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Abstract

Controlling the bias is central to estimating semiparametric models. Many methods
have been developed to control bias in estimating conditional expectations while main-
taining a desirable variance order. However, these methods typically do not perform
well at moderate sample sizes. Moreover, and perhaps related to their performance,
non-optimal windows are selected with undersmoothing needed to ensure the appro-
priate bias order. In this paper, we propose a recursive di¤erencing estimator for
conditional expectations. When this method is combined with a bias control targeting
the derivative of the semiparametric expectation, we are able to obtain asymptotic
normality under optimal windows.
As suggested by the structure of the recursion, in a wide variety of triple index

designs, the proposed bias control performs much better at moderate sample sizes
than regular or higher order kernels and local polynomials.

Keywords: semiparametric model, bias reduction, conditional expectation.

1 Introduction

In this paper, our primary emphasis is on semiparametric index models, which perform well at
moderate sample sizes. Often, such models require estimating an expectation conditioned on
a vector of indices, where each index is a parametric function of observables and an unknown
�nite dimensional parameter vector. We will term such an expectation as semiparametric
due to the index structure of the conditioning variables. For models with an index structure,
see for example, Robinson (1988), Powell et. al. (1989), Ichimura (1993), Ichimura and
Lee (1991), Klein and Spady (1993), Horowitz (1996), Li et. al. (2014), and Klein, Shen
and Vella (2015). The �rst objective of this paper is to develop a recursive estimator for a
semiparametric expectation that can deliver a bias of any order while maintaining desirable
variance properties and �nite sample performance. Second, we combine the properties of
this recursive estimator with a residual property of semiparametric derivatives to obtain
asymptotic normality under optimal windows.

�We thank the seminar participants at Columbia University and New York University for helpful com-
ments and suggestions.
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To obtain asymptotic normality at a
p
N rate for a �nite dimensional parameter vector

in a semiparametric model, the bias in the estimator must vanish faster than N�1=2 while
the variance must converge to zero at a su¢ ciently fast rate. Methods have been developed
in the literature to control for the bias while maintaining a desirable variance order. In some
cases, an estimate of the bias in the parameter estimator can be removed from the estimator
as in Honore and Powell (2005). In other cases, it is possible to employ di¤erent estimators
for conditional expectations. Higher order kernels (e.g. Muller (1984)) achieve this bias order
by increasing the degree of the kernel. An extension of Newey (2004) can similarly control
the bias by increasing the convolution degree. For estimating semiparametric models, both
approaches require suboptimal windows and hence leads to much larger variability. Local
polynomials (e.g. Fan and Gijbels (1995, 1996), Ruppert and Wand (1994), Lu (1994),
Masry (1995) and Gu, Li, and Yang (2015)) obtain this bias order by increasing the degree
of the local polynomial. While the performance of the local linear estimator is quite good,
higher degrees require introducing more local parameters and hence also leads to higher
variability. In this paper, we propose alternative approaches for bias reduction that enables
us to obtain

p
N normality in semiparametric index models. In �nite samples, we �nd much

lower variability for the recursive di¤erencing estimator in simulation studies.
The estimator proposed here has a recursive di¤erencing structure with a local linear

estimator providing the basis for the �rst stage of the recursion. The bias in the �rst stage
estimator depends on a localization error de�ned as the di¤erence between the expectation
at a point of interest and a nearby point. Accordingly, in the second stage of the recursion,
we remove an estimator of this localization error from the previous stage. Continuing in
this manner, we show that the bias declines at each stage of the recursion, with the variance
order being unchanged.
Taking advantage of this recursive mechanism and a residual property of semiparametric

derivatives, we propose an approach to estimate semiparametric multiple index models of
arbitrary dimension under optimal windows. In a Monte Carlo study, we considered four
semiparametric triple index models. Employing a three stage recursion, which is appropriate
in this context (Theorem 2), we found that the resulting estimator had very good �nite
sample performance in terms of both bias and variance. In all of the cases the RMSE
decreased, often substantially, with the stage of the recursion. The resulting estimator also
performed much better than either a higher order kernel estimator or a local polynomial
whose bias order is below N�1=2:
To develop the proposed parameter estimator for a semiparametric model and the un-

derlying conditional expectation estimator, Section 2 provides the intuition for these two
estimators and their theoretical properties. Section 3 formally de�nes the estimators and
obtains their large sample properties. Section 4 provides Monte Carlo results that demon-
strate very good �nite sample properties of the estimators in triple index models, exhibiting a
substantial improvement over regular, higher order kernels, and local polynomial estimators.
We note that the local linear estimator forms the basis for the �rst stage of the recursion
and does signi�cantly improve its performance. Section 5 contains our conclusions. The
appendix contains proofs of all theorems and supporting intermediate lemmas.
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2 Estimators

2.1 Estimating Expectations under Recursive Di¤erencing

The semiparametric model that we study assumes:

E(YijWi) = E (YijV (Wi; �0)) �M(Vi); (1)

where the vector fYi;Wig is i.i.d. over i = 1; :::; N; and takes on values in XY �XW � R1+dw

with dw the dimension of Wi. Here, Vi � V (Wi; �0) is a vector of d < dw continuous indices
that depend on a �nite dimensional parameter vector, �0: For expositional purposes, in this
section we take the parameter vector as known and discuss its estimation in the next section.
To motivate the form of the bias reduction, we defer discussions of trimming considera-

tions to the next section. Denote M (Vi) � E(YijWi) with Vi � V (Wi; �0) and consider the
model in localized form:

Yi =M (v) + [M (Vi)�M (v)] + "i;

where "i is an error satisfying E("ijWi) = 0:With Ki(v) as a kernel weight that controls the
localization error [M (Vi)�M (v)] by downweighting observations Vi not close to v, an often
employed conditional expectation estimator is given as:

M̂(v) �
1
N

P
i YiKi(v)

ĝ(v)
; ĝ(v) � 1

N

X
i

Ki(v):

Substituting the local model for Yi:

M̂(v)�M(v) =
1
N

P
i [M (Vi)�M (v) + "i]Ki(v)

ĝ(v)
:

As the localization error, M (Vi)�M (v), is responsible for the bias, we propose a recursive
mechanism that removes the estimated localization error. For s > 1, de�ne the stage s
estimator as:

M̂s(v) �
1
N

P
i

h
Yi � (M̂s�1(Vi)� M̂s�1(v))

i
Ki(v)

ĝ(v)
(2)

where M̂s�1(Vi) � M̂s�1(v) is the estimated localization error from the previous stage. It
then follows that:

ĝ(v)
h
M̂s(v)�M(v)

i
=

1

N

X
i

nh
M̂s�1(v)�M(v)

i
�
h
M̂s�1(Vi)�M(Vi)

i
+ "i

o
Ki(v)

Note that the di¤erence M̂s(v)�M(v) has been scaled by a density estimator, which is
convenient for obtaining asymptotic results. With the kernel ensuring that Vi is close to v;
intuitively this di¤erencing structure reduces the estimation error because the error at Vi will
be close to that at v. In the appendix, we formally prove that there is a recursion uniformly
within op(N�1=2) of that above for which the bias order diminishes with each stage of the
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recursion. The variance order remains the same. To provide some intuition for this result,
consider stage s = 2 and write:

ĝ(v)
h
M̂2(v)�M(v)

i
= ĝ(v)

h
M̂1(v)�M(v)

i
� 1
N

X
i

8<: ĝ(Vi)
h
M̂1(Vi)�M(Vi)

i
ĝ(Vi)

+ "i

9=;Ki(v)

To deal with estimated density denominators, in the appendix we provide a recursion within
op(N

�1=2) of the above and having the form:

ĝ(v)
h
M̂�
2 (v)�M(v)

i
= ĝ(v)

h
M̂1(v)�M(v)

i
� 1
N

X
i

8<: ĝ(Vi)
h
M̂1(Vi)�M(Vi)

i
g(Vi)

[1 + �(Vi)] + "i

9=;Ki(v)

where �(Vi) contains the higher order terms from an approximating expansion. It can be
shown that for the leading term in this expansion:

E

24ĝ(v) hM̂1(v)�M(v)
i
� 1

N

X
i

E

8<:E
24 ĝ(Vi)

h
M̂1(Vi)�M(Vi)

i
g(Vi)

+ "ijVi

35Ki(v)

9=;
35

= h2B2(v) + h
4B4(v) + o(h

4)� 1

N

X
i

E

�
h2B2(Vi) + h

4B4(Vi) + o(h
4)

g(Vi)
Ki(v)

�
= h2B2(v) + h

4B4(v) + o(h
4)�

Z �
h2B2(Vi) + h

4B4(Vi) + o(h
4)
�
Ki(v);

where the B-functions are uniformly bounded. In the case of local constant estimators, these
expansions are well known in the literature, but as shown below also hold in other cases.
With the kernel ensuring that Vi is close to v the above di¤erencing structure results in a
canceling of bias terms resulting in the bias order decreasing from h2 to h4.1 We show that
higher order terms in �(Vi) do not have a larger bias order. As shown in the appendix, higher
stages have a di¤erencing in di¤erencing structure which further reduces the bias.
To start this recursion, the theory developed here will hold for any initial estimator that

satis�es certain convergence properties and has an approximating bias expansion of the above
form. These conditions are satis�ed by both the local constant estimator and the local linear
estimator. Here, we employ a modi�ed local linear estimator since it performs better than
the local constant estimator.2

With Vi as a row vector of the model�s d continuous indices and v a conformable row
vector of �xed values, let Zi � (Vi � v)=h, where h is a kernel window parameter. The local
linear estimator solves:

M̂L; M̂
0
L � arg min

M;M 0

X
i

[Yi �M(v)� hZiM 0(v)]
2
Ki(v) (3)

) M̂L = �Y (v)� h �Z(v)M̂ 0
L; (4)

1For a symmetric kernel: Z �
h2B2(Vi)

�
Ki(v) = h

2B2(v) +O(h
4):

2We modi�ed the local linear estimator as it simpli�es the bias arguments without sacri�cing �nite-sample
performance.
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where �Y (v) and �Z (v) are kernel weighted averages:

�Y (v) �
X
i

YiKi(v)=
X
i

Ki(v); �Z(v) �
X
i

ZiKi(v)=
X
i

Ki(v)

and M̂ 0
L is a local linear estimator of the derivative of M(v). To simplify arguments, de�ne

a modi�ed derivative estimator as

M̂ 0
m � argmin

M 0

X
i

�
Yi � �Y (v)� hZiM 0(v)

�2
Ki(v)

=
1

h
[Z 0D(v)Z]�1 [Z 0D(v)]

h
Y � ~Y (v)

i
;

where ~Y (v) is a vector with each element equal to the local constant estimator, �Y (v), and
D(v) � diag(Ki(v)): The modi�ed local linear estimator is then de�ned as:

M̂1(v) � �Y (v)� h �Z(v)M̂ 0
m =

�Y � �Z[Z 0D(v)Z]�1 [Z 0D(v)]
h
Y � ~Y (v)

i
: (5)

In analyzing this estimator, we employ a regular kernel function, with the bias declining
at each stage of the recursion. If other bias reducing kernels are employed at each stage,
then the bias will be even smaller at each stage and continue to decline over the stages. The
proofs for these alternative kernels are identical to those employed here. Using a modi�ed
local linear estimator as the start of the recursion, we have found that the recursion based
on regular kernels performs very well.

