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Abstract

Short Term Load Forecast (STLF) is necessary for effective scheduling, operation opti-
mization trading, and decision-making for electricity consumers. Modern and efficient
machine learning methods are recalled nowadays to manage complicated structural big
datasets, which are characterized by having a nonlinear temporal dependence struc-
ture. We propose different statistical nonlinear models to manage these challenges of
hard type datasets and forecast 15-min frequency electricity load up to 2-days ahead.
We show that the Long-short Term Memory (LSTM) and the Gated Recurrent Unit
(GRU) models applied to the production line of a chemical production facility outper-
form several other predictive models in terms of out-of-sample forecasting accuracy by
the Diebold-Mariano (DM) test with several metrics. The predictive information is
fundamental for the risk and production management of electricity consumers.

JEL classification: C51, C52, C53, Q31, Q41.
Keywords: Short Term Load Forecast, Deep Neural Network, Hard Structure Load Process

Supported by Deutsche Forschungsgemeinschaft as a transfer project collaborated with Okotec GmbH
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1. Introduction

Accurate short term load forecast (STLF) is the key component in energy management,
and more and more energy-intensive companies have been demanding new methodologies
to reduce their daily costs. This paper is a collaboration between academic research and
a real-world case from the industry. So far, much of the literature studies the short term
load forecast dealing only with the cases of the aggregated level of electricity load. To our
knowledge, there is no study on forecasting the machine-scale electricity consumption, and
we propose linear/nonlinear models on a load process generated from a chemical facility.
We model this complicated load process by adjusting the restriction on parameters using
three different methods, including the classic parametric AR-type model, a semi-parametric
model, and state-of-the-art machine learning models.

Short term load forecast on small-scale energy consumers, such as a machine or a house-
hold, is not commonly seen in previous literature but getting crucial nowadays. Unlike
the load processes in aggregated levels which are often characterized by certain seasonality,
the electricity load from a small-scale consumer always evolves with abrupt jumps and in-
corporates noise. Therefore, the pattern of such a load process is almost unrecognizable.
Nevertheless, forecast on the small-scale consumer is demanded in the industry, notwith-
standing the difficulties of such modeling. Companies can better optimize their production
schedules with the knowledge about the energy consumption of each one of their machines,
and retail consumers can also implement the forecasting models as the energy trading mar-
ket is now expanding to households in many countries thanks to the rapid development of
demand-side management (Weber et al.| (2017))). This study fits the gap and discusses the
predictability of such load processes.

The load process modeled in this paper is characterized by having a complicated structure.
More specifically, the dataset we used is filled with jumps or structure breaks and various
types of noises. The jumps are generally modeled as a cadlag process, i.e., the jumps are not
predictable without extra information. Such a structure is a typical situation of modeling
small-scale energy consumers where exogenous shocks become dominant. Papers discuss the
forecasts of the household electricity consumption as the development of smart grids in recent
years extensively, for example, Amara et al.| (2017)) propose an adaptive model to forecast
the conditional density of household electricity demand.

Load forecast is a major research topic in energy fields. In terms of time-scale, the
literature can be divided into the long term forecast, e.g., monthly load forecast (Chang
et al. (2011)), and the short term forecast, which is our focus. In terms of individual-scale,

the existing literature mainly studies load process aggregated in a large-scale, such as the



state-level (Bianco et al. (2009); Darbellay and Slama (2000); Do et al. (2016); |[Ogcu et al.
(2012); (Castelli et al.| (2015); [Pardo et al| (2002))). All the load processes in those articles
tend to have clear patterns of seasonalities. We obtained a unique dataset consisted of an
intraday electric load process with the corresponding production schedules from a chemical
facility. On each day, we forecast a 15-minute frequency load process in the following two
days.

