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Dynamic Information Acquisition, Comlementarity, and Market Liquidity

September 22, 2018

Abstract

This paper studies dynamic information acquisition in financial markets with information asymme-

try. It first shows that multiplicity can arise in the information market due to a dynamic complementar-

ity in information acquisition. It then characterizes interactions between information complementarity

and market liquidity, in particular how market liquidity shapes information complimentarity through

the liquidity component in future stock returns. I find that i)information complementarity is always

more prominent in low-volatility financial market equilibrium; ii) information complementarity can

be more prominent with less persistent stock fundamental and/or more persistent stock supply and

iii) regardless of the type of financial market equilibrium, public disclosure always makes information

complementarity less prominent.

Keywords: Information acquisition; Financial markets; Dynamic complementarity; Multiplic-
ity; Market Liquidity
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1 Introduction

Information acquisition activities are pervasive in financial markets. Since Grossman and Stiglitz

(1980) and Hellwig (1980), economists have been seeking to understand incentives behind investors’

decision to acquire information as well as the nature of interactions among market participants.

Most of this literature has focused on a static marketplace. The real-world financial market, on

the other hand, is inherently dynamic where investors condition their information choices not only

on what their peers know, but also on what information is available from the past, as well as what

information will be incorporated into the stock price in the future. In a sense, dynamic information

acquisition resembles a repeated game across investors at different points in time. Understanding

the nature of dynamic coordination in information acquisition is important and may unveil some

key forces that are absent when the information market is modeled as a static environment.

This paper seeks to understand coordination motives in information acquisition in a dynamic

financial market with information asymmetry. It incorporates the static information-acquisition

model of Grossman and Stiglitz (1980) into a dynamic noisy rational expectations framework (as

in Wang 1994; Spiegel 1998; Watanabe 2008). In the model, there is a long-lived stock that pays a

dividend each period. The dividend is stochastic and consists of a persistent component (the stock

fundamental) and a noisy component. The stock’s supply follows some mean-reverting process.

Overlapping generations of investors, upon their birth, freely observe the entire history of stock

prices, dividends, and public signals. They are then offered an opportunity to become informed,

i.e., to observe the history of the stock fundamental at a cost.

In this environment, there are two main forces that shapes coordination motives in information

choices. The first one is the classic static substitutability in information acquisition as in Grossman

and Stiglitz (1980): as more peer investors get informed, the value of information decreases due to

price learning. The second one is a dynamic complementarity in information acquisition: as more

investors get informed in the future, the incentives to acquire information today increase, as the

future resale stock price becomes more sensitive to the stock fundamental. This paper shows that
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the dynamic complementarity may overpower the static substitutability and leads to an upward-

sloping value of information as a function of steady-state share of informed investors. This suggests

that multiplicity arises with appropriate level of information cost.

Previous literature has studied the dynamic complementarity in information acquisition in finite-

horizon setups (Froot et al. 1992; Avdis 2016). Relative to the literature, this paper analyses

interactions between information choices and market liquidity in an infinite-horizon overlapping-

generation framework. The relation between information choice and liquidity is trivial in static,

or finite-horizon models: more informed investors always imply a more liquid financial market, in

the sense that liquidity traders have less price impact. In infinite-horizon models with overlapping-

generations of investors, however, this relation becomes nontrivial: with more investors acquiring

information, the financial market could become less liquid. This brings about interesting inter-

actions between market liquidity and information choice incentives, to the extent that value of

information is affected by the liquidity component in the future resale stock price. This is the

dynamic liquidity channel that this paper will focus on.

The key contribution of the paper is to characterize information complementarity and its interac-

tion with market liquidity under different types of financial market equilibria. It is well known that

infinite-horizon overlapping-generation models with asymmetric information typically exhibit two

financial market equilibria with different levels of stock market volatility (Spiegel, 1998; Bacchetta

and Van Wincoop, 2006; Watanabe, 2008; Biais et al., 2010). The paper derives a unified necessary

and sufficient condition under which dynamic information multiplicity arises across both types of

financial market equilibrium.

Utilizing this condition, I first show that dynamic information multiplicity is always more likely

to arise in the low-volatility equilibrium. That is, the low-volatility equilibrium is the more ”fragile”

equilibrium when endogenous information choice is incorporated. It is surprising given that the

low-volatility equilibrium, when information choice is taken exogenous, is generally perceived to be

the more stable and robust equilibrium.1 The key mechasim that leads to this result is the dynamic

1This paper does not take a stand on which financial market equilibrium one should select, as both high-volatility
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liquidity channel. In the low-volatility equilibrium, more informed investors implies a more liquid

financial market, or equivalently noise traders have less price impact. This implies that future

stock return is less affected by liquidity trading, and thus fundamental information is more valu-

able, increasing the value of information. This makes dynamic coordination in information market

relatively easy to achieve. In the high-volatility equilirbium, in contrast, more informed investors

imply a less liquid financial market and thus a lower value of information. Hence, information

multiplicity is less likely to arise in high-volatility equilibrium.

I then show that this dynamic liquidity channel offers new insights of comparative statics re-

garding dynamic information complementarity. For example, Avdis (2016) finds that a more per-

sistent stock supply always makes information multiplicity less prominent. This is not true in the

overlapping-generation framework, as a more persistent stock supply could strengthen the liquidity

channel and makes an upward-sloping value of information easier to arise. I also examine the re-

lation between information complementarity and fundamental persistence. One might expect this

relation to be trivial as a more persistent stock fundamental implies a stronger intergenerational

link which makes dynamic coordination easier to achieve. Surprisingly, the model predicts a non-

monotonic relation between information multiplicity and fundamental persistence, again due to the

liquidity channel.

Lastly, the paper considers issues related to policy. Would public disclosure reduce information

fragility? The answer is yes: information fragility always becomes less prominent with more precise

public signals. More importantly, this conclusion is robust to the selection of financial market

equilibrium. Thus, for a regulator aiming to stabilize asset markets, disclosing more precise public

information is helpful as it helps eliminate equilibrium multiplicity in information acquisition. This

result contributes to the recent debate on the desirability of the regulatory effort to provide more

precise public information, such as the Sarbanes-Oxley Act and, more recently, the Dodd-Frank

Act.

Literature Review This paper is closely related to a set of papers that explore information

and low-volatility equilibria has desirable features. See discussions in Albagli (2015) and Banerjee (2011).
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multiplicity in dynamic financial markets (see Froot et al. (1992) and Avdis (2016)). The key

differentiation of this paper is the overlapping-generation structure and the interactions between

information choice and market liquidity that arise within the framework. This paper characterizes

information multiplicity in both low-volatility and high-volatility financial market equilibrium. It

also finds that the dynamic liquidity channel changes some predictions of the previous literature.

For example, Avdis (2016) finds that information complementarity becomes less prominent with

more persistent stock supply. This relation can be reversed in an overlapping generation framework

due to the liquidity channel. Banerjee and Breon-Drish (2018) studies a dynamic information

acquisition problem of a strategic trader in a continuous-time setup and shows that the optimal

solution exhibits delay. This paper, on the other hand, focuses on the nature of coordination

in a dynamic information market. Cai (2018) also examines dynamic information acquisition in

overlapping-generation frameworks. Its focus, however, is on model dynamics and the interaction

between information choice and (endogenous and exogenous) variations in uncertainty.

The paper is also related to the literature that studies exogenous asymmetric information trading

models in an infinite horizon, pioneered by Wang (1993, 1994) and Campbell and Kyle (1993). It

is particularly related to models that study overlapping generations of investors (Spiegel, 1998;

Bacchetta and Van Wincoop, 2006; Watanabe, 2008; Biais et al., 2010; Albagli, 2015). Although

the physical structure of my paper is very close to these papers, in my model the information

acquisition choice is endogenous. Dow and Gorton (1994) study a dynamic overlapping-generations

model with private information where, similar to this paper, a dynamic informational linkage is

present: information gets incorporated into the price only if informed traders expect future traders

to also impound their information in the price. Unlike this paper, however, it does not concern the

issue of multiplicity.2

Information multiplicity also arises in static environments. For example, Veldkamp (2006a,b) gen-

erates complementary by embedding an increasing returns to scale information production sector

into an otherwise standard noisy rational expectations model. Ganguli and Yang (2009) illustrate

2I thank a referee for pointing this out.
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that complementarity may result when agents own private information about their endowment.

Garćıa and Strobl (2011) illustrate how relative wealth concerns leads to herding on information

and information acquisition multiplicity. Goldstein and Yang (2015) examines information com-

plementarity arising due to the presence of diverse information. Mele and Sangiorgi (2015) explore

market reactions to changes in uncertainty in a static model where investors are subject to Knigh-

tian uncertainty.

2 Model Economy

Time is discrete and runs from −∞ to +∞. The economy is populated by a continuum of

overlapping generations risk-averse agents who consume a single consumption good. The good is

treated as the numeraire. There are two assets in the economy: a bond in perfect elastic supply,

paying a return R;3 and a stock that pays a dividend

Dt = Ft + εDt (2.1)

each period. Ft is the persistent component of the dividend process. Later I call Ft the stock

fundamental. The stock fundamental follows an AR(1) process:

Ft = ρFFt−1 + εFt , 0 ≤ ρF ≤ 1. (2.2)

The stock supply, xt, follows an AR(1) process as well:

xt = ρxxt−1 + εxt , 0 ≤ ρx ≤ 1. (2.3)

An interpretation of the stochastic stock supply is that there exists a group of liquidity traders

who trade in the financial market for liquidity reasons. Thus, the sensitivity of stock prices with

respect to stock supply can be interpreted as market liquidity, as it measures the price impact of

3Alternatively one can interpret the bond as a storage technology without nonnegative constraint.
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these group of liquidity traders. This interpretation is also consistent with Kyle (1985).

As in Wang (1994), I assume that there is a public signal every period about the current funda-

mental:

St = Ft + εSt . (2.4)

The shock vector εt = [εDt , ε
F
t , ε

x
t , ε

S
t ] is i.i.d. over time, with mean 0 and covariance matrix

diag(σ2
D, σ

2
F , σ

2
x, σ

2
S).

Investors live for two periods.4When they are born, they are endowed with a certain amount of

wealth and also observe the entire history of the dividend and stock price. They are then offered an

opportunity to acquire information at some cost χ. If they choose to acquire information, they also

observe the history of the stock fundamental. I call investors who choose to acquire information the

”informed” investors and the rest ”uninformed.” The information set of the generation-t uninformed

is

ΩU
t = {Ps, Ds, Ss}ts=−∞,

and that for the informed is

ΩI
t = {Ps, Ds, Ss, Fs}ts=−∞.

