The scatterplot in Figure 10 compares the actual MPI and the predicted values. It shows that most 
predicted values generated by random forest are located closest to the 45-degree line, suggesting that 
it has the best fit among the four methods considered in this study. 

 
 

Figure 9: Comparison of Average Root Mean Squared Error Obtained  
from Four Machine Learning Algorithms, 2017 

 
GLS = Generalized Least Squares, NN = Neural Network, RF = Random Forest, SVR = Support Vector Regression. 
Source: Calculation and graphics generated by the study team. 

 
 

Figure 10: Scatter Plot of Published and Predicted Multidimensional Poverty Index, 2017 

 
GLS = Generalized Least Squares, NN = Neural Network, RF = Random Forest, SVR = Support Vector Regression, 
TPMAP = Thai People Map and Analytics Platform. 
Source: Calculation and graphics generated by the study team. 
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Again, we examined the degree of explanatory power of each variable by calculating VIMP and 
MD. Figure 11 exhibits that variables related to population density such as nighttime light, LST, and 
road density have a high degree of contribution to predict the variation in poverty rate, based on VIMP. 
The result obtained from MD, as illustrated in Figure 12, also show qualitatively similar results, revealing 
that nighttime light, LST, rainfall, road density, and the area covered by woody Savannas (USGS8) are 
key geographical features associated with the value of MPI. 

 
 
 

Figure 11: Result of Variable Importance Computation 

 
Source: Calculation and graphics generated by the study team. 
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Figure 12: Result of Minimal Depth Computation 

 
Source: Calculation and graphics generated by the study team. 

 
 

In summary, among the methods applied in this study, the random forest technique yielded the 
highest level of accuracy when predicting both income poverty rate and multidimensional poverty 
index. Furthermore, the resulting random forest models fit the datasets well, as suggested by the 
adjusted R-square values presented in Table 3. 
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Table 3: Adjusted R2 Values for Random Forest-Based Models 

Variable being predicted Adjusted R2 
NSO’s poverty headcount of 2015 0.8526 
NSO’s poverty headcount of 2017 0.8459 
TPMAP’s poverty rate of 2017 0.8332 

NSO = National Statistical Office, TPMAP = Thai People Map and Analytics Platform. 
Source: Calculation generated by the study team. 

 
 
As stated in Wang, Aggarwal, and Liu (2018), the random forest algorithm tends to outperform 

other machine learning methods due to its capability to fit complex association structures even with 
small datasets.3 

 
 
 
 

VI. CONCLUSION 

The contribution of this study is twofold. Firstly, it introduces the integration of data, composed of the 
nationwide survey, register-based data, geospatial information, and the satellite imagery. In addition, 
since most of these are open data, data acquisition cost is minimal. This is potentially attractive for 
national statistical offices with scarce resources but wish to explore geospatial data can be used to 
enhance the compilation of poverty statistics. Secondly, this paper has applied computational 
techniques to examine the relationship between geospatial features such as intensity of night lights, 
land cover, land use, etc. and proportion of people living below poverty line as measured using 
conventional method of estimating poverty. It is shown that the Random Forest is the best prediction 
method, yielding the accuracy of more than 80%. These contributions suggest the potential of applying 
the open data and open-source computational tools to analyze the spatial distribution of poverty. 
Furthermore, the results obtained from VIMP and MD reveal the associations between geospatial 
covariates such as intensity of night lights, population density, and poverty rates. Moving forward, if it 
can be proven that such relationships remain stable over time, it might be possible to apply these 
techniques to predict poverty for years when household surveys on income and expenditures are not 
conducted, but data on geospatial correlates of poverty are available. 
 