In our case, one question is how much the recent advanced models can outperform the
classic time-series models. One can find literature applying neural network models on STLF,
such as |An et al.| (2013)); Bianchi et al.| (2017)); |(Guan et al. (2012) concluding that modeling
nonlinearity does improve the forecasting accuracy. However, the question remains in our
case that does not appear with clear cyclic patterns. Hence a classic mode decomposition
or noise filtering method is unlikely useful. Many other different approaches have been
applied to the STLF. A strand of literature is motivated to describe the seasonality with
the single/multiple equation(s) models or functional data analysis (Taylor (2003); Cottet
and Smith (2003)); Bianchi et al| (2017); Clements et al.| (2016)); Lépez Cabrera and Schulz,
(2017)). Most of those models are carefully designed and calibrated. However, they do
not fit in our case as they are restricted to certain fixed seasonal patterns. Another angle
to improve the forecasting accuracy is by accounting for the nonlinear dependence of the
load processes using semi-parametric or non-parametric models. We show that the Long-
short Term Memory (LSTM) and the Gated Recurrent Unit (GRU) architectures outperform
a semi-parametric functional data method named FActorisable Sparse Tail Event Curves
(FASTEC) (Chao et al| (2015)) and the ARX model. The forecast does show a consistent
result with the literature. However, LSTM or GRU models should be carefully used since it
losses forecasting power on tails or jumps, which we believe is the key conclusion that should
be emphasized for many practitioners, i.e., the machine learning is NOT omnipotent.

The remainder of this paper is organized as follows. Section [2| gives an overview of
the Data of a chemical production facility and conducts the empirical analysis of the high
frequency data. In section [3| we discussed different forecast models, statistical and machine
learning models, and evaluate their performance. Section 4| concludes and make suggestions

for further research. All computations for this study were carried out in Python.

2. Data and stylised facts

The dataset is provided by the consulting company Okotec Energiemanagement GmbH
and contains the total electricity consumption and 72 production schedules of a product line

from one chemical production facility of an anonymous chemical company in Germany. The



time series ranges from 1st January 2017 to 31st December 2017 and contains 96 observations
daily, i.e., a 15-minute resolution, and the 72 production schedules can be divided into a set
of 3 major groups of production schedules. Moreover, the production schedules are lagging
for 2 hours, meaning that the information about the production schedules is saved 2 hours
after the actual production process has started. Hence, the electricity consumption process
is matched at the 8th lag with all the production schedules under the assumption that
production schedules are known contemporaneously.

The load process is scaled into [0,1] range, shown in Figure (1| in which we can directly
see that the frequent jumps on the load process are caused by switching between different
products or fully-loaded /minimum-loaded. Hence, then we can see that machinery is working

at different states at different periods.
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Figure 1

Electricity Load Process

The figure shows the 15-minute frequency electricity consumption process from 1.Jan.2017 to
31.Dec.2017. The load process is scaled down into [0,1].

Another issue of the data the dimensionality. Having detailed information about the
production schedule of all 72 product lines is informative for the producer but leads to
inefficiency and inconsistent estimators in a time series regression model due to the large
coefficient space. There exist several methods that deal with the problem. Regularized re-
gressions techniques, such as elastic net, scad, ridge regression, and LASSO, avoid this curse
of dimensionality and shrink the parameter space by using data aggregation. However, they
can be slow and not performing well compared to ARMA or linear regression models. More-
over, given rigid server-time constraints by the consulting company, our production schedules
had to be burned down to an aggregate of three groups. Large-scale energy consumers have
to give their bids and orders at the energy market every day until 2 pm. By 10 am the
current data is fed to the consulting company.

(Weak) Stationarity is one of the prerequisites for econometric models calibration, anal-



ysis, and inference. We found the load process interesting as two of the most commonly
used stationarity tests, the Augmented Dickey-Fuller (ADF, |Dickey and Fuller| (1979} [1981)))
test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS, Kwiatkowski et al. (1992)) test, tell
differently.

Table 1
Stationarity Test
test p-value lags
ADF —10.79 0.00 51
KPSS 0.83 0.01 52

The table reports the results of two stationarity tests, ADF and
KPSS, on the electricity load process. Both tests suggest rejecting
their null hypotheses, implying a conflicted conclusion from the sta-
tionarity test.

The null hypothesis of ADF is unit root exists in the process against the alternative that
such process is (trend) stationary. On the other hand, the null hypothesis of KPSS is that
the observed process is (trend) stationary against the unit root alternative. The results from
Table (1] reject both null hypothesis under the 1% significant level. We may conclude that
the load process is neither stationary nor unit root process. Lack of stationarity could cause
most of the estimation for statistical inference to be biased or inconsistent. The reason for
such contradictory might be a significant amount of structural breaks in the process, in which
case the assumptions for tests do not hold. On the other hand, the process is by default
stationary, as the maximum electricity consumption level of that single machinery cannot
increase over time.

