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This paper analyses literature contributions in the search for safety stock problem under uncertainties and risks
in the procurement process, focusing on the dimensioning problem (determination of the safety stock level).
We perform a systematic literature review (SLR) from 1995 to 2019 in relevant journals, covering 193 selected
articles. These selected articles were classified into three safety stock main issues: safety stock dimensioning,
safety stock management, and safety stock positioning, allocation or placement. The SLR analysis allowed the
identification of literature gaps and research opportunities, thus providing a road map to guide future research

1. Introduction

The supply chain is a complex and unique network that integrates
different business processes involved in fulfilling the customer needs,
which includes planning, procurement, production, distribution and
customer interface [3,4]. All these are involved in the entire product
life cycle, from procurement to manufacturing, distribution and cus-
tomer service [5]. The importance of the supply chain management in
business strategy, in attracting and retaining customers and markets,
in the effectiveness of operation management and the profitability of
companies results becomes a valuable way to ensure the competitive
advantage and improving the organizational performance [5-7]. Logis-
tics plays an essential role in supply chain management and it is one of
the crucial factors of the supply chain success. The logistics planning
management processes aims at establishing the right product, in the
right quantity, in the right condition, to the right place, at the right
time, and at the right cost (i.e., minimal cost).

The supply chain management deals with a significant number
of uncertainty factors that affect its performance. These uncertainty
factors introduce a large number of random factors and events, af-
fecting all dimensions of the supply chain activities, and also make
the risk and vulnerability a major challenge for organizations [8].
Risks and uncertainty factors have a direct influence on both customer
satisfaction levels and supply chain related costs. To deal with some
of these factors, buffering techniques such as safety stock is included
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as the way for aiding the operational planning of manufacturing stages
to cover both demand and supply uncertainties so that to provide the
promised service level to the customers [9,10]. Although a higher safety
stock level represents a higher service level, it must be optimized in
order to not increase the total costs of the supply chain [10].

Several authors have studied the safety stock research problem and
proposed their inventory models considering different types of uncer-
tainty and risks, using different approaches. The research problems
related to safety stock involve typically issues such as dimensioning,
management, and positioning, placement or allocation [11]. Safety
stock dimensioning consists of setting the appropriate safety stock level
for each item. Safety stock management involves setting of both the
safety stock levels and the time for replenishments. And, safety stock
allocation, positioning or placement consists on setting safety stock
levels and determine where to allocate them on supply chain structure.
There are several terminologies in the literature for the same problem
of safety stock placement. Safety stock placement, safety stock alloca-
tion and safety stock positioning represent the same problem [12-14].
In this Systematic Literature Review (SLR)! we adopt the terminology
safety stock placement to portray this problem.

Although the scope of this research is on safety stock dimensioning
strategies, we extend it and consider all safety stock dimensions (this
is, dimensioning, management and placement), since the dimensioning
issue is present in each of these dimensions. Schmidt et al. [15] argued
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that is very difficult to survey scientific publication related to safety
stock dimensioning. Within our knowledge, there are only three sur-
veys/reviews that cover totally or partially the safety stock problem.
Caridi and Cigolini [11] analysed and classified safety stock damping
methods for manufacturing systems by considering uncertainty factors.
Schmidt et al. [15] analysed mathematical methods for safety stock
dimensioning and perform a simulation study to compare these meth-
ods regarding service and safety stock level. Finally, Eruguz et al. [16]
focused only on safety stock placement issue, more specifically on the
guaranteed-service modelling approach.

A comprehensive SLR was made by analysing research papers from
1995 to 2019 of safety stock research efforts by considering uncer-
tainty factors or risks, or even both, in the procurement process. The
selected papers were filtered manually and reduced to 193 papers in
this review and classified into three dimensions of safety stock problem:
safety stock dimensioning, safety stock management, and safety stock
placement, allocation or positioning. Furthermore, literature gaps were
identified, allowing to disclose future research opportunities.

This paper is organized as follows. Firstly, Section 2 provides an
overview of the main concepts related to procurement, supply chain
risk and uncertainty, sources of uncertainty and risk in procurement
processes and some traditional safety stock dimension strategies. Sec-
tion 3 presents the review methodology followed for analysing the
literature contributions. Section 4, we present a descriptive and co-
occurrence analysis of selected papers. Then, in Section 5, the selected
papers are categorized according to the research problem. Section 6
presents the literature gaps and research opportunities. Finally, we
conclude this paper in Section 7.

2. Theoretical background
2.1. Procurement: sourcing and purchasing

The terms purchasing and procurement are often used as the same
concept, although they differ in scope. Purchasing is related to the
actual buying of materials and the buying process activities. On the
other hand, procurement has a broader scope comparing with pur-
chasing [17,18]. It includes purchasing, warehousing, and all activities
of receiving inbound materials [17]. Purchasing is the first step in
procurement within a process-based supply chain.

Chopra and Meindl [3] defined Procurement as “the process of ob-
taining goods and services within a supply chain”. Also, the [19] provides
a definition for Procurement: ‘“the activities associated with acquiring
products or services. The range of activities can vary widely between organi-
zation to include all of the parts of the functions of Procurement planning,
purchasing, inventory control, traffic, receiving, incoming inspection, and
salvage operations”.

Procurement represents one of the key processes in the supply chain
and can influence the success of the entire organization. It ensure the
sufficient supplies of raw materials at the right price, of the required
quantity, in the right place and at the right time [20].

The procurement process includes activities such as the “make or
buy” decision process, purchasing and appraisal of both supplier and
contractor. Fig. 1 represents the procurement cycle in a resumed way.

2.1.1. Sourcing

Sourcing, also known as strategic procurement consists of a set of
business processes that are required to purchase goods and services [3,
21]. It includes processes such as formalize specification, selecting
suppliers and contracting process [6,21].

- Formalizing specifications — in this process are defined the
requirements of purchasing, as well as the “make or buy” decision
(decision to make goods or provide a service rather than buying
this goods/service) [6,20]. The first step of this process consists
to define functional and technical specifications of items to be
purchased [6];
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+ Selecting suppliers — this process consists of searching and
identifying suppliers in the market [6,21]. Important decisions,
such as the method of subcontracting to be adopted (e.g., partial
or total subcontracting, payment in fixed-price or in refundable
cost), the criteria for the preliminary qualification of potentials
suppliers, the requisition and analysis of received proposals and
selection of suppliers are necessary to be taken [6,20];
Contracting — in this process are defined the terms of the
contract (e.g., delivery conditions and price, payments conditions,
penalty clauses, and warranty conditions) and afterwards the
signing of the contract [6].

2.1.2. Purchasing

Purchasing or operational procurement consists of the processes of
buying goods and services [21]. For efficient purchasing is necessary to
know the on-hand stock quantity so that to order the correct amount.
An efficient purchasing requires inventory control management. Hence,
safety stock as an extra inventory held to deal with uncertainties in
demand and supply is used to plan future purchase quantities.

Purchasing includes processes such as the ordering of material and
services, monitoring and evaluation [6].

» Ordering — this process consists to submit the purchasing or-
der, but firstly is necessary to guarantee the definition of the
contracting terms and consequently the signature of the contract;
Monitoring — this process involves a set of different tasks related
to the monitoring of submitted orders, such as visits to suppliers
facilities, as well as negotiations related to changes regarding
technical specifications, requisition of production plans and ex-
pected delivery date, verification of concordance of the delivered
products with the agreed specifications, and lastly, the exchange
of the commercial correspondences with customers;

Evaluation — this process consists basically of the execution of
complaints, activation of penalty clauses (when is applicable),
and organization of documentation related to the project and
supplier.

2.2. Supply chain risk and uncertainty

Often-times, the risk is confused with uncertainty, but these two
terms are not the same [22,23]. Knight [24] differentiate risk from
uncertainty arguing that risk is something measurable while uncer-
tainty is not quantifiable and unpredictable (with unknown outcomes).
Manuj and Mentzer [25] argues that risk is an expected outcome of an
uncertain event, and Rao and Goldsby [26] view risk as an event and
uncertainty as possible outcomes.

There are several definitions in the literature regarding the risk
in the supply chain context. But, do not exists a universal definition,
although there have been several attempts [27,28]. Tables 1 and 2
presents some of the key definition of risks and Supply Chain Risks
(SCR).

2.3. Uncertainty factors and risks in the procurement process

There are a variety of uncertainty factors and risks associated to
the procurement process, such as uncertain lead time, demand fluctu-
ations, variations of prices, uncertain yield, supplier delays and order
crossover, as follows described.

» Lead time uncertainty — supply lead time represents the av-
erage of time between when the order is placed and when the
product arrives [3,38]. The uncertainty in supply lead time must
be controlled properly in order to not increase the total cost and
reduce customer service level [39]. Besides that, the high varia-
tion of supply lead-time increases the difficulty in procurement
planning [40], more properly to perform the Material Require-
ment Planning (MRP) process. For an efficient production is
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Fig. 1. Steps of Procurement process adapted from [6].

Table 1
Risk definitions.

References Definitions

[29] “the variation in the distribution of possible SC outcomes, their likelihoods, and
their subjective values.”

[30] “The probability that a particular adverse event occurs during a stated period
of time, or results from a particular challenge. As a probability in the sense of
statistical theory, risk obeys all the formal laws of combining probabilities.”

[31] “the probability of loss and the significance of that loss to the organization or
individual.”

[32] “a chance of danger, damage, loss, injury or any other undesired
consequences.”

Table 2
SCR definitions.
Reference Definitions
[33] “the identification of potential sources of risk and implementation of appropriate strategies
through a coordinated approach among supply chain members, to reduce supply chain
vulnerability.”

[34] “any risks for the information, material and product flows from original supplier to the

delivery of the final product for the end user.”

[35] “supply chain risk is the potential occurrence of an inbound supply incident, which leads

to the inability to meet customer demand.”

[36] “anything that (disrupts or impedes) the information, material or product flows from

original suppliers to the delivery of the final product to the ultimate end-user.”

[37] “the management of supply chain risks through coordination or collaboration among the

supply chain partners so as to ensure profitability and continuity.”