 
 
 

 
3  Other studies that applied the random forest technique in other contexts also noted qualitatively similar results. For 

example, Fernández-Delgado et al. (2014), using the entire University of California Irvine dataset, have demonstrated that 
the random forest outperformed 179 classifiers from 17 families. Similarly, Díaz-Uriarte and Alvarez de Andrés (2006) 
have stated that random forest is the best method for gene selection and classification, and Ali et al. (2012) have shown 
that random forest yields the highest accuracy in predicting breast cancer. Nevertheless, the robustness of the results of 
random forest technique to the size of the training and validation data warrants further investigation. 
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APPENDIX 

Table A.1: List of Variables Obtained from Geospatial Data of 2015 

Variable Definition 
VNTL2015f_sum VIIRS cloud mask—outlier removed—nighttime lights average DNB radiance, year 2015 
log_VIIRS_2015 Logarithm (based 10) of VIIRS cloud mask—outlier removed—nighttime lights average 

DNB radiance, 2015 
log_VIIRS_density_2015 Logarithm (based 10) of VIIRS cloud mask—outlier removed—nighttime lights average 

DNB radiance, 2015, per area 
log_POP_2018 Logarithm (based 10) of population size, 2018 
log_Total_Pop_density Logarithm (based 10) of population density, year 2015 
log_LST_2015 Logarithm (based 10) of land surface temperature, 2015 
log_Rain_2015 Logarithm (based 10) of amount of rainfall, 2015 
SYNMAP_46 Synergetic Land Cover, pixel count of Urban, 2000 
USGS_13 USGS Land Cover, pixel count of Urban and Built-up (2001–2010 data) 
GUF_255 Global Urban Footprint, pixel count of built-up areas (2011–12?) 
log_GUF_255 Logarithm (based 10) of Global Urban Footprint, pixel count of built-up areas (2011–12) 
GHSLsmod2015_2 Global Human Settlement Layer, pixel count of “urban clusters” or low-density clusters, 

2015 
GHSLmod2015_3 Global Human Settlement Layer, pixel count of “urban centres” or high-density clusters, 

2015 
log_NDVI_2015 Logarithm (based 10) of normalized difference of vegetation index, 2015 
log_NDVI_density_2015 Logarithm (based 10) of normalized difference of vegetation index, 2015, per area 
USGS_0 USGS Land Cover, pixel count of Water (2001–2010 data) 
USGS_1 USGS Land Cover, pixel count of Evergreen Needle Leaf Forest (2001–2010 data) 
USGS_2 USGS Land Cover, pixel count of Evergreen Broadleaf Forest (2001–2010 data) 
USGS_3 USGS Land Cover, pixel count of Deciduous Needle Leaf Forest (2001–2010 data) 
USGS_4 USGS Land Cover, pixel count of Deciduous Broadleaf Forest (2001–2010 data) 
USGS_5 USGS Land Cover, pixel count of Mixed Forests (2001–2010 data) 
USGS_6 USGS Land Cover, pixel count of Closed Shrublands (2001–2010 data) 
USGS_7 USGS Land Cover, pixel count of Open Shrublands (2001–2010 data) 
USGS_8 USGS Land Cover, pixel count of Woody Savannas (2001–2010 data) 
USGS_9 USGS Land Cover, pixel count of Savannas (2001–2010 data) 
USGS_10 USGS Land Cover, pixel count of Grasslands (2001–2010 data) 
USGS_11 USGS Land Cover, pixel count of Permanent Wetland (2001–2010 data) 
USGS_12 USGS Land Cover, pixel count of Croplands (2001–2010 data) 
USGS_13 USGS Land Cover, pixel count of Urban and Built-up (2001–2010 data) 
USGS_14 USGS Land Cover, pixel count of Cropland/Natural Vegetation Mosaic (2001–2010 data) 
USGS_16 USGS Land Cover, pixel count of Barren or Sparsely Vegetated (2001–2010 data) 
USGS_PCA USGS Land Cover, First Principal Component of USGS_0–USGS_16 
ESALC2015_10 ESA Land Cover, pixel count of Cropland, rainfed, 2015 
ESALC2015_11 ESA Land Cover, pixel count of Herbaceous cover, 2015 
ESALC2015_12 ESA Land Cover, pixel count of Tree or shrub cover, 2015 
ESALC2015_20 ESA Land Cover, pixel count of Cropland, irrigated or post-flooding, 2015 
 continued on next page 
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Table A.1: Continued  

