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ABSTRACT

This paper examines the impact of industrial robots on jobs. We combine data on robot adoption and
occupations by industry in 37 economies for the period 2005-2015. We exploit differences across
industries in technical feasibility—defined as the industry’s share of tasks replaceable by robots—to
identify the impact of robot usage on employment. The data allow us to differentiate effects by the
routine intensity of employment. We find that a rise in robot adoption relates significantly to a fall in
the employment share of routine manual task-intensive jobs. This relation is observed in high-income
economies, but not in emerging market and transition economies.

Keywords: employment, occupations, robots, tasks

JEL codes: E23, 123,030



. INTRODUCTION

Rapid improvements in robot capabilities have fueled concerns about the implications of robot
adoption for jobs. While the creation of autonomous robots with flexible 3D movement continues to
be a major challenge to engineers, rapid progress is being made. Robots can now perform a variety of
tasks, such as sealing, assembling, and handling tools. As robot capabilities continue to expand and unit
prices fall, firms are intensifying investment in robots (Frey and Osborne 2017, Graetz and Michaels
2018, Acemoglu and Restrepo 2020). What is the impact of robot adoption on labor demand? Do
robots substitute for tasks previously performed by workers?

The main contribution of this paper is to empirically study the impact of industrial robots on
the occupational structure of the workforce across industries in a set of high-income as well as
emerging market and transition economies (EMTEs). We combine a large and detailed occupations
database with data on industrial robot deliveries from the International Federation of Robotics. The
database on occupational employment from Reijnders and de Vries (2018) allows us to examine the
share of employment in occupations with a high content of routine tasks—that is, tasks that can be
performed by following a well-defined set of procedures. We delineate occupations along two
dimensions of the characteristics of tasks performed, namely ‘analytic’ versus ‘manual,” and ‘routine’
versus ‘nonroutine.” We thus distinguish four key occupational groupings, namely routine manual,
routine analytic, nonroutine manual, and nonroutine analytic task-intensive occupations (as in Autor,
Levy, and Murnane 2003; Reijnders and de Vries 2018; Cortes et al. 2020). We follow Graetz and
Michaels (2018) in constructing measures of robot adoption by country-industry pairs and relate
these to changes in occupational employment shares. Our sample covers 19 industries for
37 economies at varying levels of development from 2005 to 2015, and includes major users of
industrial robots, such as the Peoples Republic of China (PRC), Japan, the Republic of Korea,
Germany, and the United States (US). Our main finding is that country—-industry pairs that saw a more
rapid increase in robot adoption experienced larger reductions in the employment share of routine
manual jobs.

Our approach is motivated by the following economic considerations. Firms produce a variety
of products using a continuum of tasks (Acemoglu and Autor 2011), and these products differ in the
number of tasks that can be performed by robots (Graetz and Michaels 2018). For example, the share
of replaceable tasks by robots differs between apparel and automotive and appears larger in the latter.?
This gives rise to differences across industries in the technical feasibility of robots substituting tasks
previously performed by humans. Advances in machine capabilities expand the set of tasks carried out
by machines (Acemoglu and Restrepo 2018). Firms will adopt robots if it is technically feasible and the
profit gains exceed the costs of purchasing and installing robots. Given higher wages in advanced
countries, the technical constraints to robots replacing tasks are more likely to bind for firms in these
countries. Hence, improvements in robot capabilities would result in a larger employment response in
advanced countries compared to developing countries.

We use these economic insights in our analysis. In particular, the technical feasibility of
adopting robots guides our instrumental variables (IV) strategy to identify the causal relation between
robots and labor demand. Economic feasibility motivates our distinction of the impact of robot

' The distinction between manual and analytic occupations is based on differences in the extent of mental versus physical

activity.
See, for example, The Economist. 2017.“Sewing clothes still needs human hands. But for how much longer?” August 24.



2 ADB Economics Working Paper Series No. 619

adoption between advanced and developing economies. Using two-stage least squares (2SLS)
estimation, we find that robot adoption lowers the employment share of routine manual occupations.
This relation is observed in high-income economies, but not in EMTEs.

This paper relates to recent studies that examine the impact of robot adoption on
socioeconomic outcomes. Graetz and Michaels (2018) find that robot adoption contributed to an
increase in productivity growth across industries in high-income countries between 1993 and 2007.
Their findings suggest that robot adoption did not reduce employment, which is corroborated in this
paper. This is also observed by Dauth et al. (2019), but not by Acemoglu and Restrepo (2020), who
examine geographic variation in robot adoption across the US and find that robots are labor replacing.
Dauth et al. (2019) use detailed linked employer-employee data for Germany to show that
displacement effects are canceled out by reallocation effects, such that in the aggregate no
employment effects from robot adoption are observed. Data availability did not allow Graetz and
Michaels (2018) to examine the impact of robots on workers that perform different tasks. Yet, Autor
(2015) emphasizes that workers with routine task-intensive occupations are most likely to be affected
by automation. This paper aims to contribute to our understanding of the impact of robots on such
occupational shifts.

The remainder of this paper is organized as follows. Section Il reviews the key theoretical
mechanisms between automation and labor demand. Section Il describes the methodology and
instrumental variables. Section IV documents patterns in the occupational structure of the workforce
and robot adoption. Section V empirically studies the impact of robot adoption on the task content of
labor demand. Section VI concludes.

IIl. THEORETICAL FRAMEWORK

This section starts with a discussion of robot adoption in the context of a traditional capital-labor
model. In this model, technology is factor-augmenting: it increases the efficiency of one of the
production factors employed (Acemoglu and Autor 2011). The model puts the focus on the
complementarity and substitutability between robots and tasks performed by workers. We then
describe recent modeling efforts that emphasize the ability of machines to replace workers in a
widening range of tasks (Acemoglu and Restrepo 2018). These models help to clarify mechanisms by
which robots may impact labor demand and motivate our empirical analysis.

The models we describe analyse the impact of automation. Automation refers to computer-
assisted machines, robotics, and artificial intelligence (Acemoglu and Restrepo 2018). Thus, robots are
a subset of automation. Robots are driven by algorithms, which have become increasingly complex.
They can now operate without requiring anyone to explicitly program the mechanisms of the tasks
performed. Yet, not all algorithms drive a physical machine. In fact, many algorithms are embodied in
devices or applications. Once these algorithms are designed, they can be used for many tasks
anywhere and at any time. For robots, the algorithms are embodied in the machines. Expanding the
range of tasks performed by robots thus requires investing in robots, that is, robots are rival (Martens
and Tolan 2018). This contrasts to algorithms, which are nonrival in nature. Robots are more
frequently studied in empirical work because of the availability of statistics on their use. However,
given the properties of robotics, studies that use robot data capture only part of the impact of
automation on labor.
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In the traditional model, automation enhances the productivity of workers by complementing
the tasks they perform (see, for example, Autor, Katz, and Krueger 1998; Feenstra 2008; Van Reenen
2011). Yet, for workers who perform tasks that can be substituted by automation, increasing availability
of machines will lower their labor demand. Scholars have argued that new technologies tend to
substitute for occupations that are intensive in routine tasks, such as assemblers, and complement
nonroutine task-intensive occupations, such as managers and technical scientists (Autor, Levy, and
Murnane 2003; Van Reenen 2011; Goos, Manning, and Salomons 2014; Dauth et al. 2019). This is
because for routine tasks, such as monitoring, measuring, controlling, and calculating, there are well-
specified procedures which allow the task to be automated. Yet, knowing the rules that govern task
procedures is not a trivial requirement. For many nonroutine tasks, such as those requiring creativity
and problem-solving skills, automation is difficult and rather complements the performance of these
tasks done by humans. In line with this reasoning, an analysis for Western European countries by Goos,
Manning, and Salomons (2014) finds that recent technological progress has been replacing workers
doing routine tasks. This is referred to as “routine-biased technological change” (RBTC).2

Predictions in the traditional model are straightforward. Firms adopt robots if it is economically
feasible to do so, which is the case when profits exceed purchasing and installation costs. Therefore,
substitution of robots for routine tasks is more likely in countries with higher wage levels, and there a
fall in the fixed costs or the rental price will result in an increase in robot adoption (Graetz and
Michaels 2018).

Recent modeling efforts by Acemoglu and Restrepo (2018) add a distinctive feature of
automation: the technical ability of machines to replace workers in a widening range of tasks. They split
the production process into tasks done by workers and machines. Advances in machine capabilities
expand the set of tasks carried out by machines and replace labor, thus lowering labor demand.

However, robotic automation technologies also result in the creation of new tasks that cannot
be done by machines, such as programming, design, and maintenance of high-tech equipment
(Acemoglu and Restrepo 2019). This ‘reinstatement effect’ increases labor demand. The combination
of tasks displaced by robots and the reinstatement of new tasks determine the reallocation of tasks
between workers and machines.

