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ABSTRACT 

The spatial granularity of poverty statistics can have a significant impact on the efficiency of targeting 
resources meant to improve the living conditions of the poor. However, achieving granularity typically 
requires increasing the sample sizes of surveys on household income and expenditure or living 
standards, an option that is not always practical for government agencies that conduct these surveys. 
Previous studies that examined the use of innovative (geospatial) data sources such as those from high-
resolution satellite imagery suggest that such method may be an alternative approach of producing 
granular poverty maps. This study outlines a computational framework to enhance the spatial granularity 
of government-published poverty estimates using a deep layer computer vision technique applied on 
publicly available medium-resolution satellite imagery, household surveys, and census data from the 
Philippines and Thailand. By doing so, the study explores a potentially more cost-effective alternative 
method for poverty estimation method. The results suggest that even using publicly accessible satellite 
imagery, in which the resolutions are not as fine as those in commercially sourced images, predictions 
generally aligned with the distributional structure of government-published poverty estimates, after 
calibration.  The study further contributes to the existing literature by examining robustness of the 
resulting estimates to user-specified algorithmic parameters and model specifications. 

 
 
 
Keywords: big data, computer vision, data for development, machine learning algorithm, official statistics, 
poverty, SDG 

JEL codes: C19, D31, I32, O15 

 





 

 
I.   INTRODUCTION 

 
 
When the 17 Sustainable Development Goals (SDGs) were officially launched in 2015, countries all over 
the world pledged to leave no one behind, with poverty eradication at the top of the list. Included in the 
Global Indicator Framework for monitoring progress on poverty reduction is the proportion of a 
country’s population living below its national poverty line, which is typically sourced from household 
income and expenditure surveys. From the perspective of statisticians and other compilers of official 
poverty statistics, the SDGs’ leave no one behind principle which requires data to be disaggregated by 
geographic location, ethnicity, gender, income class, and other relevant dimensions, presents several 
challenges. Conventionally, household income and expenditure surveys have sample sizes that are 
sufficient to provide nationally representative poverty estimates, but not large enough to provide reliable 
estimates at levels granular enough to meet all disaggregated data requirements of SDG 1. Moreover, the 
sample sizes are inadequate in providing reliable estimates at levels granular enough to allow 
development planners efficiently target areas that need immediate poverty intervention.  
 

In addition to issues on granularity, there are also concerns on timeliness and frequency of 
release of updated poverty data. Conducting household income and expenditure surveys can be 
expensive and consumes a lot of time particularly in planning, executing and publishing results. This 
means that in many countries, the lag time for the release of data is 1 year or more, depending on the 
information being provided. However, financial resources from national governments and international 
development organizations that support statistical programs such as conducting household income and 
expenditure surveys are limited and sparse (PARIS21 2017). Hence, it is important for national statistical 
systems to explore alternative cost-effective methods of meeting the growing demand for SDGs and 
other types of data for development.  

 
In 2017, the Asian Development Bank (ADB) designed a project which aims to strengthen the 

capacity of national statistics offices (NSOs) in the Asia and Pacific region to meet the disaggregated 
data requirements of the SDGs using innovative data sources such as satellite imagery.  One component 
of the project conducted a case study to examine the feasibility of using publicly accessible satellite 
imagery and computer vision techniques to enhance the granularity of poverty statistics compiled using 
conventional estimation methods. Using publicly available resources is attractive for NSOs and 
development institutions who are planning to conduct similar feasibility studies, as they serve as an 
excellent starting point to learn advanced machine learning techniques without incurring significant 
financial costs upfront.  

 
The method is applied using data from the Philippines and Thailand. These two countries are 

good case studies as both are compiling small area poverty estimates which provide enough data that 
can be used in the training of algorithms capable of predicting poverty. Both countries also have slightly 
different poverty profiles with Thailand having a lower prevalence of poverty. This variation allows for 
the examination of the impact of variability in the indicator of interest on the performance of an 
algorithm designed for image classification-related tasks. The study further contributes to the existing 
literature by examining robustness of the resulting estimates to user-specified algorithmic parameters 
and model specifications, which may serve as a means of strengthening confidence in poverty maps 
compiled through this innovative methodology. 
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II.   LITERATURE REVIEW 
 
As briefly discussed earlier, poverty statistics are typically compiled based on data collected from 
household surveys. However, sample sizes of these surveys are typically not large enough to provide 
reliable estimates at more granular levels, and therefore resulting poverty estimates may not be reliable 
at very granular disaggregation levels. Increasing sample sizes is a way to enhance reliability of survey 
estimates, but it is often not practical as achieving such increases requires significant additional 
resources, which are not readily available to NSOs or the organizations that conduct these surveys 
(ADB 2020). 
 

Alternative methods to compile poverty statistics to address some of these concerns are being 
explored. For instance, many countries have attempted to use small area estimation (SAE) techniques, 
in collaboration with development partners like the World Bank, by combining survey results with census 
and other auxiliary data to produce granular statistics. Conventional small area poverty estimation 
techniques have limitation which can often lead to increased model errors if the survey and census of 
population used were conducted years apart. To address this error, the key is to work with variables 
whose values do not change significantly over time. However, this approach may not always lead to a 
better model as imposing such criterion limits the number of covariates that can be included in model-
building and affect the model’s predictive performance. Other limitations of the SAE include its inability 
to address the issue of timeliness of statistics. If surveys and census data are not collected frequently, 
this will not lead to updated granular data even if SAE techniques are employed.  