Variable Definition 
ESALC2015_30 ESA Land Cover, pixel count of Mosaic cropland (>50%) / natural vegetation (tree, shrub, 

herbaceous cover) (<50%), 2015 
ESALC2015_40 ESA Land Cover, pixel count of Mosaic natural vegetation (tree, shrub, herbaceous cover) 

(>50%) / cropland (<50%), 2015 
ESALC2015_50 ESA Land Cover, pixel count of Tree cover, broadleaved, evergreen, closed to open (>15%), 

2015 
ESALC2015_60 ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed to open (>15%), 

2015 
ESALC2015_61 ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed (>40%), 2015 
ESALC2015_70 ESA Land Cover, pixel count of Tree cover, needleleaved, evergreen, closed to open 

(>15%), 2015 
ESALC2015_80 ESA Land Cover, pixel count of Tree cover, needleleaved, deciduous, closed to open 

(>15%), 2015 
ESALC2015_100 ESA Land Cover, pixel count of Mosaic tree and shrub (>50%) / herbaceous cover (<50%), 

2015 
ESALC2015_110 ESA Land Cover, pixel count of Mosaic herbaceous cover (>50%) / tree and shrub (<50%), 

2015 
ESALC2015_120 ESA Land Cover, pixel count of Shrubland, 2015 
ESALC2015_121 ESA Land Cover, pixel count of Evergreen shrubland, 2015 
ESALC2015_122 ESA Land Cover, pixel count of Deciduous shrubland, 2015 
ESALC2015_130 ESA Land Cover, pixel count of Grassland, 2015 
ESALC2015_150 ESA Land Cover, pixel count of Sparse vegetation (tree, shrub, herbaceous cover) (<15%), 

2015 
ESALC2015_160 ESA Land Cover, pixel count of Tree cover, flooded, fresh or brackish water, 2015 
ESALC2015_170 ESA Land Cover, pixel count of Tree cover, flooded, saline water, 2015 
ESALC2015_180 ESA Land Cover, pixel count of Shrub or herbaceous cover, flooded, fresh/saline/brackish 

water, 2015 
ESALC2015_190 ESA Land Cover, pixel count of Urban areas, 2015 
ESALC2015_200 ESA Land Cover, pixel count of Bare areas, 2015 
ESALC2015_210 ESA Land Cover, pixel count of Water bodies, 2015 
Density_2015_Road_Count Number of road paths per area, 2015 
Density_2015_Road_Length Total length of road paths per area, 2015 
Density_2015_POI Number of Point of Interest (POI) per area, 2015 
NESDB7_3 Number of POIs in 2015 of this type: manufacturing 
NESDB7_7 Number of POIs in 2015 of this type: wholesale and retail trade and repair of motor vehicles 
NESDB7_8 Number of POIs in 2015 of this type: transportation and storage 
NESDB7_9 Number of POIs in 2015 of this type: accommodation and food service activities 
NESDB7_10 Number of POIs in 2015 of this type: information and communication 
NESDB7_11 Number of POIs in 2015 of this type: financial and insurance activities 
NESDB7_13 Number of POIs in 2015 of this type: professional, scientific, and technical activities 
NESDB7_14 Number of POIs in 2015 of this type: administrative and support service activities 
NESDB7_15 Number of POIs in 2015 of this type: public administration and defense; compulsory  

social security 
NESDB7_16 Number of POIs in 2015 of this type: education 
NESDB7_17 Number of POIs in 2015 of this type: human health activities 
 continued on next page 
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Table A.1: Continued  

Variable Definition 
NESDB7_industry Number of POIs in 2015 of this type: mining and quarrying / manufacturing / electricity,  

gas, steam, and air conditioning supply / water supply, sewerage, waste management and 
remediation activities / construction 