[28] “the likelihood and impact of unexpected macro and/or micro-level events or conditions

that adversely influence any part of a supply chain, leading to operational, tactical or

strategic level failures or irregularities.”

necessary to estimate properly the procurement lead time and on-
time delivery in order to prevent delays on deliveries that can
lead to a shortage of inventory and consequently manufacturing
disruption, increasing the total cost and revenue losses. Several
strategies are used to cope with this type of uncertainty, such as
safety stock, safety lead time and supplier backups. Safety stock
is the most used strategy to increase the supply chain flexibility
under both demand and supply uncertainty [39,41];

Demand uncertainty — demand uncertainty includes factors
such as errors in demand forecast, changes in customer orders and
uncertainty about the product specification that the customers
will order [41]. Demand forecast consists to estimate the future
Stock Keeping Units (SKUs) in order to meet customer demands.
The demand forecast is a complex task [17,40] and when demand
is not estimated accurately (forecast error) can lead to inventory
short supply or surplus, low service level, rush orders, inefficient
utilization of resources and bullwhip effect propagation along
the supply chain [3,40,42]. This type of uncertainty assumes
an important role in the dimensioning of production lines, di-
mensioning of transportation modes, line assembly, distribution
centres and cross-docking platforms [6] and also plays an im-
portant role as input for procurement planning [42]. Component

commonality, risk pooling, safety stock, safety lead time, flexi-
ble supply contracts, subcontracting/outsourcing and postpone-
ment are examples of strategies to cope with demand uncertainty
[39,41];

Price uncertainty — represents the fluctuations in the suppliers
selling price of materials or raw materials due to the constant
price fluctuation in the market or discount campaigns [39]. Pric-
ing must be considered as an important factor in the procurement
process because it influences the logistics total cost, as well as
the operational decisions [43]. Flexible contract and price risk
hedging are examples of strategies that can be used to deal with
price uncertainty [39,41];

Yield uncertainty — limited capability or defective products
(quality issues) represent possible causes for yield uncertainty.
There are two main approaches used to mitigate this type of
uncertainty: supplier diversification (select multiples suppliers for
unreliable supplier) and collaboration with suppliers [39]. An-
other approach/strategy to cope with this uncertainty is capacity
buffer [39,41];

Supplier delay — on-time delivery is a standard objective of
procurement and when is not properly estimate can lead to
a shortage of inventory and consequently manufacturing dis-
ruption. Sometimes suppliers delays are caused by their quote
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delivery dates that cannot be achieved [44]. Strategies such as
supplier backups are the common strategies used to cope with
this type of uncertainty [39,411;

Supplier constraints — supplier constraints, also known as sup-
ply disruptions consist of situations that sometimes are unusual
which can affect the supplier performance or even lead to a partial
and complete failure of supply [15,45]. This constrains are impor-
tant to be considered, so that to be mitigated (the negative effect)
when they occur. Supplier constraints can be caused by factors
such as earthquakes, power failures, terrorist attacks, snowstorms,
customs delays, fires, slow shipments or workers strikes that can
lead to shutdowns or temporary closures or causing lead-time
delays due to loss of production/or transportation capability [15,
46]. Supplier backups are the most common strategies to deal
with this risk [39,41];

Order crossover — order crossover happens when orders are
received in a different sequence from the one that they are
placed [47-50]. It can occur due to two components of the re-
plenishment lead time: the required time interval for the supplier
to produce the order (which includes the actual production time,
delays before production and order transmission time to the sup-
plier) and the required time interval for the order transportation
(caused by geographic location, the variability of transporta-
tion time and multiple transportation modes) [47,48,50]. Several
strategies are used to cope with this type of uncertainty, such as
safety stock [39,41].

2.4. Dimensioning of safety stock (traditional strategies)

Strategies such as safety stock and safety lead-time are typically
used in inventory management to cope with both demand and supply
uncertainties [9,51]. Safety stock also known as buffer stock, consists
of an extra inventory held to deal with both demand and supply
uncertainties so that to prevent stock-outs [17,20,21,41,51,52]. The
safety stock of finished goods is used to attend unexpected demand,
and safety stock of raw material is used to protect against supply
problems and production stoppages [17,20,21]. There are multiples
traditional methods for dimensioning of safety stock (See Table 3).
Those methods are characterized as mathematical stochastic meth-
ods [15]. The standard formula for calculating safety stock (Method 1)
consists to multiply the safety factor (depends on the service level based
on normally distributed demand) with the deviation of the demand
during the replenishment time, this is, determine the safety stock as the
function of service level. With the extension of this method considering
the replenishment time (supplier lead time) originate the Method 2.
Then, [53] proposed a new method (Method 3) whose purpose is
to determine the safety stock as the function of service level using
the forecasting error for the demand during the replenishment time
(determined using historical data from the mean squared deviation
of the forecasted demand from the actual demand). Later, [54] pro-
pose Method 4 as the extension of Method 3, in which the objective
was to determine the safety stock oriented to the demand through
the ‘undershoot’. Method 5 resulted from the extension of Method 4
and [54] extend it in order to determine Method 6, considering the
‘undershoot’. Gudehus [55] applied to Method 5 an adaptive service
level factor, resulting in Method 7. For this, was considered that only
disruption during the replenishment cycle can conduct to the absence of
delivery capacity. Later on, [55] extends this last method to determine
Method 8 by considering the dynamics of the parameters (parameters
determined by means of simple exponential smoothing). The traditional
Methods 1-8 (excluding Method 3) described above are based on
normal distributed parameters. Lastly, Method 9 was proposed with
a purpose of calculating the safety stock for a target service level of
100%, considering extreme values, mean and standard deviation [15].

The main methods for safety stock dimensioning described in Ta-
ble 3 consider different approaches for estimating demand variability,
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which is a key parameter for establishing adequate safety stock levels.
When assessing the applicability of the different safety stock methods
in real-world supply chain contexts, we note that formulations based on
the standard deviation of demand during lead time might hardly be ap-
plied (with effectiveness) in practice. This is due to the fact that demand
patterns and dynamics are typically unknown and should be forecasted
by a suitable forecasting approach over a given time horizon. For
instance, Method 5 is widely used in seminal inventory management
textbooks [56] and it considers stochastic demand and supply patterns.
However, it does not take into consideration the variation of forecasting
errors over the lead time. It is well-known that normal distribution
may not be an appropriate representation of demand during the lead
time because it is often skewed [57-59]. Yet, we observed that several
research studies have been assumed Gaussian demands in their safety
stock formulations (see, for instance, [11,58,60,61] and [62]). Clark
[57] argues that the deviation of normal distribution demand during
lead time can be characterized completely by the skewness. Ruiz-Torres
and Mahmoodi [58] state that “traditional models to determine the
appropriate safety stock level may result in more safety stocks at sub-
assembly and finished goods levels than necessary and thus lead to
higher inventory carrying costs than desired. Such models generally
incorrectly assume that the demand during the lead time follows a
normal distribution”. Disney et al. [59] state also that, despite this is
a popular approach to determine safety stock levels, it results in errors
even for simple systems. An alternative is the use of Method 3, which
considers the standard deviation of forecast error during replenishment
lead time (here presented as deterministic and known). However, it
should be used ideally considering the time replenishment (TPR) as
stochastic rather than deterministic, to cope with real-world supply
chain needs. The main challenge inherent to their application relates
to the estimation of o. At this point, there are two approaches that
can be followed: theoretical and empirical. The theoretical approach
consists of first providing an estimation of o; (one-step-ahead standard
deviation of the forecast error) and then employing an analytic expres-
sion that relates o; and ;. On the other hand, the empirical approach
estimates o; (the standard deviation of the forecast error for a certain
lead time L) directly from the lead-time forecast error [61].

It is common knowledge that service levels represents a crucial
input parameter for determining safety stocks. Following the described
methods, the safety factor depends on the service level (SL). There are
several ways to measure the SL, although the most discussed in the
literature and therefore most common are the Cycle Service Level (CLS
— «) and Fill Rate (FR — p) [3,58,63-65]. The CLS, also known as
Type I Service Level, is defined as the probability of no stockout per
replenishment cycle (i.e., portion of time between placing an order and
the corresponding replenishment). The FR, also known as Volume Fill
Rate (to distinguish from the Order Fill Rate) or Type II Service Level,
is defined as the proportion of demand that is completely fulfilled from
the available stock [3,63,65-67]. Most studies in the literature, includ-
ing supply chain books, discusses the CSL measure, although, supply
chain practitioners prefer the FR measure [61,65]. Both measures have
advantages and disadvantages. For instance, CLS is much easier to
optimize mathematically than the FR. For computing the CLS is only
necessary to consider the stock level during an order cycle, while to
properly determine the FR is necessary to record the excess of demand.
On the other hand, CLS does not determines the expected backorder
or lost sales during a cycle. Chopra and Meindl [3] and Vandeput [65]
argues that FR is more relevant when compared with CLS, especially
when the order cycles are long. The FR is impacted by both cycle stock
and safety stock, whereas the CSL is only impacted by the safety stock.

3. Review methodology
This review methodology represents a set of processes for selecting

relevant scientific publications for this SLR. It is divided into three
phases as represented in Fig. 2:
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Table 3
Traditional methods for safety stock dimensioning [15,52].
Method Formula
1 SSL=SF(SL) * o}
2 SSL=SF(SL)%*op* VTRP
3 SSL=SF(SL)*op* \VTRP
4 SSL=SF(SL)* 1/Var(U)+TRP % o},
5 SSL=SF(SL) % \/TRP % 63 + D2 % 02,
6 SSL=SF(SL) x \/Var(U) +TRP 03 + D2 % 62,
_ (1-SL)*QRP . §
7 SSL=SF(1— USLeORl) | [TRP % 6% + D? % 6%, VORP > TRP x D
1-a)*QRP
8 SSL=SF(l - ‘TRP(’”fM) # \/TRP % oy (1) + D) * 672p(1)2,YORP > TRP % D
9 SSL=LSLy(SL* = 1)+ SSLygq * /T— (1 = SL)
LSLy= %
SSLigp = \/(DVIW # D)2 + ((Dygy = D) # TRPY + DV 0 )
SSL — Safety Stock Level [units];
SF — Safety factor (depends on the service level);
SL — Service Level;
o — Standard deviation on-demand [units/SCD];
SCD — Shop Calendar Day;
TRP — Time Replenishment [SCD];
or — the standard deviation of the forecast error for the demand during TRP [units/SCD];
Var(U) — Variance of the undershoot [units®/SCD?];
D — mean demand per period [units/SCD];
Legend orgp — the standard deviation of replenishment time [SCD];

QRP — replenishment quantity [units];

TRP(t) — replenishment time forecasted for period t [SCD];

N(t) — mean demand per period forecasted for period t [units/SCD];

oy (t) — the std. deviation of demand during replenishment time forecasted for period t
[units/SCD];

orgp(t) — the standard deviation of replenishment time forecasted for period t [SCDI;
LSL, — lot stock level [units];

C — C-Norm parameter;

by} . — max. positive Deviation from the due date [SCD];
DV, — maximum demand per period [units/SCD];
DV, "DV p gy — MaxX. negative Deviation in replenishment quality [units];

+ The first phase (Searching phase) involves the definition of the
research query and searching for scientific publication in both
Web of Science and Scopus databases;

» The second phase (Selecting phase) aims to exclude scientific
publications that did not meet the defined criteria or did not
address safety stock research problems;

+ Lastly, the third phase (Analysing phase) consists to select rele-
vant articles for conducting this study.

3.1. Searching phase

The majority of scientific publications are published in peer-
reviewed scientific journals and the more relevant ones are indexed
in two of the major online databases: Thomson Reuters’ Web of Sci-
ence (WoS) and Elsevier Scopus. The coverage of journals in WoS is
approximately 13.600 journals and in Scopus is 20.346 journals [68].
For this first phase of review methodology, all scientific publications
are searched in both Web of Science and Scopus databases using the
query described in Table 4. The search query considers keywords such
as “safety stock” and “safety inventory” so that to capture in broader
way topics related to safety stock problem. Keywords related to factors
of uncertainty and supply chain risks in the sourcing process, such as
demand, price, lead-time, yield, order crossover, suppliers delay, variability,
variation, fluctuation, uncertain and uncertainty are also considered.
Lastly, the query excludes all deterministic terms, aiming to focus only
on uncertainty factors.

After performing this searching in the Scopus database resulted
in a sample of 937 bibliographic references and 649 bibliographic
references in the Web of Science database. All these resultant biblio-
graphic references (from both databases) are merged and all duplicated
references are removed. After that, a total of 1149 references are
selected for the next phase of this review methodology.

3.2. Selecting phase

For the selecting phase are defined three screening criteria levels
in order to exclude bibliographic references that did not meet the
defined criteria. For the first level of screening criteria, the choice of
the consulted references was based on the following criteria:

+ The bibliographic references searched included only articles from
the peer-reviewed journals;

» Research articles published from 1995 to 2019, a period of
24 years;

+ Publications written in English language.

In the second level of screening criteria, the SCImago Journal Rank
(SJR) indicator and the subsequent journal Quartile was defined as
the main selection criteria of articles for the next phase (Analysing
phase). In this level of screening criteria, only articles published in
journals ranked as Q1 and Q2 (Quartiles) in SJR were selected. The
main objective is to consider/select relevant articles for this Systematic
Literature Review (SLR) and exclude articles that did not meet the
defined criteria.