In this article, we do not model the structural break explicitly. Modeling structural
breaks depend heavily on detection, which is most likely to be ex-post methods. Literature
shows that structural break doesn’t affect forecast result significantly per se (Stock and
Watson| (1996)). Also, the benefits of modeling structural break could be canceled out by
the estimation errors of break time points and parameters (Elliott and Miiller| (2007, 2014))).
The commonly used forecast metric, Mean Squared Error (MSE), is always facing a bias-
variance trade-off which means ignoring structural break could bring even more accurate
forecast (Pesaran and Timmermann (2005)).

From Figure [2| we can see that the load is mixture-Gaussian distributed, implying that
the load process consists of a certain number of states and stationary process within each
state. The load process is characterized by a slow decay of ACF (Long-memory property),
which enables us to forecast with lagged load values, and therefore the classic AR-type

models can be applied.



epanechnikov Kernel Estimation

Figure 2

KDE of the Electricity Load Process

Kernel density estimation of full sample electricity consumption values. Epanechinikov kernel
with bandwidth 1.6%.
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ACF of the Electricity Load Process

The figure shows the Autocorrelation function of the load process. The upper panel shows 10000
maximum lags; the bottom panel has 1000 maximum lags. The solid line is the autocoefficient on
different lags, and the dashed line forms the confidence interval at a 5% significant level.

Apart from the load process, this dataset also includes 72 sub-product schedules. There
are three major products manufactured in this production line, and each schedule corre-
sponds to one of those three products. Therefore, we divide those schedules into three groups
as shown in Figure ] For further investigation, we aggregate those sub-product schedules
into three groups as exogenous variables that can be considered as a relative volume for three

independent products.
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The 3-Group of Production Schedules

The figures show the production schedules grouped into three groups (from top to bottom) based
on the products being manufactured. The production schedules are recorded 2-hour late after the
actual production. We shift the production schedules 2-hour earlier, assuming that the schedules
are known as soon as they start.

3. Forecasting Models

In this section, we first construct and justify the advantages of each forecasting model, fol-
lowed by analyzing the forecast results with different metrics. Three approaches are taken in
this article, including linear parametric model, semi-parametric model, and non-parametric
model. The non-parametric approach, neural network models LSTM and GRU, are of our
focus to capture the nonlinear temporal dependency of the process. In addition, a func-
tional data model "FASTEC” combined with the regime-switching method detecting differ-
ent states at each time t is also constructed. Most of the load forecasting purposes are related
to trading on the day-ahead energy market, which requires forecasts at least 36-hours ahead.
Hence, the forecasting horizon of both models is 192-steps (2-day, 15-minute per step) ahead.
In each day t, t =1,2,...,T, The forecasting task can be generally written as,

Yio = g9(X4;0), (1)

where the forecasting load with 192 steps, Y; o def {Ys.tr1, ys,t+2}f:1, Ysi+n €ER, h=1,2;
and the predictor variables X def {X,+}5 | with feature vector X, € R* and k = 4. S is
fixed as 96 for the 15-minute sampling frequency each day.

For different forecasting models, function ¢ is chosen within a different class of func-
tions, and the parameter © is calibrated accordingly. We demonstrate how to prepare the

forecasting samples with the following algorithm 1 representation:



Algorithm 1: Forecasting Sample Construction

Input : Production schedules variables: {Z;}%¢, € R™; Load process: {ls;}%;
Time step s is 15-minute frequency, t =1,2,...,T

Output: Training Set: S = {(X4, ysern) 1%, h = 1,2, First 7-month sample ¢
Test Set: St = {( X4, Ysian)}5=°¢, h = 1,2, Last 5-month sample ¢

s

Aggregate {Z,,}2%, € R™ into 3 groups, {z},,«3,, 23 }9°  t=1,2,...,T;

s,tSs=1
Predictor Variables: {X,;}9%, = {x}, 22,23, 1,,}2%,,t =1,2,....T;
Forecast Load: {y,:},25,t=1,2,...,T;
Sample Pairs: {( X4, Ysiin)}=C h=1,2,t=1,2,...,T;

S

Split sample pairs into a training set (first 7-month) and test set (last 5-month)

[ B N R

3.1. Neural Network Models

Nonlinearity has been the ignored truth in statistics for a long time due to the inter-
pretability of many nonlinear models. However, on the other hand, interpretation of the
linear parametric models can sometimes be misleading when models are deviating too far
away from the true model, likely caused by the poor flexibility of parametric models. To cap-
ture the nonlinear dependency of the load process, we exploit the power of machine learning
techniques, especially Recurrent Neural Networks (RNN).