 
On the other hand, there have been attempts to integrate beyond traditional types of data such 

as those coming from surveys and censuses. A good example is the use of satellite imagery for various 
development indicators, and there are several reasons why its popularity is increasing.  For one, advances 
in satellite-based socioeconomic measurements have led to an influx of high frequency data for both, 
data-rich and data-poor environments. One of these measurements is nighttime light intensity which 
has been increasingly used following the initial works of Chen and Nordhaus (2011) and Henderson, 
Storeygard, and Weil (2012). This helped mitigate some of the known data shortcomings, including 
those of the SAE, if enhancing granularity is the main objective. Nighttime light intensity can also be used 
to estimate values in between surveys and enable nowcasting as well as help illuminate areas that are 
less covered by surveys and censuses. However, using data on nightlights alone have several drawbacks. 
The data produced by satellites are top-coded which makes highly developed, urbanized areas hard to 
differentiate. On the other side of the spectrum, the least developed areas often do not have measurable 
nighttime lights, and this makes it difficult to obtain estimates for proxy measures of socioeconomic 
development in such areas.  

 
Building on these developments, the use of daytime satellite images has started to become an 

important focus of research. Xie et al. (2015) showed that poverty mapping using satellite imagery in 
combination with transfer learning and convolutional neural networks (CNN) can lead to the predictive 
performance of survey data collected in the field. Jean et al. (2016) trained a CNN to extract features in 
high-resolution daytime images using nighttime images as labels. The extracted features were used to 
predict asset wealth and consumption expenditure across five African countries. Jean et al. (2016) were 
able to provide that such a model is strongly predictive of both average household consumption 
expenditure and asset wealth as measured at the cluster level for countries where recent survey data is 
available. On the other hand, Head et al. (2017) has proven that this method does not generalize in the 
same way that other measures of development predict access to drinking water and a variety of health 
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and education-related indicators. It is possible to apply this method in other countries and continents 
given certain limitations.  
 

The study presented in this manuscript serves as a proof of concept in implementing the 
techniques used by Jean et al. (2016) using only publicly available satellite data that have lower 
resolution and are readily available tools for data processing, akin to the objective of Yeh et al. (2020) 
which used the same kind of satellite imagery to examine spatial distribution of economic well-being in 
Africa. Whereas some of the follow-up studies that adopted similar techniques (e.g., Engstrom, Hersh, 
and Newhouse 2017; Tingzon et al. 2019; Yeh et al. 2020) focus in estimating the spatial distribution of 
wealth, income, or poverty for years or areas that are not covered by conventional data sources, this 
study focuses in predicting poverty in the same year where conventional data sources are available, 
albeit, providing more spatially disaggregated numbers. Furthermore, this study contributes to existing 
literature on using computer vision techniques to map the spatial distribution of poverty by examining 
the robustness of results to algorithmic training parameters and specifications.  
 
 
 

III.    DATA AND METHODS 
 
A. Reference Period 

 
Our target reference period coincides with the years when small area poverty estimates are available—
2012 and 2015 for the Philippines and 2013, 2015, and 2017 for Thailand. For the Philippines, we also 
included 2018 even if small area poverty estimates have yet to be compiled and only provincial-level 
survey estimates of poverty are available. Inclusion of the 2018 data allows for the examination of 
whether the granularity of the indicator to be used for training a machine learning algorithm has an 
impact on the extent of granularity at which predictions can be made. 
 
B. Daytime Satellite Images 

 
Publicly accessible satellite images were used for this study, particularly Landsat (15-meter resolution) 
and Sentinel (10-meter resolution). The higher resolution of Sentinel is preferred, but since Sentinel was 
launched in 2015, we had to use alternative source of satellite imagery.1 In particular, we use Landsat 
satellite images for 2012 and 2013, while Sentinel was used for all later years. The resolution of the 
satellites dictates the size of images that can be used and the final resolution of artificial intelligence-
based poverty predictions. The study used 256 pixel by 256 pixel images for Landsat years and 384 pixel 
x 384 pixel images for Sentinel years. The research also tested smaller images (128 pixel by 128 pixel) for 
Thailand, but the CNN did not perform well.2 However, Landsat’s 256 pixel by 256 pixel images 
performed well for CNN training. This provided a grid size of 3,840 m (15 meters per pixel multiplied by 
256 pixels) at the equator. To reuse the same grid for all years, we use 384 pixels for Sentinel images too.  
This gave roughly 36,000 images in Thailand and 13,000 in the Philippines. In succeeding analyses, the 
center of each image was used as reference point when identifying which municipality, city, province, or 
tambon (i.e., subdistrict) it belongs to. 
 