The third level of screening criteria involves the reading of the
abstract of selected articles, thereby excluding articles that did not
address the safety stock research problem considering at least one
of risks or uncertainty factors described previously. After this phase,
a total of 193 references are selected for the next phase (Analysing
phase).

The co-occurrence analysis was performed in order to validate
the filtering process and selection criteria of research papers (see,
Section 4.2).
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Table 4
Query for searching of bibliographic references (Literature analysis).
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Research query (Literature analysis)

Results in Scopus

Results in Web of Science

Results (bibliographic references merged
and duplicates removed)

((“safety stock” OR “safety inventory”) AND (demand OR price OR “lead time” OR
yield OR “order crossover” OR “supplier delay” OR variability OR variation OR

fluctuation OR uncertain OR uncertainty)) *AND NOT deterministic
937

649

1149

*AND operator is not necessary to search for bibliographic references on the WoS database.

Search Query

Phase 1 — Searching Phase

‘
Web of Science ‘

Phase 2 - Selecting Phase

Merge Bib.
Refs and
Remove

Duplicates

1149

Level 3 - Screening Criteria
(Reading the Abstract)

Level 1 - Screening Criteria
1 (Document type, Source type, Date range,
Language)

| Level 2 - Screening Criteria

544 (Journal Ranking)

[—662:

lf Phase 3 - Analysing Phase
Analyse Articles | ) Selected Articles > Research Problem
(Reading the Full-Text) 193 193 (Reading the Full-Text)
e e e e e e e e e e 1

Process

<o LA

Database Bib. Refs. Document
(Bibliographic References)

Fig. 2. Adopted review methodology.

3.3. Analysing phase

This last phase aims to read the whole text of the article and select
the more relevant ones and those that meet the purpose of this inves-
tigation. After a final manual inspection of the obtained references, a
total of 193 articles was selected as the primary bibliographic reference

for this Systematic Literature Review (SLR).

After that, all articles were classified following the safety stock
research problem present in [11], therefore classified into three safety
stock research problems: safety stock dimensioning, safety stock man-
agement, or safety stock positioning (allocation or placement). This
classification was made by reading each article and identifying the
focus of it. Some of the articles contain explicitly the research focus
(research problem), but in the majority of selected articles, this classi-
fication was made exclusively through our perception where the article

fits regarding the safety stock research problem.

4. Descriptive and co-occurrence analysis
4.1. Descriptive analysis

The descriptive analysis was performed using the BibExcel tool.
This tool allowed to execute the initial bibliometric and statistical
analysis, which included data from the Web of Science and Scopus
databases [69]. Then, the tool output was exported to the Excel tool,
allowing to execute other graphical statistical analyses. The selected
articles were analysed according to the number or the frequency of
publications over the years, the venue of publication (name of the
journal where the article is published), the research problem studied
in the article, the author’s influence and affiliations, and the approach
adopted for modelling the problem.

4.1.1. Year of publication

Fig. 3 illustrates the number of scientific publications published
(annually) in the period from 1995 to 2019. The safety stock research
problem has been gained attention from researchers especially since
2007 until now. Only 10.88% of articles were published from a period
of 1995 to 1999, and 9.33% were published in the period from 2000
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Fig. 4. Distribution of publication and their percentage per journal.

to 2006. From 2007 to 2019, 79.79% of articles were published,
representing the increase of importance or attention of this research
topic by researchers and practitioners.

4.1.2. Venue of publication

Regarding the journals where the articles were published, Fig. 4
shows the distribution of publications and their percentage per journal.
There are 62 different journals where the reviewed articles where
published. Fig. 4 explicitly represents the considered journals that have
at least three articles selected withing this SLR.

International Journal of Production Economics, International Jour-
nal of Production Research and European Journal of Operational Re-
search represent the top 3 journals that mostly contributed with pub-
lished articles. The first journal contributed with 41 articles that rep-
resents 21.24% of a total of reviewed articles. The second journal
contributed with 14 published articles, that represents 7.25% of the
reviewed articles. Finally, the third journals contributed with 13 pub-
lished articles, representing 6.74% of the reviewed articles.

4.1.3. Research problem

The reviewed articles involve different safety stock research prob-
lem as shown in Fig. 5. The problem of safety stock dimensioning is the
most studied problem in the reviewed articles (a total of 79 articles,
that corresponds 40.93% of safety stock research problems covered all
articles). Figs. 6 and 7 illustrate the distribution of the articles for each
safety stock problem in the period from 1995 to 2019.
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4.1.4. Authors influence and affiliations

Table 5 describes the main authors who the most contribute with
articles within the 193 articles selected. Only 26 per cent of all authors
have contributed with more than one article, and the remaining 74 per
cent of authors contributed with just only one research article.

The affiliation of the authors is illustrated geographically in Fig. 8.
Both the city and country of the author’s affiliation were extracted,
allowing to perform their graphical visualization using the website
gpsvisualizer.com. The size of the red circle represents the occurrence
of this affiliation, this is, the greater is the red cycle, more occur-
rence this affiliation have. Table 6 summarizes the number of articles
published by the top contributing affiliations.

4.1.5. Approach followed
In terms of the approach adopted to tackle safety stock research
problems, four main approaches were used in the reviewed articles,
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Table 5
Key contributing authors (first author).

Authors Nr. of articles

Grubbstrém R.
Inderfurth K.
You F.

Braglia M.
Kumar K.
Moncayo-Martinez L.
Avci M.
Boulaksil Y.
Graves S.

Kim J.
Klosterhalfen S.
Kristianto Y.
Louly M.
Manary M.
Monthatipkul C.
Prak D.

Puga M.
Taleizadeh A.
Trapero J.
Woener S.

NNNNNNNDNDNNDNNNNDNDNDDNWWWD™SDSD

Table 6
Top contributing affiliations.

Affiliation Country Nr. of articles

Carnegie Mellon University United States

Ghent University Belgium
Linkoping Inst. of Technology Sweden
Massachusetts Institute of Technology United States
Otto-von-Guericke-Universitat Magdeburg Germany

Pennsylvania State University United States
Purdue University United States
Universita di Pisa Italy

WWwhspuuwm

as shown in Fig. 9. Moreover, Table 7 specifies the most used tech-
niques in the reviewed articles. In terms of the Mathematical mod-
elling approach, the Inventory theory is the most used technique,
followed by the Markov chain, Laplace transformation, Probability the-
ory and Input-output analysis. Regarding the Optimization approach,
the Heuristics technique is the most used in the reviewed articles,
followed by Dynamic programming, Mixed-integer nonlinear program-
ming, Nonlinear programming, Linear programming and Genetic algo-
rithms (meta-heuristic). The top used Simulation techniques include
Monte Carlo simulation, followed by the Discrete event simulation,

70,00%
60,62%
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50,00% Optimization
40,00% = Mathematical Modeling
30,00% . Hybnc! (ngulatlon-bascd

Optimization)

= Simulation
2000% 1451%  15.03%
9,84%

10,00%

0,00% -

Fig. 9. Distribution of adopted approaches.

Table 7
Top adopted techniques.

Method Technique Nr. of articles
Inventory theory 16
Markov chain 3

Mathematical Modelling  Laplace transformation 2
Probability theory 2
Input-output analysis 2
Heuristics 25
Dynamic programming 25

o Mixed-integer nonlinear programming 16

Optimization . .
Nonlinear programming 11
Linear programming 9
Genetic algorithm (meta-heuristics) 6
Monte Carlo simulation 11
Discrete event simulation 8

Simulation Infinitesimal perturbation analysis 3
Event-driven simulation 1
Continuous simulation 1

Infinitesimal perturbation analysis, Event-driven simulation and Con-
tinuous simulation.

4.1.6. Research method

The results show that the large majority of reviewed articles (83%)
used experimental research methods as the research method
(see Fig. 10). The case study was used in 17% of the reviewed articles.
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The experimental research includes methods such as simulated ex-
periment, computational simulation or demonstration/exemplification
test.

4.2. Co-occurrence analysis

The software VOSviewer was used for performing this co-occur-
rence analysis. This tool allows the construction and visualization of
bibliometric networks [70]. Both of Figs. 11 and 12 represent the
keywords co-occurrence map of the reviewed articles. Fig. 11 (left)
shows the co-occurrence map of keyword after the Level 1 Screening
Criteria and Fig. 12 (right) illustrates the co-occurrence map after
the Level 3 Screening Criteria process. Both Screening Criteria are
an integral part of phase 2 of the review methodology. The bigger
circles illustrate the more occurrence of keywords in reviewed articles.
The keywords with more occurrence are: “inventory control”, “costs”,
“production control”, “optimization” and “safety stock”.

5. Literature analysis (scientific contributions)

The safety stock research problem involves typically problems of
dimensioning, management and positioning, placement or allocation.
Based on both safety stock research problems and the uncertainty
considered in the study (multiple uncertainties or just one uncertainty
factor), all the selected articles were discussed, as follows in the next
sub-sections.
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5.1. Safety stock dimensioning

Caridi and Cigolini [11] defined safety stock dimensioning as “the
dimensioning issue deals with finding the appropriate value of safety stocks
for each item.”. In this subsection are analysed several contributions
related to the safety stock dimensioning strategies under different risks
and types of uncertainty.

5.1.1. Considering demand uncertainty

Material Requirements Planning (MRP) is one of the most used
systems for production planning and control in the manufacturing in-
dustries, helping to reduce inventory, increase operating efficiency and
improve customer service. In this sense, several research studies in the
literature focus on dimensioning of safety stock issue in MRP context,
by considering several uncertainties/risks. Therefore, [71] proposed
one-level and simplest two-level serial system models to determine the
optimal safety stock level using Laplace transformation and considering
the traditional average cost (sum of the expected average cost of set-
ups, inventory holding and backlog) as the main performance criterion.
Then, three more extensions of this study were proposed. Firstly,
Grubbstrém [72] focused only on the one-level model, considering the
Net Present Value (NPV) based criterion (the annuity streams) as the
main criterion, instead of the traditional average cost approach used
previously. Afterwards, Grubbstrom et al. [73] generalized the models
using Laplace transformations and input—output analysis, by consider-
ing demand uncertainty as Gama-distributed. Finally, Grubbstrom [74]
extended it for the multi-level system.

Still, in MRP environments, Zhao et al. [75] studied and evaluated
alternative methods to determine the safety stock level in multi-level
MRP systems under demand uncertainty (forecast error). Others rele-
vant studies in MRP environments can be found in [76]. Furthermore,
different studies that focus on safety stock dimensioning in Assemble-
to-Order (ATO) and Make-to-Order (MTO) environments can also be
found in [77] and [78]. Hsu and Wang [77] proposed a possibilistic
linear programming model to manage production planning problems,
such as the regulation of dealers forecast demand, determination of
the appropriate safety stock and the number of key machines while
minimizing of the sum of the product stockout costs, the material
inventory holding costs, and idle capacity penalty costs. Jodlbauer and
Reitner [78] developed analytical formulas to describe the relationship
between cycle time, safety stock and service level. Furthermore, they
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presented algorithms to find the pair cycle time and safety stock which
minimize the relevant costs.

Several real-world case studies in worldwide companies have been
reported (see, e.g., [79-85] and [86]). For instance, Caridi and Cigolini
[79] proposed and implemented a new methodology for both dimen-
sioning and managing safety stock in an Italian leader company in
the electromechanical components brand industry by considering de-
mand forecast error as an uncertain factor. Persona et al. [80] focused
on safety stock dimensioning on both MTO and ATO environments.
This study proposed models to determine optimal safety stocks for
pre-assembled modules (ATO production systems) and manufactur-
ing components (MTO production systems) used in final products.
These models were applied in two Italian companies that operate
in different sectors. However, Kanyalkar and Adil [81] considered a
trade-off among the plan change costs, safety stock violation penalty
and inventory carrying costs for a capacitated multi-item production
system in their proposed linear programming model. This model aimed
at determining the optimal level of safety stock in rolling horizon.
Boulaksil et al. [82] focus on dimensioning of safety stock in multi-
item multi-stage inventory system. The author proposed an approach
and then implemented on a worldwide biopharmaceutical company,
so-called Organon. Using the simulation based-optimization approach,
Chen et al. [83] proposed a framework to determine the appropriate
level of pooled safety stock levels by considering demand forecast. This
framework was applied to a clinical trial company. On the other hand,
Prawira et al. [86] based on inventory control theory to proposed their
model. This model focusing on determine the most reasonable amount
of safety stock in the Indonesian oil and gas service companies.