As is standard in this class of models, an informed investor, observing the history of the fundamental

and stock price (denoted by Ps), can perfectly deduce the stock supply. For uninformed investors,

their conditional expectations are derived from Kalman filter equations. I use F̂ and x̂ to denote

the conditional mean of the current fundamental and stock supply for the uninformed:

F̂t = E(Ft|ΩU
t ) (2.5)

x̂t = E(xt|ΩU
t ). (2.6)

After the information acquisition stage, the financial market opens and trade occurs. After that,

old investors exit and consume their wealth. The timeline is summarized in figure 1. The period-t

4An alternative, but equivalent model is that investors live forever but are myopic when making investment
decisions.
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𝑇𝑖𝑚𝑒 𝑡

𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑝𝑎𝑖𝑑
𝑡𝑜 𝑡 − 1 𝑎𝑔𝑒𝑛𝑡𝑠

𝑃𝑒𝑟𝑖𝑜𝑑 𝑡 𝑎𝑔𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑏𝑜𝑟𝑛.
𝐶ℎ𝑜𝑜𝑠𝑒 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑡𝑜

𝑎𝑐𝑞𝑢𝑖𝑟𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑐𝑜𝑠𝑡 𝜒

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑡 𝑜𝑝𝑒𝑛𝑠 𝑃𝑒𝑟𝑖𝑜𝑑 𝑡 − 1 𝑎𝑔𝑒𝑛𝑡𝑠 𝑒𝑥𝑖𝑡
𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑒 𝑤𝑒𝑎𝑙𝑡ℎ

𝑇𝑖𝑚𝑒 𝑡 + 1

Figure 1: Timeline

born agents’ problem is as follows. Upon birth, they make information acquisition choice:

max{W I
t ,W

U
t },

where W I
t denotes the expected utility of generation-t informed investors, and WU denotes the

expected utility for the generation-t uninformed. Then, conditional on the information set, they

make their portfolio choice to maximize expected utility derived from terminal consumption:

W i
t = maxs,cE(U(c)|Ωi

t)

c ≤ (Dt+1 + Pt+1 −RPt)s+R(w−1{i = I}χ),
(2.7)

where s denotes the number of stock shares to purchase and c denotes terminal consumption. As

as standard in the literature, I assume that utility is exponential:

U(c) = − exp(−αc)
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Where α is the risk-averse parameter.

I will focus on the stationary equilibrium where the pricing function is constant over time. Let

λ be the steady-state share of informed investors.

Definition 2.1 Denote the state of the economy φ = {F̂,F, x}.

A steady state is {P (φ), λ, {si(φ), ci(φ)}i=U,I} s.t.

1. si(φ), ci(φ) solves the uninformed and informed agents’ problem given P (φ).

2. The market clears: λsI(φ) + (1− λ)sU (φ) = x(φ) .

3. WU = WI if λ ∈ (0, 1); if λ = 0, WU ≥WI ; if λ = 1, WU ≤WI ,

where F̂ is the conditional expectation defined by equation 2.5. The last condition guarantees that

agents’ information choice is optimal. For instance, if there is a positive fraction of both informed

and uninformed investors (λ ∈ (0, 1)), it has to be the case that the expected utility of the informed

and the expected utility of the uninformed are equalized.

It is challenging to solve noisy rational expectations models with general, potentially nonlinear,

price functions. Breon-Drish (2015) shows that the linear equilibrium is the unique continuous

equilibrium in the static model of Grossman and Stiglitz (1980). It therefore stands to reason

that the dynamic model considered here has the same linear equilibrium as the unique continuous

solution. I therefore focus on linear equilibria in which equilibrium stock price depends linearly

on the (expected) stock fundamental and supply. That is, there exists a set of time-invariant

coefficients {p̄, pF̂ , pF , px} such that

Pt = p̄+ pF̂ F̂t + pFFt − pxxt. (2.8)
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2.1 Characterization

In this section I focus on characterizing how trading and dynamic learning works in this economy,

taking agents’ information choice as given. This paves the way to characterizing the information

market in the next section. To begin, I define an exogenous-information steady state where the

steady-state share of informed investors λ is given. The notion of steady-state equilibrium is the

same as in Spiegel (1998), Watanabe (2008), and Biais et al. (2010):

Definition 2.2 An exogenous-information steady state given λ is Φ(λ) = {P (φ), λ, {si(φ), ci(φ)}i=U,I}

such that it satisfies condition 1 and 2 in definition 2.1.

In what follows, I start by characterizing beliefs of the investors in such an equilibrium.

Conditional Expectations of the uninformed investors

The uninformed investors form their beliefs observing the entire history of dividends, public

signals, and equilibrium stock prices. Note that current prices contains information about both

stock fundamental and stock supply. From the current stock price

Pt = p̄+ pF̂ F̂t + pFFt − pxxt

the uninformed investors can infer a price signal:

Spt = pFFt − pxxt

Note that F̂t is common knowledge. Crucially, given the price signal, stock fundamental Ft and stock

supply xt are perfectly positively correlated. This observation implies that the variance-covariance

matrix for fundamental and supply is degenerate:

Cov
(
Ft, xt|ΩUt

)
= Cov

(
Ft,

pFFt − SPt
px

|ΩUt
)

=
pF
px
V ar

(
F |ΩUt

)
(2.9)

V ar
(
xt|ΩUt

)
= V ar

(
pFFt − SPt

px
|ΩU

)
=

(
pF
px

)2

V ar
(
Ft|ΩUt

)
. (2.10)
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This observation greatly simplifies the linear filtering problem faced by the uninformed investors,

reducing it from two-dimensional (i.e dynamics of both Ft and xt) to single-dimensional.5 Exploiting

this property gives us the following proposition:

Proposition 2.1 In an exogenous-information steady state Φ(λ) with price coefficients pf , px:

1. the law of motion for V ar
(
Ft|ΩU

t

)
is characterized by

1

V ar(Ft+1|ΩUt+1)
=

1

V ar (Ft+1|Spt+1,ΩUt )
+

1

σ2
D

+
1

σ2
S

(2.11)

2. the law of motion for F̂t = E(Ft|ΩU
t ) is characterized by

F̂t+1 =
V ar(Ft+1|ΩUt+1)

V ar
(
Ft+1|Spt+1,ΩUt

)
ρF F̂t +

(
ρF − ρx

)
ρFV ar(Ft|ΩUt ) + σ2

F

(ρF − ρx)2 V ar(Ft|ΩUt ) + σ2
F +

(
px
pF

)2
σ2
x

(
Spt+1 −

(
ρF − ρx

)
F̂t − ρxSpt

)
+
V ar(Ft+1|ΩUt+1)

σ2
D

Dt+1 +
V ar(Ft+1|ΩUt+1)

σ2
S

St+1 (2.12)

= f1F̂t + f2Ft + f3ε
F
t+1 − f4ε

x
t+1 + f5ε

D
t+1 + f6ε

S
t+1 (2.13)

where V ar
(
Ft+1|Spt+1,Ω

U
t

)
denotes the conditional volatility of Ft+1 upon observing the price

signal Spt+1 but not dividend signal or public signal, and is given by:

V ar
(
Ft+1|Spt+1,Ω

U
t

)
=
(
ρF
)2

V ar(Ft|ΩUt ) + σ2
F −

[(
ρF − ρx

)
ρFV ar(Ft|ΩUt ) + σ2

F

]2
(ρF − ρx)2 V ar(Ft|ΩUt ) + σ2

F +
(
px
pF

)2

σ2
x

fi > 0 are all functions of pf and px.

The law of motion for V ar
(
Ft|ΩU

t

)
is similar to the Kalman Filter formula where the ex-post

precision is the sum of the ex-ante precision plus the precision of signals. The only complication is

that the price signal is correlated with the stock fundamental in a way that is different from white

noises. Thus the Kalman Filter formula is not readily applicable 6 and one needs to invoke the

projection theorem of normally distributed variables to obtain the law of motion.

In a steady state, conditional volatility of stock fundamental V ar
(
Ft|ΩU

t

)
is time-invariant.

Denote the steady-state volatility V ar(F |ΩU ). Give equilibrium stock price, I can solve V ar(F |ΩU )

5I thank an anonymous referee for suggesting to make it more explicit.
6It is readily applicable if one is willing to work in a two-dimensional space which involves matrix manipulation

and is quite involved. Details are available in the appendix of previous versions of the paper.
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from equation 2.11:

1

V ar(F |ΩU )
=

1

(ρF )2 V ar(F |ΩU ) + σ2
F −

[(ρF−ρx)ρFV ar(F |ΩU )+σ2
F ]

2

(ρF−ρx)2V ar(F |ΩU )+σ2
F+
(
px
pF

)2
σ2
x

+
1

σ2
D

+
1

σ2
S

(2.14)

This is the first restriction of exogenous-information steady state.

Excess Stock Return and Optimal Portfolios

Given the equilibrium price function and the uninformed investors’ belief, one can derive the

expression for excess stock return and optimal portfolios. The excess stock return consists of

dividends and capital gains, less the interest cost of holding the stock:

Qt+1 = Dt+1 + Pt+1 −RPt

Using the law of motion for Ft+1 (equation 2.2), xt+1(equation 2.3), and F̂t+1(equation 2.13), one

can show that:

Lemma 2.1 The excess stock return Qt+1 can be expressed as a linear combination of time-t

variables and time-t+ 1 innovations:

Qt+1 = p̄+ e1F̂t −RPt + e2Ft − e3xt + e4ε
F
t+1 − e5ε

x
t+1 + e6ε

D
t+1 + e7ε

S
t+1

Where the coefficients on fundamental and supply {e2, e3} are given by:

1. e2 = ρF (1 + pF ) + ρF pF̂

(
V ar(F |ΩU )

σ2
D

+
V ar(F |ΩU )

σ2
S

)
2. e3 = ρxpx

One can see from the loading coefficient e2 that the excess stock return depends on stock fun-

damental F through three channels: first, future dividend depends on the fundamental; second,

future capital gain (stock price) depends on the fundamental; third, uninformed investors trade
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upon dividend signal and public signal, which both depend on the stock fundamental. All three

channels are discounted by the persistence parameter ρF .

e2 = ρF ( 1︸︷︷︸
dividend

+ pF︸︷︷︸
capital gain

+ pF̂ (
V ar(F |ΩU )

σ2
D

+
V ar(F |ΩU )

σ2
S

)︸ ︷︷ ︸
signal to uninformed

) (2.15)

For simplicity, denote the ratio of variances θD = V ar(F |ΩU )
σ2
D

and θS = V ar(F |ΩU )
σ2
S

.

Excess stock return depends on stock supply x only through the capital gain term as it does not

enter into dividend nor signals.

e3 = ρxpx (2.16)

Lemma 2.1 suggests that the excess stock return can be decomposed into the following three

components in terms of information content:

Qt+1 = p̄+ e1F̂t −RPt︸ ︷︷ ︸
known to all

+ e2Ft − e3xt︸ ︷︷ ︸
known to informed only

+ e4ε
F
t+1 − e5ε

x
t+1 + e6ε

D
t+1 + e7ε

S
t+1︸ ︷︷ ︸

not known to either

(2.17)

The first component consists of constants, current stock prices and uninformed investors’ belief

F̂t. These are known to all agents in the economy. The second component consists of actual stock

fundamental and actual stock supply. These information are known to only the informed investors.

The third component consists of future noises that no one at period t could possibly know. Thus

the conditional volatility of excess stock return for both the uninformed and the informed is given

by:

V Ut := V ar(Qt+1|ΩU ) = V ar(e2Ft − e3xt + e4ε
F
t+1 − e5εxt+1 + e6ε

D
t+1 + e7ε

S
t+1|ΩU ) (2.18)

V It := V ar(Qt+1|ΩI) = V ar(e4ε
F
t+1 − e5εxt+1 + e6ε

D
t+1 + e7ε

S
t+1|ΩI) (2.19)

Given the expected stock returns and conditional volatility, I can now derive the investors’ optimal

portfolio. As agents live for two periods and possess exponential utility, the optimal portfolio choice

13



is particularly simple:

sit =
E
(
Qt+1|Ωi

t

)
V i
t

Market clearing condition implies that

λsIt + (1− λ)sUt = xt

The price coefficients are then determined by matching coefficients so that the market clearing

condition holds for any F, x, F̂ , given agents’ belief. Combining the market clearing condition and

the steady state equation characterizing conditional volatility, I obtain a full characterization of

the exogenous-information steady state. To summarize, an exogenous information steady state

given λ is a triple
(
V ar(F |ωU ), pF , px

)
characterized by three equations. One equation is derived

from private agents’ dynamic filtering problem whereas two other equations come from coefficients

matching in the market clearing condition:

Proposition 2.2 Given λ, an exogenous information steady state
(
V ar(F |ΩU ), pF , px

)
is fully

characterized by:

1

V ar(F |ΩU )
=

1

(ρF )2 V ar(F |ΩU ) + σ2
F −

[(ρF−ρx)ρF V ar(F |ΩU )+σ2
F ]2

(ρF−ρx)2
V ar(F |ΩU )+σ2

F
+
(

px
pF

)2
σ2
x

+
1

σ2
D

+
1

σ2
S

(2.20)

α =

[
λ

1

V I
+ (1− λ)

1

V U

]
(R− ρx) px (2.21)

pF
px

= λ
ρF + ρF

R−ρF f2 +
(
ρF − ρx − f2

)
pF

V I
(2.22)

Where V I and V U are conditional volatility of stock return for informed and uninformed investors

defined by 2.19 and 2.18 and are functions of
(
V ar(F |ωU ), pF , px

)
, expressions of which are given

in the appendix. pF̂ is given by

pF̂ = a− pF (2.23)

where a = R
R−ρx .
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As is standard in the literature the sum of pF̂ + pF is equal to R
R−ρx regardless of λ. This is a

standard property of asymmetric information trading model such as Wang (1994).