RNN is essentially the modified Neural Network (NN) architecture with a hidden state de-
pending on the previous states and present information designed for the sequential problem.
In general, the backpropagation algorithm (Rumelhart et al. (1985, |1988))) is used to solve
RNN problems. However, the RNN suffers from gradient-vanishing or gradient-exploding as
the network. In turn, the network fails to capture long-memory effects(Bengio et al.| (1994))).
Hochreiter and Schmidhuber (1997)) proposed a new design of recurrent neural unit called
Long-short term memory unit (LSTM) that has ”cell state” and ”forget gate” which memo-
rize and forget certain information, respectively. Gated Recurrent Unit (GRU) provided by
Cho et al.| (2014)) is one of the many variations of LSTM that aims to capture nonlinear
temporal dependency but without the memory gate. GRU has performed well, even better

than LSTM in some cases. We will describe details of LSTM and empirical forecast results.

3.1.1.  Long-Short Term Memory Unit

LSTM models can be constructed in various ways depending on the number of layers and
the number of neurons(units) of each layer of that network. On the other hand, there are
only very limited versions of the LSTM unit. Here we employ only one layer of the most
common LSTM unit finished with a dense layer. Each LSTM unit is shown in Figure [5| and

describe it as follows.
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Figure 5

Architecture of LSTM

The figure shows the architecture of a unit in the LSTM model. The left part shows the outside
structure, where the input vector X, ; € R¥ on the bottom and the output vector hst € R on the
top, and the hidden state vector hs_1; € R as a feedback input. The right part is the detailed
structure inside the LSTM unit.

One LSTM unit has input of X; € R¥ and output of hs,; € R, for each time step s, and
t=1,2,...,7. The LSTM unit consists of 4 components called “gates”. The first gate is
the “input gate” that has its output i;; € R defined in Equation as a function of the
the input vector X, the output from last step (memory), hs_1; € R, and the intercepts
a; € R. Coefficients v** € R* and 0" € R are estimated in each time step s. Note that
k represents the dimensionality of each sample at each time step. In our case, each sample
is constructed with the lagged periods load value, 3 groups of lagged production schedules

values, hence k = 4.

ise = N7 (XA 4 hyy 059 4 a) (2)

The neural network activation function sigmoid function N and tanh function N*"" are

element-wise operators defined as Equation , respectively

1
N° =
(z) 14e®
et —e” (3)
Ntanh (I) —
et + e *



Then the forget gate is defined in Equation (4f) which has the same structure as the input
gate. This gate controls the amount of information that should be forgotten from the input

Xs ¢, previous output fs_q ;.

fs,t — NU (X;try(svf) + hs—l,te(s’f) + a(svf)) (4)

The memory gate is defined as Equation ({5)), where two parts of information are added
up. The first part fs; © ms_1; decides how much information should be kept from memory
of last step ms_;,, while the second part is the new memory that is determined by the
input X, and the output hs_;; from previous step and the input 75;. The © represents the

element-wise product.

M = for Mamrg +iae s N (X770 4 oy 00 + al) (5)

The o, is N7 function of linear combination of input X, output from last period hs_q .

The output vector h,; is determined by o, and my ;.

OS,t = N° (X;—t’y(s’o) + hS_LtQ(S’O) + OZ(S7O))

hs,t = Osyt° Ntanh (msﬂf)

(6)

For each sample, the LSTM unit will produce output vector Hy = (hyt, hay,. .., hs,t)T,
hsy € Rfor s=1,2,...,8, and S = 96. Finally, a dense layer is employed to transform the
Ht to Y42,

Yt+2 = D - Hy, (7)

where D is a matrix, D € RP*S.