Concerning the Economic Lot Scheduling problem (ELSP) with
safety stock, Brander and Forsberg [87] presented a model to determine
the safety stock for the problem of scheduling the production of
multiple items on a single facility, both with and without the existence
of the idle time. Without the presence of idle time in the system, the
safety stock level is calculated from the service level considering the
demand variation during lead time. On the other hand, for dealing with
idle time a control model is presented. In the control model, the safety
stock level is calculated for time to safety stock or TSS (time to reach
the safety stock level).

Dey [88] focused on safety stock dimensioning in single-vendor
single-buyer supply chain context. This study proposed an integrated
production—-inventory model and also a methodology for determining
the optimal values of the number of shipments from the vendor to the
buyer, the safety stock, the buyer’s order quantity and the probability of
the production process goes “out-of-control”. This methodology aimed
to minimize the crisp equivalent of the total cost of the integrated
system. Before this research of [88], other studies have been conducted
in this context. For instance, Glock [89] studied a single-vendor single-
buyer integrated model with stochastic demand and lot-size dependent
lead time under different methods for lead time reduction (and their im-
pact on expected total costs and safety stock). This model aimed to find
the approximate optimal solution. Afterwards, Mou et al. [90] proposed
an extension of the integrated model, by considering transportation
time as the main performance criteria and assuming two different safety
stocks. However, is important to underline that nowadays is rarely to
a supply chain operate in an environment with only one vendor and
buyer.

Over times, analytical approaches have been explored to establish
safety stock. For instance, Krupp [91] proposed approaches for deter-
mining safety stock based on classic statistical theory. Wang et al. [56]
developed formulas to determine the reorder point and safety stock
when lead time and demand are correlated. Moeeni et al. [92] based
on the basic traditional inventory models to proposed three models
(for different scenarios) for determining safety stock and reorder point.
Prak et al. [93] derive closed-form expressions for the correct reorder
level under uncertainty of both the mean and the variance of the
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demand. Moreover, both optimization and hybrid (e.g., simulation-
based optimization) approaches have been also used. Hoque and Goyal
[94] developed a heuristic solution procedure to determine safety stock
in an integrated inventory system under controllable lead-time between
a vendor and a buyer. Srivastav and Agrawal [95] used the multi-
objective particle swarm optimization (MOPSO) algorithm to solve
their multi-objective hybrid backorder inventory model and generate
Pareto curves. Huang et al. [96] developed an optimization model
to determine the optimal combination of reactive capacity and safety
stock to cope with random demand, in order to minimize the total costs
related to the minimum service-level constraint. Beutel and Minner
[97] developed two data-driven frameworks to determine safety stock
when demand depends on external factors (e.g., prices fluctuations and
weather condition).

Zhou and Viswanathan [98] proposed a new method for determin-
ing the safety stock under intermittent demand so-called bootstrapping
method. The authors compared this new method through computa-
tional experiments with the parametric method. They concluded that
the bootstrapping method works better with a large amount of ran-
domly generated data. However, the parametric method works better
with data generated in a real industry environment.

Recently, Trapero et al. [61] and Trapero et al. [62] based on em-
pirical methods to deal with safety stock dimensioning issue. Trapero
et al. [61] proposed empirical methods based on kernel density esti-
mation (non-parametric) and Generalized Autoregressive Conditional
Heteroscedastic (GARCH (1,1)) models (parametric) for calculating the
safety stock levels under standard deviation of the lead time forecast
error. On the other hand, Trapero et al. [62] proposed an optimal
combination of the alternative empirical methods for calculating the
safety stock levels, so that to minimize the piecewise linear loss function
(tick loss).

Concerning of safety stock dimensioning in a production system
with limited/constrained capacity, Altendorfer [99] proposed a model
for optimizing planning parameters (lot size, safety stock and planned
lead time) for a multi-item single-stage production system with lim-
ited capacity. On the other hand, Helber et al. [66], besides coping
with this environment (capacity constrained production system), they
also concerned with Stochastic Capacitated lot-sizing Problem (SCLSP).
They proposed two different approximation models and used a fix-and-
optimize algorithm to solve them, in order to determine production
quantities and safety stock.

Other research studies of setting safety stock regarding just-in-time
(JIT) production system [100]; joint optimization of responsive supply
chain design with inventory and safety stock [105]; inventory manage-
ment decision problem with service constraints [106]; serial inventory
system [108]; periodic review inventory system with lost sales [109]
demand-driven materials requirement planning (DDMRP) replenish-
ment context [113]; supply chain reliability requirements [111]; re-
manufacturing system with production smoothing [112]; cyclic produc-
tion schedules [114] have been also conducted.

This section encompasses the problem of safety stock dimensioning
under demand uncertainty and comprises 48 articles (24.87% of the
total sample) as described in Table 8.

5.1.2. Considering lead time uncertainty

Abdel-Malek et al. [115], Louly and Dolgui [116], Digiesi et al.
[117] and [118] are four studies that address the problem of safety
stock dimensioning incorporating the lead time as the uncertainty
factor (see Table 9). These four studies represent 2.07% of the total
sample considered in this SLR. Abdel-Malek et al. [115] proposed a
framework based on Markovian modelling and queueing theory (tan-
dem queues and sojourn times) that estimates the safety stock for
outsourcing strategies in the multi-layered supply chain, considering
lead time uncertainty. The authors highlight that in some case, long-
term partnership applies better than competitive bidding/E-bidding
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Table 8
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Chronological scientific contributions on safety stock dimensioning under demand uncertainty.

Reference AF* bl SLM® Main criteria

[100] o G - Min. the expected average cost per period

[101] MM ST FR Service level

[71] (6] G - Traditional average cost (set-ups, holding and backlog costs)

[91] MM IT ND Safety stock carrying cost; recouped profit

[102] (0] G CSL Min. expected annual total cost

[103] (0] H - -

[72] (0] G - Max. of the annuity stream

[73] MM LT, IOA - Min. the average costs or max. of the net present value of production
[74] MM LT, IOA - Net present value (the annuity stream)

[771 (¢] PLP, ZFP FR Min. of costs

[75] S G CSL Total cost, schedule instability and SL

[79] S G ND Nr. of stock-outs, stock-out quantity and nr. of replenishments for safety buffers
[94] (0] H - Min. of the total cost, inventory holding and lead-time crashing

[87] S ND CSL Min. of the total costs

[80] (¢] ND CSL Min. of the total cost

[104] S MCS ND Service level

[105] o MINLP FR Max. the net present value and min. the expected lead time

[81] (¢] LP CSL Min. the overall cost

[82] S ND FR Min. total costs (holding & backorder cost)

[56] MM IT, PT - -

[106] o LP - Lost sales; probability stock-out during LT

[98] S ND CSL Total inventory-related cost, average inventory level, fill rate and stock out rate
[107] SO SP, IPA FR Min. total inventory holding and shortage costs

[78] (0] G FR Min. the total relevant cost

[971 (¢] LP CSL, FR Min. the service level and costs

[89] SO G - Min. the expected total costs

[92] MM IT ND Service level

[108] (¢] H - Min. the total cost

[109] MM IT FR Fill rate

[83] SO DES, MILP CSL Min. the operational cost

[66] o MILP, PLA P Min. the expected costs

[84] (0] MILP CSL Min. the total direct rail car cost and the number of rail car types
[76] (6] ND - Min. the long-run expected costs

[110] SO DES, VNS, RSM, 0Q FR Service level

[95] (0] MOPSO, MOGA FR Min. the total cost, stockout units and the frequency of stockouts
[96] (6] ND CSL Min. long-run average cost

[93] (0] ND CSL -

[90] (¢] ND - Min. the expected cost

[111] MM PT - Total cost

[112] (o} NLP - Min. the expected total cost

[85] SO DES CSL Min. the inventory holding and rush ordering costs

[99] (6] H ND Min. inventory and backorder costs

[86] (6] ND ND Min. the costs (storage and inventory ordering costs)

[113] MM IT CSL Average inventory level and shortage rate

[61] S ND CSL -

[62] (6] MCS CSL Min. the tick loss function

[88] MM FRV - Min. the crisp equivalent of the expected annual integrated total cost
[114] S MCS ND Min. the safety stock and holding costs, and improving the service level

aApproach followed (AF): MM — Mathematical modelling, O — Optimization, S — Simulation, SO — Simulation-based optimization.

bTechnique (T): DES — Discrete event simulation, FRV — Fuzzy random variable, G — Generic procedure, H — Heuristics, IOA — Input-output analysis, IPA — Infinitesimal
perturbation analysis, IT — Inventory theory, LP — Linear programming, LT — Laplace transformation, MCS — Monte Carlo simulation, MILP — Mixed-integer linear
programming, MINLP — Mixed-integer nonlinear programming, MOGA — Multi-objective genetic algorithm, MOPSO — Multi-objective particle swarm optimization, NLP —
Nonlinear programming, OQ — OptQuest, PLA — Piecewise linear approximation, PLP — Possibility linear programming, PT — Probability theory, RSM — Response surface
methodology, SP — Stochastic programming, ST — Statistical Theory, VNS — Variable neighbourhood search, ZFP — Zimmermann’s fuzzy programming.

¢Service level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed, P — Proposed service level measure.

strategies, inasmuch as the gains achieved in competitive bidding/E-
bidding strategies related to the lower price and higher flexibility is
dissipated by the increase of the safety stock level, and consequently
the increase of inventory costs. In the context of single-level just-in-
time (JIT) assembly systems, Louly and Dolgui [116] developed a novel
approach based on original lower bound and dominance properties,
and a branch and bound algorithm that focus only in determining the
optimal safety stock of components under lead time uncertainty.

Regarding a real-world case study, Digiesi et al. [117] proposed an
extension of Sustainable Order Quantity (SOQ) model by considering
lead time uncertainty and external cost of freight transport in order
to identify optimal order quantity, reorder level and safety stock. A
procedure was also developed to solve this model and applied to a spare
parts inventory from the automotive industry.

11

Last but not least, Sellitto [118] developed a method to calculate
the lead-time, inventory and safety stock in a make-to-order (MTO)
job-shop manufacturing context.

5.1.3. Considering yield uncertainty

This section describes the scientific research regarding the problem
of safety stock dimensioning under yield uncertainty. In this subject,
there are only 6 articles (3.11% of the total sample considered) which
proposed their models, approaches or frameworks following different
approaches for solving this problem of safety stock dimensioning (see
Table 10). In the research study of [120], a framework of production
policy was developed to determine the required quantity (this is, the
optimal value) of safety stock, production rate and production lot
size to minimize the total expected system costs, considering machine
breakdown as an uncertainty factor.
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Table 9

Operations Research Perspectives 8 (2021) 100192

Chronological scientific contributions on safety stock dimensioning under lead time uncertainty.

Reference AF* ™ SLM® Main criteria

[115] S ND ND Annual cost

[116] (0] BB ND Min. the average holding cost
[117] (6] G ND Logistics cost

[118] SO ND - -

aApproach followed (AF): O — Optimization, SO — Simulation-based optimization.

PTechnique (T): BB — Branch and bound algorithm, G — Generic procedure, ND — Non-disclosed.
¢Service level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.