 
1  ESA Earth Online. https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2. 
2  The use of smaller-sized images inflates CNN’s prediction errors by roughly 10%.  
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The input data for this study was obtained using georeferenced and tagged image files sourced from 
Landsat 8 and Sentinel 2. These image files were stored as three-dimensional arrays, with each pixel 
represented in red, green, and blue color bands.3 
 

One of the intermediate steps undertaken while preparing the satellite images was to collect 
cloud-free daytime images that covered the entirety of both the Philippines and Thailand. This process 
entailed running an algorithm to select the best daytime images falling within an acceptable cloudiness 
or cloud cover during the period of the study. Although it is ideal to set a low cloudiness threshold, setting 
it too low could lead to having several areas with no image that satisfy the threshold. The cloudiness 
threshold was determined by experimenting until the algorithm produced a composite image for the 
whole country with the least amount of cloud cover with adequate number of images to train on.4 

 
The use of “pansharpening” was another intermediate data preparation step undertaken to 

enhance the resolution of the Landsat 8 images. Pansharpening combines high resolution panchromatic 
images (black and white but sensitive to colors) with lower resolution multispectral band images. The 
process produces a single red, green, blue (RGB) color, multiband image at the higher resolution of the 
panchromatic image. From the original 30-meter resolutions, pansharpening was able to produce 15-
meter resolutions for the Landsat images.  
 
C. Nighttime Satellite Images 
 
There are many sources of nightlight intensity data. However, the best known and publicly published are 
datasets based on Defense Meteorological Satellite Program Operational Line-Scan System (DMSP-
OLS) and Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (SNPP-
VIIRS) missions. 
 

Both were conducted by the National Oceanic and Atmospheric Administration (NOAA). It 
was decided that images from VIIRS will be used for this study because it offered a substantial number 
of improvements over Operational Line-Scan System as stated in the work of Elvidge et al. (2013).  

 
A cloud-free average radiance value was used to filter out the effects of fires and other transitory 

events as well as irrelevant background, while unlit areas were set to zero. 
 
D. Sources of Poverty Data Used as Inputs  

 
Since the main objective is to predict the proportion of a country’s population living below its national 
poverty line using satellite imagery, the study needed ‘ground truth’ data on poverty for training a 
machine learning algorithm and validation.  
 

For this purpose, the data used were the municipal- or city-level estimates of proportions of 
population living below the national poverty line in 2012 and 2015 as compiled by the Philippine 
Statistics Authority (PSA) using SAE technique. The SAE technique adopted by PSA combined data 
from the Family Income and Expenditure Survey and Census of Population and Housing. The provincial 

 
3  In principle, satellites have multiple bands including infrared. This study focused on RGB color bands only because the CNN 

has been pretrained on regular RGB images (through ImageNet). In addition, the artificial intelligence framework used in 
this study required .jpg files as input, which only support the RGB bands as well.   

4  We use Google Earth Engine’s built-in function for creating annual composite image based on a user-defined cloudiness 
threshold parameter. 
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poverty estimates in 2018 were also used as these were directly estimated from Family Income and 
Expenditure Survey by PSA. The small area poverty estimates for 2018 are not yet available at the time 
this study was conducted.  
 

In Thailand, this study used the data compiled by the National Statistical Office of Thailand 
using SAE technique applied on its Socioeconomic Survey and Census of Population. The poverty data 
estimates were at the tambon level for 2013, 2015, and 2017.  

 
For succeeding sections, municipalities, cities, and tambons are referred to as SAE-level areas 

while provinces are referred as survey-level areas. Collectively, SAE-level and survey-level areas are 
coined using levels where government-published poverty estimates are available. These terminologies 
are used in succeeding sections.  
 
E. Shapefiles 

 
To combine spatial datasets, tambon-level shapefiles for Thailand and municipal- or city-level and 
provincial-level shapefiles for the Philippines were used. Thailand has more than 7,400 tambons while 
the Philippines have more than 1,500 municipalities and cities and more than 80 provinces. On the 
average, there are eight (4 kilometer by 4 kilometer) images in a municipality and 152 images in a 
province in the Philippines. In Thailand, there are five images in a tambon, on average.  
 
F. Predicting Poverty Using Artificial Intelligence 

 
Data from satellite images are inherently unstructured, noisy, and hard to process both statistically and 
computationally. In recent years, CNNs have propelled the field of computer vision forward. This 
created opportunities to use computer vision on satellite images to gain information from the ground. 
 

Since the main objective of the study was to predict the prevalence of poverty at granular grid-
level using satellite imagery5, it was initially thought that directly linking poverty and daytime satellite 
images with computer vision techniques would yield the best results. However, poverty data with the 
granularity and frequency needed to train large neural networks was rare. To work around this issue, the 
researchers follow the approach published by Jean et al. (2016), as described below.  

 
First, the researchers trained a CNN to predict the intensity of night lights using daytime images 

as input. In this study, the CNN was pretrained on ResNet-24 which has a deeper layer neural network 
than Visual Geometry Group's Face model which was used by Jean et al. (2016). A deeper later CNN 
could potentially capture more complex features and enhance accuracy of predictions. Intensity of lights 
at night is commonly used as proxy for wealth and human interaction on the ground when working with 
satellite imagery (Henderson, Storeygard, and Weil 2012; Addison and Stewart 2015; Keola , Andersson, 
and Hall 2015). At this stage, the CNN learned to detect general features on daytime images, related to 
light intensity.6 These features, or latent variables, can be used for other tasks, like estimating poverty 
measures. The condensed image-based information can be averaged on a coarser level (i.e., from image 
grid level to a level where we have ground truth data). To speed up the training, and reduce the amount 

 
5  As explained earlier, the study examined different levels of granularity and chose the level at which CNN performed 

reasonably well. 
6   The distribution of intensity of night lights is grouped into different clusters. Ideally, clusters are determined by a Gaussian 

mixture model with different nightlight ranges for each country-year combination. However, we also use heuristic methods 
when Gaussian mixture model does not produce satisfactory results.  
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of data needed to train, we use a network that has already been trained on the ImageNet database to 
assign labels to a large database of images (Deng et al. 2009). This is a well-known technique and 
referred to in the literature as transfer learning (Pan and Yang 2010).  
 