3 Value of Information

Given that I can fully characterize the exogenous information steady state conditional on the

steady state share of informed investors λ, I now define the value of information as the ratio of the

expected utilities for the informed and uninformed investors net of information cost :

Definition 3.1 Denote the expected utility of the informed Ŵ I and uninformed ŴU net of in-

formation cost at each exogenous-information steady state Φ(λ). Define the value of information

conditional on λ

π(λ) = ŴU/Ŵ I ,

where Ŵ i, i = I, U are given by equation 2.7 with χ = 0.

The value of information measures the expected gain from information acquisition. Comparing the

benefit to the cost of acquiring information determines whether an exogenous-information steady

state is a steady state in the benchmark economy:

Lemma 3.1 ∀λ ∈ (0, 1), an exogenous-information steady state Φ(λ) is a steady state if and only

if

π(λ) = exp(αRχ).

For λ = 0 (1), Φ(λ) is a steady state if and only if

π(λ) ≤ (≥) exp(αRχ).

In a static environment as in Grossman and Stiglitz (1980), value of information is monotonically

decreasing due to price learning, giving rise to a unique equilibrium. In this dynamic environment,

15



however, value of information can be upward-sloping due to a dynamic complementarity effect. To

see this, I need to evaluate the slope of the value of information function. An elegant theoretical

result in Grossman and Stiglitz (1980) for characterzing the value of information is that the value of

information is equal to the (square root of the) ratio of conditional volatility of excess stock return

faced by the uninformed and informed. This result carries over to this dynamic model. The crucial

assumption here is that agents are, as in Grossman and Stiglitz (1980), two period lived. Thus,

conditional on equilibrium price function, they solve exactly the same problem as in Grossman and

Stiglitz (1980), yielding the same expression of expected utility, and hence the same expression for

the value of information.

Proposition 3.1 The value of information is equal to the square root of the ratio of conditional

volatility of excess stock return faced by the uninformed and informed:

π(λ) =

√
V U

V I
,

Where V U and V I are the steady-state conditional stock return volatility faced by uninformed and

informed investors. I can express the value of information in terms of V I and the difference in

volatility defined as ∆V = V U − V I :

π(λ) =

√
V U

V I
=

√
1 +

∆V

V I
,

Thus, to evaluation the slope of π(λ), one only need to evaluate the slope of
∆V

V I
, or equivalently

the sign of
d∆V

dλ
− ∆V

V I

dV I

dλ
. We summarize this observation into the following lemma:

Lemma 3.2

sgn(
dπ(λ)

dλ
) = sgn(

d∆V

dλ︸ ︷︷ ︸
fundamental component

− ∆V

V I

dV I

dλ︸ ︷︷ ︸
liquidity component

),

The lemma decomposes the slope of the value of information into two components. The first

component, d∆V
dλ , is only affected by fundamental sensitivity pf . Thus, I label it the fundamental
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component. The second component, ∆V
V I

dV I

dλ , is mainly affected by variations in supply sensitivity

px, and is therefore labelled liquidity component.

To see the dynamic complementarity effect, I first focus on the fundamental component d∆V
dλ .

Write out expression of ∆V using equation 2.18 and 2.19:

∆V = V ar(Qt+1|ΩU
t )− V ar(Qt+1|ΩI

t )

= V ar(e2Ft − e3xt|ΩU
t )

= e2
2V ar(Ft|ΩU

t ) + e2
3V ar(xt|ΩU

t )− 2e2e3Cov(Ft, xt|ΩU
t ). (3.1)

All the noise terms drop out because they are not known, nor are they correlated with current

fundamental and supply. Information acquisition reduces the uncertainty associated to stock fun-

damental Ft and stock supply xt. The first two variance terms reflect, respectively, that information

is useful in reducing the uncertainty regarding stock fundamental and stock supply. The last cor-

relation term is negative, reflecting that with high correlation, information is not that useful in

guiding agent’s portfolio choice because any signal that predicts good fundamental (suggesting

buying the stock) also predicts excessive stock supply (suggesting shorting the stock). In what

follows, I will characterize how change in λ affects each term:

d∆V

dλ
=

de2
2V ar(Ft|ΩU

t )

dλ
+
de2

3V ar(xt|ΩU
t )

dλ
− d2e2e3Cov(Ft, xt|ΩU

t )

dλ
. (3.2)

The predictive role of stock fundamental

The first term de2
2V ar(F |ΩU )/dλ reflects how perturbations in λ affect the value of information

through the predictive role of fundamental F . When the share of informed, λ, increases, two

opposing forces affect the value of information about stock fundamental. On the one hand, classic

substitutability says that more informed investors today implies a more informative current stock

price. Thus, the conditional variance of fundamental V ar(F |ΩU ) tends to decrease. On the other

hand, since there are more informed investors in the future, the future stock price loads more
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heavily on the fundamental, and thus the loading coefficient e2 increases. One can see this effect

by differentiate e2 with respect to pF :

∂e2

∂pF
= ρF

(
1− V ar(F |ΩU )

σ2
D

− V ar(F |ΩU )

σ2
S

)
> 0

The ”Kalman Gain”, V ar(F |ΩU )
σ2
D

+ V ar(F |ΩU )
σ2
S

, is always less than 1 because uninformed investors

react less aggressively to noisier signals. When λ increases, more informed investors in the future

implies that the excess stock return is more sensitive to future stock fundamental, hence current

stock fundamental. This is dynamic complementarity effect. Note that the effect is discounted

by ρF because loading on future fundamental gets discounted by the persistence parameter when

translated into loading on current fundamental.

Apart from the dynamic complementarity effect, I still need to evaluate the static substitutability

effect. Observe two properties regarding the steady-state equations charactering the conditional

volatility V ar(F |ΩU ): first, λ does not enter into the equation directly. This implies that there is

no direct impact of variations in λ on V ar(F |ΩU ). Second, the price coefficients pF and px enter

the equation only through the square of the price ratio (pFpx )2. Thus the derivatives always contain

the price ratio pF
px

, which converges to 0 when λ → 0. This implies that changes in λ cannot

have indirect effect on the conditional volatility through changes in the price coefficients locally

around λ = 0. These two properties taken together implies that the conditional volatility of stock

fundamental is not affected by changes in λ, and thus it can be treated as a constant when λ is

very close to 0.

To see this more explicitly, write equation 2.20 as G

(
V ar(F |ΩU )),

(
pF
px

)2
)

= 0 for some dif-

ferentiable function G. Total differentiate with respect to conditional volatility V ar(F |ΩU ) (first

term), price coefficients pF , px (second term) and λ (last term):

∂G

∂V ar(F |ΩU )
dV ar(F |ΩU ) +

∂G

∂
(
pF
px

)2 (
2pF
p2
x

dpF −
pF
p4
x

dpx) +
∂G

∂λ
dλ = 0
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Note that pF → 0 when λ → 0, thus the second term disappears. Also note that equation 2.20

does not depend on λ directly, so the last term disappears as well. Thus:

∂G

∂V ar(F |ΩU )
dV ar(F |ΩU ) = 0

⇒ dV ar(F |ΩU ) = 0

We summarize this observation into the following proposition

Proposition 3.2 (Local Absence of Static Substitutability) Suppose λ→ 0:

dV ar(F |ΩU )

dλ
→ 0

Thus, perturbing λ near λ = 0 does not affect the conditional uncertainty faced by the uninformed

investors becaue it barely improves the precision of the price signal. In contrast, the magnitude of

the dynamic complementarity effect is generally bounded away from zero. When λ is very small,

the loading of stock price on the fundamental, pF , is negligible. But the loading of excess stock

return on the fundamental, e2, converges to some strictly positive number ρF (1 + a(θD + θS)) > 0.

This is because of the presence of the interim dividend payout, as well as the fact that uninformed

investors observe noisy signals about the fundamental. Thus we have:

de2
2

dλ
= 2(ρF )2(1 + a(θD + θS))(1− θD − θS)

dpF
dλ

when λ→ 0. (3.3)

Combining the static substitutability (equation ??) and the dynamic complementarity (equation

3.3), one can show that the first term in equation 3.2 is always positive at the limit:

lim
λ→0

d[e22V ar(F |ΩU )]

dλ
= lim

λ→0

de22
dλ︸︷︷︸
>0

V ar(F |ΩU )︸ ︷︷ ︸
>0︸ ︷︷ ︸

dynamic complementarity>0

+ lim
λ→0

dV ar(F |ΩU )

dλ︸ ︷︷ ︸
=0

e22

︸ ︷︷ ︸
static substitutability=0

= 2(ρF )2(1 + a(θD + θS))(1− θD − θS)V ar(F |ΩU )
dpF
dλ

(3.4)
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The predictive role of supply x

The second term de2
3V ar(x|ΩU )/dλ in equation 3.2 captures the predictive role of supply x. As

discussed in Avdis (2016), the equilibrium stock price becomes a noisier signal of supply when there

are more informed investors. This force tends to increase the conditional supply uncertainty faced

by the agents and thus increase the value of information. Note that both the uninformed and the

informed observe the price signal SP = pFF − pxx. Thus

V ar
(
x|ΩU

)
= V ar

(
pFF − SP

px
|ΩU

)
=

(
pF
px

)2

V ar
(
F |ΩU

)
. (3.5)

As λ increases, the stock price becomes more sensitive to the fundamental, and thus the ratio pF
px

increases in general. This tends to push up the conditional uncertainty of supply and thus increase

the value of information.

This effect is absent locally around λ = 0 because its magnitude depends on the square of the

price ratio (pFpx )2. Thus, just like V ar(F |ΩU ), the derivative of V ar(x|ΩU ) with respect to λ is also

proportional to pF
px

. As a result, it tends toward zero as λ tends toward zero:

dV ar(x|ΩU )

dλ
→ 0, as λ→ 0.

Also note that as pF → 0, price signal becomes a perfect signal about stock supply. Thus,

the conditional volatility of stock supply coverges to 0 as well. Combining these observations, we

conclude that the supply channel does not play any role locally around λ = 0:

lim
λ→0

d[e2
3V ar(x|ΩU )]

dλ
= lim

λ→0

de2
3

dλ
V ar(x|ΩU )︸ ︷︷ ︸

=0︸ ︷︷ ︸
=0

+ lim
λ→0

dV ar(x|ΩU )

dλ︸ ︷︷ ︸
=0

e2
3

︸ ︷︷ ︸
=0

= 0 (3.6)

The Covariance Term
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The third term −d2e2e3Cov(F, x|ΩU )/dλ in equation 3.2 reflects the fact that an increase in λ

may reduce the value of information due to higher covariance between fundamental and supply.