Table 10

Chronological scientific contributions on safety stock dimensioning under yield uncertainty.

Reference AF? T SLM® Main criteria

[119] MM MC - Min. of the average demand loss/backlog cost
[120] MM MC - Min. the total expected system cost

[121] (6] RO, DP ND Max. the profits

[122] o ND - Min. the total costs

[123] [¢] ND - Min. the costs

[124] SO MIP, MCS CSL Max. the total production amount

aApproach followed (AF): MM — Mathematical modelling, O — Optimization, SO — Simulation-based optimization.
bTechnique (T): DP — Dynamic programming, MC — Markov chain, MCS — Monte Carlo simulation, MIP — Mixed-integer programming, ND —

Non-disclosed, RO — Real options technique.

¢Service level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.

In the context of the manufacturing environment with imperfect/
defective products, Taleizadeh et al. [122] proposed an integrated
inventory model for determining the optimal lot size and production
uptime under random machine breakdown. The safety stock was used
in the proposed model to prevent shortages in the case of machine
breakdown. Recently, a similar study on manufacturing environment
with defective production was conducted by [123]. The study was
conducted to obtain the optimal safety stock level, optimal controllable
production rate and the optimal amount of production quality during
the random machine breakdown under optimum energy consumption
within the framework of smart production management. A real-world
case study from the mining sector could be found in [121]. In this study,
the authors proposed a new real options method (modified real options
method) for determining the safety stock of ore for mining production
from Kittild mine. By comparing both this new method and the conven-
tional Economic Order Quantity (EOQ) methods, they highlight that the
real options method provides higher accuracy, better profits and robust
performance when procurement costs are changed. Other relevant sci-
entific contributions on safety stock dimensioning in the manufacturing
context or contribution that consider the safety stock dimensioning
as one of the multiple features for solving production/manufacturing
problems, can be found in [119] and [124].

5.1.4. Considering multiple uncertainties and risks

Several types of research studies have been investigating the issue
of safety stock dimensioning in the MRP system. In [125], a simulation-
based optimization study was proposed to jointly optimize lot-sizes,
safety stock and safety lead times considering both demand and lead-
time uncertainty. The author performed a comparison between safety
stock and safety lead time in order to determine the best method. He
highlights that both lead time and demand variability influences the
level of optimal safety lead time and optimal safety stock. Furthermore,
he also highlights that safety stock method is the best choice in the
case of a low level of stockout/inventory holding cost ratio, high level
of demand variability and low level of lead time variability. On the
other hand, the safety lead time is the best choice in the case of
a high level of stockout/inventory holding cost ratio and high level
of demand variability. Still, Guide and Srivastava [126] studied the
dimensioning of safety stock in the MRP system modified for use in
a re-manufacturing environment under random demand and lead time.

Besides MRP contexts, studies in the literature focusing on di-
mensioning safety stock in Master Production Scheduling (MPS) and
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Available-To-Promise (ATP) environments can be found in [127] and
[128]. Therefore, Campbell [127] proposed a new method so-called
“optimal safety stock” from two most known methods (constant cycle
service level and constant safety stock) for establishing the safety stock
in MPS environment under demand and lead time uncertainties. On the
other hand, Hung and Chang [128] considered the lead time and yield
uncertainties on their proposed method for ATP environment.

Real-world case studies have been already reported by [129,134,
138,141,142] and [143] regarding this issue of safety stock dimen-
sioning by considering multiples uncertainties/risks. Thereupon, Tal-
luri et al. [129] applied their model for managing the made-to-stock
inventories in a multinational pharmaceutical company. They consid-
ering both demand and lead time uncertainty. As a result of com-
paring this model with existing models, costs benefits were achieved
with the proposed model. Kanet et al. [134] proposed a software
system for production planning so-called Dynamic Planned Safety Stock
(DPSS) for planning a time-phased set of safety stock over a planning
horizon. As a result of applying this in industry, significant savings
were achieved. Another real case study was reported by [138], which
aimed to apply optimal safety stocks in nursing workforce manage-
ment. Recently, Avci and Selim [141] proposed multi-objective frame-
work for supply chain inventory optimization and then developed a
decomposition-based multi-objective differential evolution algorithm
(MODE/D) for this framework. This aimed to determine supplier flexi-
bility and safety stock levels in a real-world multi-national automotive
supply chain. Lastly, Saad et al. [142] developed a mechanism and
integrated with SAP to determine adequate safety stock under the
required service level. After testing the mechanism at Wavim company,
the authors highlight that the mechanism should be considered as a
new development for the manufacturing industry.

Inderfurth and Vogelgesang [135] proposed an approach for deter-
mining dynamic safety stock by considering different yield uncertain-
ties and random demand. Besides that, they presented ways to convert
these dynamic safety stocks into static one, in order to be applied easily
in practice. Keskin et al. [136] proposed a mathematical programming
model (MILP) to optimize simultaneously production, inventory and
backorder quantities for multi-product, multi-period real-life problem
by considering demand and yield uncertainties.

Kumar and Evers [137] proposed an alternative approach to the
random sums approach (traditional approach for determining safety
stock). This alternative approach, so-called multiplication approach,
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Table 11

Operations Research Perspectives 8 (2021) 100192

Chronological scientific contributions on safety stock dimensioning under multiple uncertainties and risks.

Reference UR® AF? T SLm Main criteria

[127] D, LT MM IT CSL Total cost

[126] D, LT S ND CSL Stock-out percentage; SS level

[125] D, LT SO SA ND Total cost

[128] Y, LT S LP ND -

[129] D, LT MM IT CSL Min. costs and efficiency improvement

[130] D, LT (0] NLP ND Min. total cost

[131] D, LT (0] G CSL, FR Min. expected inventory costs; max. the expected profit
[132] D, LT MM T ND Total logistics costs

[133] D, Y MM IT CSL Production, holding and shortage costs

[134] D, LT o LP, G FR Min. total inventory and average annual fill rate
[135] D, Y S ND FR Min. the backlog and holding costs

[136] D, Y (0] MILP, GrA, GA - Min. the total cost of the production plan; lot sizes
[137] D, LT S ND - Min. the total supply chain costs

[138] D, LT o ARMA ND -

[139] D, Y MM IT CSL Service and inventory level

[140] D, Y (0] H - Min. the inventory costs

[141] D, SD SO MODE/D, NSGA-II - Total holding cost; premium freight ratio

[142] D, LT (o) G ND Customer service, inventory and operating cost
[64] D, LT S EDS FR Fill rate

[143] D, SC S SD FR Expected total cost

[144] LT, OC o GA - Expected total cost

aUncertainty or risk (UR): D — Demand, LT — Lead time, OC — Order crossover, SC — Supplier constrains, SD — Supplier delay, Y — Yield.

bApproach followed (AF): MM — Mathematical modelling, O — Optimization, S — Simulation, SO — Simulation-based optimization.

‘Technique (T): ARMA — Autoregressive moving average, EDS — Event-driven simulations, G — Generic procedure, GA — Genetic algorithm (meta-heuristics), GrA — Greed
algorithm, H — Heuristics, IT — Inventory theory, LP — Linear programming, MODE/D — Multi-objective differential evolution algorithm, ND — Non-disclosed, NLP — Nonlinear
programming, NSGA-II — Non-dominated sorting genetic algorithm II, SA — Simulated annealing, SD — System dynamics.

dService level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.

consider data quality issues, as well as the correlation between demand
and lead time (both stochastic) for setting safety stock.

Based on analysis from stochastic inventory control theory, In-
derfurth [133] and Lu et al. [139] proposed their research studies
for different environments. The first author, Inderfurth [133], stud-
ied the issue of safety stock dimensioning in the production control
environment, more concretely in MRP control systems by taking into
consideration both demand and yield uncertainty. On the other hand,
Lu et al. [139] studied also this issue in construction material envi-
ronment, considering non-stationary stochastic demand and random
supply yield.

In the recent past, Chaturvedi and Martinez-De-Albéniz [140] pro-
posed a modelling framework based on queueing and inventory theory
that optimized simultaneously inventory (safety stock), excess capacity
and diversification of supply source under yield (supply capacity) and
demand uncertainties. The main objective of this framework was to
minimize the inventory costs (holding and shortage costs). The authors
considered an infinite-horizon periodic-review inventory model for
solving this problem. Recently, Ben-Ammar et al. [144] studied the
problem of multi-period supply planning. Aiming to solve this prob-
lem, a general probabilistic model under random lead-time and order
crossover was proposed. Then, they developed a genetic algorithm (GA)
for this model to determine planned lead-times and safety stock level,
by minimizing expected total costs (sum of expected backlogging cost
and expected inventory holding costs).

This section encompasses the problem of safety stock dimension-
ing under multiple uncertainties and risks and comprises 21 articles
(10.88% of the total sample) as described in Table 11.

5.2. Safety stock management

Safety stock management is crucial for organizations so that aims to
maintain customer service levels, as well as controlling the costs. Caridi
and Cigolini [11] defined safety stock management as “the managing
issue deals with finding the appropriate time for safety stocks replenishments
and with setting the appropriate delivery dates for replenishments”. Indeed,
the safety stock management intends to answer two main questions:
“when to order? And, how to order?”. To this, there are several models
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in which answer in a different way to these two questions. The most
known models are continuous review, periodic review and Economic
Order Quantity (EOQ) [6].

5.2.1. Considering demand uncertainty

This section encompasses the problem of safety stock management
under demand uncertainty and comprises 21 articles (10.88% of the
total sample) as described in Table 12.

The main inventory management models are applied in environ-
ments where the demand or supply is random or uncertain. Generically,
the studies proposed in the literature takes advantage of this inventory
management models considering the demand as a distribution function
(e.g., normal, gamma, and other) or as time series forecasting. By con-
sidering continuous-review inventory control system under stochastic
demand during lead time, Kim and Benton [145] studied the interrela-
tionship between lot size and lead time and their implication on lot size
and safety stock decisions (how much to order and when). The authors
proposed an interactive algorithm for determining simultaneously the
lot size and safety stock and then compared it with a conventional
sequential approach (EOQ). As a result, they concluded that the al-
gorithm provides better results in terms of cost savings. On the other
hand, Urban [146] developed an algorithm for solving a periodic-
review problem with stochastic, serially correlated and inventory level
dependent demand.

Based on optimization techniques such as Multi-Objective Particle
Swarm Optimization (MOPSO) and Multi-objective electromagnetism-
like optimization (MOEMO), Tsou [147] addressed the problem of
multi-objective inventory control, so that to minimize the expected
total cost annually under lost sales. Other optimization-based tech-
niques, such as Mixed-integer nonlinear programming (MINLP) and
Mixed-integer linear programming (MILP) was also used to optimize
simultaneously the safety stock, reserve and base stock levels in tandem
with the material flow in supply chain planning (see, [148]).

Overall in this topic, only two studies report a real-world case
study (see, [149] and [150]). For instance, You and Grossmann [149]
developed a computational framework for simultaneously optimized
the tank-sizing decisions, safety stock levels and estimated vehicle rout-
ing costs. This framework consists of stochastic approximation model
(MINLP problem) under random demand.
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Table 12

Operations Research Perspectives 8 (2021) 100192

Chronological scientific contributions on safety stock management under demand uncertainty.