NESDB7_svcs1 Number of POIs in 2015 of this type: wholesale and retail trade and repair of motor  
vehicles / transportation and storage / accommodation and food service activities 

NESDB7_svcs2 Number of POIs in 2015 of this type: information and communication / financial and 
insurance activities / real estate activities / professional, scientific, and technical activities / 
administrative and support service activities 

NESDB7_svcs3 Number of POIs in 2015 of this type: public administration and defense; compulsory social 
security / education / human health activities / arts, entertainment and recreation / other 
service activities 

Density_POI_Area_2015 Total area of Point of Interest per area, 2015 
Density_NESDB7_industry Number of POIs per sq km in 2015 of this type: mining and quarrying / manufacturing / 

electricity, gas, steam, and air conditioning supply / water supply, sewerage, waste 
management and remediation activities / construction 

Density_NESDB7_svcs1 Number of POIs per sq km in 2015 of this type: wholesale and retail trade and repair of 
motor vehicles / transportation and storage / accommodation and food service activities 

Density_NESDB7_svcs2 Number of POIs per sq km in 2015 of this type: information and communication / financial 
and insurance activities / real estate activities / professional, scientific, and technical 
activities / administrative and support service activities 

Density_NESDB7_svcs3 Number of POIs per sq km in 2015 of this type: public administration and defense; 
compulsory social security / education / human health activities / arts, entertainment and 
recreation / other service activities 

log_House_density_2015 Logarithm (based 10) of registered house, 2015, per area 
Density_Building_Area Total sq. meter of building per area, year 2015 and 2015 
log_F2015_Buil_Density Logarithm (based 10) of build-up (square meter), 2015, per area 

DNB = Day Night Band, ESA = European Space Agency, POI = point of interest, USGS = United States Geological Survey, 
VIIRS = Visible and Infrared Imaging/Radiometer Suite. 
Sources: Directorate General Joint Research Centre of the European Commission, European Space Agency, German 
Aerospace Center, Google Earth Engine, National Economic and Social Development Committee of Thailand, National 
Statistical Office of Thailand, Open Street Map, Thailand Development Research Institute, and United States Geological 
Survey. 
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Table A.2: List of Variables Obtained from Geospatial Data of 2017 

Variable Definition 
VNTL2017f_sum VIIRS cloud mask—outlier removed—nighttime lights average DNB radiance, year 2017 
log_VIIRS_2017 Logarithm (based 10) of VIIRS cloud mask—outlier removed—nighttime lights average 

DNB radiance, 2017 
log_VIIRS_density_2017 Logarithm (based 10) of VIIRS cloud mask—outlier removed—nighttime lights average 

DNB radiance, 2017, per area 
log_POP_2018 Logarithm (based 10) of population size, 2018 
log_Total_Pop_density Logarithm (based 10) of population density, year 2017 
log_LST_2017 Logarithm (based 10) of land surface temperature, 2017 
log_Rain_2017 Logarithm (based 10) of amount of rainfall, 2017 
SYNMAP_46 Synergetic Land Cover, pixel count of Urban, 2000 
USGS_13 USGS Land Cover, pixel count of Urban and Built-up (2001–2010 data) 
GUF_255 Global Urban Footprint, pixel count of built-up areas (2011–12?) 
log_GUF_255 Logarithm (based 10) of Global Urban Footprint, pixel count of built-up areas (2011–12?) 
GHSLsmod2017_2 Global Human Settlement Layer, pixel count of “urban clusters” or low-density clusters, 