The logic is as follows. When λ increases, the price becomes a noisier signal of stock supply. This

increases the conditional volatility of stock supply relative to the conditional volatility of stock

fundamental and thus raises the conditional covariance between the fundamental and supply relative

to the conditional volatility of stock fundamental. When the covariance increases, information

about the fundamental is not that useful in guiding agent’s portfolio choice because any signal

that predicts good fundamental (suggesting buying the stock) also predicts excessive stock supply

(suggesting shorting the stock).

To characterize the covariance term, we first substitute in expression 2.9 and expressions for e2

and e3 (equation 2.15 and 2.16):

2e2e3Cov(F, x|ΩU ) = 2e2e3
pF
px
V ar

(
F |ΩU

)
= 2ρF (1 + pF + (a− pF )(θD + θS))ρxpx

pF
px
V ar

(
F |ΩU

)
= 2ρFρx(1 + pF + (a− pF )(θD + θS))pFV ar

(
F |ΩU

)

Note that when λ → 0, pF → 0 and
dV ar(F |ΩU )

dλ
→ 0. With these facts and the chain rule of

differentiation, one get:

d2e2e3Cov(Ft, xt|ΩU
t )

dλ
→ 2ρFρx(1 + a(θD + θS))V ar

(
F |ΩU

) dpF
dλ

(3.7)

Thus, this offsetting force depend on the product ρFρx as it measures the covariance of future

fundamental and future supply. By combining equation 3.4 and 3.7 we are ready to derive the

slope of the information gain component:

d∆V

dλ
= 2ρF (1 + a(θD + θS))V ar

(
F |ΩU

)
((1− θD − θS)ρF − ρx)

dpF
dλ

(3.8)

Note that the slope of the fundamental component does not depend on how market liquidity
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changes with λ. It only depends on how fundamental sensitivity varies with the share of informed

investors. The next proposition shows that, regardless of the type of financial market equilibrium,

fundamental sensitivity always increases with fraction of informed investors:

Proposition 3.3 For both high-volatility and low-volatility equilibrium: as λ→ 0,

dpF
dλ

→ ρF
1 + a(θD + θS)

αV I
px > 0 (3.9)

Where V I is the conditional volatility of excess stock return defined by equation 2.19.

Thus, all other terms in this equation are strictly positive except (1− θD − θS)ρF − ρx. Thus I

arrive at the following proposition:

Theorem 1

d∆V

dλ
> 0 for λ sufficiently small.

if and only if

(1− θD − θS)ρF > ρx

Theorem 1 provides sharp characterization of the fundamental component. The necessary and

sufficient condition for the fundamental component to be upward sloping is that the (precision-

adjusted) fundamental persistence is greater than the supply persistence. The intuition is the

following. The dynamic complementarity says that when there are more informed investors in

the future, future stock return would be more sensitive to the future stock fundamental, hence

the current stock fundamental, increasing the value of information. When the fundamental is not

very persistent, loading on future stock fundamental gets heavily discounted, reducing the dynamic

complementarity. When signals available to uninformed agents are very precise, change in the share

of informed investors does not lead to big change in the loading coefficients of stock fundamental.

This also reduces the strength of dynamic complementarity. The condition also confirms the insight

from Avdis (2016) that when the supply is also very persistent the information gain is less likely

to be upward-sloping. Whether this component is upward sloping or not depends on a horserace
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between the two forces and turns out one only needs to directly compare the two parameters to

figure out the slope. Thus the model suggests that

Prediction 1 Information multiplicity is more likely to arise when

1. the stock fundamental is more persistent than stock supply

2. Public signal is less precise.

Note that the slope of the fundamental component does not depend on how market liquidity

changes with λ. It only depends on how fundamental sensitivity varies with the share of informed

investors. Does this imply that market liquidity is irrelevant for the value of information? The

answer is No. And I now turn to analyzing how market liquidity impacts dynamic coordination

motives in the information market.

3.1 Dynamic Liquidity Channel

In this section I characterize the liquidity component of the value of information.

∆V

V I

dV I

dλ

Changes in λ can affect the value of information by directly affecting the level of uncertainty faced

by the informed investors V I . This is where liquidity comes into play. To see this, consider an

increase in λ. If it raised the price impact of noise traders, then the future stock return uncertainty

faced by informed investors would increase and thus information acquisition would becomes less

appealing. This is the dynamic liquidity channel that works through expectations of future stock

returns. I first state an existence theorem:

Proposition 3.4 Let

∆ =
(R− ρx)2

α2
− 4σ2

x

(
(1 + a(θD + θS))2

[(
ρF
)2

V ar(F |ΩU ) + σ2
F

]
+ (1 + aθD)2 σ2

D + (aθS)2 σ2
S

)
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If ∆ ≥ 0, there exists two financial market equilibria characterized by different level of px at λ = 0

with values given by:

px =
R−ρx
α ±

√
∆

2σ2
x

(3.10)

This proposition is similar to the classic result of Spiegel (1998). Under appropriate assumptions,

there exists two values of px consistent with equilibrium conditions. The equilibrium with the

smaller root is called ”low volatility equilibrium”, whose unique limit corresponds to the equilib-

rium in Wang (1994) (Albagli (2015)). The other equilibrium is the ”high volatility equilibrium”.

Both types of financial market equilibria have some appealing properties. This paper does not take

a standing on which financial market equilibrium one should select, but rather provides character-

ization of information choice in both scenarios.

The first proposition states how px varies with λ:

Proposition 3.5 As λ→ 0:

dpx
dλ

→ − (1 + a (θD + θS)) ρFV ar
(
Ft|ΩU

t

) ρx +R
1
α (R− ρx)− 2pxσ2

x

dpF
dλ

(3.11)

Where V I is the conditional volatility of excess stock return defined by equation 2.19.

The sign of
dpx
dλ

depend on the sign of 1
α (R− ρx)− 2pxσ

2
x. Plug in the expression of px from 3.10,

one can see that

1

α
(R− ρx)− 2pxσ

2
x = ±

√
∆

where ∆ is defined in Proposition 3.4. This leads to the following proposition:

Proposition 3.6 The sign of
dpx
dλ

depends on the type of financial market equilibrium:

1.
dpx
dλ

< 0 for low-volatility equilibrium

2.
dpx
dλ

> 0 for high-volatility equilibrium
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This proposition states that, in the low-volatility equilibrium, market becomes more liquid with

more informed investors. The opposite is true in the high-volatility equilibrium. Thus, stock return

uncertainty behaves differently under different financial market equilbrium, and this feeds back into

the value of information, as stated in the following theorem:

Theorem 2 When λ→ 0:

1.
∂V I

∂pF

∂pF
∂λ

< 0

2. The dynamic liquidity effect
∂V I

∂px

∂px
∂λ

depends on the type of financial market equilibrium:

(a) In a low-volatility equilibrium:
∂V I

∂px

∂px
∂λ

< 0

(b) In a high-volatility equilibrium:
∂V I

∂px

∂px
∂λ

> 0

From the theorem 2, one can draw a couple of conclusions. First, in a low volatility equilibrium,

increases in λ increases pF and reduces px, both reducing the uncertainty faced by the informed

investors. In a high volatility equilibrium, however, both pF and px are increased. This increases

the uncertainty faced by the informed investors, making information acquisition less appealing.

Thus, the value of information is more likely to be upward sloping in a low-volatility equilibrium.

Therefore information multiplicity is more likely to arise in a low-volatility equilibrium than in

high-volatility equilibrium.

Prediction 2 Information multiplicity arises in high-volatility equilibrium implies that it also

arises in low-volatility equilibrium. The inverse is not necessarily true.

One might wonder what is the magnitude of the dynamic liquidity channel. The next proposition

shows that it can be the dominating force shaping the value of information as its magnitude can

converge to infinity:

Proposition 3.7 Let ρ̄F and ρ̄x be the upper bound at which financial market equilibrium exists

(that is, ∆ ≥ 0). As either ρF → ρ̄F or ρx → ρ̄x, the magnitude of noise trading effect goes to
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infinity: |∂V
I

∂px

∂px
∂λ
|→ ∞

The proposition says that the dynamic complementarity effect can be arbitrarily large when the

stock fundamental or stock supply is sufficiently persistent. The proof of the proposition hinges on

the following observation. From equation 3.11, when λ→ 0,

dpx
dλ
→ (1 + a (θD + θS)) ρFV ar

(
Ft|ΩU

t

) −ρx −R
1
α (R− ρx)− 2pxσ2

x

dpF
dλ

(3.12)

If ρF or ρx is pushed to its upper bound, the denominator 1
α (R− ρx) − 2pxσ

2
x converges to zero,

and thus
dpx
dλ

goes to infinity.

To what follows, I first state a necessary and sufficient condition under which information multi-

plicity arises. I then use this condition to explore numerically the role of each force in determining

the strength of information multiplicity:

Theorem 3 The value of information is upward-sloping

dπ(λ)

dλ

∣∣∣∣
λ=0

> 0

if and only if

[
(1− θD − θS) ρF − ρx

]
+

∆V

V I

(
ρF (1− (θD + θS)) + pxσ

2
x

ρx +R
(R−ρx)

α
− 2pxσ2

x

)
> 0 (3.13)

Where V I is the conditional stock return volatility for informed investors at λ = 0. ∆V is the

information gain component at λ = 0. px is the loading of stock price on noisy supply, given by

equation 3.10.

Theorem 3 combines the fundamental component and the liquidity component and provides a

complete characterization of the dynamic complementarity in information acquisition. The first

part of the condition 3.13, (1− θD − θS) ρF − ρx, comes from the information gain component

whereas the rest comes from the volatility component. In particular, the dynamic liquidity effect

is captured by the last term pxσ
2
x

ρx+R
(R−ρx)

α
−2pxσ2

x

. As shown in 3.7, this term could dominate other
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effects under certain conditions. Thus, in the next section, I conduct numerical exercises to study

these forces jointly.

4 Numerical Experiments

In this experiment I closely follow the calibration strategy in Albagli (2015). Volatility of stock

fundamental σ2
F is set to 1 as well as the dividend volatility. Volatility of public signal is set to 1

as well. Volatility of stock supply σ2
x is set to match an annual turnover rate of 10%. Risk averse

parameter α is set to 1. The risk free rate is set to 1.05. I start by examining the case where

stock fundamental is quite persistent ρF = 0.75 whereas the stock supply is relatively transient

ρx = 0.15. I plot the value of information as a function of share of informed investors λ:

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

:
(6

)

1.02

1.04

1.06

1.08

1.1

1.12

1.14

The blue curve depicts numerically solved π(λ). The black dashed line depicts the information

cost. Red dots are numerically solved steady states. Graph depicts a situation where the value

of information is locally increasing when λ is sufficiently small, and thus for appropriate level of

information cost there exists multiple steady states. Parameter values: α = 1, R = 1.05, ρF =

0.75, ρx = 0.15, σ2
F = 1, σ2

D = 1, σ2
x = 0.01, σ2

S = 1.

Figure 2: The value of information π(λ)
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The graph depicts a situation where the the value of information is locally increasing when λ

is sufficiently small, and thus for appropriate level of information cost there exists multiple steady

states. Next, I conduct comparative statics exercises to see how the slope of value of information

at λ = 0 changes with various model parameters.