Second, the research team dropped the prediction of nighttime light intensity and solely used 
the trained CNN as a function that summarizes the complex multidimensional input of image data into 
a single vector. This vector has 512 elements called “features” with a single feature vector per image. 
These features are a representation of what the network detected on the image. These had several 
advantages over the raw pixel values, most notably that convolutional layers scan over the image using 
kernels so that it does not matter where features will appear on the image. 

 
To combine the grid-based image features with the SAE or survey-based poverty data, the team 

took the average value of each feature within the given SAE or survey areas. In the final training step, we 
used ridge regressions to examine the relationship between the image features and. The trained CNN and 
ridge parameters were then used to predict image level poverty using only a daytime image as input. Finally, 
we examined whether the results depend on data splitting strategies and type of machine learning 
algorithm, a feat which has not been thoroughly explored in previous studies. 
 
 
Figure 1 summarizes the steps described above.  
 

Figure 1. Methodology for Predicting Poverty Using Satellite Imagery 
 

 
Notes: The procedure requires three types of data: geographically disaggregated poverty statistics, high resolution daytime 
satellite imagery, and images of earth at night.  After preprocessing and cleaning these data, Step 2 trains an algorithm to classify 
(daytime) satellite images into different classes of night light intensity. Step 3 extracts the image features of the last layer of the 
trained algorithm. In Step 4, the image features are averaged so the spaces enclosed in grids correspond to the level at which 
poverty-labelled images are available. These are regressed using the target variable of the survey to find the relationship between 
features and the target variable. Step 5 shows the full pipeline from image to the target variable, as described in Steps 2 to 4.  
Source: Asian Development Bank. 2020. Mapping Poverty through Data Integration and Artificial Intelligence–A Special Supplement 
of the Key Indicators for Asia and the Pacific 2020. Manila. 
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IV.   KEY FINDINGS 
 
 

For each country-year combination, we set aside 90%7 of the given SAE and survey areas for training 
and 10% for validation. The training set is used for model parameter estimation while the validation set 
is used to assess the model’s predictive performance of the final poverty results. This is in addition to the 
separate validation of both the CNN and the ridge regression, that use 10-fold cross validation to tune 
hyperparameters and measure performance. The research team also explored alternative data splitting 
strategies but as this section shows, the researchers did not find significant differences in the results 
when no other parameters were changed. 
 
A. Convolutional Neural Networks Validation  
 
For CNN training, the study team used ResNet34 pretrained model on ImageNet database.8 A weighted 
cross entropy loss function is also used to mitigate imbalanced prediction classes. 
 

Data augmentation is used for daytime images to get more samples in the training dataset, in 
order to get a model which generalizes better and to mitigate imbalanced classes in datasets. Specifically, 
vertical and horizontal flipping, random lighting, and contrast change with 10% probability, dihedral and 
symmetric warp are applied in order to enhance relatively small datasets. During the experiments, the 
team found out that data augmentation was needed, as models suffered from significant overfitting. 
These types of augmentations were used because of their suitability for remote sensing images (Perez 
and Wang 2017). 

 
The study team also experimented with several parameters, such as learning rate, number of 

epochs, and weight decay to optimize the CNN model. All experiments were performed on Fastai 
framework. 

 
After validation of the top losses of CNN predictions, we found that using partly clouded images 

(with semi-transparent clouds) is a challenge for CNN. For cloud removal on Sentinel images, a cloud 
masking technique was used. However, further cloud removal will be needed for future research. 

 
Table 1 shows the overall accuracy of CNN predictions. Accuracy rate was computed by dividing 

the total number of images that were correctly classified according to the class of luminosity of night to 
total number of images in the validation dataset. 
 
 
 
 
 
 

 
7  Roughly 160 Philippine cities and municipalities in 2012 and 2015, and 8 provinces in 2018 (or equivalent to approximately 

1,500 images per year), were randomly selected to constitute the validation set. On the other hand, about 700 tambons (or 
equivalent to approximately 3,500 images per year) comprised the validation set in Thailand. 

8  In this context, pretraining refers to using an algorithm that can already detect image features, such as lines, edges, etc. 
instead of developing an algorithm from scratch. The algorithm is trained on a wide range of images. Many features relevant 
for general image classification tasks overlap, regardless of the source of the image. The database used for pretraining in this 
study, ImageNet, is regarded as a solid benchmark performer in computer vision predictions. 
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Table 1. Prediction Accuracy of Convolutional Neural Networks  
(%) 

 
Country Thailand Thailand Thailand Philippines Philippines Philippines 

Year 
Year 1 
2013 

Year 2 
2015 

Year 3 
2017 

Year 1 
2012 

Year 2 
2015 

Year 3 
2018 

Validation set 85.79 85.22 86.43 94.15 93.50 92.91 
Full dataset 86.52 87.28 86.98 94.66 93.86 90.56 

Source: Calculations generated by the study team. 
 