Reference AF* b SLM¢ Main criteria

[145] (0] G CSL -

[151] MM IT ND -

[152] (6] G FR Fill rate

[153] SO AVM, RL ND Average service level

[146] MM IT - Max. the expected profit

[154] (0] NLP ND Min. expected cost; optimal frozen period

[155] o H - Min. the expected total cost

[147] o MOEMO, MOPSO ND Min. the expected total cost, number of
stockouts and stocked item annually

[156] (0] AA CSL Min. total order and holding cost

[149] o MINLP, BR CSL Min. the total expected costs

[157] MM 1T FR Fixed manufacturing and holding costs

[158] (6] NLP - Min. the total expected inventory costs

[159] MM DT CSL Min. the expected inventory costs

[150] (¢] H FR Target fill rates

[160] (6] ABC - Safety stock; total inventory cost

[60] (0] SA CSL Total cost

[161] SO ND ND Min. inventory holding cost

[162] (6] MINLP FR Min. the costs

[148] SO MILP, MINLP CSL Min. transportation and inventory costs

[163] o H FR Min. total inventory costs

[164] MM ND - Min. expected cost

a2Approach followed (AF): MM — Mathematical modelling, O — Optimization.

PTechnique (T): AA — Approximation algorithm, ABC — Artificial Bee Colony algorithm, AVM — Action-value method, BR — Branch-and-refine
algorithm, DT — Diffusion theory, G — Generic procedure, H — Heuristics, IT — Inventory theory, MILP — Mixed-integer programming, MINLP
— Mixed-integer nonlinear programming, MOEMO — Multi-objective electromagnetism-like optimization, MOPSO — Multi-objective particle swarm
optimization, NLP — Nonlinear programming, ND — Non-disclosed, RL — Reinforcement learning, SA — Simulated annealing.

¢Service level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.

From a different perspective of earlier studies in the literature re-
garding safety stock management problem, Hsueh [157] considered in
his research study the product life cycle (introduction, growth, maturity
and decline), inventory control and manufacturing/remanufacturing
system simultaneously. The author studied inventory control policies
during the Product Life Cycle (PLC) and presented closed-form formulas
of optimal lot size, reorder point and safety stock during each phase of
the PLC. Yue et al. [160] also considered the PLC and inventory control
in their research. They proposed a method so-called Improved ABC-PF
based on PLC theory. A PLC model based on cubic polynomial with
two stages was developed and then was used Artificial Bee Colony —
ABC (machine learning algorithm) to optimize the parameters of the
two-stage PLC model. The proposed method allows also to determine
the safety stock during each PLC phase and replenishments in order to
prevent stockouts.

Some of the research studies dealt with inventory control problem in
multi-echelon supply chain systems. The studies proposed by [153,156]
and [163] are some examples. Chu and Shen [156] applied a POT
(Power-of-two) policy to multi-echelon stochastic inventory model. The
authors developed a polynomial-time algorithm to derive a closed-
to-optimal POT policy for a given target service level. On the other
hand, Kim et al. [153] proposed two adaptive inventory control model
(centralized and decentralized models) under non-stationary demand
for solving the issue in two-echelon supply chain system (one supplier
and multiple retailers). The proposed models consider the target service
level predefined for each retailer as the main performance criteria.
Recently, Sakulsom and Tharmmaphornphilas [163] proposed a heuris-
tics for determining an ordering policy in a divergent two-echelon
inventory system (single warehouse and N non-identical retailers). By
comparing this heuristic with MIP models, the authors concluded that
the heuristic provides goods solutions as MIP models. Based on stock
diffusion theory (SDT), Braglia et al. [159] proposed a dynamic model
for inventory control under non-stationary demand. The authors used
the Fokker Planck (FP) equations for obtaining both the time-dependent
probability distribution of the stock consumption and the reorder time.

Braglia et al. [60] focused on safety stock management issue in a
single-vendor single-buyer supply chain context under continuous re-
view and Gaussian demand, adopting the PV criterion. They presented
both approximated and exact algorithms for optimizing the safety stock.
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Other studies used inventory management models considering de-
mand as time series forecasting. Demand forecast has become an essen-
tial component in safety stock management. An inaccurate forecast can
lead to inventory shortages or even overstocks and also to low customer
service level. Lian et al. [154] dealt with this issue, considering also
the frozen period. They studied the frozen period in a periodic review
inventory model considering forecast demands and then developed a
non-linear programme so-called order policy (OOP). By comparing the
forecast order policy (FOP) model with the proposed OOP models, they
concluded that both present similar and consistent results, confirming
the FOP as a very good heuristic order policy and the OOP a good
alternative. Other relevant studies proposed through consecutive efforts
by [151,155,158,161,162] and [164].

5.2.2. Considering lead time and yield uncertainty

As shown in Table 13, there are few studied that address both the
problem of safety stock management considering lead time uncertainty
and considering yield uncertainty, regarding the sample considered
in this SLR. A total of 4 articles (2.07%) address this problem under
lead time uncertainty, namely. Louly et al. [165],Chandra and Grabis
[166],Wang and Wang [167] and [168]. Cobb [169], is the unique
study that considered the yield uncertainty in this topic (0.52% of
total considered articles). For instance, Louly et al. [165], developed
a model and approach of inventory control for a single-level assembly
system under random component lead times. The authors highlight
that this model could be used for determining safety stock or safety
lead time in the MRP context for each component under lead time
uncertainty. Chandra and Grabis [166] proposed a research study on
integrating procurement costs and inventory models by considering the
variable lead-time. Wang and Wang [167], developed a mathematical
model and deviation to determine the linkage relationship between
two key parameters in inventory management: lead time uncertainty
and safety stock. Focusing on addressing this problem by considering
yield uncertainty, Cobb [169] proposed an integrated inventory control
model for the inspection, repair, and purchase of returnable transport
items in a closed-looping supply chain. In this model, the safety stock
is determined under uncertain return, so that to buffer the inventory of
used and repairable containers.
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Table 13

Operations Research Perspectives 8 (2021) 100192

Chronological scientific contributions on safety stock management under lead time and yield uncertainties.

Reference UR® AF® Td SLM® Main criteria

[165] LT (0] BB ND Min. average holding cost

[166] LT o G - Min. total inventory and procurement costs
[167] LT MM MD CSL -

[168] LT (¢] H - Min. total cost of the supply chain

[169] Y MM ND ND Min. expected costs

aUncertainty or risk (UR): LT — Lead time, Y — Yield.

bApproach followed (AF): MM — Mathematical modelling, O — Optimization, SO — Simulation-based optimization.
¢Technique (T): BB — Branch and bound algorithm, G — Generic procedure, H — Heuristics, MD — Mathematical derivation, ND — Non-disclosed.
dService level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.

5.2.3. Considering multiple uncertainties and risks

In the literature, many authors addressed different problems in-
herent to safety stock management by considering different types of
uncertainties and risks. Based on optimization approaches, Tang et al.
[170] developed an algorithm using Lagrangian relation for solving the
problem of raw material inventory faced by Shanghai Baoshan Iron and
Steel Complex (Baosteel) company. The algorithm aims to determine
the fixed order size and fixed interval of the replenishment process.
On the other hand, for solving multi-buyer multi-vendor supply chain
problem, Taleizadeh et al. [171] proposed a harmony search algorithm
to determine the reorder points, the safety stocks, and the numbers of
shipments and packets in each shipment of the products under random
demand and lead time. Some of these research works have dealt with
dynamic inventory control policies under non-stationary demand, such
as [172]. The authors developed an approach for the inventory control
system (focused on a single-stage and single-item inventory system)
under non-stationary demand incurring to the use of forecasts and
random lead-time. It was developed a dynamic periodic re-order point
(rk, Q) control policy for controlling the system at the end of every
review period. This (rk, Q) dynamic policy was evaluated in terms of
performance (service level achieved) and compared to the static (r, Q)
policy. The authors concluded that both policies are similar in terms of
performance.

In the past few years appeared many research studies that integrated
pricing and inventory models, since pricing decision has become an
important issue in supply chain management. Here, Zhou and Chao
[179] studied this issue in a periodic-review inventory system with
dual supply modes (regular and expedited) in order to mitigate the
demand uncertainty under deterministic procurement costs. On the
other hand, Xiao et al. [181] focused on the effect of procurement
fluctuations in the optimal pricing and sourcing policy, providing new
insights related to this impact (namely to the fact that procurement
cost fluctuation can alter the strategic relationship between dynamic
pricing and dual sourcing, and the risk-neutral firm can achieve a
higher expected profit under a more volatile spot market cost process).
Other investigation that considers price sensitive (demand are auto-
correlated and dependent on selling price) in their inventory model can
be found in [175].

Zhang et al. [177] proposed an inventory-theory-based interval
stochastic programming (IB-ISP) model for addressing the inventory
problem in the electric-power generation system, considering demand
uncertainty (forecast of the electricity demand) and yield uncertainty
(transportation problems). The proposed model consists of planning
the resources purchase patterns and electricity generation schemes
of the coal-fired plants. By testing the model with real data of real
environment (Beijing’s electric-power generation system planning), the
IB-ISP model performed better than the traditional EOQ model, since
this model can provide effective measures for not-timely coal supplying
pattern with reduced system-failure risk.

Recently, an real-world case study in a multi-national automotive
supply chain was reported by [183] as an extension of [141]. The
authors developed an approach for solving the inventory replenishment
problem with premium freights using simulation-based optimization
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techniques. They used the decomposition-based multi-objective differ-
ential evolution algorithm (MODE/D) for determining several param-
eters, such as demand forecast adjustment factor, safety stock and
supplier flexibility in order to minimize the total holding cost, inbound
and outbound premium freight ratios. Another real case study can be
found in [176] and [174].

Some research studies have already been proposed in the literature
focusing on determining the reorder point. Hayya et al. [49] discussed
this issue considering demand uncertainty, lead time uncertainty and
order crossover, where demand and lead time are independently and
identically (iid) random variables. They developed regression equations
for calculating the optimal cost, optimal order quantity and optimal
reorder point. Another research study based on reorder point, but now
considering just random demand and random lead time, was proposed
by [58]. The authors presented an alternative reorder point model
(EVR method) that aimed to determine the safety stock and possible
outcomes of the replenishment cycle (how much and when to replenish
the inventory) without considered any distributional assumptions.

Other relevant studies proposed through consecutive efforts by
[59,173,178,180,182] and [48]. This section encompasses the problem
of safety stock management under multiple uncertainties and risks
and comprises 18 articles (9.33% of the total sample) as described in
Table 14.

5.3. Safety stock allocation, positioning or placement

In the literature, there are several terminologies for the same prob-
lem of safety stock placement. Safety stock placement, safety stock
allocation and safety stock positioning represent the same problem [12—
14]. In this SLR is adopted the terminology safety stock placement
to portray this problem. The problem of safety stock placement is
concerned with the question of where to position the safety stock and
how much is needed [12]. Caridi and Cigolini [11] defined safety stock
placement as “the positioning issue deals with finding the appropriate items
in the bills of materials where safety stocks are to be placed”.

The problem of safety stock placement is divided into two main
research streams widely studied: safety stock placement for multi-
stage or multi-echelon supply chain and supply chain network design
with safety stock placement [184]. The complexity of these safety
stock problems is directly related to the structure of the supply chain.
There are three main structures, as depicted in Fig. 13: serial network,
spanning tree and general acyclic network [14,185]. The assembly
(convergent) network and distribution (divergent) network represents
two special cases of spanning tree structure. The divergent network
is represented with a single and central stage and several successors,
and the convergent network consists of a one-end stage with several
predecessors.

The serial network consists of sequential dependencies among sup-
ply chain stage, this is, each stage of the supply chain has a single
predecessor and successor [14,185]. The general acyclic network is a
combination of the previous structures [185]. There are two modelling
approaches in multi-stage or multi-echelon safety stock placement:
stochastic-service model and guaranteed-service model. The difference
between these two approaches lies in the way that the replenishment
mechanism between stages in the supply chain is modelled [186].
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Table 14

Operations Research Perspectives 8 (2021) 100192

Chronological scientific contributions on safety stock management under multiple uncertainties and risks.