2017 
GHSLmod2017_3 Global Human Settlement Layer, pixel count of “urban centres” or high-density clusters, 

2017 
log_NDVI_2017 Logarithm (based 10) of normalized difference of vegetation index, 2017 
log_NDVI_density_2017 Logarithm (based 10) of normalized difference of vegetation index, 2017, per area 
USGS_0 USGS Land Cover, pixel count of Water (2001–2010 data) 
USGS_1 USGS Land Cover, pixel count of Evergreen Needle Leaf Forest (2001–2010 data) 
USGS_2 USGS Land Cover, pixel count of Evergreen Broadleaf Forest (2001–2010 data) 
USGS_3 USGS Land Cover, pixel count of Deciduous Needle Leaf Forest (2001–2010 data) 
USGS_4 USGS Land Cover, pixel count of Deciduous Broadleaf Forest (2001–2010 data) 
USGS_5 USGS Land Cover, pixel count of Mixed Forests (2001–2010 data) 
USGS_6 USGS Land Cover, pixel count of Closed Shrublands (2001–2010 data) 
USGS_7 USGS Land Cover, pixel count of Open Shrublands (2001–2010 data) 
USGS_8 USGS Land Cover, pixel count of Woody Savannas (2001–2010 data) 
USGS_9 USGS Land Cover, pixel count of Savannas (2001–2010 data) 
USGS_10 USGS Land Cover, pixel count of Grasslands (2001–2010 data) 
USGS_11 USGS Land Cover, pixel count of Permanent Wetland (2001–2010 data) 
USGS_12 USGS Land Cover, pixel count of Croplands (2001–2010 data) 
USGS_13 USGS Land Cover, pixel count of Urban and Built-up (2001–2010 data) 
USGS_14 USGS Land Cover, pixel count of Cropland/Natural Vegetation Mosaic (2001–2010 data) 
USGS_16 USGS Land Cover, pixel count of Barren or Sparsely Vegetated (2001–2010 data) 
USGS_PCA USGS Land Cover, First Principal Component of USGS_0–USGS_16 
ESALC2017_10 ESA Land Cover, pixel count of Cropland, rainfed, 2017 
ESALC2017_11 ESA Land Cover, pixel count of Herbaceous cover, 2017 
ESALC2017_12 ESA Land Cover, pixel count of Tree or shrub cover, 2017 
ESALC2017_20 ESA Land Cover, pixel count of Cropland, irrigated or post-flooding, 2017 
ESALC2017_30 ESA Land Cover, pixel count of Mosaic cropland (>50%) / natural vegetation (tree, shrub, 

herbaceous cover) (<50%), 2017 
ESALC2017_40 ESA Land Cover, pixel count of Mosaic natural vegetation (tree, shrub, herbaceous cover) 

(>50%) / cropland (<50%), 2017 
 continued on next page 
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Table A.2: Continued  

Variable Definition 
ESALC2017_50 ESA Land Cover, pixel count of Tree cover, broadleaved, evergreen, closed to open 

(>15%), 2017 
ESALC2017_60 ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed to open 

(>15%), 2017 
ESALC2017_61 ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed (>40%), 2017 
ESALC2017_70 ESA Land Cover, pixel count of Tree cover, needleleaved, evergreen, closed to open 

(>15%), 2017 
ESALC2017_80 ESA Land Cover, pixel count of Tree cover, needleleaved, deciduous, closed to open 

(>15%), 2017 
ESALC2017_100 ESA Land Cover, pixel count of Mosaic tree and shrub (>50%) / herbaceous cover 

(<50%), 2017 
ESALC2017_110 ESA Land Cover, pixel count of Mosaic herbaceous cover (>50%) / tree and shrub 

(<50%), 2017 
ESALC2017_120 ESA Land Cover, pixel count of Shrubland, 2017 
ESALC2017_121 ESA Land Cover, pixel count of Evergreen shrubland, 2017 
ESALC2017_122 ESA Land Cover, pixel count of Deciduous shrubland, 2017 
ESALC2017_130 ESA Land Cover, pixel count of Grassland, 2017 
ESALC2017_150 ESA Land Cover, pixel count of Sparse vegetation (tree, shrub, herbaceous cover) (<15%), 