Complementarity between man and machine in the Acemoglu and Restrepo (2018) model
originates from two indirect effects that come on top of complementarity effects in the traditional
model (Martens and Tolan 2018). The first is a price-productivity effect whereby robot adoption
lowers prices of produced goods, leading the industry to expand sales and increase its demand for
labor. The second is a scale-productivity effect whereby lower aggregate goods’ prices enable the
(local) economy to expand and thus also increase labor demand. The overall impact of robotization on
labor demand then depends on whether the displacement or the complementary effects dominate. So
far, empirical evidence on the aggregate employment effects from robotization are inconclusive.*

3 Autor, Levy, and Murnane (2003) examine the impact of computerization on labor demand in US industries from 1960 to

1998. They find a positive relation between the demand for nonroutine tasks and computerizing industries. Ross (2017)
and De La Rica, Gortazar, and Lewandowski (2020) study the impact of RBTC on the wage premium for job tasks.
Acemoglu and Restrepo (2020) find that robot adoption lowers labor demand in US local labor markets. Dauth et al.
(2019) argue in an analysis for Germany that workers displaced by robots reallocate to services and there is no decline in
aggregate employment. In a cross-country analysis, Ghodsi et al. (2020) find that robot adoption does not significantly
affect aggregate employment, although the impact varies at the industry level.
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In line with Acemoglu and Restrepo (2018), Graetz and Michaels (2018) model the production
process as a continuum of tasks. Yet, Graetz and Michaels (2018) assume that products differ in the
share of tasks that can be carried out by machines. Garments provide a clear example: sewing
garments is a complex process that requires human intuition and dexterity, which is difficult to
program. In contrast, it has proven easier to program robots to perform tasks in automobile assembly
lines.” Automation of car assembly lines has helped to reduce error rates and enhances the control of
repeatable tasks. The technical feasibility of machines taking over tasks thus differs by industry.

In this expanded model, the improvement of machine capabilities may drive automation. That
is, if robot adoption is constrained by the production nature of certain industries, the rental price of
robots does not matter. Rather, it is an expansion in machine capabilities that will drive automation.
Given that labor costs are higher in advanced economies, the relaxing of technological constraints by
expanding robot capabilities will lead to higher economic incentives for robotization in advanced
countries and hence stronger employment responses.

The traditional and expanded model capture the key economic mechanisms driving robot
adoption and their employment effects. The PRC is an interesting case to illustrate how additional
factors drive robot adoption. Wage levels in the PRC are below high-income economies, but it is the
world’s largest adopter of industrial robots (Cheng et al. 2019). This seems counterintuitive to the
modeling of robot adoption. Yet, robot use in the PRC does coincide with rising wages and a slowdown
in the growth of its working-age population. Besides labor costs, concerns over product quality and
production expansion are found to influence decisions by firms in adopting robots (Cheng et al. 2019).
In addition, the Government of the PRC has initiated various programs and provides subsidies that
encourage the development of the robotics industry (Yang 2017, Lin 2018).

Robots may also reverse the trend to relocate fabrication activities from advanced toward low-
wage countries. In an interesting contribution, Faber (2018) points out that advances in robotics will
reduce production costs, no matter where the product is produced. That, he argues, will increase the
attractiveness of producing domestically relative to offshoring. In effect, workers in export sectors of
developing countries can be displaced by the adoption of robots, either onshore or offshore.
Essentially, foreign robots act as a form of competition on the export market. Using a methodological
approach similar to Acemoglu and Restrepo (2020), Faber (2018) finds that US robot adoption lowers
labor demand in Mexican export-producing sectors.’

These models inform the empirical analysis in our paper. The next sections describe the
methodology and data to examine the aggregate (cross-country) implications of robotization. We view
this analysis as a complementary approach to the within-country comparisons in Acemoglu and
Restrepo (2020), Dauth et al. (2019), and Faber (2018).

> Clearly, some textile production can now also be nearly fully automated; an example is the adidas® Speedfactory (Faber

2018). Yet, relatively speaking, the share of tasks that robots can perform varies across industries.

If robots result in reshoring of a factory, this will affect all workers at the exporting plant in the developing country. Faber
(2018) finds that Mexican workers in commuting zones most affected by US robots are low-educated machine operators
and technicians in manufacturing and high-educated workers in managerial and professional occupations. Using the
World Input-Output Tables, Krenz, Prettner, and Strulik (2018) find evidence for a positive relation between reshoring
and the degree of automation.
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Il. METHODOLOGY

To examine the relation between robot adoption and changes in the structure of the workforce, we
estimate regressions similar to those in Graetz and Michaels (2018) that take the form

AL = BARobot adoptionc; + X'qy + 8. + & M

where AL is the change in the employment outcome of interest in industry i of country c.” ARobot
adoption,; is the change of the robot stock relative to labor input in each country-industry pair.® Most
specifications include control variables which are changes in: investment-to-value-added ratios, and
(the natural logarithm of) value added. We also examine results controlling for the adoption of
information and communication technologies (discussed below). 8. represents country fixed effects,
which in a first-difference equation are equivalent to country-specific time trends in a levels’ equation.
Regressions are estimated in long-run changes between 2005 and 2015 because we are interested in
longer-term trends. The regressions weight industries using their 2005 employment shares within each
country. This ensures that estimates reflect the importance of industries within countries, but we give
equal weight to countries in the analysis (as, for example, in Graetz and Michaels 2018). We use
heteroscedasticity-robust standard errors that are two-way clustered by country and industry.® This is
a conservative approach because the resulting standard errors are typically larger compared to one-
way clustering by country or industry.

Endogeneity Concerns and 2-Stage Least Squares Estimation

Estimating (1) using ordinary least squares (OLS) raises several concerns about endogeneity. First, one
might worry about reverse causality and omitted variable bias. For instance, industries that experience
a faster growth in product demand may invest more in robots. Especially if the labor market is tight, a
positive demand shock is more likely to result in investment in robots rather than an expansion of
employment (Faber 2018)."° This is a case of reverse causality, because lower employment growth
results in higher robot adoption. Also, relevant variables might be omitted from the regression analysis.
For instance, Harrigan, Reshef, and Toubal (2016) find that adoption of new technologies is mediated
by technically qualified workers. Second, one may worry about attenuation bias of 8 in (1) due to
measurement error in the variable robot adoption. Clearly, the available data on robot adoption,
discussed in section IV.A, is imperfect, as it does not inform on the quality and other characteristics of
robots installed. In addition, we estimate regression specifications in changes, which may worsen the
signal-to-noise ratio compared to regressions of variables in levels. Due to measurement error, the
variable robot adoption could be correlated with the error term €. and OLS estimation of § would be

The employment outcome of interest is either the average annual percentage growth rate in employment by country—
industry pair, which is estimated as ((IN(EMP¢2015/EMP¢200s)) /10) * 100, or it is the change in the task-specific
employment share by country-industry pair, measured as the share in 2015 minus the sharein 2005.

Robot adoption is defined as the number of robots installed per thousand persons employed. We follow Graetz and
Michaels (2018) and use the percentile rank of the change in robot adoption as our main explanatory variable. This is
further elaborated upon in Section IV.A.

We implement Stata’s ‘ivreg2’ command for OLS and 2SLS regressions. Two-way clustered standard errors are robust to
arbitrary heteroscedasticity and intra-group correlation within each of the two (non-nested) categories “country” and
“industry” (Cameron, Gelbach, and Miller 2012). This allows for robust inference, for example, if errors are correlated
within countries (e.g., due to unobserved country-specific policies) and have separate correlation structures within
industries (e.g., due to technology shocks).

In his analysis of the Mexican labor market, Faber (2018) points out that a positive demand shock due to the North
American Free Trade Agreement may have put upward pressure on industries or local labor markets to adopt robots if
they had less room to expand employment.
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biased downward. Finally, industries that adopt robots may differ from other industries in nonrandom
ways, which would also bias the coefficient if not appropriately controlled for. Hence, the direction of
bias in B is not clear a priori, although the previous literature suggests that a downward bias in OLS is
more likely (e.g., Graetz and Michaels 2018).

In an attempt to address these endogeneity concerns, we use two industry-specific
instruments introduced by Graetz and Michaels (2018) and estimate (1) using 2SLS." The first
instrument measures the share of each industry’s labor input that is replaceable by robots. This
instrument is constructed using information on the tasks performed by robots (IFR 2012). As
discussed above, the extent of robotization for each task could be endogenous to industry conditions.
Therefore, Graetz and Michaels (2018) use information on US occupations in each industry from the
1980 census, which dates back before the rise of robots. Occupations are defined as ‘replaceable’ if
(part of) their tasks could have been replaced by robots in 2012. They then compute the fraction of
hours worked in each industry in 1980 that was performed by occupations that subsequently became
more prone to replacement by robots. This instrument is not without limitations: it is based on data
from the US and labor shares might therefore be different if constructed using data from other
countries.”