Reference UR® AFP T¢ sLm¢ Main criteria

[173] D, LT o G FR Min. annual total logistics costs

[170] D, Y (6] LR, H - Min. total cost

[49] D, LT, OC SO G - Min. costs

[172] D, LT S G CSL Total inventory costs; service level

[58] D, LT S ND CSL Holding cost; Service level

[174] D, LT (0] MIP ND Min. total supply chain costs

[171] D, LT (¢] HS, GA CSL Min. total cost

[175] D, P (¢] G - Max. profit

[176] D, SC MM PVB - Min. total cost

[177]1 D, Y (0] SP, SVR - Min. system cost

[178] D, LT MM G ND Min. stockholding and SS costs

[179] D, P (6] DP - Max. expected discounted profit

[180] D, LT (0] DP - Min. expected ordering, inventory holding
and shortage penalty costs.

[181] D, P (¢] DP - Max. expected discounted profit

[59] LT, OC MM 1T - Min. inventory costs

[182] D, LT, OC MM MA, MC FR Min. safety stock level and fill rate

[183] D, SD SO MODE/D, NSGA-II - Min. total holding cost; inbound &
outbound premium freight ratios

[48] D, LT, OC SO DES, CS CSL Min. costs

aUncertainty or risk (UR): D — Demand, LT — Lead time, OC — Order crossover, P — Price, SC — Supplier constrains, SD — Supplier delay, Y — Yield.

bApproach followed (AF): MM — Mathematical modelling, O — Optimization, S — Simulation, SO — Simulation-based optimization.

¢Technique (T): CS — Continuous simulation, DES — Discrete event simulation, DP — Dynamic programming, G — Generic procedure, GA — Genetic algorithm (meta-heuristics), H
— Heuristics, HS — Harmony search, IT — Inventory theory, LR — Lagrangian relaxation, MA — Matrix analytic method, MC — Markov chain, MIP — Mixed-integer programming,
MODE/D — Multi-objective differential evolution algorithm, ND — Non-disclosed, NSGA-II — Non dominated sorting genetic algorithm II, PVB — Prékopa-Vizvari-Badics algorithm,

SP — Stochastic programming, SVR — Support vector regression.

dService level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.
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Fig. 13. Supply chain structure: (a) Serial network, (b) Divergent network, (c¢) Convergent network, (d) General acyclic network adapted from [14].

5.3.1. Considering demand and lead time uncertainty

There is a set of studies in the literature regarding the problem
of safety stock placement, allocation or positioning in the multi-stage
or multi-echelon system and supply chain network design with safety
stock placement under demand uncertainty. A total of 48 articles
(24.87%) of the total sample (193 articles) address these problems.
Regarding the problem of safety stock placement in the multi-echelon
supply chain, several authors discussed this problem in their stud-
ies. For instance, Simpson [187] was the first author that proposed
a guaranteed-service model for supply chain structured as a serial
network, so that for satisfying the demand of downstream stages at
minimum inventory costs. Since then, the guaranteed service approach
has been extended into several directions for solving this problem for
supply chain networks modelled as assembly, distribution, spanning
tree or general acyclic networks [184]. Inderfurth [188] proposed a
model for multi-stage supply chain structured as serial and divergent
network, where demands are correlated both between products and
time. The author highlight that ignoring the correlation of demand
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can lead to a high deviation in the optimal buffer policy. Inderfurth
and Minner [189] and [190] are an extension of Simpson’s work.
Both of these authors proposed a dynamic programming approaches for
optimizing the safety stock in multistage inventory systems of the se-
rial supply chain, assuming normally distributed demand and periodic
review base stock control policy. Minner [190] considered both service
level and cost as performance criteria and [189] assumed the service
level constraints as the main performance criteria. The work proposed
by [12] represents also an extension of Simpson’s work. Graves and
Willems [191], Schoenmeyr and Graves [192], Grahl et al. [193]
and [194] proposed extensions of the modelling framework developed
by [12]. Graves and Willems [191] considered non-stationary demand
for finding the optimal placement of safety stock under Constant Ser-
vice Time (CST) policy, while [192] considered the evolving forecast,
and [184] considered due date demand. Grahl et al. [193] extended
the approach to service time differentiation. Kumar and Aouam [194]
proposed a model to jointly optimize production capacity, production
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smoothing and service times in a multi-stage supply chain structured
as spanning tree network.

Several of these research studies were applied in real-world con-
texts by world-wide recognized companies, such as Intel [195,196],
Microsoft and Case New Holland [197], CIFUNSA [198] and Tera-
dyne, Inc. Schoenmeyr and Graves [192]. Other examples of real-world
applications in companies operating in the automotive industry can
be found in [199-201] and [202] is also an example of a real-world
implementation at an industrial electronics industry.

Manary and Willems [195] developed adjustment procedures for de-
termining the appropriate inventory target under demand uncertainty
(forecast bias) for solving the problem faced by Intel in their multi-
echelon inventory optimization model so-called “MEIO” regarding the
presence of bias in the sales forecast data. Manary et al. [196] extended
the adjustment procedures developed in [195] considering forecast
bias, non-normal forecast errors and forecast error heterogeneity.

Neale and Willems [197] and Schoenmeyr and Graves [192] pro-
posed extensions of [12] for incorporating the non-stationary demand
and evolving forecast. Moncayo-Martinez and Zhang [198] proposed
an extension of the [186] using meta-heuristics algorithms regarding
the cost and lead time minimization of products in the generic bill of
materials.

Both [200] and [202] proposed studies for addressing the problem
of safety stock placement for the automotive industry. The first study
used meta-heuristics or modern optimization algorithms (swarm intel-
ligent algorithms: ant colony and intelligent water drop) and in the
second study developed a framework.

Other relevant studies proposed through consecutive efforts by
[185,203-205] are found in the literature. All these studies aim to
optimize the multi-echelon inventory system under guaranteed service
approach.

The problem of supply chain network design with safety stock place-
ment represents a classical problem in operational research [184]. This
consists to jointly optimize design decisions of the supply chain with
safety stock placement. Studies proposed by [184,198,212,214,217]
and [225] address this kind of problem. Yao et al. [214] proposed
a mixed-integer nonlinear programming model to address the facility
location-allocation and inventory problem. A solution procedure was
developed also to solve the proposed model. You and Grossmann [212]
presented a mixed-integer nonlinear programming model for determin-
ing the optimal transportation, inventory level and network structure
in a multi-echelon supply chain. Liao et al. [217] in its turn, proposed a
mixed-integer programming model for multi-objective optimization of
the supply chain network and a multi-objective evolutionary algorithm
approach. This model considers the total cost, customer service level
(fill rate) and flexibility as the main performance criteria.

Funaki [184] proposed a multi-echelon safety stock placement
model in supply chain design under due-date demand and an opti-
mization procedure for this model. This multi-echelon safety stock
placement model represents an extension of guaranteed-service model
proposed in [12] and [189]. Moncayo-Martinez and Zhang [198]
developed an approach based on the MAX-MIN ant system for solving
safety stock placement problem in which to minimize the total supply
chain cost and product lead time. Other relevant studies regarding the
problem of supply chain network design with safety stock placement
can be found in [13,219] and [232].

Lastly, [149,208,210,211,213,216,218,220,222-224,226-230] and
[233] also proposed their model for solving safety stock placement
problem considering demand as uncertainty factor.

Only 0.52% (1 article) address this problem of safety stock place-
ment considering uncertain lead-time. Schneider et al. [206] proposed
approximations of two-echelon periodic review inventory model under
lead time uncertainty, using the power approximation. Table 15 pro-
vides an overview of all articles considered to this topic of safety stock
placement under demand and lead time uncertainty. This overview
includes the description of the type of uncertainty considered by the
author, as well as the approach followed and the main performance
criteria.
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5.3.2. Considering multiple uncertainties and risks

Regarding the problem of safety stock placement for multi-stage
or multi-echelon supply chain, Simchi-Levi and Zhao [235] proposed
a framework for evaluating and coordinating inventory policies for
supply chains with three network structures (serial, assembly and
distribution systems) following the stochastic service model approach
and considering demand and lead time uncertainties. Each stage of
this structure controls its inventory with continuous base-stock policy.
Osman and Demirli [236] proposed a safety stock placement models
(decentralized and centralized) for determining and placing the safety
amounts in a multistage supply chain under demand and lead time
uncertainty. The fill rate and safety stocks at each stage of the supply
chain are determined in order to minimize the safety stock placement
costs through the entire supply chain. Unlike studies proposed in [237]
and [238] where the guaranteed service model for general acyclic
supply chain was extended considering the demand uncertainty and
deterministic lead time, Humair et al. [239] extended the guaranteed
service model incorporating both demand and lead time uncertainties.
The guaranteed service model proposed in [205] applied the study
of [240], but for two-stage serial line supply chain instead for the
spanning tree network as considered by these authors. This config-
uration model aimed for determining the chosen option (cost and
lead time pairing) and inventory stocking level at each stage of the
supply chain under demand and lead time uncertainty. Graves and
Schoenmeyr [241] generalized the guaranteed-service model for safety
stock placement incorporating the yield (capacity constraints) and
demand uncertainties. Other relevant studies regarding the problem
of safety stock placement under multiple uncertainties/risks can be
found in [242,243] and [244]. Sonntag and Kiesmidiller [242] proposed
a model of in-house multi-stage serial production systems with random
yield and demand, in order to calculate the optimal safety stock and
positions of quality inspections through the production stages and
optimize the position of inspections. Woerner et al. [243] developed
a simulation-based optimization model for determining the optimal
base stock level of a multi-echelon assembly system under capacity
constraints (yield uncertainty) and uncertain demand. The authors
compared this model with guaranteed service model providing better
results in terms of reducing costs keeping the same service level. Last
but not least, De Smet et al. [244] proposed two modelling approaches
(extensions of the guaranteed-service models and the stochastic ser-
vice model) for multi-echelon inventory optimization problem in a
distribution network under lead time and demand uncertainties.

Recently, Schuster Puga et al. [256] addressed a study related to the
problem of supply chain network design with safety stock placement.
They formulated a model for two-stage supply chain design for jointly
integrate the safety stock placement and delivery strategy decisions
considering demand and lead time uncertainties, in order to minimize
the costs of transportation, facility opening, cycle inventory, ordering
and safety stocks. In this work, the guaranteed-service approach was
used for modelling the safety stock placement decisions.

Other relevant scientific studies regarding this topic of safety stock
placement can be found in [10,207,245-253] and [254]. This topic re-
lated to the problems of safety stock placement has been widely studied
by several authors, considering different types of uncertainty factors,
performance criteria and following different modelling approaches, as
shown in Table 16. Considering the total sample of considered articles
(193) to this SLR, 21 of these articles (10.88%) addressed this problem.

6. Literature gaps and research opportunities

Considering the literature analysis described in Section 5, we iden-
tify in this section some research gaps. Moreover, research opportuni-
ties and a Literature Map? are also provided.

2 Literature Map is a visual representation of the literature search results.
It allows to identify the relationships between research work results and also
to illustrate the literature gaps [257].
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Table 15
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Chronological scientific contributions on safety stock allocation, positioning and placement under demand and lead time uncertainties.