2.2 Estimating Index Parameters in Semiparametric Models

Many semiparametric models depend on expectations conditioned on a vector of indices.
Here, we employ recursive di¤erencing to estimate conditional expectations. In addition
to the recursive di¤erencing structure, we also propose an extra mechanism that further
reduces the bias in estimating index parameters in semiparametric models. Combining these
mechanisms, we will be able to estimate a wide class of multiple index semiparametric
models using optimal windows. We refer to this additional control as the residual property
of semiparametric derivatives, which is given in the following proposition due to Whitney
Newey.3

Proposition 1 Assume E(Y jW ) = M [V (�0)] from the index assumption in (1) and let
M [V (�); �] � E [Y jV (�)] :4 Then,

E

�
@M [V (�); �]

@�
jV (�0)

�
�=�0

= 0:

Exploiting this result as a bias control for single index models, Klein and Shen (2010)
show that asymptotic normality can be obtained with regular kernels. This approach does
not extend to higher dimensions under regular kernels, but does extend under recursive
di¤erencing. Before providing the theorem that covers this extension, here we brie�y discuss

3See Klein and Shen (2010) for Newey�s proof of this property.
4Notation for the dual dependence on � is employed because the conditional expectation function itself

will generally be di¤erent when the conditioning variable changes via changes in �:
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the estimation strategy. To exploit Newey�s residual result, it can be shown that trimming
must be based on the index. Accordingly, we employ a two-step estimation strategy where the
index parameters are estimated in the �rst step with trimming based on X, the continuous
variables in W . In the second step, trimming is based on the estimated index from the
�rst step. Throughout, we use the term step to distinguish the initial estimator based on X-
trimming and the estimator based on index trimming; while we use the term stage to refer to
the recursive di¤erencing sequence. Under recursive di¤erencing, it is possible to show that
the semiparametric derivative component of the estimation gradient can be taken as known
for any index dimension. We are then able to establish asymptotic normality under optimal
windows. It should be noted that this argument requires an adjustment strategy, apart from
trimming, to control density denominators in the second step. We defer discussion of this
issue to the next section.
Theorem 1 in the next section provides the properties of the expectation estimator. For

a class of semiparametric models, Theorem 2 then combines recursive di¤erencing with a
residual control introduced below so as to provide conditions on the number of stages and
the kernel window to obtain

p
N�asymptotic normality under optimal windows.

3 Large Sample Results

To establish large sample results, we require the following de�nitions and notations.

3.1 De�nitions and Notations

D1) Index Functions. Let Wi be an i:i:d: vector of continuous and discrete variables, i =
1; :::; N . Let � be a �nite dimensional parameter vector and Vi = V (Wi; �) a vector of
d continuous parametric index functions.

D2) Conditional Expectations.

M(v) � E [YijV (Wi; �) = v] :

D3) Trimming. Denote �1 and �2 as lower and upper percentiles and let � � [�1; �2] :
De�ne qx (�) � [qx (�1) ; qx (�2)] : dc � 2 as the corresponding matrix of lower and
upper population quantiles for Xi; where Xi : dc� 1 is the continuous subvector of Wi:
Similarly, de�ne qv (�) � [qv (�1) ; qv (�2)] : d � 2 as a matrix of population quantiles
for Vi : d� 1. Then, de�ne exterior trimming based on Xi or Vi as:

�x(Xi) � 1 fXi � Cx (qx)g ; Cx (qx) � fx : qx (�1) < x < qx (�2)g ;
� v(Vi) � 1 fVi � Cv (qv)g ; Cv (qv) � fv : qv (�1) < v < qv (�2)g :

With 0 < �1 < �1I < �2I < �2 < 1; de�ne corresponding interior trimming functions
as:

�xI(Xi) � 1 fXi � Cx (qxI)g ; Cx (qxI) � fx : qx (�1I) < x < qx (�2I)g ;
� vI(Vi) � 1 fVi � Cv (qvI)g ; Cv (qvI) � fv : qv (�1I) < v < qv (�2I)g :

Let �̂ be the sample quantile version of � . For index trimming, the estimated index
is constrained to being between lower and upper sample quantiles for the estimated
index vector.
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D4) Kernel. Let v and Vi be d-dimensional vectors with lth elements as vi (l) and Vi (l)
respectively and denote sl as the standard deviation of Vi (l).5 De�ne:

Kil(v) � 1

slh
�

�
vi (l)� Vi (l)

slh

�
; Ki(v) �

dQ
l=1

Kil(v); Di(v) � diag (Ki(v)) ;

k(z) �
dQ
l=1

� (z (l)) ; K�
i (v; �̂) � �̂ iKi(v);

where h = O(N�r), and �(z (l)) is a density symmetric about 0 with �nite moments of
all orders. The function �̂ i is a trimming function that may be either �̂ v(Vi) or �̂x(Xi).

D5) Kernel Averages. Referring to D4), de�ne:

ĝs(v) �
�

ĝ1 (v) � 1
N

PN
i=1Ki(v); s = 1

ĝ (v) � 1
N

PN
i=1K

�
i (v; �̂); s > 1

:

When the estimators are evaluated at a data point, the average is taken over the N�1
observations excluding that data point observation.

D6) Conditional Expectation Estimator. Let D̂� and D� be N �N diagonal matrices with
ith element K�

i (v; �̂) and K
�
i (v; �) respectively. Let Z be an N � d matrix with ith row

(Vi � v)=h: Referring to (5), with �Y (v) and �Z(v) depending on ĝ1 (v) ; for stage s = 1:

M̂1(v) � �Y (v)� �Z(v)
h
Z 0D̂�Z

i�1
Z 0D̂�

h
Y � ~Y (v)

i
; where E

�
Z 0D�Z

N

�
is positive de�nite.

For stage s > 1 :

M̂s(v) �
1
N

PN
i=1

n
Yi �

h
M̂s�1(Vi)� M̂s�1 (v)

io
�̂ iKi(v)

ĝ(v)
:

D7) Adjusted Densities. With ̂s as lower quantiles for the ĝs in D5), de�ne adjustment
factors:

As(v) = h
âs [1� �̂�(v)] ;

where h is the window and 0 < a < 1: To smoothly restrict v to be between lower
quantile qv(�1) and upper quantile qv(�2), de�ne

��(v) =
�
1 + exp

�
Ln(N)2[v � qv(�1)]

�	�1 �
1 + exp

�
Ln(N)2[qv(�2)� v]

�	�1
:

Let �̂�(v) be the sample quantile version of ��(v): Adjusted densities are then de�ned
as:

ĝsa(v) � ĝs(v) + As(v):

D8) Adjusted Recursive Di¤erencing. Referring to D6) and D7), obtain the adjusted esti-
mator M̂sa(v) from M̂s(v) by replacing ĝs(v) with ĝsa(v).

5It can readily be shown that the standard deviation can be taken as known.
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While the purpose of most of these de�nitions is clear, further discussion of the trimming
and adjustment strategies can be useful. The estimators above depend on di¤erent types of
trimming. Because of the recursive structure of the estimator in D6), the estimator at stage
s will depend on a vector of estimated conditional mean functions from the previous stage.
Trimming (exterior) is required to control this vector. To avoid boundary bias, this exterior
trimming set must strictly contain the set over which the M̂(v) functions are de�ned. We
refer to the set of such v-values as an interior set.
The adjustment factor in D7) is employed to control density denominators in the second

step for estimating a class of semiparametric models. Recall from the previous section that
we employ a two-step estimator for index parameters in semiparametric models. In the �rst
step, the estimated indices are recovered with trimming based on X. The estimated index
from this step is then used for trimming in the second step. This procedure with expec-
tations estimated under recursive di¤erencing ensures that the gradient to the estimation
problem has asymptotic bias of order o(N�1=2) under optimal windows. However in uniform
convergence arguments underlying the consistency argument, density estimators must be
controlled for � away from the truth �0. The adjustment factor is employed for this purpose.
The ��(v) function exponentially approaches 0 for v in the interior of its support. Near the
support boundary where the density is allowed to approach 0 at an unrestricted rate, the
adjustment factors vanish slowly at a rate of ha; 0 < a < 1. In this manner, the rate at
which the density denominator converges to zero is controlled.
In Theorem 1 below, we obtain convergence properties for the proposed expectation

estimator. In Theorem 2 we prove asymptotic normality for parameter estimators in a class
of semiparametric models under recursive di¤erencing and the residual control. To this end,
we make the following assumptions.

3.2 Assumptions

A1) The vector fYi;Wig is i:i:d: over i = 1; :::; N; and takes on values in XY �XW � R1+dw ;
where dw is the dimension of Wi.