Each gate has three parameter vectors to estimated. Take the input gate for example,

= (A5
6 = (6%,6%,...,6%)" (8)

Similarly, the forget gate has v/, 8/, a/; the memory gate has 4™, 6™, o™; and the output

gate has 7?2, #°, a°. Therefore, the parameter matrix can be written as,



(v, 4™, 7°) € RSxkx

(¢ 07, 0m,0%) € R4 (9)
( f Oém,Oéo) c RSX4

r
)
A

The number of parameters estimated in the LSTM model heavily depends on the number
of time steps, S. We employ a 1-day lagged sample of a 15-min sampling frequency, i.e.,
S = 96.

3.1.2. Gated Recurrent Unit

hst € R A

hst

2

75| GRU

X57t € Rk

Figure 6

Architecture of GRU

The figure shows the architecture of a unit in the GRU model. The left part shows the outside
structure, where the input vector X, ; € R¥ on the bottom and the output vector hst € R on the
top, and the hidden state vector hs_1; € R as a feedback input. The right part is the detailed
structure inside the GRU unit.

We can see the graphic representation of GRU architecture clearly from Figure[6] Instead
of having memory gate and forget gate, GRU has a candidate activation c¢,;. And the output
of GRU hy,; € R? is linear interpolation of csy and hs_1,, as shown in Equation , the
update weight is determined by us,; in Equation (|12)).

10



Similar to LSTM, The input gate for GRU defined by Equation is also linear com-

bination of input variable X,; € R* and previous output hs—1.4

ise = N7 (XA + hyy 059 4 o) (10)

Differently, the candidate activation ¢, defined in Equation is a function of X, and
ist - hs—14. The candidate activation c,; determines how much information will should be

kept or reduced from the input and previous result via the N** neural network layer.
Cop = N (X ]y 4 (35,00 - hy_y ;) + al5) (11)
The interpolation weighting vector us; € R defined in Equation controls the degree
of updating from candidate activation c; .
sy = N7 (X7 + he1,00) 4 o)) (12)

The output gate keeps part of the information from the previous output and part of the

information from candidate activation c; ;.

hs,t = (]1 - us,t) : hsfl,t + Usy * Csit (13>

For each sample, the GRU unit output vector is Hy = (hiy, hay, . . ,h57t)T, hst € R for
s=1,2,...,59 and S = 96. Same to LSTM model, a dense layer with linear transform
D € RP*S is employed to transform the H; to gy, finally,

Yt+2 = D - Hy, (14)

As a GRU unit has one less gate compared to a LSTM unit, the number of parameters
to be estimated in the GRU unit is less than in the GRU unit,

(,Yi7 ,Yc’ ,.)/u) c RSXk*ZS
(92’70079u) c RSXB (15)

(()éi7Oéc,()éu) c RSX3

r
)
A

3.1.8. Parameters Estimation

Due to the flexibility and complexity of LSTM/GRU, a closed-form solution for estimat-
ing parameters is not possible. In general, all parameters are estimated by the backpropa-

gation (BPP) algorithm described as follows.

11



Let ¥ be the estimated coefficients matrix in a complete constructed LSTM /GRU model
which can be formulated in a general form stated as Equation (16]). The forecast y; at step

t is determined by function ¢(-) which is the nonlinear neural network with forcastors X .

Yy =g (V5 Xep, hso14) + & (16)

In BPP, all parameters are estimated by iteration shown as Equation (17)) with random
initial values. ¢ is a prespecified constant that determines the learning rate of such a neural

network, and V is the gradient operation.

