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Abstract 

Background: Statutory health insurers in Germany offer a variety of disease management, 

prevention and health promotion programs to their insurees. Identifying patients with a high 

probability of leaving these programs prematurely helps insurers to offer better support to those at 

the highest risk of dropping out, potentially reducing costs and improving health outcomes for the 

most vulnerable. 

Objective: To evaluate whether machine learning methods outperform linear regression in 

predicting dropouts from a telemonitoring program. 

Methods: Use of linear regression and machine learning to predict dropouts from a telemonitoring 

program for patients with COPD by using information derived from claims data only. Different 

feature sets are used to compare model performance between and within different methods.  

Repeated 10-fold cross-validation with downsampling followed by grid searches was applied to 

tune relevant hyperparameters. 

Results: Random forest performed best with the highest AUC of 0.60. Applying logistic regression 

resulted in higher predictive power with regard to the correct classification of dropouts compared 

to neural networks with a sensitivity of 56%. All machine learning algorithms outperformed linear 

regression with respect to specificity. Overall predictive performance of all methods was only 

modest at best. 

Conclusion: Using features derived from claims data only, machine learning methods performed 

similar in comparison to linear regression in predicting dropouts from a telemonitoring program. 

However, as our data set contained information from only 1,302 individuals, our results may not 

be generalizable to the broader population. 
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Highlights 

- Identification of patients who might drop out of structured care programs prematurely

might help insurers to intervene before such attrition happens

- Machine learning algorithms could offer the opportunity to deal with hidden patterns in

highly standardized claims data and thus improve predictions in comparison to simple

logistic regression

- Timely availability of claims data and access to medical outcomes from structured care

programs might improve future predictions as the current evidence suggests low overall

predictive performance to identify potential dropouts
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1 Introduction 

Chronic diseases have become one of the main drivers of rising health expenditure in developed 

countries. Many countries have drawn upon the concept of managed care as a measure of cost 

containment[1]. The most important type of managed care in Germany is disease management 

programs, which statutory health insurers in Germany are obliged to offer to patients for a variety 

of chronic diseases [2]. One form that has gained a particular impetus since the introduction of a 

€300-million-per-year innovation funding program by the German government in 2016 has been 

telehealth [3]. Although evidence on the effectiveness of several telehealth programs is 

inconclusive, the results of a considerable number of studies suggest that telehealth can be a valid 

tool for improving adherence and patient-relevant outcomes [4–11].  

However, even the most effective programs may not lead to the desired health outcomes if too 

many patients drop out of them prematurely. Prediction of individuals who are likely to drop out 

of a health care program might allow insurers to intervene at an early stage and prevent attrition. 

Machine learning algorithms might prove beneficial in comparison with standard logistic 

regression by being able to deal with different data types.   

Evidence on the use of machine learning to predict dropouts from structured programs is mostly 

limited to Massive Open Online Courses [12,13].  Itanie et al. and Liang & Zheng used applicant 

information gathered before and during participation to predict the likelihood of dropping out. 

Machine learning has been applied within the health care domain most frequently to improve the 

precision of estimated survival times [14–22], especially in cancer patients, or to predict the time 

until certain health-related events occur [23–26]. Only a few studies have applied machine learning 

techniques to predict the likelihood of individuals participating health care programs, the likelihood 

of decease at discharge out of intensive care units or their compliance to treatment once they have 

decided to participate [27–30]. We focus on predicting drop-outs using only routinely available 

claims data collected one year prior to enrolment of participants.  

We aim to investigate whether machine learning algorithms outperform linear regression 

techniques in predicting the likelihood of an individual dropping out from a telemonitoring 

program for patients with chronic obstructive pulmonary disease (COPD) using only routinely 

available claims data. The comparison of different methods will help to assess suitability of 

routinely collected claims data for prediction of dropouts. 