A2) The following index assumption holds:

E(YijWi) = E (YijV (Wi; �0)) :

A3) Refer to D1) and assume that � � �, a compact set. Let g (v (w; �) ; �) be the density
for V (Wi; �) evaluated at v (w; �) and let f(xjVi = v) be the density for X conditioned
on Vi = v. Let � = 0; 1; 2 and � = 0; 1; :::; 2s+ 1, where s is the stage. For v,w, and �
in compact sets and with c > 0:

a) : inf
v;�
jg(v; �)j > c

b) : sup
v

��r�
vM(v; �0)g(v; �0)

�� and sup
v

��r�
vg(v; �0)

�� = O(1)
c) : sup

w;�

��r�
�r�

vM(v(w; �); �)
�� and sup

w;�

��r�
�r�

vg(v(w; �); �)
�� = O(1):

A4) There exists m > 4 such that E [jYijm] = O(1):

A5) For the window parameter: r < 1
2d
:
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A6) The vector of continuous random variables, Xi, is bounded.

The �rst three assumptions are standard for index models. Assumption A4) is useful
for obtaining uniform convergence results for functions of unbounded random variables. As-
sumption A5) is needed to establish the bias properties of the proposed recursive di¤erencing
estimator (Theorem 1). Condition A6) is not required, but greatly simpli�es the exposition.
It should be noted that many and perhaps most models in applied work satisfy this condi-
tion. Moreover, when it does not hold, it is always possible to trim out a very small fraction
of the observations to guarantee that A6) holds.
Convergence properties are important for obtaining

p
N -normality for a �nite dimen-

sional parameter vector in semiparametric models. Theorem 1 provides these properties for
the conditional expectation estimator. It holds in the semiparametric case when conditioning
on a vector of indices and in the nonparametric case.

Theorem 1. The Recursive Di¤erencing Estimator. Assume A1)-A5), then for v
and � in compact sets, with �s(v) � ĝs (v)

�
M̂s(v)�M (v)

�
, there exists a ��

s(v) with its
form provided in Lemma 2, that satis�es the following:

a) : sup
v
j��

s(v)��s(v)j = op
�
N�1=2�

b) : sup
v
jE��(v)j = O(h2s) + o(N�1=2)

c) : sup
v
V ar [��(v)] = O

�
N�(1�rd)�

d) :
���M̂s (v)�M (v)

��� = Op �h2s�+Op �N�(1�rd)=2� :
For estimating semiparametric models, it can be readily shown that it is the bias in the

scaled estimator �s(v) that is relevant. As this quantity is nonlinear, it is di¢ cult to study
directly. Lemmas 1-2 provide an approximating sequence ��

s(v) that from a) is uniformly
within op

�
N�1=2� of �s(v): The bias result is then given in b), followed by a variance result

in c) and a convergence rate in d).
To obtain

p
N�normality for a �nite dimensional parameter vector, we will require con-

ditions on the stage s and the window parameter r. Theorem 2 provides these conditions
for a class of multiple index models estimated by Semiparametric-Least-Squares (SLS) intro-
duced by Ichimura (1992) and Ichimura and Lee (1991). The results of Theorem 2 readily
extend to Quasi-Maximum-Likelihood estimators for semiparametric binary response and
to ordered models. Though, such extensions require a more complicated trimming strategy
than that employed here.
In the single index case, Klein and Shen (2010) exploit Newey�s residual result to obtainp
N�normality. Theorem 2 obtains this result for the multiple index case by combining

recursive di¤erencing and the residual bias controls. In so doing, it is possible to employ
optimal windows.
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Theorem 2. Estimating Index Parameters with Recursive Di¤erencing and
Residual Bias Controls. Set the stage s and window parameter r to satisfy:6

C1) : s >
(d+ 2) (m+ 2)

2m
;
1

4s
< r <

m

2 (d+ 2) (m+ 2)

With all trimming based on sample quantiles for X as described in D3), de�ne the �rst step
estimator as:7

�̂ = argmin
�

X
i

�̂xI(Xi)
n
Yi � M̂s [Vi (�)]

o2
: (6)

For the second step estimator, set the stage s, and window parameter r, to satisfy:8

C2) : s > d+ 4

4
+
d+ 2

m
, r = r� =

1

4s+ d
,

where r� is the optimal window. Referring to D3) for the de�nitions of index trimming
functions, base all trimming functions on sample quantile regions for the estimated index
from the �rst stage. Referring to D7) -D8) and letting V̂i � Vi

�
Wi; �̂

�
de�ne the adjusted

second stage estimator as:

�̂a � argmin
�

(X
i

�̂ vI(V̂i)
n
Yi � M̂sa [Vi (�)]

o2)
(7)

Then, under A1)-A5):

a) :
����̂ � �0��� = Op �N�1=2�

b) :
����̂a � �0��� = op(1)

c) :
p
N
�
�̂a � �0

�
d! Z� s N

�
0; �2"E

�
G�i (�0)G

�
i (�0)

0��1� ;
where �2" is the variance of "i and G

�
i (�0) � � vI(V0i)r� [M (V (Wi; �) ; �)]�0 :

It should be noted that recursive di¤erencing makes it possible to take the estimated
semiparametric derivative as known in the multiple index case. The gradient evaluated
with a known semiparametric derivative and index trimming function has no bias from the
residual property of the semiparametric derivative.

4 Monte Carlo Results

We conducted Monte Carlo experiments using four di¤erent designs: quadratic, cubic, expo-
nential, and sin. In all designs, we constructed three indices: V1 = X1+X4; V2 = X2�X4; V3 =

6The upper bound for r follows from uniform convergence for second derivatives (Lemma 9). The lower
bound for r follows because the bias order of O(N�2rs) must be o(N�1=2): The condition on s is required
for the interval on r to be non-empty.

7This �rst step estimator provides an estimated index that can serve as the basis for trimming at the
second step.

8For uniform convergence of second derivatives to hold at the optimal window, we require r� = 1
4s+d <

m
2(d+2)(m+2) . This condition will hold if s is set as in C2).
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X3+X4 where X1, X2, X3 and X4 follow standard normal distributions. We also generated
an error term " that follows a standard normal distribution. In all designs, the outcome has
the form:

Y = �V1 + �T2 + V1V3 + ";

where T2 was set respectively to be a quadratic, cubic, exponential, or sin function of V2 in
the four designs. The �; �;  are standardizing constants selected so that in all designs, each
of the three explanatory components has an approximate standard deviation (SD) of one.
As the focus of this paper is on the semiparametric case, we begin by reporting results

for di¤erent estimators of the parameters in the four designs discussed above (Table 1). We
will also compare results for di¤erent estimators of the conditional mean function (Table 2).
Five measures of estimator performance are provided in Table 1 including root mean

squared error (RMSE), mean, standard deviation (SD), median, and median absolute devi-
ation (MAD). The �rst three columns of results in Table 1 focus on the proposed recursive
di¤erencing estimator with a �xed window. We set the window parameter at r = 1

15
through-

out these three stages so as to facilitate the comparison between stages.9 The next three
columns show the results for the proposed recursive di¤erencing estimator with optimal win-
dows over the stages. Stage 1 had a window size r = 1

7
; stage 2 had a window size r = 1

11
;

while stage 3 had a window size r = 1
15
. The third stage estimator also has the residual

control to ensure
p
N normality. The last three columns of Table 1 include three estimators

that have a
p
N -asymptotic normality property due to undersmoothing without the residual

control. The �rst one of them (RDS) employs recursive di¤erencing as the sole bias control
with undersmoothing window parameter r = 1

11:99
to ensure

p
N asymptotic normality. The

next column provides results for a higher order kernel estimator (HK), which is an extension
of the twicing kernel (Newey et. al, 2004). The last column is for a �fth degree local poly-
nomial estimator (LP) with bias O(h6) as in Ruppert and Wand (1994). For these last two
estimators, we also set r = 1

11:99
to ensure that the bias is o(N�1=2).

The �rst three columns of results show that with �xed window, the proposed recursive
di¤erencing estimator has decreasing bias over the stages while the standard deviation re-
mains stable. This �nding is consistent with the theory behind the recursive di¤erencing
mechanism. In all four designs, there was a substantial decrease in RMSE over the stages.
This decline is most pronounced for the sin design. For example, the RMSE of the �rst
parameter estimate declines from .368 at the �rst stage to .219 at the second stage and
�nally to .127 at the third stage. The next three columns show the results when we set the
optimal window for each stage of the recursive di¤erencing estimator. As expected, we found
that the RMSE monotonically declined over the stages in most cases; in all cases, the third
stage achieved the smallest RMSE. The small third stage RMSE is due both to recursive
di¤erencing and the residual control. The value added by using the residual control can be
seen by comparing recursive di¤erencing estimators with optimal windows with (column6)
and without (column3) the residual control. Across all four designs, RMSE decreased by
20%-35% when the additional residual bias control is employed.
The last three columns of Table 1 provide a comparison between three

p
N�asymptotically

normal estimators. The recursive di¤erencing estimator with undersmoothing (RDS) strongly
dominates the other two estimators (HK and LP) with substantially smaller RMSE. Its
advantage is most pronounced in terms of variation (i.e. standard deviation and MAD).
Similarly, the proposed recursive di¤erencing estimator with residual control also strongly