The second instrument is motivated by rapid improvements in the ability of robotic arms to
perform ‘reaching and handling’ tasks. It measures the prevalence of occupations in each industry that
require reaching and handling tasks compared to other physical demands in 1980, prior to robot
adoption. Robotic arms are a salient characteristic of robots, and much technological advances are
linked to the development of these robotic arms (Graetz and Michaels 2018). It is therefore more likely
that robotic arms are a technological characteristic of robots, less driven by the demand side (due to
industries’ task requirements), which could reflect reverse causality. This instrument is constructed
using the extent to which occupations in each US industry require reaching and handling tasks
compared to other physical tasks in 1980." Similar limitations as to the first instrument apply here, but
one may argue that this instrument is less likely to violate the exclusion restriction.

Clearly, neither instrument can guarantee to resolve all endogeneity concerns. Both
instruments reflect variation across industries in the share of tasks that are potentially replaceable by
robots, which may correlate with other changes over time. Nevertheless, the instruments are helpful to
contrast OLS with 2SLS results.

" The instruments are computed for two-digit industries in the ISIC Revision 3 classification, which matches with the

industry information on robot stocks and occupational employment shares presented in section IV.A. Note that the
instruments do not vary across countries but only across industries.

Also note the replacement values are an upper bound because occupations are considered to be replaceable even if only
part of their work can be replaced by robots.

Information on the task content of occupations is taken from the Dictionary of Occupational Titles.

12

13
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IV. DATA AND DESCRIPTIVE ANALYSIS

We first describe the data on robots and occupations in section IV.A. Descriptive statistics are
presented in section |V.B.

A. Occupations and Robots

We combine two datasets with information on occupations and robot purchases. The first dataset with
occupational employment by country-industry originates from Reijnders and de Vries (2018) and was
updated by Buckley et al. (2020). The data is constructed using detailed survey and census data from
statistical offices for the period 2000-2015. The sources used in constructing this dataset closely align
with those from other studies." The dataset provides employment for 13 occupational groupings by
country-industry pairs. It covers 40 economies, namely the 27 members of the European Union (per
January 2007); Australia; Brazil; Canada; India; Indonesia; Japan; Mexico; the PRC; Russian Federation;
the Republic of Korea; Taipei,China; Turkey; and the US. For each of these economies, occupational
employment shares by 35 ISIC Revision 3.1 industries that cover the overall economy are distinguished.
They include 14 two-digit manufacturing industries (such as textile manufacturing and electronics
manufacturing), as well as agriculture, mining, construction, utilities, finance, business services,
personal services, trade and transport services, and public service industries. The dataset thus has
dimensions of 13 occupational groupings x 35 industries x 40 economies x 16 years. Occupation data is
intrinsically not exactly comparable across economies, and in practice will also vary due to differences
in the type of sources and national data collection practices. Intertemporal changes within country-
industries are likely more consistent because Reijnders and de Vries (2018) use data from the same
national source for each economy. Our empirical analysis exploits this within-country variation.

We examine the impact of robot adoption on tasks, which we distinguish into routine versus
nonroutine and manual versus analytic tasks. Our measurement strategy is to infer the impact of robot
adoption on tasks from data on the occupational structure of the workforce. The distinction between
occupations with different task intensities is based on the so-called Routine Task Intensity (RTI) index
developed by Autor, Levy, and Murnane (2003) and mapped into the International Standard
Classification of Occupations (ISCO 88) by Goos, Manning, and Salomons (2014). Table 1 provides
the allocation of occupational groupings to tasks.

The second database includes deliveries of industrial robots by country-industry from the
International Federation of Robotics (IFR).” The IFR provides country data on the number of
industrial robots delivered from 1993 onward. Yet coverage varies and the breakdown of robot
investment by country-industry is only consistently available for most countries after 2004. In
addition, robot investments increased rapidly during the 2000s. We therefore build the dataset using
information for all available years but focus on the period 2005-2015 in the empirical analysis.™

For example, for the US, the sources are the 2000 Census and the annual American Community Surveys. These sources
are also used in Autor (2015). Data for European countries are from the harmonized individual level European Union
Labour Force Surveys, which are also used in Goos, Manning, and Salomons (2014).

Purchases of service robots are only available for recent years and few countries, which limits studying the impact on task
demand of robot adoption in the service sectors.

Program code to replicate the analysis is available from the authors upon request.
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Table 1: Mapping Occupations to Tasks

Routine Nonroutine
Manual Production workers (71-74, 81-82, 93) Support services workers (51,910, 912-916)
Agricultural workers (61-62, 92) Drivers (83)
Others (01,999)
Analytic Administrative workers (41-42) Legislators (11)

Managers (12-13)

Engineers (21, 31)

Health professionals (22, 32)
Teaching professionals (23, 33)
Other professionals (24, 34)
Sales workers (52, 911)

Note: Numbers in brackets refer to International Standard Classification of Occupations codes (ISCO 88).
Sources: Mapping of 13 occupations from Reijnders and de Vries (2018) to four different groups based on Autor, Levy, and Murnane (2003)
and Goos, Manning, and Salomons (2014).

We use the perpetual inventory method to build robot stocks, assuming a depreciation rate of
10% as in Graetz and Michaels (2018)."” We then define ‘robot densification’ or simply ‘robot adoption’
as the robot stock per thousand persons employed. We examine changes in robot adoption over time.
The distribution of changes in robot adoption for the country-industries included in our analysis has
mostly either zero or small positive values, with a long right tail. Analyzing raw changes in robot density
is therefore not recommendable and we use the percentile of changes in robot adoption (based on the
employment-weighted distribution of changes) as in Graetz and Michaels (2018)."

We match the data on robot adoption with occupational employment.” The 19 sectors that
are matched are 14 manufacturing industries, agriculture, mining, utilities, construction, and ‘education
and R&D’. The (unweighted) average employment share of these sectors in the total economy across
the sampled economies is 46% and 39% in 2000 and 2015, respectively. The share varies across levels
of development. It is about a quarter of the workforce in advanced countries such as Denmark, the
Netherlands, and the US throughout the sample period. It is over 50% of total persons employed in
industrializers such as the PRC, Turkey, and Poland.

7 The perpetual inventory method to build robot stocks is: RS.; = (1-d)*RS¢1+ RDi; , where RS is the robot stock of
industry i in country c at time t; RD are robot deliveries, and d is the depreciation rate. Our main results are robust to
building the robot stock using a 5% and a 15% depreciation rate.

We follow Graetz and Michaels (2018) and calculate within-country employment-weighted distributions of changes in
robot adoption between 2005 and 2015. We use the Stata code that Graetz and Michaels (2018) made available at
https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/5JWBXU. Specifically, we denote robot
adoption by RA;; = RS, ,/EMP;,, that is, the robot stock per thousand persons employed in industry i of country c. We
denote ws, the weighted change in robot adoption of country ¢, which is the summation of changes in robot adoption by
industry i weighted by their employment shares. The change in robot adoption net of the weighted change in robot
adoption is ARA; = (RA; - RA 1) - ws.. We then calculate the percentile rank of the change in robot adoption (ARA)
and use this variable in the regression analysis. The use of percentiles is common in the economics literature and helpful
when the data is skewed, see, for example, Autor, Levy, and Murnane (2003).

After matching the datasets, we have data for 37 economies and 19 sectors, with missing data for a few country-industry
pairs. High-income economies include the ‘old” EU15 countries, western offshoots, and high-income East Asian
economies, namely Australia; Austria; Belgium; Canada; Denmark; Finland; France; Germany; Greece; Ireland; Italy; Japan;
Malta, the Netherlands; Portugal; the Republic of Korea; Spain; Sweden; Taipei,China; the United Kingdom; and the US.
EMTEs are the others, namely Brazil, Czech Republic, Estonia, Hungary, Indonesia, India, Lithuania, Latvia, Mexico,
Poland, the PRC, Romania, Russian Federation, Slovakia, Slovenia, and Turkey.
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In most regression specifications, we control for changes in the investment-to-value-added
ratios, and (the natural logarithm of) value added.** Although robots are a visible and much discussed
form of automation, computers and other digital technologies impact jobs as well. Information and
communication technologies (ICTs) have been found to be skill biased, raising the productivity of high-
skilled workers and lowering demand for low-skilled workers (Feenstra 2008; Michaels, Natraj, and
Van Reenen 2014). In contrast, robots are part of recent innovations and considered routine biased, as
they substitute for workers performing routine manual tasks (Goos, Manning, and Salomons 2014).
These routine tasks are often performed by workers with a middling level of education, such as
fabrication jobs involving repetitive production tasks (Autor 2015). We therefore expect a direct effect
of robot adoption on the demand for routine manual task-intensive occupations independent of
ICT investment.

To control for ICT adoption, we use data from the EU KLEMS Release 2019 for gross fixed
capital formation in computing and communication equipment (Stehrer et al. 2019). These ICT
investments are expressed as a share in total investment. Changes in the ICT investment share are
included in the analysis, also in the form of the percentile of changes in ICT adoption (based on the
employment-weighted distribution of changes).