 

There is small difference between prediction accuracy of Thailand and Philippine models. This 
is potentially caused by different distribution of nightlight values in these countries. As the Philippines 
has low and sparse nightlight values, it was easier for the model to correctly classify areas with low levels 
of intensity of nightlight class (Deng et al. 2009) where no or only few man-made structures were visible 
and therefore, easier to get higher prediction accuracy. 
 
B. Ridge Regression 
 
As explained earlier, prediction of night lights intensity is just an intermediate step in the method 
adopted in this study. The main objective is to compile estimates of poverty that are more granular than 
government-published numbers. To do this, the research team leveraged on computer vision 
techniques, particularly CNN, to learn features from satellite images that could be used to predict the 
levels of poverty in a specific area. Although directly linking poverty and daytime satellite images with 
CNN would probably yield the best results in line with this objective, poverty data with sufficient 
granularity needed to train a CNN model is uncommon. The intermediate step taken was to first train 
the CNN to predict the intensity of night lights. This was necessary because night light images provided 
more labelled data where the model can be trained to group daytime satellite images into different 
clusters with features associated with different levels of economic development.  
 

After implementing the CNN, the next step in the study was to extract the features within the 
satellite images that were used in predicting the night light intensity. This was done by modifying the 
CNN such that it produced its last hidden layer as an output instead of the regular output layer. In other 
words, instead of the classification based on intensity of night lights, the study team extracted the 
feature vectors the CNN uses to determine the intensity of night lights.  These data were aggregated by 
taking the element wise average values of the vectors at the SAE or survey-area level. These were 
regressed on the aggregated data using ridge regressions. Ridge regression was chosen because 
compared to Ordinary Least Squares and other regression modelling techniques, it had a better out-of-
sample predictive performance when the number of covariates was large. Further, ridge regression 
penalized large model coefficients to shrink unimportant ones toward zero.9  

 
The results of ridge regression are summarized in Figure 2. Using the root mean square error 

(RMSE) as a metric, the study team observed higher out of sample errors for the Philippines using 2018 
data (Philippines 2018), presumably due to this specific country-year combination having a more 
aggregated poverty data used as input (i.e., provincial level) relative to other country-year combinations. 

 
9  The study team experimented on excluding outliers, cutting the CNN at different points with different sizes of feature 

vectors, and taking the logarithm of poverty but the results did not change dramatically. Alternative modeling strategies—
such as random forest estimation, support vector regression, and others—can also be considered for future studies 
(Puttanapong et al. 2020). 
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Meanwhile, the lower resolution associated with Landsat images could explain the higher error rates 
observed in the training sample of PHI 2012. Results for Thailand which showed higher prediction error in 
2013 support this claim. 10  
 
 

Figure 2. Scatter Plot of Published and Predicted Poverty Rates 
 

   
 RMSE / R2 (Validation set): 13.30% / 34.7% RMSE / R2 (Validation set): 12.12% / 2.84% 
 RMSE / R2 (Full dataset): 15.06% / 41.66% RMSE / R2 (Full dataset): 11.25% / 3.59% 

 

   
 RMSE / R2 (Validation set): 12.48% / 42.3% RMSE / R2 (Validation set): 4.36% / 4.62% 
 RMSE / R2 (Full dataset): 11.33% / 52.48% RMSE / R2 (Full dataset): 3.69% / 10.66% 

 

   
 RMSE / R2 (Validation set): 22.64% / XX% RMSE / R2 (Validation set): 3.13% / 18.08% 
 RMSE / R2 (Full dataset): 11.43% / 45.89% RMSE / R2 (Full dataset): 3.14% / 14.92% 

 
PHI = Philippines, RMSE = root mean square error, THA = Thailand. 
Notes: Blue dots represent the training sample while red dots represent validation data that has not been used to train the 
parameters.  
Source: Calculations generated by the study team. 

 
10  In future experiments, studies can compare the results using Landsat and Sentinel images with the same input poverty data 

to have a more conclusive assessment of how the resolution of images affect the method’s predictive accuracy.  
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However, RMSE values do not provide a complete picture, particularly in the case of Thailand 
since many areas have very low SAE-level poverty rates. This means that even a very basic model can 
produce low RMSE values simply by predicting a value which is close to the average or mean poverty 
rate.11  

 
Scatter plots may also be used as an alternative validation tool. In a scatter plot, each dot 

represents one city and municipality, province, or tambon. In the plots above, the x-axis contains the 
government-published poverty estimates while the artificial intelligence-based predictions are on the y-
axis. Despite Thailand having lower RMSE values than that of the Philippines, it can be observed that 
artificial intelligence-based method does not perform well in predicting higher levels of poverty rates. 
The estimated values for adjusted R2 reaffirm this point. One possible reason for this is that there are 
significantly more tambons with low poverty rates than tambons with poverty rates exceeding 20%. The 
lack of variability in the poverty data used in the study may have also contributed to the algorithm’s 
underestimation of poverty distribution in Thailand.  

 
To test this hypothesis, the study team explored other socioeconomic indicators with different 

levels of variability. For this purpose, the multidimensional poverty index (MPI) was considered as well 
as the proportion of households owning different types of assets and durable goods. The National 
Economic and Social Development Council of Thailand compiled tambon-level MPI, following a similar 
methodology developed by the Oxford Poverty and Human Development Initiative (Alkire et al. 2019). 
In addition to the MPI, the proportion of the population owning durable goods like cellular phone, 
refrigerator, television, washing machine, house and lot, car and proportion of households were 
estimated with houses made of light materials for every province represented in the Socioeconomic 
Survey conducted by the National Statistical Office of Thailand in 2015.  