YUY — §0) 4 5. vy (\if@; X, hs,l,t) [h&t _g (@J’);X&t, hs,u)] i=1,2,... (17

3.2. FASTEC on Regime Switching
3.2.1.  FActorisable Sparse Tail Event Curves

In the following, we present a functional approach to model the load process of chemical
production. This method models the short-term electricity consumption Y; around a local
mean, trend, or seasonality. The proposed method is based on a sequence of steps: first, we
estimate a functional factor model at each production level using expectiles. Expectiles can
be referred to as conditional moments at a specific level of the distribution. The functional
approach employs B-splines as regressors and, hence, cannot be used directly for forecasting
purposes. By employing an asymmetric loss function, it is possible to estimate the model
coefficients conditional on being in a specific region of the distribution, such that the approx-
imation of the entire probability distribution of the stochastic variation is achieved without
imposing the type of distribution. Within the estimation procedure, iteratively singular
value decomposition is procured in the coefficient estimation step. Left singular-vectors and
the singular values give us time-invariant factors that capture the within-day dynamic of our
functional data, and time-varying loadings, the right-hand singular vectors, can be deployed
in a time series regression model. Then, a vector autoregressive time series model is esti-
mated on the time-varying loadings of the first » most relevant factors to capture any short
term variation that might occur in the data.

Expectile regressions have become popular functional data analysis (FDA) techniques
(Chao et al. (2015), [Schnabel and Eilers| (2009), Lépez Cabrera and Schulz| (2017)), [Sobotka
et al| (2013), [Tran et al| (2018), |Ramsay and Silverman (2007), Burdejova and Héardle
(2019)). The multivariate expectile regression is done using the FActorisable Sparse Tail

Event Curves (FASTEC) methodology, a recent technique involving generalized quantiles

12



in a multivariate regression setup. It incorporates quantile curves (Chao et al., [2015) or
expectile curves (Chao et al., [2018)) in a linear model that represents functional variables as
linear combinations of r B-splines. This approach is in spirit analog to the Karhunen-Loeve
expansion or the Fourier series that also employ linear combinations of orthogonal functions.
An approximation of each load curve is then given by the sum of the first r of these functions.

In a general setup, suppose {X,}5_,,€ R¥ {Y,}9 | € RY i.i.d.; The multivariate linear
model for a T-expectile curve of the daily curve Y;, consisting of S intra-day observations,

with ¢t = 1,...,T, and the level 7 € (0,1), is given by

Yt = 6t<T|X5) + Ust,T = X;rr*t(T) + Ust,T (18)

where I',;(7) € RF is the coefficient matrix for day ¢ at 7-level and e,(7|X,) is the
conditional expectile of Y; given X and Uy, is 7-level white noise. k is the number linear
combinations of B-splines required to represent the Y; and is chosen as [/n].

The multivariate expectile regression formulation with penalised loss is given by

S
['\(7) = argmin {(TS)_l Z ZpT (Yst — XSTF*t) + )\HFH*} , (19)

PeRkxa s=1 t=1

where ||T[|. = S 5,(I) is the nuclear norm of T, X, is a (S x k)-matrix, I is the

coefficient matrix and A the penalisation parameter. Please note, that I'y(7) = I" depends
on the tuning parameter A and the 7-level. To ensure efficiency and convergence of the
algorithm optimal selection of the tuning parameter \ is of the essence. The n-fold cross-
validation method gives a consistent estimate of the tuning parameter (Hardle et al., 2012]).
In our case, we are required to forecast the load process 2-day ahead, the FASTEC method
is applied twice each time to forecast a 2-day result.

The decision to which expectile level the current data belongs and, hence, where the
forecast of the load will be, is entirely data-driven and is evaluated by a change-point test.
The change-point detection is based on a t-test that captures the mean distance of curve Y;
to all mean levels estimated from the Gaussian Mixture Model described later in Sec[3.2.2]
where the load process is estimated in a 15-minute frequency. Thus, the expected distance
to one of the levels is expected to be zero. If this is the case, the test-statistic is small, and

the null hypothesis of having the same level cannot be rejected.
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Figure 7
Convergence of EM algorithm on load process
The figure shows how the parameters converge with the EM algorithm.

3.2.2.  Gaussian Mizture Model

Motivated by Figure[2] the distribution of load process points can be modeled as Gaussian
Mixture Model (GMM) (Mclachlan and Peel (2004)), Eirola and Lendasse (2013))). Here, we
model the GMM using the first 10,000 points, i.e D = 10,000. GMM assumes that the

probability density function of the load process {ys}%, in a 15-minute frequency can be

written as a one-dimensional linear combination of k£ Gaussian density functions as follows.

K
P(y|Oé, K, 02) = Z Oék90<y|:uk7 O-I%) (20)
k=1

Where Oy = (o, fu, O’,%)T are the weight, mean, and variance of the k;, normal density
function, respectively. Under the restriction that a4 € (0,1),k =1, ..., K, and Zle ap = 1.