2 Methods 

2.1 Telemonitoring intervention 

COPD is a chronic, inflammatory lung disease that impairs an individual’s ability to exhale. 

Progressive development of symptoms and episodes of acute worsening (exacerbations) often 

requiring hospitalization characterize the disease [31]. The most frequent cause for COPD is 
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tobacco smoking. COPD patients in the telemonitoring program were provided with telemedicine 

equipment that collected and transmitted information on their vital parameters, such as forced 

expiratory volume in one second (FEV1) and blood oxygen saturation, to trained practitioners and 

nurses at a telemedicine service centre. If vital parameters deviated from a predefined threshold, 

an alarm was triggered and either patients or their physicians was notified.  

2.2 Data 

Universal coverage for all mandatory insured persons within the statutory health insurance (SHI) 

is one of the key features of the German healthcare system [32]. Our analysis was based on patient-

level data provided by AOK Bayern, a large statutory health insurer in Germany and consisted of 

routinely collected claims data. Patient sociodemographics consist of age, gender and insurance 

contribution class. . Clinical information comprised outpatient and inpatient diagnoses, operations 

and procedures, drug prescriptions and related costs. Main diagnoses were included as International 

Statistical Classification of Diseases and Related Health Problems 10 (ICD-10) codes. Operations 

and procedures were covered by Operation and Procedure Classification System (OPS) codes. 

Anatomical Therapeutic Chemical (ATC) codes describe prescriptions of pharmaceuticals. The 

data set also contained information about whether patients were currently participating in disease 

management or other health programs. Our dataset consists of 1,302 individuals who enrolled in 

the telemonitoring program between October 2012 and December 2015. Sociodemographics, 

clinical information and costs one year prior to enrolment are included in our analysis. 

 2.3 Statistical analysis 

The main focus of this study was to investigate whether machine learning algorithms are able to 

make use of hidden patterns within routinely available claims data. The statistical approach is 

shown in figure 1. We defined a classification problem where the outcome indicated whether an 

individual had dropped out of the telemonitoring program until the end of the observation period 

(positive class = “yes”). We used 80% of the available data as a training set and 20% as a test set. 

 We compare the performance of machine learning algorithms, namely  random forests, gradient 

boosting machines and neural networks with logistic regression [36]. 10-fold repeated cross 

validation was applied to avoid overfitting and allow for a first hyperparameter tuning [37].  Further 

extensive hyperparameter tuning was applied using the feature set that had previously led to the 

best result for a given method [37]. Downsampling within cross-validation was applied to account 

for imbalance of classes (36% dropouts) (figure 1).  
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Figure 1 Flow chart of statistical analyses 

Our main metric of interest is the correct classification of dropouts, i.e. sensitivity, with the 

rationale that correct classification of dropouts would be most valuable to the insurer. 

Subsequently, sensitivity was used as the performance measure of all models for cross-validation, 

hyperparameter tuning and the final assessment of the predictive power. Additionally, we report 

the overall performance utilizing the area under the receiver operating characteristics curve (AUC). 

2.3.1 Linear regression 

Standard logistic regression with all available predictors was used as a baseline out-of-the-box 

classification model that does not require additional optimization. Logistic regression is expected 

to result in low variance but high bias when the underlying classification problem is non-linear. 

Nevertheless, logistic regression should deliver reasonably precise results when the number of 

predictors is low and features are unrelated [38].  

2.3.2 Random forest 

The basic idea of decision tree models  is to perform discrete splits in the underlying data to form 

groups that differ as much as possible in terms of the outcome of interest [39]. The algorithm first 

identifies the predictor with the highest predictive power and splits the data in two groups according 

to that single predictor. The algorithm then proceeds in the same manner until the addition of a split 

criterion no longer diminishes the prediction error.  

Because the predictive power of a single tree might be poor due to overfitting and high variance, 

more sophisticated tree-based methods make use of a large amount of single trees [39]. Random 

forests consist of a certain number of distinct trees is grown, with each tree predicting the outcome. 