 
As Figure 3 shows, relative to the distribution of income poverty rates in Thailand, the variability 

in the distribution of the MPI estimates is comparable with that of income poverty. However, the 
individual distributions measuring the ownership of assets and durable goods have larger variability. 
 

The research team replicated the step-by-step procedure of artificial intelligence-based 
method. However, instead of estimating a ridge regression model for income poverty rates, a separate 
ridge regression model was estimated for each of the alternative socioeconomic indicators cited above. 
The predictive performance of the model is summarized in the scatter plots below (Figure 4). The results 
suggest that predictive performance is better when dealing with a variable that has a reasonable amount 
of variation.  
 
 
 
 
 
 
 
 

 
11  Different modeling strategies were considered, but the data fit did not improve significantly. Meanwhile, the appendix 

presents the results of an experiment that was conducted which examined other socioeconomic indicators, in addition to 
income poverty rates, some of which have more variability. The results revealed better predictive performance when 
working on indicators with reasonable amount of variability. 
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Figure 3. Plots of Multidimensional Poverty Index and Asset Ownership 
 

 
LED = light-emitting diode, MPI = multidimensional poverty index, Ref = refrigerator, SAE= small area estimates of poverty,  
TV = television. 
Notes: The boxplots show the distribution of income poverty rates, along with other nonincome based proxy measures of poverty. 
The boxes represent the middle 50% of values of each metric while the lines extending from the boxes represent 1.5 times the 
interquartile range from the lower and upper quartiles. The dots represent the outliers.  
Source: Calculations and graphics generated by the study team. 

 
 

Figure 4. Scatter Plot of Published or Survey-Based Estimates  
and Artificial Intelligence-Based Predictions 

 

 
Source: Calculations and graphics generated by the study team. 
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V.   ROBUSTNESS ASSESSMENT 
 
 
A. Averaged Features versus Averaged Outputs 
 
To derive artificial intelligence-based poverty rates on the same level where SAE or survey-based 
estimates of poverty were used, two approaches could be considered. The first one comes from the ridge 
regression training. The study team used the averaged feature vectors and regressed them on published 
poverty rates. With this model, the study could predict back the published SAE and survey-level poverty 
rates. The second approach comes from the image level estimates. In particular, the trained ridge 
parameters on the image level features were used to get image level poverty rates. These were 
aggregated back to the SAE and survey level while controlling for gridded population.12 In general, these 
two approaches yielded almost the same RMSE values (Table 2), suggesting that the choice of 
aggregation method was not very critical in our study.  

 
 

Table 2. Root Mean Square Error 
(%) 

 

Year 

Philippines Thailand 
Averaged 
Features 

Averaged 
Outputs 

Averaged 
Features 

Averaged 
Outputs 

Year 1 15.06% 13.00% 11.25% 11.00% 
Year 2 11.33% 11.00% 3.69% 4.00% 
Year 3 11.43% 12.00% 3.14% 3.00% 

Source: Calculations generated by the study team. 
 
 

B. Exploring Data Splitting Strategies 
 
In this study, we originally set aside 90% of the given SAE and survey areas for training and 10% for 
validation. This is in addition to the separate validation implemented for both the CNN and ridge 
regression, which used tenfold cross validation to tune hyperparameters and measure performance. In 
existing literature, there is hardly any agreement on the optimal allocation of splitting data between 
training and validation (Xu and Goodacre 2018). The study team allocated 10% for validation (similar to 
Babenko et al. 2017; Sohnesen, Fisker, and Malmgren-Hansen 2019) because one of the input datasets 
specifically, the 2018 poverty rates in the Philippines had few data points.  Increasing the allocation for 
validation would significantly reduce the amount of data that could be used for training and therefore, 
may yield unreliable results.  Nevertheless, the study team also explored alternative data splitting 
strategies. For the purpose of simplicity, we have reimplemented the methodology for only 1 year. As 
shown in Table 3, we did not see any significant improvement in the prediction accuracy when we 
reduced the size of training set and increased the size of validation set. 
 
 
 
 

 
12  Grid-level population estimates were separately estimated following the method done by Stevens, et al. (2015). 
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Table 3. Prediction Accuracy of Convolutional Neural Networks  
Using Alternative Data Splitting Strategies, Validation Set 

(%) 
 

Dataset 90–10 80–20 70–30 
PHI, Year 2 93.5 92.65 92.42 
THA, Year 2 85.22 85.58 86.52 

PHI = Philippines, THA = Thailand. 
Source: Calculations generated by the study team. 

 
 
C. Do Separate Models for Urban and Rural Areas Improve the Prediction Accuracy? 
 
When we examined the results more closely by comparing the artifical intelligence-based predictions 
with government-published estimates, we noted that some of the pronounced differences between the 
two sets of estimates were observed in cities and highly urbanized areas with large ‘green spaces.’ For 
such areas, the artificial intelligence-based method tends to overestimate poverty rates than 
government-published estimates. Initially, we hypothesized that the artificial intelligence model treats 
those green spaces as agricultural areas, and consequently leads to higher poverty estimates. To 
examine such hypothesis, we attempted to have separate CNN models for urban and rural areas within 
each country. This is slightly different from the original approach that we adopted which trained images 
for urban and rural areas combined. The results suggest that the prediction accuracy of CNN, when 
trained with urban area images only, declined further. On the other hand, the prediction accuracy of 
CNN when trained with rural area images only was approximately the same as when we trained all urban 
and rural area images together. In other words, we did not observe significant improvement in the 
prediction accuracy by training CNN separately for urban and rural areas.  
 