9We chose r = 1=15 as it is the optimal window for the thrid stage estimator.
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dominates the HK and LP estimators. The performance of the proposed recursive di¤er-
encing estimator with residual control (column6) is overall better than the undersmoothing
version (RDS), with smaller RMSE in 8 out of 12 parameters from 4 designs, and the di¤er-
ence in RMSE is relatively small in the 4 cases where it did not dominate the undersmoothing
version. In summary, recursive di¤erencing estimators dominate the other estimators and
there is value added to employing the residual bias control with recursive di¤erencing.
In addition to comparing parameter estimators, we also compare results for estimating

the conditional mean functions. The estimation of these functions plays a fundamental role
in estimating parameters. Further, it is essential in estimation of marginal e¤ects, which is
an important object of interest in empirical studies. Therefore, we provide results on the
estimation of conditional mean functions in Table 2. We investigated the performance of
three conditional mean estimators underlying the parameter estimators we studied above: the
recursive di¤erencing estimator, the higher order kernel estimator, and the local polynomial
estimator. To avoid confounding performance of the parameter estimators with those for
conditional mean functions, all estimators for the conditional mean functions are reported
at the true parameter values. Since marginal e¤ects are often evaluated at di¤erent regions
of the distribution, we calculated the conditional mean function estimators at every point
in a trimmed set10 and then averaged over decile intervals so as to obtain

p
N�asymptotic

normality. In so doing, a window size of r = 1
11:99

was set for all three estimators.
In terms of RMSE, we found that the recursive di¤erencing estimator was superior to the

higher order kernel and local polynomial estimators across designs and deciles. The advan-
tage was especially pronounced at the higher and lower deciles; and was relatively moderate
at the middle deciles. To further investigate the source of such advantages, we examined
the bias and standard deviations of the estimators. In terms of bias, we found that both
the recursive di¤erencing and the higher order kernel estimators perform better than the
local polynomial estimator at the middle deciles. However, the recursive di¤erencing esti-
mator dominates both the higher order kernel estimator and the local polynomial estimator
considerably at the higher and lower deciles.
The standard deviation of the recursive di¤erencing estimator was smaller than that of

the higher order kernel and local polynomial estimators across designs and deciles, with sub-
stantial advantage at the higher and lower deciles. Indeed, all three estimators had worse
performance at extreme deciles. We remark that the performance of the local polynomial
estimator near the boundary improves signi�cantly when the sample size increases. We ex-
perimented with increasing the sample size to 10,000 for the cubic design. In that case, the
RMSE of the local polynomial estimator for the �rst decile reduced to 0.275; bias reduced
to -0.222; and standard deviation reduced to 0.162. However, the recursive di¤erencing es-
timator continue to dominate it with �rst decile RMSE of 0.126, bias of 0.115 and standard
deviation of 0.053. Results are similar for the 10th decile. There is a large and growing liter-
ature on boundary correction methods in kernel density estimation that could improve the
performance of all three estimators at the boundaries. However, such a boundary correction
is outside of the scope of this paper.
In summary, the Monte Carlo experiment showed that the proposed recursive di¤erencing

estimator performs much better under a moderate sample size than the other methods that
were considered. Further, the behavior of the recursive di¤erencing estimator is consistent
with the theory underlying this estimator.

10Each index was trimmed at 3% and 2% from each tail based on interior and exterior trimming functions
respectively.
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5 Conclusions

In this paper, we propose recursive di¤erencing estimators for estimating conditional expec-
tations in semiparametric models with multiple indices. The order of the bias decreases with
the stage of the recursion while the order of the variance remains the same.
While higher order kernels and local polynomials share the above properties, they di¤er

from the proposed estimator in two important respects. First, the RMSE of the recursive
di¤erencing estimator became smaller over the stages. In contrast, higher order kernel or local
polynomial estimators would require higher order terms to achieve the same bias order and
often lead to higher RMSE. Second, in estimating index models, we show that with recursive
di¤erencing it is possible to exploit a residual property of semiparametric derivatives. In so
doing, we obtain asymptotic normality without undersmoothing, regardless of the dimension
of the index vector. This theoretical property contributes to the very good �nite sample
performance of the proposed estimator.
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Table 1. Monte Carlo Results for Parameter Estimates
Proposed Estimator Proposed Estimator Asymptotic Normality
with Fixed Window with Optimal Window with Under Smoothing
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 RDS HK LP

Quadratic Design
RMSE

0.089 0.072 0.068 0.073 0.068 0.051 0.068 5.392 1.087
0.112 0.101 0.088 0.099 0.088 0.070 0.086 5.621 1.323
0.181 0.133 0.125 0.162 0.132 0.090 0.130 6.069 1.458

Mean
0.935 0.969 0.985 0.99 0.987 0.994 1.001 0.983 1.195
-0.917 -0.940 -0.972 -0.992 -0.979 -0.968 -1.004 -1.986 -0.711
1.125 1.044 1.033 1.066 1.049 1.010 1.059 1.141 1.471

SD
0.061 0.065 0.067 0.072 0.067 0.051 0.051 5.419 1.075
0.076 0.081 0.083 0.099 0.086 0.062 0.062 5.562 1.297
0.132 0.126 0.121 0.149 0.123 0.090 0.090 6.098 1.387

Median
0.933 0.970 0.984 0.992 0.982 0.994 0.997 1.036 1.087
-0.921 -0.943 -0.973 -0.989 -0.981 -0.973 -1.006 -0.942 -0.989
1.128 1.043 1.035 1.064 1.061 1.015 1.064 1.081 1.155

MAD
0.032 0.041 0.042 0.054 0.044 0.037 0.040 0.195 0.145
0.045 0.056 0.062 0.071 0.060 0.038 0.056 0.142 0.134
0.097 0.091 0.077 0.101 0.091 0.056 0.077 0.227 0.193

Cubic Design
RMSE

0.211 0.136 0.090 0.074 0.085 0.062 0.056 6.618 1.263
0.335 0.216 0.136 0.112 0.124 0.104 0.083 15.343 1.250
0.121 0.086 0.081 0.092 0.083 0.058 0.081 7.894 1.327

Mean
0.793 0.872 0.923 0.950 0.930 0.954 0.977 0.595 1.147
-0.673 -0.796 -0.885 -0.945 -0.903 -0.919 -0.990 -0.186 -1.249
1.088 1.037 1.025 1.034 1.029 1.001 1.029 0.789 1.110

SD
0.039 0.043 0.047 0.055 0.048 0.042 0.052 6.639 1.260
0.074 0.069 0.073 0.098 0.078 0.065 0.083 15.398 1.231
0.084 0.078 0.078 0.086 0.079 0.058 0.076 7.931 1.329

Median
0.796 0.875 0.925 0.946 0.929 0.953 0.974 0.988 1.078
-0.676 -0.794 -0.887 -0.942 -0.902 -0.918 -0.984 -0.997 -1.133
1.076 1.037 1.034 1.031 1.032 1.007 1.034 1.047 1.082

MAD
0.025 0.026 0.025 0.034 0.026 0.028 0.026 0.189 0.127
0.057 0.039 0.041 0.061 0.043 0.036 0.049 0.203 0.194
0.053 0.058 0.054 0.058 0.053 0.042 0.051 0.223 0.144
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Proposed Estimator Proposed Estimator Asymptotic Normality
with Fixed Window with Optimal Window with Under Smoothing
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 RDS HK LP

Exponential Design
RMSE

0.213 0.134 0.087 0.084 0.084 0.063 0.066 5.749 1.079
0.275 0.176 0.114 0.122 0.111 0.093 0.101 6.444 1.989
0.207 0.132 0.109 0.130 0.113 0.075 0.101 5.408 2.303

Mean
0.791 0.877 0.936 0.957 0.941 0.963 0.992 0.765 0.964
-0.735 -0.844 -0.929 -0.964 -0.939 -0.950 -1.013 -1.982 -0.748
1.178 1.088 1.050 1.059 1.057 1.014 1.038 1.125 1.581

SD
0.045 0.053 0.053 0.072 0.060 0.051 0.066 5.773 1.084
0.075 0.081 0.081 0.117 0.094 0.078 0.101 6.401 1.983
0.105 0.099 0.099 0.117 0.099 0.074 0.094 5.434 2.240

Median
0.798 0.882 0.940 0.955 0.945 0.962 0.990 1.001 1.076
-0.733 -0.845 -0.932 -0.961 -0.944 -0.950 -1.017 -0.989 -1.059
1.182 1.091 1.055 1.062 1.061 1.014 1.047 1.082 1.091

MAD
0.030 0.034 0.036 0.050 0.040 0.031 0.042 0.162 0.129
0.055 0.063 0.057 0.078 0.057 0.050 0.069 0.190 0.178
0.072 0.074 0.075 0.066 0.078 0.054 0.064 0.178 0.148

Sin Design
RMSE

0.368 0.219 0.127 0.120 0.128 0.082 0.072 6.343 0.453
0.367 0.218 0.127 0.116 0.127 0.083 0.073 28.820 0.854
0.187 0.105 0.084 0.099 0.089 0.061 0.081 7.333 3.327

Mean
0.634 0.786 0.887 0.901 0.885 0.938 0.971 0.722 1.062
-0.636 -0.787 -0.887 -0.907 -0.887 -0.939 -0.971 0.841 -1.044
1.164 1.068 1.033 1.051 1.043 1.010 1.029 0.476 0.848

SD
0.041 0.048 0.048 0.068 0.057 0.053 0.066 6.368 0.451
0.048 0.050 0.050 0.069 0.059 0.056 0.067 28.906 0.857
0.090 0.081 0.081 0.085 0.078 0.061 0.076 7.351 3.340

Median
0.641 0.789 0.890 0.901 0.889 0.942 0.977 0.960 1.054
-0.636 -0.787 -0.888 -0.911 -0.890 -0.939 -0.977 -0.966 -1.055
1.156 1.067 1.024 1.050 1.035 1.009 1.019 1.012 1.096

MAD
0.029 0.031 0.034 0.047 0.039 0.031 0.040 0.140 0.134
0.036 0.035 0.042 0.049 0.044 0.038 0.045 0.118 0.145
0.066 0.054 0.048 0.051 0.045 0.042 0.048 0.162 0.126
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Table 2: Monte Carlo Results for Conditional Expectation Estimators
RMSE Bias SD

RD HK LP RD HK LP RD HK LP
Quadratic Design

1st decile 0.113 4.990 1.027 0.077 -0.792 -0.848 0.083 4.951 0.583
2nd decile 0.047 0.053 0.087 0.001 0.014 0.068 0.047 0.051 0.054
3rd decile 0.035 0.037 0.107 0.004 0.002 0.098 0.035 0.037 0.041
4th decile 0.039 0.040 0.136 0.015 0.008 0.129 0.037 0.039 0.042
5th decile 0.043 0.043 0.128 0.012 -0.001 0.119 0.041 0.043 0.047
6th decile 0.048 0.054 0.100 0.004 -0.012 0.085 0.048 0.052 0.053
7th decile 0.055 0.066 0.073 -0.009 -0.022 0.041 0.055 0.063 0.061
8th decile 0.074 0.083 0.076 -0.023 -0.018 -0.016 0.070 0.081 0.075
9th decile 0.098 0.104 0.133 -0.042 0.001 -0.094 0.090 0.104 0.095
10th decile 0.155 0.643 1.748 -0.038 0.192 1.016 0.151 0.617 1.429