B. Descriptive Analysis

Table 2 shows descriptive statistics of our key dependent and explanatory variables. The top rows show
changes in employment shares for occupations by task intensity. On average, the routine (manual)
employment share declined by 4 percentage points between 2005 and 2015. This trend is observed in
35 out of 37 economies, but the decline in the routine share differs across economies and industries.
This can be seen in Appendix Figures 1 and 2, which depict the changes in employment shares for our
four occupational groupings by country and industry, respectively. The decline in routine manual
occupations is mirrored by the rise of nonroutine analytic jobs, which increased by 4 percentage points
on average.” The comparability of the shifts in routine manual and nonroutine analytic occupations
across our sample of high-income economies and EMTEs makes it likely that a common set of forces
contributes to shared developments in labor markets. The prime suspect is automation (Autor 2015).
At the same time, variation in country-specific experiences underscores that no common cause will
explain the full diversity of labor market developments across these economies.

The average robot stock per thousand persons employed more than doubled from 2.23 in
2005 to 4.98 in 2015. The standard deviation of robotization reveals substantial variation in
robotization across countries and industries. Most of this variation stems from cross-industry
differences within economies as opposed to variation between economies.” More robots were
installed in all economies, with the number of robots per thousand persons employed surging in

20

This data is obtained from the World Input-Output Database 2016 release (Timmer et al. 2015). The first control
variable, investment-to value-added ratios may be subject to concerns about multi-collinearity as robots are part of
physical capital investment. We explored the share of robot investment in overall investment by using turnover-based
prices of robots for the US provided in IFR (2012). The number of robot times their unit price gives a rough approximation
of nominal investment. Our estimates suggest that the share of robot investment in total investment is small, typically not
exceeding 1%. The first differences of our data for robot adoption and investment-to-value-added ratios are only loosely
correlated, with a correlation coefficient of -0.06.

Changes in the shares of routine analytic and nonroutine manual jobs are typically smaller and we observe substantial
variation across economies (see Appendix Figure 7).

The standard deviation of the robot stock per thousand employed between economies is 8.06 in 2015. In comparison, the
standard deviation of robot adoption within economies is 21.06 in 2015. Those are calculated, respectively, as the
standard deviations of country means X, and of their deviations x.; — %, + X, where x indicates robot adoption and X is its
global average.

21

22



10  ADB Economics Working Paper Series No. 619

Germany, Japan, and the Republic of Korea (see Appendix Figure 3).?® High robot density is observed
in machinery, electronics, and automotive (see Appendix Figure 4). For industries that produce
chemicals and metal products, we also observe an increase in robot density, albeit starting from
low levels.

Appendix Figure 5 shows the number of robots per 1,000 persons employed by industry in the
PRC and Germany for 2015. This figure helps clarify the lower level of robots per thousand persons
employed in the PRC. For example, in 2015, the number of robots installed in the PRC’s automotive
industry was about 50,000, which compares to a slightly lower number of around 48,500 robots
in that industry for Germany. Yet, in 2015, the number of persons employed in automotive is about
6.8 million in the PRC compared to 965 thousand in Germany, so a factor 7 difference in the size of the
workforce in that industry. Hence, the number of robots installed per thousand persons employed is
about 7 in the PRC compared to 50 in Germany.

Table 2 also provides descriptive statistics for the instruments and control variables. The
instruments replaceable tasks and reaching and handling tasks are positively correlated, but different.*
For example, the highest share of replaceable tasks is observed in automotive and metal
manufacturing, whereas the extent of reaching and handlings tasks is highest in textile and food
manufacturing.

Table 2: Descriptive Statistics

Obs Mean SD p5 p95
Dependent variables
Employment growth (average annual, in %) 700 -0.78 341 -6.0 3.9
A Routine employment share 700 -0.04 0.10 -0.2 0.1
A Routine manual employment share 700 -0.04 0.12 -0.2 0.1
A Routine analytic employment share 700 -0.00 0.05 -0.1 0.1
A Nonroutine manual employment share 700 -0.00 0.06 -0.1 0.1
A Nonroutine analytic employment share 700 0.04 0.10 -0.1 0.2
Independent variables
Percentile of changes in robot adoption 700 0.50 0.29 0.0 1.0
Robot adoption, 2005 700 2.23 10.17 0.0 10.5
Robot adoption, 2015 700 498 22.54 0.0 211
A Investment-to-value-added ratio 700 0.02 0.69 -0.2 0.2

continued on next page

% For Japan, reported deliveries and stocks of robots changed over time due to a reclassification of machines as robots

(Graetz and Michaels, 2018). In section V.B, we show that the main results are robust to dropping Japan from the sample.
Note the instruments are measured by industry based on data for the US (see section IV.A) and matched to the country—
industry pairs.

24
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Table 2 continued

Obs Mean SD p5 p95
A (natural logarithm of) value added 700 0.21 0.60 -0.7 11
Percentile of changes in information technology adoption 277 0.51 0.29 0.0 1.0
Percentile of changes in communication technology 277 0.50 0.30 0.0 1.0
adoption
IV: Reaching and handling tasks 700 0.45 0.05 0.3 0.5
IV: Replaceable tasks 700 0.25 0.12 0.0 0.4

IV = instrumental variable.

Notes: A ‘A’ in front of a variable refers to the change between 2005 and 2015. For variable descriptions, see section IV.A. In the columns,
‘obs’ refers to the number of observations, SD the standard deviation, p5 the 5th percentile, and p95 the 95th percentile.

Source: Authors’ calculations.

Figure 1 plots the change in the routine employment share against measures of increased robot
use. In subfigure (a), we plot the percentile of the change in robot density net of country trends on the
horizontal axis, as well as the fitted regression line. The slope is negative and statistically significant.
The distribution of data points around the fitted line suggest that the relationship between the routine
share and the percentile of robot densification is well approximated by a linear functional form. In
subfigure (b), we instead plot changes in robot density on the horizontal axis (again net of country
trends), together with the fitted line. Here a linear functional form (though also negative and
significant at conventional levels) seems much less adequate, and the estimated slope appears
sensitive to several outlying observations near the top of the distribution of robot densification. Thus,
following Graetz and Michaels (2018), in the regression analysis we will use the percentile of changes
in robot densification.

Figure 1: Robots and the Routine Employment Share

14 14

n
1

o
1

Change in routine employment share
Change in routine employment share

0 20 40 60 80 100 -100 0 100 200 300
Percentile of change in #robots/employment Change in #robots/employment

Notes: Observations are country-industry cells. The size of each circle corresponds to an industry’s 2005 within-country employment
share. Vertical axis displays the change in the routine employment share between 2005 and 2015. Horizontal axis of panel (a) shows the
percentile of changes in robot adoption (based on the employment-weighted distribution of changes), see section IV.A. Panel (b)
changes in robot adoption (based on the employment-weighted distribution of changes). Fitted regression lines are shown. Coefficients
(standard errors) of the linear fit are respectively -0.00033 (0.00010) and -0.0013 (0.0004).

Source: Authors’ calculations.
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Panel (a) of Figure 2 shows a descriptive relation between robot adoption and industry average
changes in the routine employment share between 2005 and 2015 (see Appendix Table 1 for the
industry descriptions). We observe a (slightly) stronger reduction in the routine share for industries
that invested more in robots. Sectors such as paper and utilities experienced a decline in the share of
routine jobs with only a relatively small increase in robotization. In manufacturing industries such as
machinery, electronics, and automotive, we observe a decrease in the share of routine jobs. These
industries are also among the ones with the strongest increase in robot adoption. Panels (b) and (c)
suggest both instruments are good predictors, as industries with a higher share of replaceable tasks or
those more intensive in reaching and handling tasks have installed more robots compared to others.
The next section formally tests these relationships.

Figure 2: Cross-Industry Variation in Instrumental Variables and Changes
in the Routine Employment Share
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Notes: On the horizontal axis is the (unweighted) average percentile of changes in robot adoption by industry. In panel (a), the vertical
axis shows the industry (unweighted) average change in the routine employment share between 2005 and 2015. The coefficient
(standard error) of the linear fit in panel (a) is —0.013(0.007). The vertical axis of panels (b) and (c) show the values for the instruments,
coefficients (standard errors) of the linear fit are respectively 0.59(0.11) and 0.20(0.07).

Source: Authors’ calculations.
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V. ECONOMETRIC RESULTS

We present our main results from OLS and 2SLS regressions in section V.A. We find that robot
adoption relates to a decline in the employment share of occupations with a high content of manual
routine tasks. In section V.B, we present several extensions and robustness checks. We first document
that results appear neither driven by specific sectors or economies nor spurious industry trends. We
then exploit heterogeneity in task intensity across (blue-collar) production workers and find that robot
adoption relates to declining demand for occupations that are more intensive in routine tasks. Finally,
we explore whether global developments in robotization impact labor demand in EMTEs.