In the case of classification, the final prediction is based on a majority vote of all individual trees. 

To guarantee the diversity of the trees and prevent overfitting, a random sample of predictors (with 

replacement) is chosen for each split. Random forests were previously reported as being one of the 

most accurate predictors in studies that use health-related data [15,18,40]. We chose purity  as the 

split criterion [15,41]. Ten randomly drawn features for each split, a minimum node size of one 
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and 500 trees were used as baseline model parameters. The random forest was implemented using 

the ranger package within caret for R [42]. 

2.3.3 Artificial neural networks 

Neural networks take features as input parameters and forward them to one or more hidden layers, 

where the information connected to the input features is weighted to output a prediction [38]. 

Baseline model parameters were set to the size of five and a decay value of 0.1. We used the neural 

network package combined with caret in R [43].  

2.3.4 Gradient boosting 

The intuition of gradient boosting is similar to random forests. An ensemble of weak learning 

algorithms is combined to create improved prediction modelsGradient boosting is also based on 

classification and regression trees and is able to use non-linear relationships within the data [44]. 

However, unlike random forests, gradient boosting machines assign weights to each weak learner 

instead of a majority vote [19]. Trees within gradient boosting machines are grown sequentially 

using a random sample of the training data [20]. After each step, the performance of previously 

grown trees is evaluated and cases that are especially hard to classify are identified. Subsequently 

a new tree is grown, using higher weights on such cases. This procedure is repeated until the 

addition of more trees no longer diminishes the prediction error. Baseline model parameters were 

set to 200 iterations with a maximum depth of 4 per tree. We applied gradient boosting using the 

XGBoost package in R [45].  

2.3.5 Feature selection and hyperparameter tuning 

Predictions were based on a base feature set containing information about age, gender and 

insurance contribution class, the number of main diagnoses falling into the different Elixhauser 

comorbidity groups [33], the number of drug prescriptions  grouped as pharmacy-based metrics 

(PBM) [34],  whether a mental behaviour disorder due to tobacco had been coded  and whether the 

patient had been hospitalized due to COPD in the two years before the start of the program. 

We extended the feature set sequentially depending on whether the addition of new data improved 

the predictive power with regard to the identification of true positives using the previously unseen 

test dataset. Added features consist of the severity of the underlying disease represented as the 

individuals’ status defined by the Global Initiative for Chronic Obtructive Lung Disease (GOLD) 

[35] and according to ICD-10 codes,  the number of drugs for the treatment of respiratory diseases,

participation status in disease management programs two years before enrolment, cost data on 

inpatient and outpatient treatment and  pharmaceuticals and the number of inpatient or outpatient 

contacts. Lastly, we used a data set containing of the full set of features. If not stated otherwise, all 

features were based on information gathered from the 12 months before each patient entered the 

telemonitoring program. 
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Following the initial prediction process we identified the best feature set for each method and 

applied hyperparameter tuning based on these datasets. The number of variables at each split was 

varied for the random forest models from one to 20 in steps of one. Splitting rules were either based 

on the Gini coefficient or the Hellinger distance measure. Size was varied from one to ten with 

increments of one unit and decay was varied in 40 steps starting at 0.001 up to two for neural 

networks. Five different maximum iterations ranging from 50 to 250 and four steps from three to 

twelve for maximum depth were used for gradient boosting. Additionally, shrinkage was varied 

from zero to one in ten steps and minimum loss reduction parameters in ten steps from 0.01 to two. 

Subsample ratios for each tree were set to 33%, 66% and 100%. 

3 Results 

The participants in the telemonitoring program were 64.4 years old on average and 57.1% were 

male. In total, 6.8 %, 16.0%, 25.1% and 34.7% had a GOLD status of I, II, III or IV, respectively. 