 
D. Ridge Regression versus Random Forest Estimation 
 
As discussed earlier, the second part of the adopted method entails estimating a ridge regression on 
poverty rates using the aggregate features extracted from CNN. In addition to ridge regression, we also 
checked how the results will change if random forest estimation was used instead. Random forest 
estimation is one of the most commonly used machine learning models due to its strengths. It has 
precise learning algorithms, operates well on a large dataset, can manage thousands of input variables, 
provides estimates on variables that are critical in the classification, and it is capable of estimating 
missing data (Chakure 2019, Mwiti 2020).   
 

Table 4 summarizes the results of our comparison of ridge regression and random forest’s 
predictive performance. We present the results for only 1 year for simplicity. The results show that the 
prediction accuracy for the training dataset dramatically improves when random forest estimation is 
used. This is potentially driven by the ability of the random forest’s modeling framework to yield very 
precise estimates from large sets of training data. However, when we compare the results for the 
validation set, the difference between the ridge regression and random forest becomes less remarkable 
and we expect that it will be much less if the size of validation set is increased further as random forest 
tends to overfit the model onto the training dataset but may not necessarily perform as well using the 
validation dataset. Hence, the results based on ridge regression appear to be more robust to the size of 
training and validation datasets.  
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Table 4. Comparison of Predictive Performance of Ridge Regression and Random Forest 
 

Data 
Metric 

(%) 

Ridge Regression Random Forest 

Validation 
Dataset Full Dataset 

Validation 
Dataset Full Dataset 

PHI, Year 2 RMSE 12.48 11.33 11.07 5.08 

Adjusted R2 42.29 52.43 25.96 90.06 

THA, Year 2 RMSE 4.36 4.43 3.64 2.19 

Adjusted R2 3.97 9.25 –0.11 77.67 

PHI = Philippines, RMSE = root mean square error, THA = Thailand. 
Note: The estimates are based on the original 90–10 training-validation data split.  
Source: Calculations generated by the study team. 

 
 
E. Comparing Results with a Simpler Model 
 
Does the use of daytime imagery and deep learning, artificial intelligence-based method perform better 
than a simpler structural model? To answer this question, the published SAE or survey-level poverty 
rates were regressed on the average nightlight intensity and an intercept using ordinary least squares.13 
The resulting parameter estimates were then used to predict image level poverty rates. The RMSEs are 
presented below (Table 5).  
 
 

Table 5. Root Mean Square Error for Poverty Rate (Validation)  
Small Area Estimation and Survey Level 

(%) 
 

Year 

Philippines Thailand 
Artificial 

Intelligence 
Simple Model 
Night Lights 

Artificial 
Intelligence 

Simple Model 
Night Lights 

Year 1 13.30 17.86 12.12 14.69 
Year 2 12.48 15.16 4.36 3.96 
Year 3 22.64 17.12 3.13 5.51 

Source: Calculations generated by the study team. 
 
 

Overall, the artificial intelligence-based approach outperformed the simpler model with 
intensity of night lights as the sole predictor with few exceptions (i.e., Philippines 2018 and Thailand 
2015). In Thailand’s case, this is potentially another evidence that the resolution of daytime images 
affected the performance of the artificial intelligence-based method. Meanwhile, the occurrence where 
the simpler model performed better is Philippines 2018 which suggested that the artificial intelligence-
based approach could be quite sensitive to the resolution of the input data.  
 
 

 
13  In principle, one can add more covariates other than night light intensity. However, given that the main objective of this 

study is to produce poverty numbers that are more granular than published ones, the list of potential covariates should only 
include variables that are available at a granularity finer than the level at which published poverty numbers were available.  
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F. Harmonizing Artificial Intelligence-Based Predictions  
with Published Poverty Rates 

 
In the course of the research, the team saw that the image-level poverty predictions generated from 
employing an artificial intelligence-based method when aggregated at the same level of the published 
poverty numbers, the data is not necessarily equal to the official poverty figures. From a practical 
perspective, this could potentially create confusion among users of poverty statistics in terms of which 
dataset should be followed. To avoid causing confusion, governments can consider calibration methods.  
 

If it is a reasonable assumption to make that the survey-based or small area poverty estimates 
are statistically reliable at the disaggregation level where these numbers are published, the more granular 
artificial intelligence-based predictions can be rescaled or calibrated such that, when they are 
aggregated at the same level where published poverty statistics are available, the two sets of estimates 
are consistent. Adopting this strategy is appealing for compilers of official statistics as it avoids confusion 
for users who rely on official estimates but also use alternative data sources.  

 
Further, through calibration, the study team was able to address the underestimation of poverty 

in Thailand which may have been caused by the lack of variability in the input data.  
 
Figure 5 shows the distribution of artificial intelligence-based poverty predictions that have been 

calibrated for the Philippines and Thailand.  
 