A. Main Ordinary Least Squares and 2-Stage Least Squares Results

Our main regression results are summarized in Table 3, with OLS results in panel (a) and 2SLS results
in panel (b). We start the analysis by regressing the average annual percentage growth of employment
on robot adoption. Country fixed effects are included; thus, coefficients are identified from variation
across industries. We use a conservative two-way clustering of standard errors at the country and
industry level. Column 1 of Table 3 indicates that robot adoption is negatively correlated with the
average growth rate of employment between 2005 and 2015. However, this relationship is not
statistically different from zero. It suggests robot adoption is not labor replacing, which was
also observed by Graetz and Michaels (2018). Our finding indicates this result holds in a larger
country sample.

In column (2) of Table 3, we examine the relation between robot adoption and the share of
routine jobs. We find that increased robot use contributes to a decline in the routine employment
share. To assess the economic magnitude, consider the difference between an industry with a median
trend in robot adoption and an industry with no robot adoption, which equals 0.5 x -0.047 = -0.02 in
the OLS regression. This difference amounts to about 59% of the average change in the routine
employment share (which is -0.04, see Table 2). While this indicates a sizable impact of robots on
occupational shifts, the R-squared of 2% in column (2) where country fixed effects are partialled out,
indicates that many other factors than robot adoption affect changes in the share of routine jobs. The
coefficient more than doubles in the 2SLS regression, where we use the share of replaceable tasks in
industries as an instrument (panel [b], column [2]). The instrument is positively and statistically
significantly correlated with robot adoption in the first stage, which is reported in column (4) of panel
(b). Identification is strong, with the Cragg-Donald Wald F statistic (268.53, assuming i.i.d. errors) and
the Kleibergen-Paap F-statistic (23.42) surpassing the 10% critical value (16.38). Under-identification
is rejected at the 5% level of statistical significance. The considerable increase in the estimated second
stage coefficient for robot adoption, when compared to OLS results, may reflect measurement error in
our main explanatory variable: an increase in the noise-to-signal ratio in robot adoption will bias OLS
estimates toward zero. Moreover, the increase in the coefficient in 2SLS estimates may reflect that our
instrument for robot adoption only varies across industries and that global industry trends impact
changes in routine employment shares (see subsection V.B below). Using ‘reaching and handling’
tasks as an instrument gives similar results, although more prone to weak identification concerns
(see Appendix Table 2).
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Table 3: Baseline Regression Results of Employment Growth and Change

in Routine Employment Share

M @ 3 C)
A Routine A Routine Percentile of
Employment Employment Changes in
A Employment Share Share Robot Adoption

(@ oLS
Percentile of changes in robot adoption -0.354 -0.047** -0.055*

0.73) (0.02) (0.02)
Percentile of changes in robot adoption x 0.040***
dummy EMTE (0.02)
R? 0.001 0.025 0.028
Observations 700 700 700
Number of economies 37 37 37 37
(b) 2SLS (IV: Replaceable tasks)
Percentile of changes in robot adoption -2.714 -0.120** -0.156**

(3.03) (0.05) (0.06)
Percentile of changes in robot adoption x 0.136**
Replaceable tasks 0.892***

(0.18)

Cragg-Donald Wald F statistic 268.53
Kleibergen-Paap F-statistic 2342
Kleibergen-Paap under identification test 0.013
(p-value)
R? -0.052 -0.027 -0.053
Observations 700 700 700 700
Number of economies 37 37 37 37

2SLS = two-stage least squares, EMTE = emerging market and transition economy, IV = instrumental variable, OLS = ordinary least squares.

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable employment growth in
column (1) is the average annual percentage growth in employment for the period 2005-2015. The dependent variable in columns (2)-(3)
is the change in the routine employment share between 2005 and 2015. Column (4) reports the first stage for 2SLS estimation. The share of
replaceable tasks in an industry is used as an instrument for robot adoption. Regressions include the change in the investment-to-value-
added ratio and the change in (the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all

regressions and partialled out in the reported R ** p<0.01,* p<0.05, * p<0.1.
Source: Authors’ calculations.
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An advantage of our dataset is the broad economy coverage, including various emerging
market and (post-) transition economies. In column (3) of Table 3, we differentiate the relation
between robot adoption and routine shares across high-income economies and EMTEs.*® We do so by
interacting a dummy variable for EMTEs with robot adoption.” The relationship between robot
adoption and declining routine shares appears to mainly occur in high-income economies: for both,
the OLS and 2SLS regressions, the negative overall coefficient estimate for robot adoption in column
(3) is almost equal in size to the positive interaction term with the EMTE dummy, indicating that the
effect of robot adoption is essentially nullified in those economies.”’” Since technical constraints to
robots replacing tasks are more likely to bind for firms in high-wage advanced economies,
improvements in robot capabilities might account for the larger employment response in advanced
economies compared to EMTEs.

Additionally, our dataset allows us to further disaggregate routine and nonroutine employment
shares into manual and analytic task-intensive occupations. Results are reported in Table 4, again with
OLS results in panel (a) and 2SLS results in panel (b).2® We find that the negative relation between robot
adoption and routine employment shares is exclusively driven by manual routine jobs: the estimates in
column (1) of Table 4 essentially mimic those of column (2) in Table 3, while no relationship can be
found between robot adoption and analytic routine employment shares (Table 4, column 2). It thus
appears robots are better suited to substitute for routine manual tasks due to the ability of robots to
manipulate objects. Conversely, the share of nonroutine analytic occupations positively relates to robot
adoption (column 4). This is consistent with the intuition that nonroutine analytic tasks are
complemented by robots in production (Autor 2015). No relevant relationship is observed between
robot adoption and changes in the manual nonroutine employment share (column 3).

*  Given the number of robots installed in the PRC, it might be less appropriate to classify it as an EMTE. To check for

robustness of reported results, we omitted the PRC from the sample and reclassified it as a non-EMTE. This did not alter
the results (available upon request).

In the reported 2SLS regressions, we only instrument robot adoption but not the interaction. We additionally estimated
2SLS regressions with the interaction instrumented, which required interaction of our instrument with an EMTE dummy in
the first stage. Results, which are available upon request, were quantitatively and qualitatively similar to those reported,
but more prone to weak identification concerns.

OLS and 2SLS estimates of 8 are not statistically significantly different from zero when estimating equation (1) for EMTEs
only. Results are available upon request.

Note that first-stage results for the 2SLS case are the same as in Table 3.

26
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Table 4: Robot Adoption and Changes in Employment Shares by Task Type

M @ 3 )
A Routine A Routine A Nonroutine A Nonroutine
Manual Analytic Manual Analytic
Employment Employment Employment Employment
Share Share Share Share
(@) OLS
Percentile of changes in robot adoption -0.049*** 0.002 -0.008 0.055**
(0.02) (0.00) (0.01m) (0.02)
A Investment-to-value-added ratio 0.003** 0.001 -0.001 -0.003*
(0.00) (0.00) (0.00) (0.00)
A (natural logarithm of) value added 0.005 0.002 0.004 -0.009
(0.01) (0.00) (0.00) (0.01)
R? 0.024 0.003 0.007 0.031
Observations 700 700 700 700
Number of economies 37 37 37 37
(b) 2SLS (IV: Replaceable tasks)
Percentile of changes in robot adoption -0.119** -0.003 -0.032 0.152*
(0.05) (0.01) (0.02) (0.05)
A Investment-to-value-added ratio 0.004* 0.001 -0.001 -0.004***
(0.00) (0.00) (0.00) (0.00)
A (natural logarithm of) value added 0.012 0.003 0.006 -0.019**
(0.01) (0.00) (0.01) (0.01)
R? -0.020 0.001 -0.021 -0.059
Observations 700 700 700 700
Number of economies 37 37 37 37

2SLS = two-stage least squares, IV = instrumental variable, OLS = ordinary least squares.

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the
respective employment share between 2005 and 2015. The share of replaceable tasks in an industry is used as an instrument for robot
adoption. Country fixed effects are included in all regressions and partialled out in the reported R%. ** p<0.01,** p<0.05, * p<0.1.

Source: Authors’ calculations.