For 17.4% of participants, the GOLD status was unknown. Of the 1,302 participants in the 

telemonitoring program, 472 (36.3%) dropped out. The predictive power of the different machine 

learning algorithms was highly dependent on the feature set used for prediction.  

Overall, none of the machine learning algorithms outperformed simple linear regression with 

respect to the correct classification of dropouts. However, predictive performance was rather low 

with a sensitivity of only 56 percent for linear regression and gradient boosting. 52 percent of 

dropouts was the highest sensitivity achieved by both random forests as well as neural networks.  

Interestingly, linear regression shows the highest performance when all available features were 

used for prediction. Random forest performed best utilizing only the base dataset plus a detailed 

breakdown of prescribed drugs to treat respiratory diseases with the highest overall AUC of 0.60. 

Neural networks showed their highest performance when participation in disease management 

programs was added to the base dataset (AUC: 0.51). Although gradient boosting achieved a 

sensitivity of 56 percent, the AUC was lowest with 0.51, utilizing the base dataset plus information 

about inpatient and outpatient contacts per patient. Our results indicate low variance with stable 

model performance for both the test and the training partition of our datasets (table 1).  

The highest differences between performance on the training and test set are found for the simple 

logistic regression and the Gradient boosting model. Performance dropped for the logistic 

regression from AUC 0.54 to 0.48 driven by worse identification of true negatives (-5.4 percentage 

points) without improved identification of true positives. On the contrary, predictive performance 

increased for random forests with regard to sensitivity decreased a lot by 9.9 percentage points 

while  specificity increased by 2.8 to the achieve the best AUC of 0.60. For more information on 

the best performing models based on their ability to classify dropouts correctly, see table 1. A 
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graphical comparison of model performance with the receiver operating characteristics curves 

(ROC) is shown in figure 2. 

Table 1 Model performance 

Model Dataset 
Training data set (80%) 

 
Test data set (20%) 

  Sensitivity Specificity AUC  Sensitivity Specificity AUC 

         

Logistic Regression All available data 

 

0.554 0.526 0.540  0.560 0.472 0.484 

Random Forest Base feature set + 
more detailed 

information about 

PBM Grooup 21  
 

 

 

0.619 0.542 0.588  0.520 0.570 0.597 

Artificial Neural Network Base feature set +  

information of 

DMP participation 
 

0.499 0.543 0.539  0.520 0.540 0.512 

Gradient Boosting Base feature set + 

inpatient/outpatient 
contacts 

0.575 0.526 0.561  0.560 0.549 0.509 

          
 

      

 
 
 
 

 
Figure 2 Receiver Operating Characteristics Curves 

 

3.1 Sensitivity Analysis 

We investigated the predictive performance of all models in relation to the classification of 

dropouts with respect to time by defining dropouts according to less than 90, 180 or 270 days  (table 

2). Sensitivity was highest for a time-horizon of maximum 180 days until dropping out with 68.3% 

for random forests. The overall predictive performance with the baseline model specifications was 

best for a maximum of 180 days and decreased after 270 days again. While the results of logistic 

regression and gradient boosting were largely stable across different time horizons, machine 
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learning algorithms showed higher variability. Neural networks and random forests appear to be 

able to improve on their predictive power for shorter time horizons (90 days: 56.0%/60.0%, 180 

days: 61.0%/68.3%). 
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Table 2 Sensitivity Analyses with respect to time until dropout 

 
Model Dataset Up to 90 days until dropout  Up to 180 days until dropout  Up to 270 days until dropout 

  
Training 

(80%) 

 
Test 

(20%) 

 
Training 

(80%) 

 
Test 

(20%) 

 
Training 

(80%) 

 
Test 

(20%) 

  
Sensi- 

tivity 

Speci- 

ficity 

 
Sensi- 

tivity 

Speci- 

ficity 

 
Sensi- 

tivity 

Speci- 

ficity 

 
Sensi- 

tivity 

Speci- 

ficity 

 
Sensi- 

tivity 

Speci- 

ficity 

 
Sensi- 

tivity 

Speci- 

ficity 

                   