In this article, the goal of GMM modeling is to detect the mean values for different states
in the load process. Thus we ignore the temporal dependency of the load process. The
estimation procedure is carried by the classic Expectation-Maximization (EM) algorithm
provide by |[Dempster et al.| (1977) and then extended by (1991).

To estimate the parameters in Equation , we assume that there are K = 5 machinery

work states, the latent variable St(k) represents that machine works on the k;;, status at time
t. St(k) is an indicator function that equals 1 with probability of aj. Conditioning on the
working status, the the probability density function is Gaussian, i.e go(yt\St(k), i, 02). Then,

the log-likelihood function under the assumptions can be written as:

14



log P(y, S™|0) = log (P(y|S™, @) - P(S™0))

K @
TLk S
| | O(ye i, o%)”t
< k=1 t=1 ) (21)

i nklogak—i—ZS {log — log oy, — M]
—1 V2 2Uk

Where ny, = Zle St(k) is the number of points that belong to the k;;, status.
The E-step of the EM algorithm is taking the expectation of the likelihood function in
Equation (21)) named Q function.

Q (@, @(i—l)) = E <log P(y, S(k)|@) ’ Y, @(i—l))

K T
-y Y E (St(k)ly, @("‘”> log v (22)

k=1 t=1

S (k) 1 (e — px)”
i—1 t
+Y" Y E (St ly, © >) {log words S

log o), —
k=1 t=1

The conditional expectation of working status at time ¢ is estimated as follows.

- o (] ©F ")
E(St(k)’%@(l_l)) = Kk —k 1) (23)
Zk:l arp(y©) )

Then the M-step of the EM algorithm is the maximization of QQ function with iteration,

©' = argmaxQ (@, @(i’l)) (24)
e

As shown in Figure [7, the EM algorithm converges quickly. With the estimated states
mean 1, the change-point test of FASTEC can then be performed.
We summarize the FASTEC method with regime switching as the following algorithm

representation in Algorithm 2]

3.3.  Performance Evaluation

To have a more robust comparison, we employ five metrics described as follows to measure
our forecast results.
The Mean Absolute Error is defined as MAE = %ZtT:l |y+ — ¥t|, where T is the out-of-
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Algorithm 2: Algorithm of FASTEC Method with Regime Switching

Input : Training Sample S"*" = {(X,;, ys4n)}526, h = 1,2 from Algo.

Output: Estimated coefficient matrix: I, (7)

Estimate conditional moments: certain expectiles as cluster centers;

2 Perform the Gaussian Mixture Model with load process in training sample
{ys+}2%, to obtain p and o at each level;

3 Determine affiliation based on t-statistic with estimated p and o;

4 Perform FASTEC (training) on h = 1,2 separately:

5 Select periods at conditional moments with 96 observations {y7,,,}2;

=

6 Bootstrap to get larger sample yg3, ,;

7 Perform FASTEC on each conditional moment sample;
8 Predict conditional moments y77;, ,;

9 Estimate the weights vector 7 for half of each sample {777, x;t, z?,, xit O o6en

s.t. MAE is minimised;
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Figure 8

Out-of-Sample Forecasting Comparison
The figure shows the out-of-sample forecasting results (blue line) from all the models compare
against the true load process (black line).

sample points. M AFE measures the average absolute distance between the true values, 1,
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and forecasts, ;. Unfortunately, the naive approach (taking value from previous period)
would take advantage of M AFE metrics if the process is evolving mildly. Using the Mean
Absolute Scaled Error, MASE = %Zthl I7Y|y; — Ui|, overcomes such bias by adjusting
MAFE with [ = ﬁ ZSTZQ lys — ys—1| that accounts the average changing intensity between
adjacent periods. To relieve the influence from scale, we also measure with the Mean Absolute
Percentage Error M APE = %Ethl |(y: — T¢) /s

The Mean Squared Error MSE = T3 \/ ZtT:l@\t — y;)? measures the average Euclidean
distance between true values and forecasts. We employ 3 metrics that are essentially
MSFE adjusted by 3 different factors, (), namely the Root Mean Squared Error RMSE =
T—%Q—l\/ Zthl@t — ;)% The first one nrRMSE is adjusted by difference between the
largest and smallest values, Q = Q,, = {max(y;) — min(y;)}, the second one nmRMSE
is adjusted by the mean value Q = Qp, = 7! Zthl y¢, and the thrid one nigrRM SFE is
ajusted by empirical quantile difference, @ = Qnigr = {q(v1,0.75) — q(y:, 0.25)}.