2017 
ESALC2017_160 ESA Land Cover, pixel count of Tree cover, flooded, fresh or brackish water, 2017 
ESALC2017_170 ESA Land Cover, pixel count of Tree cover, flooded, saline water, 2017 
ESALC2017_180 ESA Land Cover, pixel count of Shrub or herbaceous cover, flooded, fresh/saline/brackish 

water, 2017 
ESALC2017_190 ESA Land Cover, pixel count of Urban areas, 2017 
ESALC2017_200 ESA Land Cover, pixel count of Bare areas, 2017 
ESALC2017_210 ESA Land Cover, pixel count of Water bodies, 2017 
Density_2017_Road_Count Number of road paths per area, 2017 
Density_2017_Road_Lengt
h 

Total length of road paths per area, 2017 

Density_2017_POI Number of Point of Interest (POI) per area, 2017 
NESDB7_3 Number of POIs in 2017 of this type: manufacturing 
NESDB7_7 Number of POIs in 2017 of this type: wholesale and retail trade and repair of motor 

vehicles 
NESDB7_8 Number of POIs in 2017 of this type: transportation and storage 
NESDB7_9 Number of POIs in 2017 of this type: accommodation and food service activities 
NESDB7_10 Number of POIs in 2017 of this type: information and communication 
NESDB7_11 Number of POIs in 2017 of this type: financial and insurance activities 
NESDB7_13 Number of POIs in 2017 of this type: professional, scientific, and technical activities 
NESDB7_14 Number of POIs in 2017 of this type: administrative and support service activities 
NESDB7_15 Number of POIs in 2017 of this type: public administration and defense; compulsory 

social security 
NESDB7_16 Number of POIs in 2017 of this type: education 
NESDB7_17 Number of POIs in 2017 of this type: human health activities 
NESDB7_industry Number of POIs in 2017 of this type: mining and quarrying / manufacturing / electricity, 

gas, steam, and air conditioning supply / water supply, sewerage, waste management and 
remediation activities / construction 

NESDB7_svcs1 Number of POIs in 2017 of this type: wholesale and retail trade and repair of motor 
vehicles / transportation and storage / accommodation and food service activities 
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Table A.2: Continued  

Variable Definition 
NESDB7_svcs2 Number of POIs in 2017 of this type: information and communication / financial  

and insurance activities / real estate activities / professional, scientific, and technical 
activities / administrative and support service activities 

NESDB7_svcs3 Number of POIs in 2017 of this type: public administration and defense; compulsory 
social security / education / human health activities / arts, entertainment and recreation / 
other service activities 

Density_POI_Area_2017 Total area of Point of Interest per area, 2017 
Density_NESDB7_industry Number of POIs per sq km in 2017 of this type: mining and quarrying / manufacturing / 

electricity, gas, steam, and air conditioning supply / water supply, sewerage, waste 
management and remediation activities / construction 

Density_NESDB7_svcs1 Number of POIs per sq km in 2017 of this type: wholesale and retail trade and repair of 
motor vehicles / transportation and storage / accommodation and food service activities 

Density_NESDB7_svcs2 Number of POIs per sq km in 2017 of this type: information and communication / 
financial and insurance activities / real estate activities / professional, scientific, and 
technical activities / administrative and support service activities 

Density_NESDB7_svcs3 Number of POIs per sq km in 2017 of this type: public administration and defense; 
compulsory social security / education / human health activities / arts, entertainment and 
recreation / other service activities 

log_House_density_2017 Logarithm (based 10) of registered house, 2017, per area 
Density_Building_Area Total sq. meter of building per area, year 2017 and 2017 
log_F2017_Buil_Density Logarithm (based 10) of build-up (square meter), 2017, per area 

DNB = Day Night Band, ESA = European Space Agency, POI = point of interest, USGS = United States Geological Survey, 
VIIRS = Visible and Infrared Imaging/Radiometer Suite. 
Sources: Directorate General Joint Research Centre of the European Commission, European Space Agency, German 
Aerospace Center, Google Earth Engine, National Economic and Social Development Committee of Thailand, National 
Statistical Office of Thailand, Open Street Map, Thailand Development Research Institute, and United States Geological 
Survey. 
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