Cubic Design
1st decile 0.212 4.922 1.123 0.188 -0.826 -0.891 0.099 4.877 0.686
2nd decile 0.067 0.090 0.079 0.025 0.054 0.036 0.063 0.072 0.070
3rd decile 0.044 0.055 0.079 0.000 0.030 0.058 0.044 0.047 0.054
4th decile 0.041 0.043 0.087 -0.002 0.008 0.074 0.041 0.043 0.046
5th decile 0.045 0.048 0.124 0.015 0.016 0.116 0.043 0.046 0.045
6th decile 0.050 0.054 0.126 0.017 0.012 0.116 0.048 0.053 0.050
7th decile 0.057 0.064 0.093 0.003 -0.005 0.072 0.057 0.064 0.059
8th decile 0.074 0.088 0.077 -0.013 -0.019 0.010 0.073 0.086 0.077
9th decile 0.103 0.114 0.122 -0.038 -0.030 -0.067 0.096 0.111 0.102
10th decile 0.172 1.016 1.570 -0.082 0.228 0.877 0.152 0.996 1.309

Exponential Design
1st decile 0.146 4.947 0.923 0.117 -0.807 -0.772 0.087 4.905 0.510
2nd decile 0.057 0.068 0.076 0.002 0.025 0.040 0.057 0.064 0.064
3rd decile 0.047 0.058 0.099 0.003 0.026 0.086 0.047 0.052 0.051
4th decile 0.043 0.050 0.112 0.008 0.023 0.103 0.042 0.044 0.045
5th decile 0.046 0.048 0.107 0.014 0.016 0.096 0.044 0.046 0.047
6th decile 0.053 0.053 0.088 0.022 0.007 0.071 0.049 0.053 0.053
7th decile 0.061 0.065 0.074 0.022 -0.005 0.037 0.057 0.065 0.065
8th decile 0.066 0.080 0.074 0.004 -0.023 -0.013 0.066 0.077 0.073
9th decile 0.087 0.101 0.113 -0.026 -0.032 -0.074 0.084 0.096 0.086
10th decile 0.157 0.794 1.744 -0.101 0.211 1.028 0.121 0.769 1.416

Sin Design
1st decile 0.179 5.092 0.819 0.155 -0.892 -0.641 0.091 5.039 0.513
2nd decile 0.080 0.106 0.165 0.050 0.073 0.145 0.063 0.077 0.078
3rd decile 0.073 0.112 0.131 0.028 0.080 0.109 0.068 0.078 0.074
4th decile 0.072 0.096 0.094 0.014 0.050 0.062 0.071 0.082 0.071
5th decile 0.072 0.082 0.074 0.013 0.019 0.018 0.071 0.080 0.072
6th decile 0.072 0.080 0.071 0.013 -0.011 -0.018 0.071 0.080 0.069
7th decile 0.068 0.089 0.087 0.004 -0.038 -0.052 0.068 0.081 0.070
8th decile 0.066 0.095 0.105 -0.007 -0.055 -0.076 0.066 0.078 0.072
9th decile 0.072 0.088 0.097 -0.022 -0.043 -0.064 0.069 0.077 0.073
10th decile 0.171 0.965 1.904 -0.123 0.304 1.098 0.119 0.921 1.563
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6 Appendix

6.1 Proofs of Main Theorems

Proof of Theorem 1. The proof for part a) follows from Lemmas 1-2. Parts b-c) follow
from Lemma 6. With ĝ (v; �) converging to g > 0, part d) follows from parts a-c).

Proof of Theorem 2. The proofs for a) and c) are very similar. To establish a), note that
under X-trimming (see, e.g. Ichimura(1993)), it can readily be shown that

����̂ � �0��� = op(1):
From a standard Taylor series expansion:�

�̂ � �0
�
= �Ĥ

�
�+
��1

Ĝ (�0) ;

where Ĥ is the (estimated) Hessian matrix, Ĝ is the estimated gradient to the SLS objective
function, and �+ is between �̂ and �0: Let H denote the Hessian matrix with all estimated
functions replaced by the corresponding true ones. From Lemma 9,

sup
�

���Ĥ (�)�H (�)��� = op(1):
Under standard arguments,

sup
�

���Ĥ (�)� E [H (�)]��� = op(1):
Therefore, with �+

p! �0; Ĥ
�
�+
� p! E [H (�0)] : Under an invertibility assumption, the

convergence rate for
����̂ � �0��� is then determined by the convergence rate for Ĝ (�0) to 0.

With "i = Yi �Mi; write the estimated gradient component as ĜA � ĜB; where:

ĜA �
1

N

X
�̂xi"ir�M̂i; ĜB �

1

N

X
�̂xi

h
M̂s (Vi)�Mi

i
r�M̂i

Write ĜA = ĜA1 + ĜA2 + ĜA3 + ĜA4 ; where with �s(Vi) � ĝi
�
M̂s(Vi)�Mi

�
;

ĜA1 � 1

N

X
�xi"ir�Mi

ĜA2 � 1

N

X
[�̂xi � �xi] "ir�Mi

ĜA3 =
1

N

X
�xi"ir�

�
�s(Vi)

ĝi

�
ĜA4 �

X
[�̂xi � �xi] "ir�

�
�s(Vi)

ĝi

�
From a standard central limit theorem, ĜA1 = Op

�
N�1=2�. From Pakes and Pollard (1989;

Lemma 2.18), ĜA2 = op(N
�1=2): From Lemmas 1-2, with �si � r�

h
��s(Vi)
gi

(1 + �gi)
i
:

ĜA3 = Ĝ
�
A3
+ op(N

�1=2); Ĝ�A3 =
1

N

X
�xi"i�si
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From Lemma 10, we may take exterior trimming as known. From a mean-square convergence
argument and Lemma 7, Ĝ�A3 = op(N

�1=2): An induction argument obtains this result for
s > 1.
As above, for ĜA4, replace r�

h
�s(Vi)
ĝ

i
with �si � r�

h
��s(Vi)
gi

(1 + �gi)
i
to obtain Ĝ�A4 and

note that ĜA4 is uniformly within op(N
�1=2) of Ĝ�A4. Write:���Ĝ�A4��� � 1

N

X
j�̂xi � �xij j"ij j� �xi�sij ;

where � �xi = 1 if either �̂xi = 1 or �xi = 1 and is 0 otherwise. Approximating j�̂xi � �xij
by a smooth function as in Klein and Shen (2010), from Cauchy-Schwarz and Lemma 6,
Ĝ�A4 = op(N

�1=2):

For ĜB; write it as ĜB1 + ĜB2 + ĜB3 + ĜB4 ; where

ĜB1 � 1

N

X
�xi

h
M̂i �Mi

i
r�Mi

ĜB2 � 1

N

X
�xi

h
M̂i �Mi

i h
r�M̂i �r�Mi

i
ĜB3 � 1

N

X
[�̂xi � �xi]

h
M̂i �Mi

i
r�Mi

ĜB4 � 1

N

X
[�̂xi � �xi]

h
M̂i �Mi

i h
r�M̂i �r�Mi

i
For ĜB1; from Cauchy-Schwarz, Lemmas 1,6, and C1), it can be shown that

1p
N

X�
�xi

h
M̂i �Mi

i� ĝi
gi
� 1
��

r�M = op(1);

from which it follows that
p
N
h
ĜB1 � Ĝ�B1

i
= op(1); where

Ĝ�B1 �
1

N

X8<:�xi
h
M̂i �Mi

i
ĝi

gi

9=;r�M:

Under the stage and window conditions, E
h
N1=2Ĝ�B1

i
= o(1): Employing the arguments

similar to those in Jiang (2019), it can then be shown that N1=2[Ĝ�B1 � UN ] = op(1) where
UN is a centered U-statistic with N1=2UN asymptotically distributed as normal. It follows
that Ĝ�B1 = Op

�
N�1=2� : From Cauchy Schwarz, Lemmas 6-7, and C1), ĜB2 = op(N

�1=2).
The analysis for ĜB3 and ĜB4 is similar to that for Ĝ

�
A4
and ĜB2 :

To establish b), under index trimming at the second step, consistency follows from an
extension of Lemma 5 in Klein and Shen (2010) to d multiple indices. To outline the
argument, recall the de�nition of the adjusted estimator in D7) and D8):

M̂sa(v) �
1
N

PN
i=1 YiKi(v)

ĝ1a(v)
�

1
N

PN
i=1 ZiKi(v)

ĝ1a(v)
d̂m; s = 1

M̂sa(v) �
1
N

P
i

h
Yi � (M̂(s�1)a(Vi)� M̂(s�1)a(v))

i
Ki(v)

ĝa(v)
; s = 2
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For s = 1, consider the �rst component of M̂1a(v);

1
N

PN
i=1 YiKi(v)

ĝ1a(v; �)
�

1
N

PN
i=1 YiKi(v)

ĝ1a(v; �)
� f̂(v; �)

ĝ1a(v; �)
:

With f(v; �) =M(v; �)g(v; �);����� f̂(v; �)ĝ1a(v; �)
� f(v; �)
g(v; �)

����� �
����� f̂(v; �)� f(v; �)ĝ1a(v; �)

�����+
����f(v; �)g(v; �)

ĝ1a(v; �)� g(v; �)
ĝ1a(v; �)

���� :
With f(v;�)

g(v;�)
bounded, it su¢ ces to consider

��� f̂(v;�)�f(v;�)ĝa(v;�)

��� and ��� ĝa(v;�)�g(v;�)ĝa(v;�)

��� : With the proofs
for these terms being similar, consider the �rst term and write:

sup
v;�

����� f̂(v; �)� f(v; �)ĝa(v; �)

����� � supv;�
������
f̂(v; �)� E

h
f̂(v; �)

i
)

ĝa(v; �)

������
A

+ sup
v;�

������
E
h
f̂(v; �)

i
� f(v; �)

ĝa(v; �)

������
B

:

To analyze the A-term, let

�A � h�a sup
v;�

���f̂(v; �)� E hf̂(v; �)i��� :
Recall that in the adjustment factor de�ned in D7), ��(v) is a smoothed indicator approach-
ing 1 on the set fv : qv(�1) < v < qv(�2)g: Let � �(v) be an indicator for fv : qv(��1) < v <
q�v(�

�
2)g where ��1 < �1 < �2 < ��2: Then,

A � �A

�
ha sup

v;�

�
� �

ĝ(v; �)

�
+ ha sup

v;�

�
1� � �
�

��
:

When � �(v) = 1, ĝ(v; �) uniformly converges to g(v; �) > 0; while on its complement, � =
O(h�a): Accordingly, it su¢ ces to show that �A = op(1): From Lemma 8,

�A = O
�
N�ra�Op �N�( m

2(m+2)
�rd)

�
:

Under A5) with a < 1; �A = op(1):
For the B-term, as in Klein and Shen (2010), let � s be an indicator for fx : ak + hc <

xk < bk � hcg; where 0 < a < c < 1. Letting

�B � h�a sup
v;�

���E hf̂(v; �)i� f̂(v; �)��� ;
it follows that

B � �B

�
ha sup

v;�

�
� �

ĝ(v; �)

�
+ ha sup

v;�

�
1� � �
�

��
:

Under the same arguments as above, B will be uniformly op(1) if �B is uniformly op(1):
Write B as:

B = � sB + (1� � s)B:
The �rst term is uniformly op(1) as the boundary bias vanishes when � s = 1. When � s = 0; it
can be shown that B = Op(1):With the probability of � s = 0 being O(N�c), 0 < a < c < 1;
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the second term uniformly converges in probability to zero. Similar arguments apply for
s > 1. From the above uniform convergence, the second stage objective function uniformly
converges to its expectation, which has a unique maximum at the true parameter vector
under standard arguments. Consistency for the second stage estimator in (7) of Theorem 2
follows.
To establish c), note that it has the following linear form:

p
N
�
�̂a � �0

�
= �Ĥ�1 ��+�pNĜ (�0) + op(1); �+� h�̂a; �0i :

Employing arguments very similar to those in Part a), it can be shown under C2) that

i) : Ĥ�1 ��+� p! �2E [� vir�Mir�M
0]

ii) :
p
NĜ (�0) =

1p
N

X
� vi"ir�Mi �

1p
N

X
� vi

h
M̂i �Mi

i
r�Mi + op(1):

The proof for part c) will then follow if

B � 1p
N

X
� vi

h
M̂i �Mi

i
r�Mi = op(1):

From Lemmas 1-2:

B = B� + op(1); B
� � 1p

N

X
� vi

h
M̂�
i �Mi

i
ĝi

gi
[1 + �gi]r�Mi:

From Newey�s residual result, E [B�] = 0: In the single index case, Klein and Shen (2010)
show that B� is a degenerate U-statistic under regular kernels. This argument had been
extended to multiple indices under the recursive estimator, with the extension provided in
Jiang (2019).

With Lemma 10 showing that exterior trimming can be taken as known, Lemmas 1-9 are
provided for the known trimming case. For notational simplicity, let K�

i (v) � K�
i (v; �) in

Lemmas 1-9.
Lemmas 1-6 provide properties of the proposed expectations estimator while Lemmas 7-9

provide results for estimating semiparametric models. For ease of exposition, in Lemmas 1-6
we assume that the conditional expectation of the dependent variable, Yi, is a function of
the d-dimensional vector Vi. The vector Vi may be interpreted as a vector of indices in the
semiparametric case or as a vector of exogenous variables in the nonparametric case.
We will obtain results for an approximating recursive sequence that is uniformly within

N�1=2 of the original sequence. In constructing this sequence, we require the result on
trimmed kernels in Lemma 1. Lemma 2 then provides the main result on the approximation.

6.2 Intermediate Lemmas

Lemma 1. Density Estimators and Trimming. Recall from D3) that index-trimming
and X-trimming functions have the form:

� v (Vi) � 1 fVi : qv (�1) < Vi < qv (�2)g ;
�x(Xi) � 1 fXi : qx (�1) < Xi < qx (�2)g :
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Let C�v and C�x be sets of the form:

C�v �
�
Vi : q

¯
< Vi < �q

	
; qv (�1) < q

¯
< �q < qv (�2)

C�x �
�
Xi : q

¯
< Xi < �q

	
; qx (�1) < q

¯
< �q < qx (�2)

Then:

a) : sup
v

���� 1NX[1� � v(Vi)]Ki(v)

���� = op(N�1=2) where v�C�v ;

b) : sup
v

���� 1NX [1� �x(Xi)]Ki(v)

���� = op(N�1=2) where x�C�x:

Proof. Here we provide the proof for a), with the proof for b) being similar. Referring to
a), denote Vi(m) as the mth element of Vi; m = 1; :::; d: Let q1m be the mth element in the
vector qv (�1) and q2m the mth element in the vector qv (�2) : De�ne an indicator:

�m(Vi(m)) � 1 fVi(m) : q1m < Vi(m) < q2mg

and � v(Vi) =
Qd
m=1 �m(Vi(m)): It follows that [1 � � v(Vi)] can be written as the sum of a

�nite number of terms, with a typical term given as:

d1Q
m=1

[1� �m(Vi(m))]
dQ

m=d1+1

�m(Vi(m)):

It then su¢ ces to examine:

T (v) � 1

N

NX
i=1

d1Q
m=1

[1� �m(Vi(m))]Kim(v (m))
dQ

m=d1+1

�m(Vi(m))Kim(v (m));

where Kim(v) is the kernel component de�ned in D3). Under a), with q�1m and q
�
2m as the

mth elements in qv (�1I) and qv (�2I) respectively:

q1m < q
�
1m < v(m) < q

�
2m < q2m:

Therefore, noting that T2(v) �
Qd
m=d1+1

supv(m) �m(Vi(m))Kim(v (m)) = O
�
h�d1

�
; supv T (v)

is bounded above by:

1

N
sup
v

NX
i=1

"
d1Q
m=1

sup
v(m)

[1� �m(Vi(m))]Kim(v (m))

#
sup
v
[T2(v)]

= O
�
h�d1

� 1
N

NX
i=1

d1Q
m=1

[1 fVi(m) > q2mgKim(q
�
2m) + 1 fVi(m) < q1mgKim(q

�
1m)]): (8)

The result in (8) follows as the sup of each term in the sum is attained by selecting a value for
v(m) that minimizes jv(m)� Vi(m)j : Hence, for each component in �rst product of terms,
the sup is attained at either q1m or q2m: Under symmetry for the kernel, as the analysis
for each of the two terms in (8) is essentially the same, here we consider the expectation
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and variance of the �rst term and show that it has order smaller than op(N�1=2hd1). For
�T1 � 1

N

PN
i=1

Qd1
m=1 1 fVi(m) > q2mgKim(q

�
2m) and g the index density:

E
�
�T1
�
� sup

v
g(v)

Z
:::

Z
d1Q
m=1

[fVi(m) > q2mg]Kim(q
�
2m)dvi (9)

� sup
v
g(v)

Z 1

�1
:::

Z 1

�1

d1Q
m=1

1 fVi(m) > q2mgKim(q
�
2m)dvi: (10)

= sup
v
g(v)

d1Q
m=1

Z 1

�1
[1 fVi(m) > q2mg]Kim(q

�
2m)dvi(m) � P; (11)

where in (9) the integration is over the support for Vi. From the de�nition of the indicator,

P =
d1Q
m=1

�Z 1

q2m

Kim(q
�
2m)dVi(m)

�
:

Making a change of variable with Z(m) � q2m�Vi(m)
h

, as the kernel has moments of all orders
under D4), from Markov�s inequality:

P �
d1Q
m=1

O(E [Z(m)]2t)O(h2t) = O
�
h2td1

�
:

With t selected to be su¢ ciently large, the result follows. For the variance,

V ar
�
�T1
�
= V ar

�
d1Q
m=1

1 fVi(m) > q2mgKim(q
�
2m)

�
=N

� E

�
d1Q
m=1

[1 fVi(m) > q2mg]K2
im(q1m)

�
= O

�
1

hd1

�
O

�
E

�
d1Q
m=1

[1 fVi(m) > q2mg]hd1K2
im(q1m)

��
:

From the analysis of the expectation above, the second component vanishes arbitrarily fast.
The Lemma follows.

Lemma 2. Recursion Approximation. Recall the de�nition of the initial estimator
in D6) and kernel functions in D4-5). With Vi � V (Wi; �0) and Zi (v) � [Vi � v] =h as the
ith row of Z, de�ne:

Â �
X�

1

N
Z (v)0D�Z (v)

�
; A � E

�
1

N
Z (v)0D�Z (v)

�
; �A (v) �

LX
l=1

h�
A� Â

�
A�1

il
�gs(v) = E(ĝs(v)); �gs(Vi) �

1

gs(Vi)

" PX
p=1

�
�gs(Vi)� ĝs(Vi)

�gs(Vi)

�p#

d̂�(v) � A�1[I + �A (v)]
1

N

NX
i=1

Zi (v)
h
Yi � M̂(v)

i
ĝ1(v)K

�
i (v)

�g1(v)
[1 + �g1(v)]

��
s(v) �

(
��
1(v) � 1

N

PN
i=1 [M(Vi)�M(v) + "i]Ki(v)� 1

N

PN
i=1 Zi (v)Ki(v)d̂

�(v); s = 1

��
s�1(v)�

PN
i=1

h
��s�1(V )

�gs�1(Vi)

i �
1 + �gs�1(Vi)]

�
K�
i (v) +

1
N

PN
i=1 "iK

�
i (v); s > 1

24



For L, P su¢ ciently large and �nite:

sup
v
j��

s(v)��s(v)j = op(N�1=2):

Proof. For s = 1, note that:

Â�1 = A�1 + Â�1
h
A� Â

i
A�1

= A�1[I + �A] + Â
�1
h
A� Â

i�L+1
A�L+1:

With a similar expansion holding for 1=ĝ(Vi); for L, P su¢ ciently large:

sup
v

���Â�1 � A�1[I + �A]��� = op(N
�1=2) (12)

sup
v

���� 1

ĝ(Vi)
� 1

�g(Vi)
[1 + �g1(Vi)]

���� = op(N
�1=2): (13)

The result now follows for s = 1.
For s = 2,

�2(v) � ĝ(v)[M̂1(v)�M1(v)]�
Xh

[M̂1(Vi)�M1(Vi)]
i
K�
i (v):

Therefore, ��
2(v)��2(v) = T1 � [T21 � T22] ; where

T1 � ��
1(v)�

ĝ(v)

ĝ1(v)
�1(v)

T21 � 1

N

NX
i=1

��
��
1

�g1(Vi)

�
[1 + �g1(Vi)]]

�
K�
i (v)

T22 � 1

N

NX
i=1

"
ĝ1(Vi)

M̂1(Vi)�M(Vi))
ĝ1(Vi)

#
K�
i (v):

Because supv j��
1(v)��1(v)j = op(N�1=2), we have T1 uniformly op(N�1=2) from Lemma 1.