If there would be concerns about the reliability of the survey-based or small area estimates, the 
uncalibrated artificial intelligence-based predictions may be used as a point of validation.14 When 
differences between the uncalibrated predictions and the published estimates are small, there may be 
cause to have increased confidence in the reliability of the published estimates. However, where there 
are nontrivial differences between the artificial intelligence-based predictions and the published 
estimates, further investigation may be merited. In such context, further validation may entail consulting 
local authorities and key stakeholders who have better appreciation of the socioeconomic realities on 
the ground.  
 
 
 
 
 
 
 
 
 
 
 
 

 
14  In general, there are several reasons why there could be concerns about the reliability of an official statistic. In the case of 

poverty estimation, if the statistics are directly estimated from household surveys, there is a chance that the homeless or 
those who do not have permanent dwellings are not captured in such surveys. Similarly, if census data are combined with 
survey data to generate small area poverty estimates, it is possible that the model has suboptimal predictive performance 
due to lack of covariates that are time invariant. 
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Figure 5: Calibrated Machine-Learning Poverty Predictions 
 

 PHI 2012 PHI 2015 PHI 2018 

     
 

 THA 2013 THA 2015 THA 2017 

     
 

km = kilometer, PHI = Philippines, THA = Thailand. 
Note: The images present the calibrated machine-learning based estimates of poverty rates for every (approximately) 4 km by  
4 km grid.  
Source: Calculations and graphics generated by the study team. 
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VI.   DISCUSSION AND SUMMARY 
 
Can new sources of data, such as satellite images, which NSOs do not typically use when compiling 
development statistics, serve as a useful supplementary data source in measuring the Sustainable 
Development Goals? 
  

This was the question that this study attempted to answer by looking at poverty mapping using 
satellite imagery as a case study. The team leveraged on recent developments in computer vision 
techniques and publicly available earth observation data available during the day and at night. With the 
high costs associated with high resolution imagery, using publicly available satellite images may be 
attractive to NSOs that are beginning to explore these innovative data sources and methods, and hence, 
greatly increase the applicability of the approach to other areas where NSOs are also working.  

 
In this study, data from satellite images were integrated with household income as well as 

expenditure surveys and censuses for two developing countries—the Philippines and Thailand. The 
results helped produce poverty maps that were more granular than existing maps based on conventional 
poverty data sources. The methodological approach that was followed was inspired by deep machine 
learning techniques used by Jean et al. (2016). The results of applying this methodology on specific 
datasets were encouraging. The use of publicly accessible satellite imagery, whose resolutions were not 
as refined as proprietary images, still yielded predictions that were generally aligned with the 
government-published poverty estimates.  

 
Nevertheless, there are aspects of the adopted method which could be further improved.  For 

instance, it can be noted that the resolution of the input imagery has an effect on the quality of the 
outputs. Higher resolution imagery (i.e., Sentinel’s 10-meter resolution versus Landsat’s 15-meter 
resolution) was associated with better predictive performance. Hence, scaling up from exploratory 
studies to a more rigorous poverty mapping initiative would potentially benefit from high resolution 
imagery that are commercially available and more sophisticated computing tools.  

 
Another key consideration is the granularity of input data used in training the algorithm. In this 

study, the team showed that for periods when small area poverty estimates were available, the predictive 
performance was better than when input data from periods when only household income and 
expenditure surveys were available was used. This was an important caveat for future research, 
especially when only household survey data are available as input data for training an algorithm.  

 
Further, validation of the results is warranted particularly for instances when the government 

published poverty estimates were significantly different from the predictions produced by our adopted 
method. For this purpose, it would have been ideal to conduct field validation and consult key 
stakeholders through interviews or workshops. However, this activity was difficult as large gatherings 
were discouraged at the time of writing of this report, due to the coronavirus disease (COVID-19) 
pandemic.  

 
To address this issue in this study, the study team employed calibration methods under the 

assumption that government-published estimates provided an accurate picture of poverty at the level 
for which statistics are published (i.e., municipal, city, or provincial level in the Philippines and tambon 
level in Thailand). In particular, the resulting machine-learning predictions were rescaled or calibrated 
such that, when the grid-level predictions were aggregated at the appropriate levels, they aligned more 
closely with the government-published numbers. The calibration method was designed to preserve the 
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distributional structure of the grid-level poverty predictions, while paying heed to the estimates 
published by the government at more aggregated levels. In practice, adopting this type of calibration 
may be appealing as it avoids confusion for users who traditionally rely on government estimates 
published by NSOs and other relevant government agencies. 

 
Further, although it was found that the predictive performance of the adopted method was 

better than a model which predicted poverty rates using only data from the intensity of night lights, 
combining the extracted image features with other granularly available data could improve on the 
existing predictions. For example, adding nighttime lights or other remotely sensed information 
(elevation, precipitation) or other types of readily available socioeconomic data can readily be tested 
since the image features can be thought of as latent variables and can be added to analyses related to 
wealth and poverty.   

 
Lastly, this study focused on examining the feasibility of data integration—which entailed the 

combination of satellite imagery with surveys and census—and computer vision techniques to enhance 
the granularity of poverty estimates compiled from conventional data sources. Instead of enhancing 
granularity, other studies focused on predicting poverty or wealth for areas or years where conventional 
data for poverty estimation were not available. To test whether the methodological principles discussed 
in this paper still apply for such research objective, additional investigation may be needed. For instance, 
it is important to examine whether it is safe to assume that the relationships observed for the years 
wherein data are available are stable over time or not.  
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