Then Diebold-Mariano test (DM) provided by |Diebold and Mariano| (2002) is employed to

compare forecasting results from different models. D-M test compares the forecasting errors

from two models and gives the statistics of whether one error process is significantly smaller

or larger than the other one. Here we compare LSTM against GRU, MS-FASTEC, and ARX
models using quadratic loss, i.e the loss differential d STMm (yE5T™ — )2 — (ym — y)?
where m € {GRU, MS-FASTEC,ARX}, and y; is the true value at time ¢. Then the
sample mean loss differential is JtL STMm — -1 Zthl dtL STM:m  Under some assumption, the
D-M test is formulated as follows:

SLSTM
dt 7m

DM = (25)

O FJLSTM,m
dt

Where & gLsTMm 18 the consistent estimate of standard deviation of d}°"*"™.

Table [2| shows the metrics of different models, and the LSTM model outperforms para-
metric models and even GRU consistently. This result strongly suggests that using a suitable
neural network model can perform much better when the nonlinearity property is captured.

Even though the improvement from the LSTM model is significant, Figure [9] shows that
none of the models could generate a forecasting error process that is normally distributed.
One explanation of such forecasting results is that in our case, the load process is not

surrendered to any clear pattern and is filled with a huge amount of jumps.
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Table 2
Out-of-sample 2-days ahead forecast performance evaluation

Measure LSTM GRU MS-FASTEC ARX
MAPE 0.2117 0.242 0.332 0.415
MASE 0.597f 0.848 0.672 1.040
nRMSE 0.142f 0.175 0.197 0.220
nigRMSE 1.3231 1.628 1.831 2.052
nmRMSE 0.173f 0.212 0.239 0.268
D-M* —19.138%** —21.556%** —31.297%**

7: Model with the highest accuracy compared with other models under each metric.
I: DM test with quadratic loss. GRU, MS-FASTEC, and ARX models against the LSTM model.
A significant negative testing result implies that the LSTM model outperforms the other models.
***. Signficant at 1% level.
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Figure 9

Distribution Residuals from Each Forecasting model

The Q-Q plot shows the distribution of residuals from each model against the standard normal
distribution. Models from left to right plots are LSTM, GRU, MS-FASTEC, ARX.

4. Conclusion

Short term load forecast is crucial for energy consumers, especially the big manufactur-
ers, for the forecast is one of the key parts of their decision-making. Previously, most of
the studies focus on modeling the load process from large-scale consumers, for example, a
countrywide electricity consumption process that evolves with a seasonal or periodic pat-
tern. Forecast on the small-scale consumer, such as a household or a set of machines, is a
pragmatic problem for the industries while rarely investigating. Requesting by a chemical
production company located in Germany, we are motivated to investigate the electric load
process of a chemical production line that involves hard structures.

Despite the fact that the load process has a strong temporal dependency, which can be
captured by autoregression models or long-memory models, one can see a huge amount of
jumps in the process. Some of the jumps exist only for a short time, and some of them actu-

ally represent the load process transfer to another working status. The nonlinear dependence
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motivates us to implement state-of-the-art neural network models.

We first calibrate two of the popular deep neural network models, LSTM and GRU. The
parameters are estimated by the standard backpropagation algorithm. To capture the tail
events of the process, we further construct a functional data analysis based semi-parametric
model, FASTEC, combined with the EM algorithm. For comparison, we use the ARX model
as a benchmark.

Utilizing the one-year intraday data, all models forecast the electricity consumption in the
next two days in 15-min resolution. We train all the models with the first 7-month data and
conduct out-of-sample forecasting in the last 5-month. The out-of-sample forecast suggests
that the LSTM model outperforms all other models by all metrics significantly evaluated
by the D-M test. However, even the LSTM model can not harness the tail risks caused by

jumps, which is one crucially problem for further researches.
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