B. Robustness and Extensions

We performed several robustness checks. These are summarized in subsection V.B.1. The other
subsections focus on aspects considered relevant to better understand the relation between
robotization and routine employment shares and to motivate future research in this area. Subsection
V.B.2 examines the relation between robot adoption across production occupations that differ in task
intensity. Subsection V.B.3 examines whether the results are driven by longer-term industry trends.
Finally, subsection V.B.4 explores the role of global industry trends in robot adoption for driving
country—industry changes in employment shares.
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1. Robustness and Heterogeneity

We first examine regression results when adding ICT investment to the analysis. This is because
computers seem particularly suited to substitute for analytic tasks and the development of computer
and communication equipment is not independent of robot adoption, such that omitting ICT may bias
the coefficient for robot adoption. Including variables for computer and communication investment
leads to a considerable decline in the sample to 277 observations because the EU KLEMS dataset does
not report ICT investment by industry for many EMTEs. The estimated coefficient for the relation
between robot adoption and routine employment shares is smaller but remains negative and
statistically significant in the OLS and IV regressions (see column 1 of Appendix Table 3).*

To avoid results being driven by certain economies, we inspect the pattern of OLS residuals
(depicted in Appendix Figure 6). Furthermore, we look at the distribution of economy-specific
parameter estimates, which we obtain by interacting robot adoption with a matrix of economy dummy
variables in our main OLS specification (see Appendix Figure 7). There is a cluster of high fitted values
for Ireland (Appendix Figure 6, panel [a]) and two residuals from Romania and Sweden obtain a
relatively high leverage and are potential outliers (Appendix Figure 6, panel [b]). Moreover, the
economy-specific estimation coefficients in Appendix Figure 7 suggest coefficient estimates for
Ireland, Lithuania, and Latvia deviate from other economies. We hence exclude these five countries as
well as Portugal, which saw somewhat different employment dynamics than the rest of our sample,
according to our descriptive analysis (cf. Appendix Figure 1). Results are reported in column (2) of
Appendix Table 3. Dropping these countries does not qualitatively affect our main result.*

Similarly, we also compute industry-specific coefficients for the relationship between robot
adoption and the share of routine jobs. Appendix Figure 8 suggests that the electricity, gas, and water
supply sector could be an outlier that potentially drives the overall result, together with the education
and R&D sector, which saw different routine employment trends according to our descriptive analysis.
We thus reestimate our baseline regressions and sequentially omit these sectors. Columns (3) and (4)
of Appendix Table 3 suggest our results are not driven by these sectors, although omitting the
education and R&D sectors in 2SLS estimation pushes statistical significance of the robot adoption
parameter slightly beyond the critical 10% level (for the null hypothesis of no relationship). To check
whether countries that account for the majority of robots installed are driving our estimates, we also
excluded Japan, the Republic of Korea, Germany, the PRC, and the US from our estimates, leaving the
baseline estimate for robotization unaffected. For the same rationale, we also excluded the high robot-
adopting automotive and electronic industries (columns [5] and [6] of Appendix Table 3,
respectively). All parameter estimates for robot adoption where negative and statistically different
from zero and t-tests do not allow rejecting the null hypothesis of equality of these parameter
estimates with the baseline result (at the 10% level of statistical significance).

*  Moreover, the change in the parameter estimate appears to originate from a sample composition effect and not from

omitted ICT variables: reestimating the baseline model with the 277 observations for which ICT data is available produces
the same coefficient for robot adoption as in the presence of ICT variables: -0.033***,

We also excluded several of those countries/country groups separately, with equally robust results. This also applies to
excluding Japan from the analysis, which was dropped from the sample by Graetz and Michaels (2018).

30
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We also investigated whether a sample split at the median (0.5) of the percentile change in
robot adoption affects our results. The results indicate that the parameter estimate for the slower
adopters (<0.5) are considerably higher but estimated with low precision, so that they are not
statistically different from zero. Neither of the estimated OLS or IV parameters for the sample split are
statistically speaking different from those in the baseline result of column (2) in table 3, in line with an
approximately linear relationship suggested by panel (a) in Figure 1.*

2. Robot Adoption and Production Workers

In Table 1, production workers are categorized as having a high content of routine manual tasks. Yet,
production workers are typically labeled blue-collar workers. Hence, the relation between robots and a
declining employment share of routine manual jobs could reflect a substitution of robots for blue collar
production workers, instead of a substitution for routine tasks.

It is hard to rule out such an alternative interpretation. Yet, for 24 economies in our sample we
are able to distinguish seven two-digit ISCO occupations that together comprise the occupational
grouping labeled ‘production workers’ (cf. Table 1).2* The routine task intensity for each of these two-digit
occupations is provided by Autor, Levy, and Murnane (2003) and, using an alternative approach, by
Marcolin, Miroudot, and Squicciarini (2019). We use these to create a weighted average of the change in
the employment share of production workers. The weights we use are the routine intensity index (RII)
from Marcolin, Miroudot, and Squicciarini (2019) and the routine task intensity (RTI) gauged by Autor,
Levy, and Murnane (2003). The task intensity by occupation is reported in Appendix Table 4. Clearly,
the seven occupations labeled production workers are heterogeneous in the content of routine tasks.

The first column of Table 5 regresses the change in the employment share of production
workers on robot adoption. Results indicate a significant negative relation between robot adoption and
changes in the share of (routine manual task-intensive) production jobs. Subsequent columns
examine the same relation, but here changes in the share of production jobs are calculated as a routine
task-intensity weighted average change. Occupations that have a higher content of routine tasks
receive a greater weight in this approach.®

Weighting by routine intensity strengthens the negative association between robotization and
changes in the share of production jobs: the resulting parameter estimates in columns (2)-(5) are
larger compared to column (1). This result is observed if we use as weights the global average RII
reported by Marcolin, Miroudot, and Squicciarini (2019), see column (2), or the RIl for the US or
Germany (columns [3] and [4], respectively). It is also observed if we weight occupations using the
RTI from Autor, Levy, and Murnane (2003), see column (5), although the parameter is estimated with
less statistical precision in the OLS and 2SLS regressions. Overall, these results provide additional
evidence that robot adoption is related to a decline in the share of occupations that have a higher
content of routine tasks.

3 We also examined results when clustering standard errors at the country level and not clustering at all. The alternative

treatment of standard errors does not affect the statistical significance of the relation between robot adoption and the
share of routine jobs in the OLS regressions and the coefficient (B) is different from zero at the 1% level of statistical
significance in the 2SLS regressions.
32 The seven ISCO two-digit occupations that can be distinguished are ISCO 88 codes 71, 72, 73, 74, 81, 82, and 93. The
countries for which we are able to make this split are Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Ireland, ltaly, Lithuania, Latvia, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia,
Slovenia, Spain, Sweden, Turkey, and the United Kingdom.
The task-intensity measures are Pearson-transformed, that is, centered at O with a standard deviation of 1. We added
+1 to the measure. Hence, an occupation with mean routine intensity gets a weight of 1, a below-average routine intensity
occupation a lower weight, and an above-average routine intensity occupation a weight above 1 (see Appendix Table 4).

33
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Table 5: Robot Adoption and Changes in the Employment Share of Production Workers

M @ 3 ) )
RIl Weight RIl Weight
No Weight (Global Average) RIl Weight (US) (Germany) RTI Weight

(@) OLS

Percentile of changes -0.031* -0.066*** -0.065*** -0.058*** -0.103
in robot adoption (0.02) (0.02) (0.02) (0.02) (0.08)
R’ 0.016 0.036 0.054 0.035 0.019
Observations 450 450 450 450 450

(b) 2SLS (IV: Replaceable tasks)

Percentile of changes -0.083* -0.122* -0.143** -0.113** -0.318*
in robot adoption (0.04) (0.06) (0.05) (0.06) (019)
R? -0.018 0.013 -0.021 0.006 -0.033
Observations 450 450 450 450 450

2SLS = two-stage least squares, IV = instrumental variable, OLS = ordinary least squares, RIl = routine intensity index, RT| = routine task
intensity, US = United States.

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. Dependent variable is the change in the
employment share of production workers between 2005 and 2015, with weights indicated in the column header. In panel (b), the share of
replaceable tasks in an industry is used as an instrument for robot adoption. Country fixed effects are included in all regressions and partialled
out in the reported R% *** p<0.01, ** p<0.05, * p<0.1.

Source: Author’s calculations.

3. Controlling for Long-term Industry Trends

A remaining concern is that there could be a long-run decline in the share of routine tasks done by
workers, which is more pronounced in industries investing more in robots yet not driven by
robotization per se. A common way to examine this concern is to regress employment outcomes from
a pre-period on the period during which robots were adopted.

Ideally, we thus relate pre-period employment outcomes on the current rise of robots.
However, we are constrained by cross-country occupations data which are available from 2000
onward. By 2000, robots were already being installed (Graetz and Michaels 2018). Still, descriptive
statistics in Table 2 for the number of robots per thousand persons employed in 2005 and 2015
suggest they became ubiquitous from the mid-2000s onward.

In column (1) of Table 6 we therefore regress the change in the routine employment share
between 2000 and 2005 on our post-2005 measure of robot adoption. We indeed find a relationship,
although the coefficient is smaller and less precisely estimated compared to our baseline results
(cf. column [2] of Table 3).3* Pre-trend correlation is a necessary condition for unobserved sector
heterogeneity, but it is not a sufficient condition to render identification invalid. This is partly because

3 Note that the pre-trends in employment share changes cover a 5-year period. Estimated coefficients and standard errors

thus have to be approximately multiplied by a factor 2 to make them comparable with our main results for the 10-year
period from 2005 to 2015. When the pre-trends are included as lagged dependent variables (columns 2 and 3 of Table 6),
they accordingly have to be divided by 2.
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Table 6: Accounting for Long-Term [ndustry Trends

M @ 3 C) )
A Routine A Routine A Routine
Employment A Routine Manual A Routine Manual
Share Employment Employment Employment Employment

2000-2005 Share Share Share Share
(@) OLS
Percentile of changes in -0.020** -0.044** -0.046*** -0.016*** -0.026™**
robot adoption (0.07) (0.07) (0.07) (0.00) (0.07)
Change in dependent 0.174* 0.147*
variable, 2000-2005 (0.10) (0.08)
Industry fixed effects No No No Yes Yes
R? 0.014 0.035 0.030 0.007 0.007
Observations 700 700 700 700 700
(b) 2SLS (IV: Replaceable tasks)
Percentile of changes in -0.053** -0.113** -0.114**
robot adoption (0.02) (0.05) (0.05)
Change in dependent 0.133 0.109
variable, 2000-2005 (0.09) (0.08)
Industry fixed effects No No No
R? -0.018 -0.012 -0.010
Observations 700 700 700

2SLS = two-stage least squares, IV = instrumental variable, OLS = ordinary least squares.