Logistic 
Regression 

All available data 
 

0.554 0.526  0.560 0.472  0.561 0.547  0.537 0.607  0.540 0.546  0.538 0.548 

Random 

Forest 

Base feature set + 

more detailed 

information about 
PBM Grooup 21  

 

0.543 0.557  0.600 0.562  0.540 0.535  0.683 0.598  0.518 0.540  0.635 0.534 

Artificial 
Neural 

Network 

Base feature set +  
information of 

DMP participation 

 

0.516 0.527  0.560 0.557  0.511 0.527  0.610 0.584  0.525 0.520  0.365 0.601 

Gradient 

Boosting 

Base feature set + 

inpatient/outpatient 

contacts 
 

0.562 0.533  0.440 0.494  0.532 0.526  0.537 0.644  0.511 0.524  0.558 0.572 
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4 Discussion 

In this study, we compared the predictive power of linear regression approaches to more advanced 

machine learning algorithms. When comparing only AUC results, machine learning algorithms 

show increased performance in comparison to linear regression. However, as the main focus of this 

study was to predict whether an individual would leave the telemonitoring program prematurely, 

we focused on the number of correctly classified dropouts as the main performance measure. In 

this regard, linear regression and Gradient boosting had the highest predictive power and were able 

to classify approximately 7% more dropouts correctly than was linear regression. The highest 

sensitivity, of 56.0%, was achieved by linear regression and Gradient boosting. All machine 

learning algorithms performed better than regressions models in classifying individuals who did 

not discontinue the program resulting in overall higher AUC. Summarizing, the predictive 

performance measured in terms of sensitivity was mediocre at best. 

One might argue that a focus on sensitivity for model selection could easily be solved by a model 

which always predicts the positive class and thus identifies all true positives correctly. We chose 

to focus on sensitivity as the main outcome of interest while still regarding the trade-off between 

both outcomes. We argue that knowledge about potential dropouts might be the most useful 

parameter from the SHI perspective. If all participants of a program have to be contacted, the 

intervention will not be useful for patients who would have not been at risk of dropping out. Being 

able to identify subpopulations not solely based on the enrolment status to a program or  on the 

main diagnoses offers the opportunity to insurers of targeted interventions to facilitate adherence 

to structured care programs. This way patients who are classified of being at risk of dropping out 

might be encouraged to continue with a treatment while adherent patients will not be bothered by 

needless contacts. 

Previous studies have reported that random forests are among the best performing algorithms in 

predicting survival times using clinical data [15,18,30]. We find that although random forest show 

the overall best performance, the predictive power is limited. One possible explanation is that our 

data set was significantly smaller than those used in other studies that examined health related data. 

Fernandes-Delago et al. found that while random forests were among the best performers for a 

large amount of data sets, they also needed a large number of data points to perform adequately 

[40]. 

As has been observed previously by other researchers, the machine learning algorithms applied in 

this study would potentially perform better when using data sets containing more features [20]. 

Because only 1,302 individuals participated in the COPD telemonitoring program, the number of 

features included should also be rather small to avoid overfitting. We dealt with potential 

overfitting by repeated 10-fold cross-validation and by application of methods which are known to 
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be less prone to overfitting due to automated variable selection (i.e. Random Forest, Neural 

Network, Gradient boosting).  

We applied random downsampling of the majority class within cross-validation to improve the 

predictive performance with regard to the minority class. Application of resampling methods 

within cross-validation is recommended when dealing with imbalanced data to avoid overfitting 

and overly optimistic predictions [37]. Application of downsampling reduces the data available 

within cross-valdiation folds and might affect the model performance, especially with regard to the 

size of our dataset. However, the comparison of downsampling, upsampling and synthetic majority 

oversampling [46] revealed downsampling as the best approach in our case. 