The fundamental persistence ρF

In the first experiment, I keep all other parameters at benchmark value and vary the fundamental

persistence ρF from 0.4 to 0.8. The first row of the figure plots slope of value of information dπ
dλ at

0. Left panel depicts high-volatility equilibrium and right panel depicts low-volatility equilibrium.

The shaded area is the multiplicity region where the derivative is positive. The derivative is then

decomposed into the following three parts:

d∆V

dλ︸ ︷︷ ︸
Fundamental Component

− ∆V

V I


via pF︷ ︸︸ ︷
∂V I

∂pF

∂pF
∂λ

+

via px︷ ︸︸ ︷
∂V I

∂px

∂px
∂λ


︸ ︷︷ ︸

Liquidity Component

(4.1)

The first part is the fundamental component which is unaffected by market liquidity. The second

part captures how stock return uncertainty is affected by fundamental sensitivity. This part does

not play significant role. The last part is the dynamic liquidity channel where variations in market

liquidity affects condition stock return volatility and impacts the value of information. Results are

shown in figure 3.

First of all, one can see that information fragility is more likely to rise in the low-volatility equi-

librium (larger shaded area). Second, in term of the relation between information multiplicity and

fundamental persistence, at low-volatility equilibrium (right panel), information fragility is always

more prominent with more persistent stock fundamental, as both the fundamental component and

the liquidity component are upward sloping. This is consistent with prediction 1. Turning to the

high-volatility equilibrium reveals a different pattern: there is a non-monotonic relation between

fundamental persistence and multiplicity: the slope of value of information increases initially, but

then drop sharply for sufficiently high stock fundamental. The drop is entirely driven by the dy-

namic liquidity channel (last row, left column), namely how λ affects conditional volatility though
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px. As λ increases, stock price loads more heavily onto supply noise in the high-volatility equi-

librium, px increases. The increase in px is more significant with persistent fundamental, which

amplifies the information channel. The increase in px then raises V I , the conditional volatility of

stock return faced by the information investors, making information acquisition unfavorable. Thus,

the model’s prediction regarding ρF depends on the type of financial market equilibrium. In par-

ticular, at high-volatility equilibrium, more persistent stock fundamental could make information

coordination harder to achieve.

The fundamental persistence ρx

In the second experiment, I experiment with variations of supply persistence. Results are shown

in figure 4. First of all, similar to figure 3 the shaded area is bigger under low-volatility equilibrium,

suggesting that information multiplicity is more pronounced. Second, in the low-volatility equilib-

rium, there exists a nonmonotonic relation between supply persistence and information fragility:

increasing the stock supply persistence reduces the slope of value of information initially, but for suf-

ficiently big values of ρx the trend is reversed. Decomposing the derivative into three components,

one can see the the reversal is driven by the liquidity channel. In the low-volatility equilibrium

greater value of λ reduces loading of stock price on supply noise: px (see proposition 3.6). This

reduces the conditional volatility faced by informed investors, increasing the value of information.

This effect is more prominent with greater supply persistence. In a high-volatility equilibrium,

since increase in λ increases the value of px, the volatility component predicts the same trends as

the information gain component. Thus increase in ρx generates a monotonic decreasing pattern in

volatility equilibrium.

The general lesson here is that the overlapping-generation structure changes some of the existing

findings in the literature. In particular, information multiplicity can be more prominent with

less persistent fundamental, and with more persistent stock supply. This is summarized into the

following prediction:

Prediction 3 Information multiplicity can be more prominent:
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The figure plots slope of value of information dπ
dλ

at 0 for a range of fundamental persistence ρF . Left panel depicts

high-volatility equilibrium and right panel depicts low-volatility equilibrium. The shaded area is the multiplicity region

where the derivative is positive. The derivative is then decomposed into three components according to equation 4.1:

the information gain component, volatility component with partial derivative through px, and volatility component

with partial derivative through px.

Figure 3: Comparative Statics I: ρF
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1. with less persistent stock fundamental in the high-volatility equilibrium

2. with more persistent stock supply in the low-volatility equilibrium

Public precision σ2
S

In the previous two experiments, I show that prediction of the model depends on which financial

market equilibrium is selected. Somewhat surprisingly, when it gets to comparative statics with

respect to public signal precision σ2
S , this is no longer the case. The result is shown in figure 5.

Both low-volatility and high-volatility equilibrium predicts that increasing the precision of public

signal (i.e. reducing its variance σ2
S) tends to reduce the information multiplicity. The reason is

that the strength of the liquidity channel is bounded even when the precision of the public signal

goes to zero, as there is still the dividend signal providing reasonably precise information about

stock fundamental. This implies that the value of ∆ is bounded away from zero. Thus, the overall

slope of the value of information closely follows the fundamental component.

This result provides an interesting perspective on recent policy attempting to provide more precise

public information. It says, for a regulator seeking to stabilize asset prices, it is universally desirable

to disclose more precise public information because it helps to eliminate information multiplicity,

regardless of the type of financial market equilibrium.

5 Conclusion

This paper studies dynamic information acquisition in a financial market with information asym-

metry, with an emphasis on characterizing the relation between information choices and market

liquidity. This relation is trivial in static, or finite-horizon settings: as more investors become

informed, market liquidity improves. In infinite-horizon models with overlapping-generations of in-

vestors, however, this relation becomes nontrivial: with more investors acquiring information, the

financial market could become less liquid. This brings about interesting interactions between mar-

ket liquidity and information choice incentives, to the extent that value of information is affected
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The figure plots slope of value of information dπ
dλ

at 0 for a range of supply persistence ρF . Left panel depicts high-

volatility equilibrium and right panel depicts low-volatility equilibrium. The shaded area is the multiplicity region

where the derivative is positive. The derivative is then decomposed into three components according to equation 4.1:

the information gain component, volatility component with partial derivative through px, and volatility component

with partial derivative through px.

Figure 4: Comparative Statics II: ρx
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volatility equilibrium and right panel depicts low-volatility equilibrium. The shaded area is the multiplicity region

where the derivative is positive. The derivative is then decomposed into three components according to equation 4.1:

the information gain component, volatility component with partial derivative through px, and volatility component

with partial derivative through px.

Figure 5: Comparative Statics II: σ2
S
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by the liquidity component in the future resale stock price.

The paper analyzes how the dynamic liquidity channel shapes investors’ information incentives.

I find that i)information complementarity is always more prominent in low-volatility financial mar-

ket equilibrium; ii) information complementarity can be more prominent with less persistent stock

fundamental and/or more persistent stock supply and iii) regardless of the type of financial mar-

ket equilibrium, public disclosure always makes information complementarity less prominent. The

theory provides a unified necessary and sufficient condition under which dynamic information mul-

tiplicity arises. This condition can be tested empirically either for aggregate US stock markets or

for individual stocks. I leave it to future research.
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A Appendix

Proof of Proposition 2.1

The target of this proof is to find V ar
(
Ft+1|ΩUt+1

)
and E

(
Ft+1|ΩUt+1

)
as functions of V ar

(
Ft|ΩUt

)
and E

(
Ft|ΩUt

)
. Note

that

ΩUt+1 = {Spt+1, Dt+1, St+1} ∪ ΩUt

Where Spt+1 denotes the price signal

Spt+1 = Ft+1 −
px

pF
xt+1

The proof is proceeded in a sequential fashion. That is, we first derive V ar
(
Ft+1| {Spt+1} ∪ ΩUt

)
and E

(
Ft+1| {Spt+1} ∪ ΩUt

)
:

beliefs conditional on the price signal only. Note that the price signal can be expressed as a linear combination of Ft, Spt, and

time-t+ 1 noises:

Spt+1 = Ft+1 −
px

pF
xt+1

= Ft+1 −
px

pF

(
ρx (xt) + εxt+1

)
= Ft+1 −

px

pF

(
ρx
pF

px
(Ft − Spt) + εxt+1

)
= Ft+1 − ρx (Ft − Spt)−

px

pF
εxt+1

= Ft+1 − ρxFt −
px

pF
εxt+1 + ρxSpt

= ρFFt + εFt+1 − ρxFt −
px

pF
εxt+1 + ρxSpt

=
(
ρF − ρx

)
Ft + εFt+1 −

px

pF
εxt+1 + ρxSpt

Also write out the expression for future fundamental Ft+1

Ft+1 = ρFFt + εFt+1

Thus, conditional on ΩUt , Ft+1 and Spt+1 are jointly normally distrbuted with mean:

[
ρFE

(
Ft|ΩUt

)(
ρF − ρx

)
E
(
Ft|ΩUt

)
+ ρxSpt

]

And variance-covariance matrix

 (
ρF
)2
V ar

(
Ft|ΩUt

)
+ σ2

F

(
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F(
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(
ρF − ρx

)2
V ar

(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x



Thus, we can invoke the projection theorem with normal variables to obtain the conditional distribution of Ft+1 given

{Spt+1} ∪ ΩUt :
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V ar
(
Ft+1| {Spt+1} ∪ ΩUt

)
= V ar

(
Ft+1|ΩUt

)
−
Cov

(
Ft+1, Spt+1|ΩUt

)2
V ar

(
Ft+1, Spt+1|ΩUt

)
=

(
ρF
)2
V ar

(
Ft|ΩUt

)
+ σ2

F −
[(
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

]2
(ρF − ρx)2 V ar

(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

E
(
Ft+1| {Spt+1} ∪ ΩUt

)
= E

(
Ft+1|ΩUt

)
+
Cov

(
Ft+1, Spt+1|ΩUt

)
V ar

(
Ft+1, Spt+1|ΩUt

) (Spt+1 − E
(
Spt+1|ΩUt

))
= ρFE

(
Ft|ΩUt

)
+

(
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

(
Spt+1 −

(
ρF − ρx

)
E
(
Ft|ΩUt

)
− ρxSpt

)

Next we need to also incorporate the dividend signal and the public signal. Notet that these signals are Ft+1 plus white

noises
(
εDt+1, ε

S
t+1

)
. Thus, standard Bayesian updating formula for normal variable applies where the precision of the posterior

variable is the sum of the precision of ex-ante variable and the precision of the signals:

1

V ar
(
Ft+1|ΩUt+1

) =
1

V ar
(
Ft+1| {Spt+1, Dt+1, St+1} ∪ ΩUt

)
=

1

V ar
(
Ft+1| {Spt+1} ∪ ΩUt

) +
1

σ2
D

+
1

σ2
S

Thus we obtain the law of motion for V ar
(
Ft+1|ΩUt+1

)
.

The posterior mean is a weighted average of the ex-ante mean and signals:

E
(
Ft+1|ΩUt+1

)
= E

(
Ft+1| {Spt+1, Dt+1, St+1} ∪ ΩUt

)
=

V ar
(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

)E (Ft+1| {Spt+1} ∪ ΩUt

)
+
V ar

(
Ft+1|ΩUt+1

)
σ2
D

Dt+1 +
V ar

(
Ft+1|ΩUt+1

)
σ2
S

St+1

=
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

)
 ρFE

(
Ft|ΩUt

)
+

(ρF−ρx)ρF V ar(Ft|ΩU
t )+σ2

F

(ρF−ρx)2
V ar(Ft|ΩU

t )+σ2
F

+
(

px
pF

)2
σ2
x

(
Spt+1 −

(
ρF − ρx

)
E
(
Ft|ΩUt

)
− ρxSpt

)


+
V ar

(
Ft+1|ΩUt+1

)
σ2
D

Dt+1 +
V ar

(
Ft+1|ΩUt+1

)
σ2
S

St+1

Thus I get equation 2.12. Substituting in expression for

Spt+1 =
(
ρF − ρx

)
Ft + εFt+1 −

px

pF
εxt+1 + ρxSpt

Dt+1 = Ft+1 + εDt+1 = ρFFt + εFt+1 + εDt+1

St+1 = Ft+1 + εSt+1 = ρFFt + εFt+1 + εSt+1

Rearrange and collect terms, we obtain:

E
(
Ft+1|ΩUt+1

)
= f1E

(
Ft|ΩUt

)
+ f2Ft + f3ε

F
t+1 − f4ε

x
t+1 + f5ε

D
t+1 + f6ε

S
t+1
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where

f1 =
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

)
ρF − (

ρF − ρx
)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

(
ρF − ρx

)
f2 =

V ar
(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) (
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

(
ρF − ρx

)
+

(
V ar

(
Ft+1|ΩUt+1

)
σ2
D

+
V ar

(
Ft+1|ΩUt+1

)
σ2
S

)
ρF

f3 =
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) (
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

+
V ar

(
Ft+1|ΩUt+1

)
σ2
D

+
V ar

(
Ft+1|ΩUt+1

)
σ2
S

f4 =
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) (
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

px

pF

f5 =
V ar

(
Ft+1|ΩUt+1

)
σ2
D

f6 =
V ar

(
Ft+1|ΩUt+1

)
σ2
S

Thus we obtain equation 2.13.