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the
respective employment share over the respective period. The share of replaceable tasks in an industry is used as an instrument for robot
adoption. Regressions include the change in the investment-to-value-added ratio and the change in (the log of) value added between 2005
and 20715 as control variables. Country fixed effects are included in all regressions and partialled out in the reported R%. *** p<0.01, ** p<0.05, *
p<0.1.

Source: Authors’ calculations.

the pre-trend does not pre-date the rise of robots. Yet, to control for longer-term industry trends, we
provide two additional estimation approaches: explicitly accounting for pre-trends by including the
change in the routine employment share between 2000 and 2005 as a lagged dependent variable and
including industry fixed effects.

Columns (2) and (3) of Table 6 add pre-trends to the regressions on changes in the routine
employment share and the routine manual employment share, respectively (cf. column [2] of Table 3
and column [1] of Table 4). We observe a positive autocorrelation in employment dynamics. Yet, robot
adoption adds additional information beyond those pre-trends as the coefficient remains statistically
significant. The estimated coefficient is comparable to the baseline results. Perhaps the most
convincing evidence that the negative relationship between routine employment shares and robot
adoption is not exclusively driven by spurious industry dynamics can be found in columns (4) and (5)
of Table 6, where we add industry fixed effects to our OLS regressions.® This is a restrictive model that

% We cannot estimate the model with industry fixed effects using 2SLS because the instrument only varies across industries.
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assumes industry-specific time trends in levels and thus not only accounts for heterogeneous industry
employment trends but also removes a considerable degree of variation in the data that may be
relevant for identification. Yet, the negative association between robotization and routine employment
trends is still observed and statistically significant.

4. Global Developments in Robot Adoption

As discussed in section Il, advances in the technical ability of robots might relate to the “reshoring” of
jobs to advanced countries. For example, Faber (2018) observes a decrease in labor demand in Mexico
associated with robot adoption in the US. We explore this relation in a cross-country context using two
measures of robot adoption that vary across industries but not across countries. First, we take global
averages, defined as the cross-country mean of the percentile change in robot adoption by industry.
This reflects the idea that in an interconnected world, those industries with higher robot adoption will
see faster declines in routine employment shares regardless of the location of production. Second, we
use robot adoption of US industries to represent global industry trends.

Results are reported in Table 7. In columns (1) and (2) the global averages of industry-specific
robot adoption are used. The regressions suggest a statistically significant and negative relation
between changes in the routine employment share and global trends in robot adoption.?® Interestingly,
the positive interaction between robot adoption and EMTEs shown in column (2) no longer makes up
for the negative overall robot adoption parameter: the hypothesis that the sum of both parameters
adds up to zero can be rejected at the 5% level of statistical significance. This suggests that global
developments in robot adoption impact labor markets in EMTEs. Note, however, this is not observed if
we use robot adoption in US industries to characterize global trends (see column [4]).*” Nevertheless,
these exploratory regressions provide suggestive evidence for the potential relevance of global
production networks and associated job reshoring patterns due to automation, which remains an
interesting area for further research.

Table 7: Global Industry Trends in Robot Adoption

M @ 3 Q)
Robot Measure Global Average Global Average us us
A Routine A Routine A Routine A Routine
Employment Employment Employment Employment
Share Share Share Share
(@) OLS
Alternative measure robot adoption -0.084** -0.101%** -0.045% -0.052***
(0.03) (0.04) (0.01) (0.02)
Alternative measure robot adoption 0.054*** 0.052***
x dummy EMTE (0.02) (0.02)

continued on next page

% Using measures of robot adoption that vary across industries but not across countries, we also do not find a statistical

significant association between robot adoption and the average annual percentage growth in employment in
specifications with and without the interaction with a dummy for EMTEs.

% ltis also not observed if we use robot adoption in German industries to characterize global trends.
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Table 7 continued

M @) 3 )
Robot Measure Global Average Global Average us us
A Routine A Routine A Routine A Routine
Employment Employment Employment Employment
Share Share Share Share
R? 0.034 0.039 0.039 0.043
Observations 700 700 700 700
(b) 2SLS (IV: Replaceable tasks)
Alternative measure robot adoption -0.128*** -0.1527** -0.067*** -0.080***
(0.05) (0.06) (0.02) (0.03)
Alternative measure robot adoption 0.089** 0.086**
x dummy EMTE (0.04) (0.03)
R? 0.026 0.030 0.030 0.033
Observations 700 700 700 700

2SLS = two-stage least squares, EMTE = emerging market and transition economy, IV = instrumental variable, OLS = ordinary least squares,
US = United States.

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the
routine employment share between 2005 and 2015. Column headers indicate which type of global measure has been used to calculate
industry-specific robot adoption. The share of replaceable tasks in an industry is used as an instrument for robot adoption. Regressions
include the change in the investment-to-value-added ratio and the change in (the log of) value added between 2005 and 2015 as control
variables. Country fixed effects are included in all regressions and partialled out in the reported R2. ** p<0.01, ** p<0.05, * p<0.1.

Source: Authors’ calculations.

VI. CONCLUDING REMARKS

We study the relation between industrial robots and occupational shifts by task content. Using a panel
of 19 industries in 37 high-income and EMTEs from 2005 to 2015, we find that increased use of robots
is associated with positive changes in the employment share of nonroutine analytic jobs and negative
changes in the share of routine manual jobs. The patterns that we document are robust to
instrumental variable estimation and the inclusion of various control variables, but they differ across
levels of economic development: we observe a significant relation for high-income economies, but not
in EMTEs. Finally, we do not find a significant relation between industrial robot adoption and aggregate
employment growth. This suggests that industrial robots did not replace jobs, but they did impact task
demand and thus had disruptive effects on employment.

Our analysis covered industrial robots, but much of the recent robotic developments have
been taking place in services, such as the emergence of medical robots, logistics handling robots, and
delivery by means of drones. It is therefore likely that robots will continue to disrupt labor markets and
result in reallocation dynamics. Studying and understanding the socioeconomic consequences of these
disruptions will be important (see, for example, Dauth et al. 2019). Retraining and reskilling of workers
seems inevitable, which should spur a major rethinking about educational goals, lifelong learning, and
developing the right skills (Kim and Park 2020).
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Figure A1.1: Changes in Employment Shares by Economy and Task Type
between 2005 and 2015
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AUS = Australia; AUT = Austria; BEL = Belgium; BRA = Brazil; CAN = Canada; CZE = Czech Republic; DEN = Denmark; EST =
Estonia; FIN = Finland; FRA = France; GER = Germany; GRC = Greece; HUN = Hungary; IND = India; INO = Indonesia; IRE = Ireland;
ITA = Italy; JPN = Japan; KOR = Republic of Korea; LTU = Lithuania; LVA = Latvia; MEX = Mexico; MLT = Malta; NET = Netherlands;
POL = Poland; POR = Portugal; PRC = People’s Republic of China; ROU = Romania; RUS = Russian Federation; SPA = Spain;
SVN = Slovenia; SVK = Slovakia; SWE = Sweden; TAP = Taipei,China; TUR = Turkey; UKG = United Kingdom; USA = United States.
Notes: Change in employment shares between 2005 and 2015. For aggregation, industries included in the sample are weighted using
their 2005 employment share within the sample for each economy. Agriculture is omitted in the calculation for Ireland, which reports
a sudden swing in the routine manual employment share (see subsection V.B.1 for robustness check excluding Ireland).

Source: Updated occupations database from Reijnders and de Vries (2018) by Buckley et al. (2020).
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Figure A1.2: Changes in Employment Shares by Industry and Task Type
between 2005 and 2015
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R&D = research and development.

Note: Change in employment shares by industry between 2005 and 2015. Unweighted average changes.
Source: Updated occupations database from Reijnders and de Vries (2018) by Buckley et al. (2020).