From (12), (13), it follows that T21 � T22 is uniformly op(N�1=2). An induction argument
completes the proof.

Lemma 3. Stage Characterization. De�ne

KP0 (v) �
1

N

X
[M(Vi)�M(v)]

1

hd
k

�
(Vi � v)
h

�
:

Recall the de�nitions of �A (v) and �g1(Vi) in Lemma 2. With Zi = (v � Vi; )=h, let:

e1(v; Vi) � ZiKi(v)A
�1(v)

e2(v; Vi) � ZiK
�
i (v) [M(Vi)�M(v)]

e3(v; Vi) � ZiK
�
i (v)

e4(v; Vj) �
[M (Vj)�M (v)]K�

j (v)

�g (v)
:
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De�ne �et(v) = 1
N

P
i et(v; Vi) and

KP1 (v) � �e1(v) [I + �A(v)] f�e2(v) + �e3(v)�e4(v) [1 + �g1(v)]g :

Let U1 and U be random variables that have zero expectation conditioned on X and de�ne:

KPL(v) � O

�
1

NL

�X
i1

:::
X
iL

TL;i1;:::;iL ;

TL;i1;:::;iL � ��
1 (Vi1)QL

l=1 �gs (Vil)
K�
iL
(v)

LQ
l=1

�gs (Vil)
L�1Q
l=1

K�
il

�
Vil+1

�
:

Then, there exists integers C1; ::; Ck�2 such that

a) : ��
1 (v) = U1 +KP0 (v)�KP1 (v) , s = 1 (14)

b) : ��
s�1 (v)���

1 (v) = U +

s�1X
l=1

ClKPl(v), s > 1: (15)

Proof. The proof for a) is immediate from Lemmas 1�2. For b), due to the form of
��
s�1 (v)���

s�2 (v), the lemma follows because

��
s�1 (v)���

1 (v) =
�
��
s�1 (v)���

s�2 (v)
�
+
�
��
s�2 (v)���

s�2 (v)
�
+ :::+ [��

2 (v)���
1 (v)] :

To study the expectations of the estimators as characterized in Lemma 3, Lemma 4 pro-
vides conditional independence results for studying the expectation of products of averages,
which is the structure of the stage s estimator. Part a) of this lemma is stated in a form
more general than is required so as to illustrate a method of proof that applies to all other
parts.

Lemma 4. Kernel Products. Let F (Vi) be a bounded function of Vi and A(v) a
matrix that depends on v: For p a positive integer, de�ne:

d1) : jA(v)j has i; j element jAij(v)j
d2) : sup

v
jA(v)j has i; j element supvjAij(v)j

d3) : �(Vi) �
(
1

N

X
j

�
F (Vi)�K�

j (Vi)
�)p

d4) : �i �
�
��
s�1 (Vi)

g(Vi)
[1 + �gs (Vi)]

�
:
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Referring to the de�nitions in Lemmas 1-2, under A5):

a) : E [�(Vi)jVi] =
(
1

N

X
j

E
�
F (Vi)�K�

j (Vi) jVi
�)p

+O

�
1

Nhd

�
b) : E [�A(v)] � E

n
[�e2(v)]

l
o
= [E (�e2(v))]

l +O

�
1

Nhd

�
c) : E [KP1 (v)] � E [�e1(v) [I + �A(v)] f�e2(v) + �e3(v) �e4(v) [1 + �g1(v)]g] =

E [�e1(v)] [I + E [�A(v)]] fE [�e2(v)] + E [�e3(v)] E [�e4(v)] [1 + E [�g1(v)]]g+O
�

1

Nhd

�
d) : E

�
��
s�1(Vi)

�g(Vi)
[1 + �g(Vi)] jVi

�
=
E
�
��
s�1(Vi)jVi

�
�g(Vi)

[1 + E [�g(Vi)jVi]] +O
�

1

Nhd

�
e) : E

�
�iKi(v)�jKj(v

	
= E

�
E [�iKi(v)jVi]E

�
�jKj(v)jVj

�	
+O

�
1

Nhd

�
:

Proof. For a), write the expectation of a typical term in �(Vi):

E

(
O

�
1

Np

�"X
j 6=i

F (Vi)�K�
j (Vi)

#p
jVi

)
= E

8<:O
�
1

Np

�X
j1

X
j2

:::
X
jp

pY
l=1

�
F (Vi)�K�

jl
(Vi)

�
jVi

9=; :
If all of the subscripts are distinct, the result is immediate from independence. Assume
there are m+1 > 2 identical subscripts and re-order terms so that these are at the end. The
expectation is then:

O

�
1

Nm

�
E

8<:O
�

1

Np�m

�24X
j1

X
j2

:::
X
j(p�m)

 
p�m�1Y
l=1

�
F (Vi)�K�

jl
(Vi)

�!35hF (Vi)�K�
jp (Vi)

im+1
jVi

9=;
= O

��
1

Nhd

�m� p�m�1Y
l=1

�
F (Vi)� E

�
K�
jl
(Vi) jVi

��
E

�
O(hmd)

h
F (Vi)�K�

jp (Vi)
im+1

jVi
�
:

For the three components above, from A5), the �rst term is O
��

1
Nhd

�m�
; m > 1: It can

readily be shown the second component is O(1). For the �nal component, let z be a d � 1
vector with lth component

Vi(l)�Vjp (l)
O(h)

. With this change of variable, and the integral being
multi-dimensional, we can write the third component as:Z

O(hmd)

�
F (Vi +O(h)z)�

1

O(hd)
k(z)

�m+1
O(hd)g(Vi +O(h)z)dz

=

Z
O(h(m+1)d)

(
m+1X
i=1

�
m+ 1
i

�
F (Vi +O(h)z)

m+1�i
�

1

O(hd)
k(z)

�i)
g(Vi +O(h)z)dz:

With k(z)p integrable under A5) for all �nite p, the above integral is O(1) from which the
result follows. The proofs for b-c) are very similar to that for a) in that they depend on
matching subscripts as in the above argument and require de�nitions d1)-d2). For d), from
the stage characterization in Lemma 4, it su¢ ces to consider:

E [KPL(Vj)�g (Vj) jVj] :
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Employing the same matching arguments as in a), it follows that:

E [KPL(Vj)�g (Vj) jVj] = E [KPL(Vj)jVj]E [�g (Vj) jVj] + o(N�1=2);

which completes the argument for d).

Lemma 5. Bias Expansions for Kernel Expectations. Let F (v) be a bounded
function of v and g(v) the density for Vi. Assume that F (v)g(v) has uniformly bounded
derivatives to order 2m + 1. Then, with kernel functions de�ned in D4), and for v in a
compact subset over which the trimming function (see D3) is de�ned:

E [F (Vi)K
�
i (v)] � E [F (Vi)� v (Vi)Ki(v)]

= F (v)g(v) +

mX
i=1

h2iBi(v) + o(h
2m);

where Bi is uniformly bounded in its argument.

Proof. Recalling D4):

E [F (Vi)K
�
i (v)] =

R
Cv(qv)

F (vi)Ki(v)g(vi)dvi;

where Cv (qv) as de�ned in D3) is the set over which the trimming function is one. Let z
be a vector with lth element v(l)�vi(l)

O(h)
. Then, making this change of variable and restricting

all components of v to a strict subset of Cv (qv) ; the expectation up to higher order terms is
given as: R

Rd

F (v + hz)k(z)g(v + hz)dz;

where k is the standardized kernel in D4). From a standard Taylor expansion in h about 0
and A3), the result follows.

Employing the above lemmas, Lemma 6 obtains uniform bias and variance rates for the
proposed estimator.

Lemma 6. Stage Bias and Variance. Assuming A5), with��
s(v) de�ned as in Lemma

2, and Bs (v) a uniformly bounded function:

a) : sup
v
E [��

s(v)] = h
2sBs(v) + h

2(s+1)Bs+1 (v) + o(h
2(s+1));

b) : sup
v
V ar [��(v)] = O

�
N�(1�rd)� :

Proof. For a), with KP0 and KP1 de�ned in Lemma 3:

E [��
1 (v)] = E [KP0 (v)]� E [KP1 (v)] :

It then follows from Lemmas 4-5 that

sup
v
jE [��

1(v)]j = h2B1 (v) + h4B2 (v) + o(h4):
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Continuing with an induction argument for a), with s > 1; assume that

sup
v

��E ���
s�1(v)

��� = h2(s�1)Bs�1 (v) + h2sBs (v) + o(h2s); (16)

Under Lemma 4d), E [��
s(v)] is given as:

E
�
��
s�1(v)

�
� E

�
��
s�1(Vi)

�g(Vi)
[1 + �gs(Vi)]K

�
i (v)

�
= E

�
��
s�1(v)

�
� E

"
E
�
��
s�1(Vi)jVi

�
�g(Vi)

[1 + E [�gs(Vi)jVi]]K�
i (v)

#
:

From Lemma 5 it now follows that

E
�
E
�
��
s�1(Vi)jVi

�
Ki(v)

	
= h2(s�1)Bs�1(v) + h

2sBs (v) + o(h
2s):