Proof of proposition 2.2

With exponential utility, the decsion rule for informed and uninformed investors sit, i = I, U are given by:

sit =
E
(
Qt+1|Ωit

)
V ar

(
Qt+1|Ωit

)

Given the expression for Qt+1

Qt+1 = p̄+ e1F̂t + e2Ft − e3xt + e4ε
F
t+1 − e5εxt+1 + e6ε

D
t+1 + e7ε

S
t+1 −RPt

we can derive expectation and variance of Qt+1 for both informed and uninformed investors.

For informed investors:

E
(
Qt+1|ΩIt

)
= p̄+ e1F̂t + e2Ft − e3xt −RPt

V I = V ar
(
Qt+1|ΩIt

)
= e24σ

2
F + e25σ

2
x + e26σ

2
D + e27σ

2
S

For uninformed investors:

E
(
Qt+1|ΩUt

)
= p̄+ e1F̂t + e2F̂t − e3x̂t −RPt

= p̄+ e1F̂t + e2F̂t − e3
(
pF

px
F̂t −

pF

px
Ft + xt

)
−RPt

= p̄+

(
e1 + e2 − e3

pF

px

)
F̂t + e3

pF

px
Ft − e3xt −RPt

Where we substitue out x̂t using the relation:

Spt = Ft −
px

pF
xt = F̂t −

px

pF
x̂t
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This relation is obtained because both uninformed and informed investors observe the price signal Spt. The conditional volatility

of stock return faced by uninformed investors is given by:

V U = V ar
(
Qt+1|ΩUt

)
= e22V ar

(
Ft|ΩUt

)
+ e23V ar

(
xt|ΩUt

)
− 2e2e3Cov

(
Ft, xt|ΩUt

)
+e24σ

2
F + e25σ

2
x + e26σ

2
D + e27σ

2
S

With expressions for E
(
Qt+1|ΩIt

)
, E
(
Qt+1|ΩUt

)
, V I , V U , we obtain the decision rule for both types of investors. We turn next

to the market clearing condition:

λsIt + (1− λ) sUt = x

Substitutue in demand function for informed and uninformed investors:

λ
p̄+ e1F̂t + e2Ft − e3xt −RPt

V I
+ (1− λ)

p̄+
(
e1 + e2 − e3 pFpx

)
F̂t + e3

pF
px
Ft − e3xt −RPt

V U
= x

We also know that the equilibrium price function is

Pt = p̄+ pF̂ F̂t + pFFt − pxxt

Thus we can match coefficient in front of F̂t, Ft and xt in a standard way. This gives us three equations:

F̂t : λ
e1 −RpF̂
αV I

+ (1− λ)

(
e1 + e2 − e3 pFpx

)
−RpF̂

aV U
= 0 (A.1)

Ft : λ
e2 −RpF
αV I

+ (1− λ)
e3
pF
px
−RpF

αV U
= 0 (A.2)

xt : λ
−e3 +Rpx

αV I
+ (1− λ)

−e3 +Rpx

αV U
= 1 (A.3)

Given the three equations, we first show that

pF̂ + pF =
ρF

R− ρF

Add up equation A.1 and A.2:

λ
e1 −RpF̂ + e2 −RpF

αV I
+ (1− λ)

e1 + e2 −RpF̂ −RpF
αV U

= 0

Factor out λ 1
αV I + (1− λ) 1

αV U :

e1 −RpF̂ + e2 −RpF = 0

Note that e1 + e2 is given by:

e1 + e2

= pF̂ f1 + ρF (1 + pF ) + pF̂ f2

= pF̂ (f1 + f2) + ρF (1 + pF )
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Plug in expressions for f1 and f2 :

e1 + e2 = pF̂ (f1 + f2) + ρF (1 + pF )

= pF̂

(
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

)ρF +

(
V ar

(
Ft+1|ΩUt+1

)
σ2
D

+
V ar

(
Ft+1|ΩUt+1

)
σ2
S

)
ρF

)
+ ρF (1 + pF )

Using equation 2.11, the first term collapses to pF̂ ρ
F . Thus:

e1 + e2 = pF̂ ρ
F + ρF (1 + pF )

Thus

e1 −RpF̂ + e2 −RpF = 0

ρF pF̂ + ρF (1 + pF )−RpF̂ −RpF = 0

ρF +
(
ρF −R

) (
pF + pF̂

)
= 0

pF + pF̂ =
ρF

R− ρF

Thus we only need to solve for pF and px to obtain the equilibrium price function. Now focus on equation A.2:

λ
e2 −RpF
αV I

+ (1− λ)
e3
pF
px
−RpF

αV U
= 0

Plug in expression of e2 and e3 :

λ
ρF (1 + pF ) + pF̂ f2 −RpF

αV I
+ (1− λ)

ρxpF −RpF
αV U

= 0

λ
ρF (1 + pF ) + pF̂ f2 − ρxpF + ρxpF −RpF

αV I
+ (1− λ)

ρxpF −RpF
αV U

= 0

Collect terms related to ρxpF −RpF and move to the right hand side:

λ
ρF (1 + pF ) + pF̂ f2 − ρxpF

αV I
=

[
λ

1

αV I
+ (1− λ)

1

αV U

]
(R− ρx) pF

Substitute out pF̂ :

λ
ρF (1 + pF ) +

(
ρF

R−ρF − pF
)
f2 − ρxpF

αV I
=

[
λ

1

αV I
+ (1− λ)

1

αV U

]
(R− ρx) pF

Thus

λ
ρF +

(
ρF

R−ρF − pF
)
f2 +

(
ρF − ρx − f2

)
pF

αV I
=

[
λ

1

αV I
+ (1− λ)

1

αV U

]
(R− ρx) pF (A.4)

Now turn to equation A.3:

λ
−e3 +Rpx

αV I
+ (1− λ)

−e3 +Rpx

αV U
= 1

Plug in e3 :

λ
−ρxpx +Rpx

αV I
+ (1− λ)

−ρxpx +Rpx

αV U
= 1

[
λ

1

αV I
+ (1− λ)

1

αV U

]
(R− ρx) px = 1 (A.5)
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Divide equation A.4 by A.5, one get

λ
ρF +

(
ρF

R−ρF − pF
)
f2 +

(
ρF − ρx − f2

)
pF

αV I
=
pF

px
(A.6)

Thus, equation A.5 and A.6 solves for coefficients pF and px given beliefs of the agents. The two equations plus the law of

motion for belief jointly pin down an exogenous information steady state given λ.

Proof of Proposition 3.1

We will show that, at the exogenous-information steady state Φ(λ), the value of information

π(λ) =
ŴU

Ŵ I
=

√
V U

V I

This is an extension of Theorem 2 in Grossman and Stiglitz (1980). Plug agents’ budget constraint: ct = (Dt+1 +Pt+1−RPt)s
into the utility function, we obtain the expected utility of each type of agent conditional on the realized market price Pt:

Ŵ i(Pt) = max
s
EU((Dt+1 + Pt+1 −RPt)s|Ωit)

Given CARA utility and normally distributed random variables:

Ŵ i(Pt) = max
s
EU((Dt+1 + Pt+1 −RPt)s|Ωit)

= max
s
EU(−e−(Dt+1+Pt+1−RPt)s|Ωit)

= max
s
− exp[−α(E[Dt+1 + Pt+1 −RPt|Ωit]s−

1

2
αs2V ar(Dt+1 + Pt+1 −RPt))] (A.7)

Hence, maximizing over the objective function is equivalent to maximizing

max
s
E[Dt+1 + Pt+1 −RPt|Ωit]s−

1

2
αs2V ar(Dt+1 + Pt+1 −RPt|Ωit)

Solve for optimal s∗:

si∗ =
E[Dt+1 + Pt+1 −RPt|Ωit]

αV ar(Dt+1 + Pt+1 −RPt|Ωit)

Plug back into the original objective function:

Ŵ i(Pt) = − exp[−
1

2

(E[Dt+1 + Pt+1|Ωit]−RPt)2

V ar(Qt+1|Ωit)
]

Let

h = V ar(Qt+1|ΩUt )− V ar(Qt+1|ΩIt ) > 0 (A.8)

The reason why h is greater than 0 is that the information set of the uninformed investors is more coarse then that of the informed

investors. Taking the ex-ante conditional expectation of the informed Ŵ I(P ) with respect to the uninformed’s information set
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ΩUt :

E[Ŵ I(Pt)|ΩUt ] = E[−e
− 1

2

(E[Dt+1+Pt+1|Ω
I
t ]−RPt)2

V ar(Qt+1|ΩI
t ) |ΩUt ]

= E[−e
− 1

2

(E[Dt+1+Pt+1|Ω
i
t]−RPt)2

h
h

V ar(Qt+1|ΩI
t ) |ΩUt ]

= E[−e
− 1

2
h

V ar(Qt+1|ΩI
t )
z2

|ΩUt ],

where z =
(E[Dt+1+Pt+1|ΩU

t ]−RPt)√
h

.

Thus, by the moment-generating function of a noncentral chi-squared distribution (formula A21 of Grossman and Stiglitz

(1980)):

E[Ŵ I(Pt)|ΩU ] =
1√

1 + h
V ar(Qt+1|ΩI

t )

exp(
−E[z|ΩUt ]2 1

2
h

V ar(Qt+1|ΩI
t )

1 + h
V ar(Qt+1|ΩI

t )

)

=

√
V ar(Qt+1|ΩIt )

V ar(Qt+1|ΩUt )
exp(

−E[z|ΩU ]2 1
2

h
V ar(Qt+1|ΩI

t )

1 + h
V ar(Qt+1|ΩI

t )

)

=

√
V ar(Qt+1|ΩIt )

V ar(Qt+1|ΩUt )
WU (Pt)

Integrating on both sides with respect to the current stock price Pt, one gets:

Ŵ I =

√
V ar(Qt+1|ΩIt )

V ar(Qt+1|ΩUt )
ŴU

Or

Ŵ I

ŴU
=

√
V It
V Ut

Note that the time script t does not matter in a stationary environment.