Figure A1.3: Robotization by Economy in 2005 and 2015
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AUS = Australia; AUT = Austria; BEL = Belgium; BRA = Brazil; CAN = Canada; CZE = Czech Republic; DEN = Denmark; EST = Estonia;
FIN = Finland; FRA = France; GER = Germany; GRC = Greece; HUN = Hungary; IND = India; INO = Indonesia; IRE = Ireland;
ITA = Italy; JPN = Japan; KOR = Republic of Korea; LTU = Lithuania; LVA = Latvia; MEX = Mexico; MLT = Malta; NET = Netherlands;
POL = Poland; POR = Portugal; PRC = People’s Republic of China; ROU = Romania; RUS = Russian Federation; SPA = Spain; SVN =
Slovenia; SVK = Slovakia; SWE = Sweden; TAP = Taipei,China; TUR = Turkey; UKG = United Kingdom; USA = United States.

Note: Robot stock per thousand employees by economy in 2005 (squares) and 2015 (triangles).

Sources: Robot stock from the International Federation of Robotics and employment from Reijnders and de Vries (2018) updated
by Buckley et al. (2020); Authors’ calculations.
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Figure Al.4: Robotization by Industry in 2005 and 2015
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R&D = research and development.
Note: Robot stock per thousand persons employed by industry in 2005 (squares) and 2015 (triangles).

Sources: Robot stock from International Federation of Robotics and employment from Reijnders and de Vries (2018) updated by Buckley

etal. (2020); Authors’ calculations.

Figure A1.5: Robotization by Industry in the People’s Republic of China
and Germany, 2015
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Note: Robot stock per thousand persons employed by industry.

Sources: Robot stock from International Federation of Robotics and employment from Reijnders and de Vries (2018) updated by Buckley

etal. (2020); Authors’ calculations.
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Figure A1.6: Residual Patterns for Main Ordinary Least Squares Specification

(a) Residuals vs fitted values
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AUS = Australia; AUT = Austria; BEL = Belgium; BRA = Brazil; CAN = Canada; CZE = Czech Republic; DEN = Denmark; EST =
Estonia; FIN = Finland; FRA = France; GER = Germany; GRC = Greece; HUN = Hungary; IND = India; INO = Indonesia; IRE = Ireland;
ITA = Italy; JPN = Japan; KOR = Republic of Korea; LTU = Lithuania; LVA = Latvia; MEX = Mexico; MLT = Malta; NET = Netherlands;
OLS = ordinary least squares; POL = Poland; POR = Portugal; PRC = People’s Republic of China; ROU = Romania;RUS = Russian
Federation; SPA = Spain; SVN = Slovenia; SVK = Slovakia; SWE = Sweden; TAP = Taipei,China; TUR = Turkey; UKG = United
Kingdom; USA = United States.

Notes: Panel (a) plots the OLS residuals (deviation of predicted from actual value, vertical axis) against the fitted values from the OLS
model (horizontal axis). Panel (b) plots the leverage (influence) every observation gets in the OLS regression, a measure of distance
from the mean in the explanatory variables (vertical axis), against normalized squared residuals (horizontal axis). All values are based
on column (2) in panel (a) of Table 3.

Source: Authors’ calculations.
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Figure A1.7: Economy-Specific Ordinary Least Squares Coefficients

(a) Overall distribution
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(b) Economy-specific coefficient plot
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AUS = Australia; AUT = Austria; BEL = Belgium; BRA = Brazil; CAN = Canada; CZE = Czech Republic; DEN = Denmark; EST = Estonia;
FIN = Finland; FRA = France; GER = Germany; GRC = Greece; HUN = Hungary; IND = India; INO = Indonesia; IRE = Ireland; ITA = Italy;
JPN = Japan; KOR = Republic of Korea; LTU = Lithuania; LVA = Latvia; MEX = Mexico; MLT = Malta; NET = Netherlands;
OLS = ordinary least squares; POL = Poland; POR = Portugal; PRC = People’s Republic of China; ROU = Romania; RUS = Russian
Federation; SPA = Spain; SVN = Slovenia; SVK = Slovakia; SWE = Sweden; TAP = Taipei,China; TUR = Turkey; UKG = United Kingdom;
USA = United States.
Notes: Figure 7 displays economy-specific coefficients for an OLS regression model where we augment the specification in column (2)
of Table 3 (panel [a]) with an interaction of robot adoption with economy dummy variables. The distribution of those economy-specific
interactions with robot adoption is depicted in Figure 7 (a) using a histogram and a kernel density estimator. Figure 7 (b) displays the
estimated coefficients by economy, including their 95% confidence interval.
Source: Authors’ calculations.
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Figure A1.8: Industry-Specific Ordinary Least Squares Coefficients
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R&D = research and development.

Notes: Figure displays industry-specific coefficients for a regression model where we augment the specification in column
(2) of Table 3 (panel [a]) with an interaction of robot adoption with industry dummy variables. The estimated coefficients by
industry are depicted together with their 95% confidence interval.

Source: Authors’ calculations.
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Table Al.1: Industry Codes

ISIC Rev 3.1 Code

Short Description

Long Description

AtB

15t16

17118

19

20

21t22

23

24

25

26

2728

29

30t33

34t35

36t37

M

Agriculture
Food products
Textiles
Leather

Wood products
Paper
Petroleum
Chemical
Plastic
Nonmetallic mineral
Metal
Machinery
Electronics
Automotive
Other

Mining

Utilities
Construction

Education, and R&D

Agriculture, hunting, forestry and fishing
Food, beverages and tobacco

Textiles and textile

Leather, leather and footwear

Wood and products of wood and cork
Pulp, paper, printing and publishing
Coke, refined petroleum and nuclear fuel
Chemicals and chemical

Rubber and plastics

Other nonmetallic mineral

Basic metals and fabricated metal
Machinery, not elsewhere classified (nec)
Electrical and optical equipment
Transport equipment

Manufacturing nec; recycling

Mining and quarrying

Electricity, gas and water supply
Construction

Education, and R&D

ISIC = International Standard Industrial Classification, nec = not elsewhere classified, R&D = research and development.
Source: Authors' adaptation of ISIC Rev. 3.1 codes.
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Table A1.2: 2-Stage Least Squares Results for Reaching and Handling

M @ 3 €
A Routine A Routine Percentile of
Employment Employment Changes in robot
A Employment Share Share Adoption
Percentile of changes in robot adoption -1.586 -0.134* -0.169
(381 (0.08) 0.11)
Percentile of changes in robot adoption 0.149
x dummy EMTE (0.10)
Reaching and handling tasks 1.438**
0.43)
Cragg-Donald Wald F statistic 129.47
Kleibergen—-Paap F-statistic .44
Kleibergen-Paap under identification 0.025
test (p-value)
R? -0.013 -0.047 -0.075
Observations 700 700 700 700
Number of economies 37 37 37 37

2SLS = two-stage least squares, EMTE = emerging market and transition economy.

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable employment growth in
column (1) is the average annual growth in employment for the period 2005-2015. The dependent variable in columns (2)-(3) is the change
in the routine employment share between 2005 and 2015. Column (4) reports the first stage for 2SLS estimation. Reaching and handling
tasks are used as an instrument for robot adoption. Regressions include the change in the investment-to-value-added ratio and the change in
(the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in

the reported R, *** p<0.01, ** p<0.05, * p<0.1.
Source: Authors’ calculations.
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32 Appendix

Table A1.4: Routine Task-Intensity of Occupations Grouped as ‘Production Workers’

ISCO 88 RII (Global RII

Code Description Occupation Average) RII'(US)  (Germany) RTI
71 Extraction and building trades workers 1.031 1.209 0.955 0.815
72 Metal, machinery and related trade work 1.269 1.209 0.955 1.457
73 Precision, handicraft, craft printing and 0.952 1.598 0.477 2.589

related trade workers

74 Other craft and related trade workers 0.810 0.626 0.477 2.238
81 Stationary plant and related operators 2.930 2181 3.342 1323
82 Machine operators and assemblers 2.480 3.541 2.865 1.493
93 Laborers in mining, construction, 2.886 2.375 3.342 1.449

manufacturing and transport

ISCO = International Standard Classification of Occupations, Rl = routine intensity index, RT| = routine task intensity, US = United States.
Notes: The Rll is from Marcolin, Miroudot, and Squicciarini (2019) and the RTI from Autor, Levy, and Murnane (2003). The measures are
Pearson-transformed, that is, centered at O with a standard deviation of 1. We added +1 to the measure. Hence, an occupation with mean
routine intensity gets a weight of 1, a below-average routine intensity occupation a lower weight, and an above-average routine intensity
occupation a weight above 1.

Source: Authors’ calculations.
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The Rise of Robots and the Fall of Routine Jobs

This paper examines the impact of industrial robots on jobs by combining data on robot adoption and
occupations by industry in 37 economies for the period 2005-2015. The authors exploit differences across
industries in technical feasibility, that is the industry’s share of tasks replaceable by robots, to identify the
impact of robot usage on employment. The data allow them to differentiate effects by the routine intensity
of employment. The authors find that a rise in robot adoption relates significantly to a fall in the employment
share of routine manual task-intensive jobs in high-income economies, but not in emerging market and
transition economies.
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