Since we only used information that was available before the start of the telemonitoring program, 

we expected that our predictions would be more accurate for individuals who left the program soon 

after it started, an observation reported in a study concerned with predicting survival times for 

cancer patients [20]. No restrictions regarding duration after program enrolment were made for the 

definition of dropouts for the baseline analyses.  We observed increased model performance 

throughout all model specifications when identifying patients who dropped out within the first 90, 

180 and 270 days after enrolment. Best results were achieved when classifying dropouts after 180 

days with a sensitivity of 68.3% for random forest models. However, timing of data availability for 

the highly standardized claims data of German SHI is often heterogeneous in practice.  

Previous studies investigating attendance rates or dropouts for COPD programs have done so 

mostly for programs concerned with rehabilitation or improving self-management [47,48]. 

Alongside clinical or behavioural aspects (like smoking habits or episodes of depression [2]), they 

found that individuals’ perceptions of their disease or the program they are supposed to attend are 

important for their willingness to participate. Furthermore, a person’s social environment might 

also influence his or her decision to participate regularly in a care program [47]. 

This study has several important limitations. First, because the number of individuals enrolled in 

the telemonitoring program was small, our results are not generalizable. However, when we tried 

to predict willingness to participate in the program with a data set that was 10 times larger, the 

performance of machine learning algorithms improved only slightly. The best performing 

algorithm was a gradient boosting model, which was able to correctly classify 40.43% of those 

individuals who were willing to participate in the program.  

Second, while using claims data for prediction comes close to real life applications for health 

insurers in Germany, these data were collected originally for reimbursement purposes and might 

therefore lack important individual features for each participant. For example, Sohanpal et al. found 

that attitudes towards care programs drive an individual’s choices about whether he or she will 

participate or stay enrolled in a program. Furthermore, the attitudes of an individual’s social 

contacts are also likely to influence such decisions [47].While the telemonitoring centre in our 
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study gathered detailed information at an individual level, some of which might be valuable for 

predicting dropouts, we were not able to access this data. 

Third, we did not apply an exhaustive lists of algorithms but only those that have been most popular 

for comparable analyses in the past. In addition, simple logistic regression was used as a baseline 

model without any adjustments to account for non-linear relationships. While this limits the 

predictive power of the model, it poses as the simplest approach for a classification problem which 

might help to decide whether additional effort for building a more complex model is desirable or 

not. 

Fourth, applying different weights for correct/false predictions with the help of cost functions might 

improve the models predictive power with regard to sensitivity and specificity. However, under the 

assumption of effectiveness of the telemonitoring program, the main objective is to improve the 

care for patients with COPD by attending the program. Because no final evaluation of the 

underlying telemonitoring program for COPD patients is available at this point, the choice of 

whether to penalize false classification should be done by the insurer upon application.  

Finally, our dataset did not contain any information on reasons why patients decided to leave the 

program. Although further insight would enable insurers to even better identify groups of patients 

with a high risk of leaving the telemonitoring program, these information is not covered by 

routinely available claims data. 

5 Conclusion 

Our study is the first to provide insights into the use of machine learning algorithms to predict the 

dropout behavior of individuals participating in managed-care-type health programs using only 

routine claims data. More precisely, we were able to predict up to 56.0% of dropouts from a 

telemonitoring program correctly using highly standardized data that were gathered before the start 

of the program with linear regression or machine learning algorithms at best. However,  all machine 

learning algorithms were able to classify patients who did not drop out correctly with a specificity 

of up to 57%. Subsequently, the additional costs of wrongly classifying individuals as dropouts 

must be weighed against the additional benefits of classifying more dropouts correctly. Additional 

socioeconomic or medical features and timely availability of data, might improve the predictive 

power substantially.  Although the overall predictive performance was mediocre at best, our  

analysis shows the need to evaluate and develop future applications of machine learning to highly 

standardized data sources which are often used in health economics. 
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