Proof of Proposition 3.3 and 3.5

Before we get to the proof, it is useful to show the following lemma which is about how the conditional volatility V I , V U

and the return coefficients {ei} change with pF , px respectively when λ→ 0 :
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Lemma A.1 As λ→ 0 :

e2 → ρF (1 + a (θD + θS))

∂e2

∂pF
→ ρF (1− (θD + θS))

∂e2

∂px
→ 0

e3 → ρxpx

∂e3

∂pF
→ 0

∂e3

∂px
→ ρx

e4 → 1 + a (θD + θS)

∂e4

∂pF
→ 1− (θD + θS)

∂e4

∂px
→ 0

e5 → px

∂e5

∂pF
→ 0

∂e5

∂px
→ 1

e6 → aθD + 1

∂e6

∂pF
→ −θD

∂e6

∂px
→ 0

e7 → aθS
∂e7

∂pF
→ −θS

∂e7

∂px
→ 0

V I → (1 + a (θD + θS))2 σ2
F + (px)2 σ2

x + (1 + aθD)2 σ2
D + (aθS)2 σ2

S

∂V I

∂pF
→ −2

(
ρF
)2

(1 + a (θD + θS))V ar
(
F |ΩU

)
((1− (θD + θS)))

∂V I

∂px
→ 2pxσ

2
x

V U → (1 + a (θD + θS))2

((
ρF
)2
V ar

(
F |ΩU

)
+ σ2

F

)
+ (px)2 σ2

x + (1 + aθD)2 σ2
D + (aθS)2 σ2

S + (1 + a (θD + θs))
2

∂V U

∂pF
→ −2 (1 + a (θD + θs)) ρ

xρFV ar
(
F |ΩU

)
∂V U

∂px
→ 2pxσ

2
x

∆V →
(
ρF
)2

(1 + a (θD + θS))2 V ar
(
F |ΩU

)
∂∆V

∂pF
→ 2

(
ρF + a (θD + θS) ρF

)(
ρF − (θD + θS) ρF − ρx

)
V ar

(
F |ΩU

)
∂∆V

∂px
→ 0

To prove the lemma we start by examining each ei one by one. We start with e2 :

e2 = ρF (1 + pF ) + pF̂ f2 = ρF (1 + pF ) + (a− pF ) f2
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we first focus on the expression of f2

f2 =
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) (
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

(
ρF − ρx

)
+

(
V ar

(
Ft+1|ΩUt+1

)
σ2
D

+
V ar

(
Ft+1|ΩUt+1

)
σ2
S

)
ρF

=
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) [(
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

] ( pF
px

)2

[
(ρF − ρx)2 V ar

(
Ft|ΩUt

)
+ σ2

F

] (
pF
px

)2
+ σ2

x

(
ρF − ρx

)
+

(
V ar

(
Ft+1|ΩUt+1

)
σ2
D

+
V ar

(
Ft+1|ΩUt+1

)
σ2
S

)
ρF

Note that f2 depends on pF and px only through the square of the price ratio
(
pF
px

)2
, and thus, its derivative with respec to

pF and px will have a term pF
px
→ 0 as λ→ 0. We conclude:

f2 → (θD + θS) ρF

∂f2

∂pF
→ 0

∂f2

∂px
→ 0

Thus

e2 → ρF (1 + a (θD + θS))

∂e2

∂pF
= ρF − f2 − pF

∂f2

∂pF
→ ρF (1− θD − θS)

∂e2

∂px
→ 0

For e3 it is pretty straightforwad as it depends only on px in linear way:

e3 = ρxpx → ρxpx

∂e3

∂pF
→ 0

∂e3

∂px
→ ρx

For e4

e4 = 1 + pF + pF̂ f3

We need to first examine f3

f3 =
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) (
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

+
V ar

(
Ft+1|ΩUt+1

)
σ2
D

+
V ar

(
Ft+1|ΩUt+1

)
σ2
S

Again, f3 depends on pF and px only through the square of the price ratio
(
pF
px

)2
, and thus, its derivative with respec to pF

and px will have a term pF
px
→ 0 as λ→ 0. Thus

f3 →
V ar

(
Ft+1|ΩUt+1

)
σ2
D

+
V ar

(
Ft+1|ΩUt+1

)
σ2
S

= θD + θS

∂f3

∂pF
→ 0

∂f3

∂px
→ 0

The property that the function depends on pF and px only through the ratio holds for f5 and f6 as well. Thus it is easy to
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show that

e4 → 1 + a (θD + θS)

∂e4

∂pF
→ 1− θD − θS

∂e4

∂px
→ 0

e6 → aθD + 1

∂e6

∂pF
→ −θD

∂e6

∂px
→ 0

e7 → aθS
∂e7

∂pF
→ −θS

∂e7

∂px
→ 0

We omit the proof for these three coefficients. Details are available upon request. Now we need to examine e5 :

e5 = px + pF̂ f4

With

f4 =
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) (
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F +
(
px
pF

)2
σ2
x

px

pF

Multiply both the denominator and numerator with
(
pF
px

)2
:

f4 =
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) [(
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

] ( pF
px

)2

[
(ρF − ρx)2 V ar

(
Ft|ΩUt

)
+ σ2

F

] (
pF
px

)2
+ σ2

x

px

pF

=
V ar

(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) [(
ρF − ρx

)
ρFV ar

(
Ft|ΩUt

)
+ σ2

F

] pF
px[

(ρF − ρx)2 V ar
(
Ft|ΩUt

)
+ σ2

F

] (
pF
px

)2
+ σ2

x

Now note that there is a term pF
px
. Thus its derivative with respect to pF is not in general zero:

f4 → 0

∂f4

∂pF
→

V ar
(
Ft+1|ΩUt+1

)
V ar

(
Ft+1| {Spt+1} ∪ ΩUt

) [(ρF − ρx) ρFV ar (Ft|ΩUt )+ σ2
F

]
pxσ2

x

∂f4

∂px
→ 0
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Thus

e5 → px

∂e5

∂pF
= −f4 − pF

∂f4

∂pF

Note that pF → 0. Thus
∂e5

∂pF
→ 0

∂e5

∂px
→ 1

Now we are ready to derive expressions for the conditional volatility V I and V U .

Start with V I :

V I = e24σ
2
F + e25σ

2
x + e26σ

2
D + e27σ

2
S

Plugging in expressions for e4, e5, e6, e7 and take limit, it is easy to show that:

V I → (1 + a (θD + θS))2 σ2
F + (px)2 σ2

x + (1 + aθD)2 σ2
D + (aθS)2 σ2

S

For ∂V I

∂pF
, one also needs to plug in the derivatives:

∂V I

∂pF
= 2e4

∂e4

∂pF
σ2
F + 2e5

∂e5

∂pF
σ2
x + 2e6

∂e6

∂pF
σ2
D + 2e7

∂e7

∂pF
σ2
S

→ 2 (1 + a (θD + θS)) (1− (θD + θS))σ2
F − 2 (1 + aθD) θDσ

2
D − 2 (aθS) θSσ

2
S

= 2 (1 + a (θD + θS)) (1− (θD + θS))σ2
F − 2 (1 + aθD)

V ar
(
F |ΩU

)
σ2
D

σ2
D − 2 (aθS)

(
V ar

(
F |ΩU

)
σ2
S

)
σ2
S

= 2 (1 + a (θD + θS)) (1− (θD + θS))σ2
F − 2 (1 + a (θD + θS))V ar

(
F |ΩU

)
= 2 (1 + a (θD + θS))

[
(1− (θD + θS))σ2

F − V ar
(
F |ΩU

)]
= 2 (1 + a (θD + θS))

[
(1− (θD + θS))σ2

F − V ar(F |Ω
U )
]

= 2 (1 + a (θD + θS))

[(
V ar(F |ΩU )

(ρF )2 V ar(F |ΩU ) + σ2
F

)
σ2
F − V ar(F |Ω

U )

]

= 2 (1 + a (θD + θS))V ar(F |ΩU )

[
σ2
F

(ρF )2 V ar(F |ΩU ) + σ2
F

− 1

]

= −2
(
ρF
)2

(1 + a (θD + θS)) (1− (θD + θS))V ar(F |ΩU )

Similarly for

∂V I

∂px
= 2e4

∂e4

∂px
σ2
F + 2e5

∂e5

∂px
σ2
x + 2e6

∂e6

∂px
σ2
D + 2e7

∂e7

∂px
σ2
S

→ 2pxσ
2
x

To derive expression for V U , we first derive expression for the information gain ∆V :

∆V = V ar
(
e2Ft − e3xt|ΩUt

)
Plug in expressions of e2 and e3 :

∆V = V ar
((
ρF (1 + pF ) + pF̂ f2

)
Ft − ρxpxxt|ΩUt

)
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Note that we can substitue out pxxt using the price signal:

Spt = pFFt − pxxt

pxxt = pFFt − Spt

Plug in

∆V = V ar
((
ρF (1 + pF ) + pF̂ f2

)
Ft − ρx (pFFt − Spt) |ΩUt

)
= V ar

((
ρF (1 + pF ) + pF̂ f2

)
Ft − ρxpFFt|ΩUt

)
As the price signal is in the information set of the uninformed. Thus

∆V = V ar
((
ρF (1 + pF ) + pF̂ f2 − ρxpF

)
Ft|ΩUt

)
=

(
ρF (1 + pF ) + (a− pF ) f2 − ρxpF

)2
V ar

(
F |ΩU

)
Thus

∆V →
(
ρF + a (θD + θS) ρF

)2
V ar

(
F |ΩU

)
=
(
ρF
)2

(1 + a (θD + θS))2 V ar
(
F |ΩU

)
Now examine the derivatives

∂∆V

∂pF
= 2

(
ρF (1 + pF ) + (a− pF ) f2 − ρxpF

)(
ρF − f2 + (a− pF )

∂f2

∂pF
− ρx

)
V ar

(
F |ΩU

)

Here we omit the derivative with respect to V ar
(
F |ΩU

)
as we will take λ→ 0 :

∂∆V

∂pF
→ 2

(
ρF + a (θD + θS) ρF

)(
ρF − (θD + θS) ρF − ρx

)
V ar

(
F |ΩU

)
= 2

(
ρF + a (θD + θS) ρF

)(
(1− θD − θS) ρF − ρx

)
V ar

(
F |ΩU

)
∂∆V

∂px
= 0

As px does not show up in the expression of ∆V.