Part a) now follows because E [�gs(Vi)jVi] = O(h2):
The proof for b) at stage s = 1 is immediate. Assuming the result holds for stage s� 1,

we show it holds for stage s > 1, recall that

��
s(v) � ��

s�1(v)�
1

N

X
i

�
��
s�1 (Vi)

g(Vi)
[1 + �gs (Vi)]

�
Ki(v)�

1

N

X
i

"iKi(v):

With T � ��
s(v)�E [��

s(v)] and �i �
��s�1(Vi)

g(Vi)
[1 + �gs (Vi)] ; from the de�nition of �

�
s(v); T =

T1 � T2 � T3 � T4 where

T1 � ��
s�1(v)� E

�
��
s�1(v)

�
T2 � 1

N

X
i

"iKi(v)

T3 � 1

N

X
i

fE (�ijVi)Ki(v)� E [�iKi(v)]g

T4 � 1

N

X
i

[�i � E (�ijVi)]Ki(v):

Part b) will follow if E(T 2l ) = O
�
N�(1�rd)�, l = 1; 2; 3; 4: The result is immediate for T1:

For T2 and any stage s:

sup
v
E(T 22 ) =

�
1

Nhd

�
sup
v

1

N
E
X
i

�
"2ih

dK2
i (v)

�
=

1

Nhd
�2 sup

v
E
�
hdK2

i (v)
�
= O

�
1

Nhd

�
:

For T3 and any stage s, sinceE fE (�ijVi)Ki(v)� E [�iKi(v)]g = E fE (�ijKi(v)Vi)� E [�iKi(v)]g =
0; from conditional independence, the expectation of cross products vanish, which implies
that:

sup
v
E(T 23 ) =

�
1

Nhd

�
sup
v

1

N
E
X
i

hd fE (�ijVi)Ki(v)� E [�iKi(v)]g2 = o
�

1

Nhd

�
:
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For T4, write T 24 = ST + CPT; where

ST � 1

Nhd
1

N

X
i

[�i � E (�ijVi)]
2 hdK2

i (v)

CPT � 1

N2

X
i

X
j 6=i

[�i � E (�ijVi)]Ki(v)
�
�j � E

�
�jjVj

��
Kj(v):

For the squared terms (ST):

sup
v
E [ST ] =

1

Nhd
sup
v
E
�
[�i � E (�ijVi)]

2 hdK2
i (v)

	
= O

�
1

Nhd

�
For the cross-product terms (CPT), from Lemma 4, part e) :

sup
v
E [CPT ] = sup

v
E
�
E [�i � E (�ijVi) jVi]E

�
�j � E

�
�jjVi

�
jVj
�
Ki(v)Kj(v)

	
+O

�
1

Nhd

�
:

As the �rst component is 0; part b) of the lemma follows.

Lemma 7. Mean-Square Convergence for First Derivatives. For w in a compact
subset of its support:

sup
w
E
h�
r1
� [�

�
s(v(w; �))]�0

�2i
= O

�
N�4rs�+O �N�(1�r(d+2))� :

Proof. Employing the same term decomposition as in Lemma 6, the proof for lemma 7
follows.

In providing results for a class of semiparametric models, we need uniform convergence
results, where uniformity is taken with respect to index parameters. For this purpose, we
now explicitly consider the dependence of index on the parameter vector �.

Lemma 8. Uniform Convergence Rates. Recall from D4) that Ki(v) depends on
� via v (�) � V (w; �) and Vi (�) � V (Wi; �): Under A4), with Zi � [v � Vi (�)] =h; for w; �
restricted to compact sets and � = 0; 1; 2 :

a) : sup
w;�

�����
1

N�1r
�
�

P
i YiKi(v)�

E fr�
� [YiKi(v)]g

����� = Op �N�( m
2(m+2)

�r(�+d))
�

b) : sup
w;�

�����
1

N�1r
�
�

P
iKi(v)�

E fr�
� [Ki(v)]g

����� = Op �N�( 12�r(�+d))
�

c) : sup
w;�

�����
1

N�1r
�
�

P
i ZiZ

0
iKi(v)�

E fr�
� [ZiZ

0
iKi(v)]g

����� = Op �N�( 12�r(�+d))
�

d) : sup
w;�

�����
1

N�1r
�
�

P
i Z

0
iYiKi(v)�

E fr�
� [Z

0
iYiKi(v)]g

����� = Op �N�( 12�r(�+d))
�
:
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Proof. As the arguments for b), c), and d) are similar to but less complicated than those
for a), here we provide the proof for a). Let:

bi =

�
1 : jYij > N

1
m+2

0 : otherwise
:

Write the term in a) as T1�b + Tb, where:

T1�b � 1

N

X
s

(1� bi)Yir�
� [Ki(v)]� E fYir�

� [Ki(v)]g

Tb � 1

N

X
s

biYir�
� [Ki(v)]� E fYir�

� [Ki(v)]g :

For T1�b; from standard results in the literature:

sup
�
jT1�b � E (T1�b)j = Op

�
N�( 12�r(�+d)�

1
m+2)

�
= Op

�
N�( m

2(m+2)
�r(�+d))

�
:

For Tb; the function Ki (V (�)) incorporates trimming that can be taken as known (Lemma
1) and that bounds Xs: Then for x restricted to a compact set, it follows that

sup
�;i
jr�

� [Ki (v)]j = O
�

1

h�+d

�
:

It then su¢ ces to study

1

h�+d
E [bi jYij] �

1

h�+d
E [bi]

1=2E
���Y 2i ���1=2 ;

which follows from Cauchy-Schwarz. Note that:

E [bi] � Pr
�
jYijm > N

m
m+2

�
� N�( m

m+2)E [jYijm] = O
�
N� m

m+2

�
:

Therefore,

Tb = O
�
N�[ m

2(m+2)
�r(�+d)]

�
:

The result now follows.11

Finally, for establishing asymptotic normality, we need a uniform convergence lemma for
the estimated mean functions and their �rst two derivatives. Lemma 9 provides the required
results.

Lemma 9. Uniform Convergence for Derivatives. Under Assumption A4), for

0 < r <
1

2 (d+ �)

m

m+ 2
; � = 0; 1; 2;

11The bi indicator was de�ned to ensure that the Tb-terms and the T1�b-terms converge to zero at the
same rate.
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we have

sup
w;�
jd (w; �)j � op (1) ; d (w; �) � r�

�

h
M̂�
k (v (�) ; �)�M (v (�) ; �)

i
:

Proof. From Lemma 8), the lemma is immediate for s = 1. For s > 2, the result follows
from an induction argument.

For purposes of obtaining properties of the recursive estimator for M , above we have
taken exterior X- trimming as known. For estimating index parameters in a semiparametric
model, as described in Theorem 2, in the �rst stage we employ X-trimming based on sample
quantiles. In the second stage, we trim based on the estimated index. To cover these cases,
let ̂ be either a vector of sample quantiles or a vector containing sample quantiles and the
vector of index parameter estimates, �̂.

Lemma 10. Exterior Trimming. Set the stage s, and window parameter r, to satisfy
either condition C1) or C2) in Theorem 2. With q̂ as a vector of sample quantiles, denote
��
s(v; q̂) as the corresponding scaled estimator under estimated X-trimming and �

�
s(v; q) as

the corresponding estimator under known trimming. Then:

a) : sup
v;�
jf��

s(v; q̂)���
s(v; q)gj = op

�
N�1=2�

b) : sup
v;�

��r1
� f��

s(v; q̂)���
s(v; q)g

�� = op �N�1=2�
c) : sup

v;�

��r2
� f��

s(v; q̂)���
s(v; q)g

�� = op(1):
Proof. We prove the lemma �rst in the case of X-trimming and then show that the
arguments immediately extend to index-trimming. To prove a) for s = 1 and letting
Â � [Z 0D�(v; �̂)Z] =N; A � [Z 0D�(v; �)Z] =N; B̂ � Z 0D�(v; �̂)=N; and B � Z 0D�(v; �)=N :

��
1(v; q̂)���

1(v; q) = �Z(v)
n
Â�1B̂ � A�1B

oh
Y � M̂(v)

i

= �Z(v)

8>>><>>>:
Â�1

h
A� Â

i
A�1B+

A�1
h
B̂ �B

i
+

Â�1
h
A� Â

i
A�1

h
B̂ �B

i
9>>>=>>>; :

As all terms are similar, with the third converging to zero faster than the �rst two, here we
provide the argument for the �rst term given as:

�Z(v)Â�1
�
1

N
Z 0 [D�(v; �̂)�D�(v; �)]Z

�
A�1

1

N
Z 0B

h
Y � M̂(v)

i
:

It can be shown that there exists � > 0 such that �Z(v) is uniformly op(N��): Further, it can

be shown hat Â�1; A�1; and 1
N
Z 0B

h
Y � M̂(v)

i
are uniformly Op(1): The proof will then

follow if 1
N
Z 0 [D�(v; �̂)�D�(v; �)]Z is uniformly op(N�(1=2��)): Employing an inequality due

to Jim Powell, Klein and Shen (2010, Proof of Theorem 2) provide a smooth upper bound
to the di¤erence in indicators. With the di¤erence in sample and population quantiles being
Op(N

�1=2), a Taylor series then gives the result, with the smooth approximation slowing the
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convergence rate to N�(1=2�e); e > 0 and arbitrarily small. The result then follows for s = 1.
An induction argument then completes the proof for part a). The proofs for parts b) and c)
are similar.
For exterior index trimming, let ̂ � (q̂1; q̂2; �̂); where (q̂1; q̂2) are lower and upper sample

quantiles for the estimated index, X1i +X2i�̂. Write

� i (̂) = 1
n
q̂1 < X1i +X2i�̂ < q̂2

o
= 1

n
q̂1 �X2i

�
�̂ � �0

�
< X1i +X2i�0 < q̂2 �X2i

�
�̂ � �0

�o
� 1 fĉ1 < X1i +X2i�0 < ĉ2g � 1 fĉ1 < V0i < ĉ2g :

where V0i � X1i + X2i�0. Recalling from A6) that X2i is bounded and that
����̂ � �0��� =

Op(N
1=2), the proofs for index trimming are very similar to those for X-trimming.
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