Now we are ready to derive expression for V U :

V U = V I + ∆V

Thus

V U →
(
ρF
)2

(1 + a (θD + θS))2 V ar
(
F |ΩU

)
+ (1 + a (θD + θS))2 σ2

F + (px)2 σ2
x + (1 + aθD)2 σ2

D + (aθS)2 σ2
S

= (1 + a (θD + θS))2

[(
ρF
)2
V ar

(
F |ΩU

)
+ σ2

F

]
+ (px)2 σ2

x + (1 + aθD)2 σ2
D + (aθS)2 σ2

S

And

∂V U

∂pF
=

∂V I

∂pF
+
∂∆V

∂pF

→ −2
(
ρF
)2

(1 + a (θD + θS)) (1− (θD + θS))V ar(F |ΩU ) + 2ρF (1 + a (θD + θS))
(

(1− θD − θS) ρF − ρx
)
V ar

(
F |ΩU

)
= 2ρF (1 + a (θD + θS))V ar(F |ΩU )

[
(−1 + θD + θS) ρF + (1− θD − θS) ρF − ρx

]
= −2ρF ρx (1 + a (θD + θS))V ar(F |ΩU ) < 0
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And

∂V U

∂px
=

∂V I

∂px
+
∂∆V

∂px

→ 2pxσ
2
x

With the lemma, we are ready to prove proposition ??. First note that as λ→ 0, V ar
(
F |ΩU

)
does not change with λ. Thus

we only need to characterize the derivative of pF and px with respect to λ from the two market-clearing coefficient matching

equations:

[
λ

1

αV I
+ (1− λ)

1

αV U

]
(R− ρx) px − 1 = 0 (A.9)

λ
ρF +

(
ρF

R−ρF − pF
)
f2 +

(
ρF − ρx − f2

)
pF

αV I
−
pF

px
= 0 (A.10)

Total differentiate the two equations with respect to pF , px, and λ :

0 =

[
λ
−1

α (V I)2

∂V I

∂pF
+ (1− λ)

−1

α (V U )2

∂V U

∂pF

]
(R− ρx) pxdpF

+

{[
λ

1

αV I
+ (1− λ)

1

αV U

]
(R− ρx) +

[
λ
−1

α (V I)2

∂V I

∂px
+ (1− λ)

−1

α (V U )2

∂V U

∂px

]
(R− ρx) px

}
dpx

+

[
1

αV I
−

1

αV U

]
(R− ρx) pxdλ

0 =

λ
[
ρF − f2 +

(
ρF − ρx − f2

)
− pF ∂f2

∂pF

]
V I −

[
ρF +

(
ρF

R−ρF − pF
)
f2 +

(
ρF − ρx − f2

)
pF

]
∂V I

∂pF

α (V I)2
−

1

px

 dpF
+

λ−
[
ρF +

(
ρF

R−ρF − pF
)
f2 +

(
ρF − ρx − f2

)
pF

]
∂V I

∂px

α (V I)2
+

pF

(px)2

 dpx
+
ρF +

(
ρF

R−ρF − pF
)
f2 +

(
ρF − ρx − f2

)
pF

αV I
dλ

Take λ→ 0 and hence pF → 0 :

0 =
−1

α (V U )2

∂V U

∂pF
(R− ρx) pxdpF +

{
1

αV U
(R− ρx)−

1

α (V U )2

∂V U

∂px
(R− ρx) px

}
dpx +

[
1

αV I
−

1

αV U

]
(R− ρx) pxdλ

0 = −
1

px
dpF +

ρF + a (θD + θS) ρF

αV I
dλ

From the second equation one immediately see that

dpF

dλ
= ρF

1 + a (θD + θS)

αV I
px

49



This completes the proof of Proposition 3.3. The derivation of dpx
dλ

is as follows. From the first equation:

dpx

dλ
=

1

α(V U )2
∂V U

∂pF
(R− ρx) px

dpF
dλ
−
[

1
αV I − 1

αV U

]
(R− ρx) px

1
αV U (R− ρx)− 1

α(V U )2
∂V U

∂px
(R− ρx) px

eliminate α and R− ρx from both the numerator and denominator:

dpx

dλ
=

1

(V U )2
∂V U

∂pF
px

dpF
dλ
−
[

1
V I − 1

V U

]
px

1
V U − 1

(V U )2
∂V U

∂px
px

When λ→ 0, equation A.5 becomes:

1

αV U
(R− ρx) px = 1

px =
αV U

(R− ρx)

Plug px into dpx
dλ

:

dpx

dλ
=

1

(V U )2
∂V U

∂pF

αV U

(R−ρx)
dpF
dλ
−
[

1
V I − 1

V U

]
αV U

(R−ρx)

1
V U − 1

(V U )2
∂V U

∂px
αV U

(R−ρx)

=

∂V U

∂pF

α
(R−ρx)

dpF
dλ
−
[
V U

V I − 1
]

αV U

(R−ρx)

1− ∂V U

∂px
α

(R−ρx)

=

∂V U

∂pF

dpF
dλ
− ∆V

V I V
U

(R−ρx)
α

− ∂V U

∂px

Now plug in expression for ∂V U

∂pF
, ∂V

U

∂px
, dpF
dλ

and ∆V :

dpx

dλ
=
−2ρF ρx (1 + a (θD + θS))V ar(F |ΩU )ρF

1+a(θD+θS)

αV I px −
(ρF )2

(1+a(θD+θS))2V ar(F |ΩU )
V I V U

(R−ρx)
α

− 2pxσ2
x

Factor out
(ρF )2

(1+a(θD+θS))2

V I V ar(F |ΩU )

dpx

dλ
=

(
ρF
)2

(1 + a (θD + θS))2

V I
V ar(F |ΩU )

−2ρx 1
α
px − V U

(R−ρx)
α

− 2pxσ2
x

Now use the relation V U = 1
α

(R− ρx) px :

=

(
ρF
)2

(1 + a (θD + θS))2

V I
V ar(F |ΩU )

−2ρx 1
α
px − 1

α
(R− ρx) px

(R−ρx)
α

− 2pxσ2
x

= −
(
ρF
)2

(1 + a (θD + θS))2

αV I
V ar(F |ΩU )px

2ρx +R− ρx
(R−ρx)

α
− 2pxσ2

x
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Note that dpF
dλ

= ρF
1+a(θD+θS)

αV I px, plug in this expression:

dpx

dλ
= − (1 + a (θD + θS)) ρFV ar(F |ΩU )

2ρx +R− ρx
(R−ρx)

α
− 2pxσ2

x

dpF

dλ

= − (1 + a (θD + θS)) ρFV ar(F |ΩU )
ρx +R

(R−ρx)
α

− 2pxσ2
x

dpF

dλ

Proof of Theorem 1

To begin, we write out the partial derivatives:

d∆V

dλ
=
∂∆V

∂pF

dpF

dλ
+
∂∆V

∂px

dpF

dλ

Plugging in ∂∆V
∂pF

and ∂∆V
∂px

from lemma A.1 and dpF
dλ

and dpF
dλ

from proposition ??:

d∆V

dλ
= 2

(
ρF + a (θD + θS) ρF

)(
ρF − (θD + θS) ρF − ρx

)
V ar

(
F |ΩU

)
ρF

1 + a (θD + θS)

αV I
px (A.11)

All other terms are strictly positive for generic parameter values except

ρF − (θD + θS) ρF − ρx

Thus d∆V
dλ

> 0 if and only if (1− (θD + θS)) ρF − ρx > 0

Proof of Proposition 3.4

Take equation A.5 and take λ→ 0 :

(R− ρx) px = αV U

Plug in value of V U from lemma A.1, rearrange:

σ2
x (px)2−

(R− ρx)

α
px+(1 + a (θD + θS))2

((
ρF
)2
V ar

(
F |ΩU

)
+ σ2

F

)
+(1 + aθD)2 σ2

D +(aθS)2 σ2
S +(1 + a (θD + θs))

2 = 0

This is a quadratic equation from which one can solve for px :

px =

R−ρx
α
±
√

∆

2σ2
x

Where

∆ =

(
(R− ρx)

α

)2

− 4σ2
x

[
(1 + a (θD + θS))2

((
ρF
)2
V ar

(
F |ΩU

)
+ σ2

F

)
+ (1 + aθD)2 σ2

D + (aθS)2 σ2
S + (1 + a (θD + θs))

2

]

[The proof of Proposition 3.5 is combined with that of Proposition 3.3.]

Proof of Proposition 3.6

From proposition 3.5:
dpx

dλ
= − (1 + a (θD + θS)) ρFV ar(F |ΩU )

ρx +R
(R−ρx)

α
− 2pxσ2

x

dpF

dλ
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All other terms are strictly positive except (note that dpF
dλ

> 0)

(R− ρx)

α
− 2pxσ

2
x

We also know from proposition 3.4 that

px =

R−ρx
α
±
√

∆

2σ2
x

Thus at the low volatility equilibrium

(R− ρx)

α
− 2

R−ρx
2α

−
√

∆

2σ2
x

σ2
x

=
(R− ρx)

α
−
(
R− ρx

2α
−
√

∆

)
=
√

∆ ≥ 0

Likewise at the high volatility equilibrium
(R− ρx)

α
− 2pxσ

2
x = −

√
∆ ≤ 0

Thus

dpx

dλ
≤ 0 if it is low-volatility equilibrium

dpx

dλ
≥ 0 if it is high-volatility equilibrium

Proof of Theorem 2

In view of proposition 3.6 and 3.5, in order to prove Theorem 2 it suffices to show that ∂V I

∂pF
< 0 and ∂V I

∂px
> 0. This can be

seen from lemma A.1:

∂V I

∂pF
→ −2

(
ρF
)2

(1 + a (θD + θS))V ar
(
F |ΩU

)
((1− (θD + θS))) < 0

∂V I

∂px
→ 2pxσ

2
x > 0

Proof of Proposition 3.7

Manipulate equation 3.10, we have
R− ρx

α
− 2pxσ

2
x = ±

√
∆

Where the sign depends on the type of the financial market equilibrium. The sign is positive in low-volatility equilibrium and

is negative in high-volatility equilibrium.

We also know from lemma A.1 that as λ→ 0 :
∂V I

∂px
→ 2pxσ

2
x

And from equation 3.11:
dpx

dλ
= − (1 + a (θD + θS)) ρFV ar(F |ΩU )

ρx +R
(R−ρx)

α
− 2pxσ2

x

dpF

dλ

Plug in expression for R−ρx
α
− 2pxσ2

x :

dpx

dλ
= − (1 + a (θD + θS)) ρFV ar(F |ΩU )

ρx +R

±
√

∆

dpF

dλ
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Thus the obsolute value of ∂V
I

∂px

dpx
dλ

is

∣∣∣∣∂V I∂px

dpx

dλ

∣∣∣∣ = 2pxσ
2
x (1 + a (θD + θS)) ρFV ar(F |ΩU )

ρx +R
√

∆

dpF

dλ

As ρx and ρF are pushed to its boundary,
√

∆→ 0 whereas all other terms are bounded. Thus we have

∣∣∣∣∂V I∂px

dpx

dλ

∣∣∣∣→∞
We still need to show that such boundary exists. This can be done by osberving that ∆ is monotonically decreasing with respect

to both ρx and ρF and for appropriate values of
(
ρx, ρF

)
,∆ > 0.

Proof of Theorem 3

Note that to show the slope of
dπ(λ)
dλ

> 0, it suffices to show the slope of

d∆V
V I

dλ
> 0

Or equivalently
d∆V

dλ
−

∆V

V I
dV I

dλ

From equation A.11:

d∆V

dλ
= 2ρF (1 + a (θD + θS))

(
ρF − (θD + θS) ρF − ρx

)
V ar

(
F |ΩU

)
ρF

1 + a (θD + θS)

αV I
px

Also
dV I

dλ
=
∂V I

∂pF

dpF

dλ
+
∂V I

∂px

dpF

dλ

Plug in the derivatives from lemma A.1 and proposition ??:

=
∂V I

∂pF

dpF

dλ
+
∂V I

∂px

dpx

dλ

= −2
(
ρF
)2

(1 + a (θD + θS)) (1− (θD + θS))V ar(F |ΩU )ρF
1 + a (θD + θS)

αV I
px

−2pxσ
2
x (1 + a (θD + θS)) ρFV ar(F |ΩU )

2ρx +R− ρx
(R−ρx)

α
− 2pxσ2

x

ρF
1 + a (θD + θS)

αV I
px

Thus

d∆V

dλ
= 2V ar

(
F |ΩU

)(
ρF
)2 (1 + a (θD + θS))2

αV I
px

[
ρF − (θD + θS) ρF − ρx +

∆V

V I

(
ρF (1− (θD + θS)) + pxσ

2
x

ρx +R
(R−ρx)

α
− 2pxσ2

x

)]

All other terms are strictly positive except

ρF − (θD + θS) ρF − ρx +
∆V

V I

(
ρF (1− (θD + θS)) + pxσ

2
x

ρx +R
(R−ρx)

α
− 2pxσ2

x

)
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Thus d∆V
dλ

> 0 if and only if

ρF − (θD + θS) ρF − ρx +
∆V

V I

(
ρF (1− (θD + θS)) + pxσ

2
x

ρx +R
(R−ρx)

α
− 2pxσ2

x

)
> 0
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