Reference UR? AFP T sLm¢ Main criteria

[188] D [0} G CSL Min. expected holding costs

[206] LT SO G CSL Min. overall costs

[190] D (6] DP CSL Min. average holding costs

[189] D (e} NLP CSL Min. of costs, service level

[207] D (¢] NLP CSL Min. the total cost

[208] D (6] H - Min. the total expected units short

[209] D (0] LP FR Min. of the total cost

[199] D (0] DP CSL Min. inventory levels

[195] D (6] G CSL Units of product

[210] D (¢] LR CSL Min. the sum of facility location, transportation, inventory costs
[185] D S MCS ND Service level

[191] D (0] DP - Min. safety stock holding costs

[211] D (6] H ND Min. of costs

[196] D (¢] G ND Min. production costs, lost-sales costs and deviation cost
[197] D (0] ND CSL Min. safety stock holding cost

[192] D (6] DP ND Min. inventory holding costs

[212] D (0] MINLP CSL Min. total supply chain design cost

[213] D (¢] NLP CSL Total cost

[214] D (6] MINLP CSL Min. expected total cost

[215] D SO H - Min. lost sales

[149] D (¢] MINLP CSL Min. the annualized cost and the maximum GS* times of the markets
[216] D (0] LP ND Max. profits and min. safety stock costs

[217] D (6] MINLP, NSGAII FR Min. total cost, Max. fill rates, responsive level

[184] D (0] DP CSL Min. total costs

[218] D (¢] MINLP CSL Min. the total cost over

[198] D 0] ACO, IWD ND Min. total supply chain cost and product lead time

[200] D (0] DP - Min. safety stock cost

[203] D (o} H ND Min. long-run average expected inventory and backorder costs
[201] D (6] DP CSL Min. total safety stock holding cost

[219] D (e} MINLP CSL Min. cost of the supply chain

[204] D (¢] DP CSL Minimization of the average total cost

[220] D SO G FR Min. transportation and holding costs

[193] D (6] GA CSL Min. total holding costs

[202] D o ACO, IWD - Min. inventory cost and lead time

[221] D (0] ND - Min. total safety stock cost

[222] D S G Min. holding and backorder cost

[223] D (¢] MINLP, H CSL Min. the total annual cost

[224] D [0} CQMIP, H CSL Min. the location, transportation and inventory costs

[225] D (6] MINLP CSL Min. the total cost

[226] D (0] H CSL Min. the total holding cost

[227] D o MINLP CSL Min. the facility location, transportation and inventory cost
[228] D (6] PSO, STA ND Min. the overall cost of the SC

[229] D (6] MINLP ND Max. total net profit

[230] D SO G FR Min. overall holding costs

[13] D SO DP ND Min. system-wide production and inventory costs subject
[231] D (6] DP ND Min. WIP and holding costs; setup time reduction investment
[232] D (0] ND - Min. total costs

[233] D (¢] DP - Min. expected total cost

[234] D (6] DP CSL Min. expected total cost

aUncertainty or risk: D — Demand, LT — Lead time.

bApproach followed: O — Optimization, S — Simulation, SO — Simulation-based optimization.

¢Technique: ACO — Ant colony optimization (meta-heuristics), CQMIP — Conic quadratic mixed-integer programming, DP — Dynamic programming, G — Generic procedure, GA
— Genetic algorithm (meta-heuristics), H — Heuristics, IND — Intelligent water drop algorithm (meta-heuristics), LP — Linear programming, LR — Lagrangian relaxation, MCS
— Monte Carlo simulation, ND — Non-disclosed, MINLP — Mixed-integer nonlinear programming, NLP — Nonlinear programming, NSGA-II — Non-dominated sorting genetic
algorithm II, PSO — Particle swarm optimization algorithm (meta-heuristics), STA — Spanning tree-based algorithm.

dService level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.

* GS — Guaranteed service.

Fig. 15 illustrates the Literature Map resulted from this SLR, provid-
ing an overview of distinct proposed formulations of the safety stock
problem in the literature. The Literature Map consists of four levels
of iterations. The first level shows the literature gaps identified in
the literature. The second level describes the safety stock problems,
namely Safety stock dimensioning, Safety stock management and Safety
stock placement (allocation or positioning). The third level describes
several uncertainties factors and risks associated with the procurement
process and therefore considered as input to address safety stock related
problems, namely Demand uncertainty, Lead-time Uncertainty, Yield
uncertainty and Multiple uncertainties and risks. The last level repre-
sents different approaches followed, as well as scientific contributions
that use these same approaches to solve safety stock related problems.

Analysing Fig. 15 we highlight that:
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« In general, the Optimization approach is the most used to address
safety stock problem and techniques such as heuristics, dynamic
programming and mixed-integer nonlinear programming are the
most used techniques related to the Optimization approach (as
described in Table 7).

Demand uncertainty is the most common uncertainty factor in the
proposed inventory models. On the other hand, there is a lack of
studies that considered the lead time uncertainty, as well as the
yield uncertainty.

Recent data-driven approaches, such as Business Analytics (BA)
and Big Data Analytics (BDA), are producing a strong impact
in diverse research fields, including supply chain management.
However, BA and BDA has not yet been explored to solve safety
stock related problems.



J. Barros et al.

Table 16
Chronological scientific contributions on safety stock allocation, positioning and placement under multiple uncertainties and risks.

Operations Research Perspectives 8 (2021) 100192

Reference UR? AFP T¢ sLm¢ Main criteria

[245] D, Y (e} SP - Min. sum of stockout and holding costs

[246] D, LT, SD (¢] NLP CSL Min. total inventory capital

[247] D, LT, Y SO H, MCS CSL Min. costs

[235] D, LT SO DP, MCS FR Min. inventory cost

[248] D, LT (0] ND ND Total safety stock cost

[10] D, Y SO LP, DES ND Min. total expected inventory

[249] D, LT SO DES FR Min. components fill rate

[250] D, Y (o} G ND Min. global empty container costs

[236] D, LT [e] BD FR Min. safety stock costs

[251] D, LT SO GA, MCS ND Backorders and inventory level

[252] D, LT (¢] H ND Nr. of backorders, safety stock level and
lead time variability

[239] D, LT (6] NLP ND Min. inventory costs

[253] D, LT, SD (e} DP - Min. total safety stock and project cost

[205] D, LT (0] ND - Min. total supply chain costs

[241] D, Y (6] DP, H - Min. holding cost

[242] D, Y (¢] H CSL Min. overall costs

[243] D, Y SO CLM, IPA FR Min. holding costs

[254] D, LT S SysD CSL Min. inventory costs

[255] D, LT (¢] G ND Min. total cost

[256] D, LT (¢] CQMIP CSL Min. overall costs

[244] D, LT (¢] G FR, CSL Min. holding, fixed order and operating

flexibility costs

aUncertainty or risk (UR): D — Demand, LT — Lead time, SD — Supplier delay, Y — Yield.

bApproach followed (AF): O — Optimization, S — Simulation, SO — Simulation-based optimization.

¢Technique: BD — Benders decomposition, CLM — Constrained level method, CQMIP — Conic quadratic mixed-integer programming, DES — Discrete event simulation, DP —
Dynamic programming, G — Generic procedure, GA — Genetic algorithm (meta-heuristics), H — Heuristics, IPA — Infinitesimal perturbation analysis, LP — Linear programming,
MCS — Monte Carlo simulation, MINLP — Mixed-integer nonlinear programming, ND — Non-disclosed, NLP — Nonlinear Programming, NLP — Nonlinear programming, SP —
Stochastic programming, SysD — System Dynamics.

dService level measure (SLM): CSL — Cycle service level, FR — Fill rate, ND — Non-disclosed.

= CSL
FR

Fig. 14. Distribution of Service level measure adopted.

After conducting a critical literature analyses, described in Sec-
tion 5, some research gaps are identified and discussed herein, as well
as the research opportunities:

Several studies in the literature and leading supply chain books,
as well as inventory management software tools, assume that the
demand during the lead time follows a normal distribution. Yet,
several authors have already warned that such assumption may be
flawed because lead time demand is often skewed (see, [58,106,
113]). This statistical assumption can lead to higher service level
than desired, resulting an overestimation of safety stock and con-
sequently higher inventory costs [58]. Hence, in practice, future
demands must be forecasted based on historical observations.

The majority of peer-reviewed articles focus on determining
safety stock/inventory based on statistical parameters (e.g., stan-
dard deviation or mean of demand) and simplifications (e.g., dis-

tribution of statistical parameters, parameters are known) [15].
There is a lack of articles that focus on providing dynamic models
that consider the knowledge of future volatility of parameters for
determining safety stock. More research is needed to explore not
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only the application of more realistic safety stock closed-form
stochastic approaches considering the variation of forecasting
errors rather than the variation of demand, especially in multi-
product multi-echelon inventory management settings, but also
to study the benefits of such safety stock methods in case studies
with practical interest. Moreover, empirical non-parametric ap-
proaches for estimating the variability of forecast errors (see, [61,
62,258]) could be further exploited using for example business
analytics techniques. Note that BA and BDA techniques allow the
use of predictive analytics for applying machine learning tech-
niques on real data in order to learn or obtain knowledge from
data and predict future supply chain demand based on historical
and current data. In this context, the prediction capabilities could
be also optimized using metaheuristics.

Several methods for calculating safety stock can be found in the
literature based on two main service level measures, namely cycle
service level and fill rate. Although the cycle service level has
been criticized for not being relevant from a customer perspective
and also not recommended for inventory control practice [64,67],
it remains the most used in the literature, as illustrated in Fig. 14.
Several studies and supply chain books considered the CSL mea-
sure because, unlike the FR measure, it is of easy computation.
Chopra and Meindl [3],Vandeput [65],Tyworth [259] argued the
necessity of transition from CLS to FR because fill rate is a more
relevant measure.

The inventory control problem under lead-time uncertainty is
not sufficiently studied, particularly in assembly networks [165].
Demand uncertainty is the most considered factor in the liter-
ature (see Figs. 7 and 15). Several studies considered constant
lead time, which is not realistic for major of supply chain en-
vironments due to the unexpected events that can occur caus-
ing random delays. These delays may require to incurring the
special/premium freight so that to avoid stockouts and conse-
quently an extra cost for organizations. Moreover, there are few
studies that address the safety stock problems on MRP environ-
ment considering the lead time uncertainty. Herein, empirical
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non-parametric approaches could also be exploited to address
lead-time uncertainty.

The impact of order crossover in determining safety stock is
under-researched. Recent studies in the literature demonstrated
not considering order crossover can be translated to larger inven-
tory costs [48]. Riezebos [260] argued that the modern supply
chain needs to address the issues concerning expected order
crossovers, generally neglected in inventory control literature.
Modern supply chains facing the growing occurrence of order
crossover, as well as with the increasing importance of service
performance [48]. Chatfield and Pritchard [48] stated that “clas-
sical inventory modelling methods should be re-examined and
perhaps reformulated in order to accommodate the possibility of
order crossover”.

There is a lack of research studies that address the safety stock
problem by considering the variation of demand over the Product
Life Cycle (PLC) and seasonality [143]. In this review, the only
works addressing this issue are [157] and [160]. The PLC is
becoming smaller due to technological advances as happens for
instance in the mobile phone and electronics components indus-
tries. During the PLC, the product demand may increase rapidly
at the ramp-up stage, then it stabilizes and starts decreasing at
the decline stage. Several traditional inventory models considered
that this increase of product demand as stationary, instead of a
change in demand in a certain stage of the product life cycle. An
accurate demand forecasting is crucial for real-world application
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(directly effects the safety stock level, as well as the total inven-
tory costs) and sometimes is very difficult to be estimated under
short product life cycle (for instance, fashion products such as
shoes and clothing). Techniques such as BA and BDA could be
helpful to cope with this issue. For instance, [96] highlight that
companies can take advantage of big data for coping with demand
surges. In effect, BDA is producing a great impact in various
research fields including SCM, providing tools for supporting and
enabling strategic and operational decision-making.

7. Conclusions

In this paper, we review the topic of safety stock dimensioning
strategies under uncertainty factors in procurement process. Safety
stocks are important at all stages of the supply chain and due to
this makes it an attractive field for researches and practitioners. This
topic has been gaining increasing attention over time and this trend
is confirmed with the increasing number of publications (see Fig. 3).
The systematic literature review was performed following a review
methodology which represents a set of processes for selecting relevant
scientific publications. It starts with the definition of the “search query”
that is applied in both Web of Science (WoS) and Scopus databases
(major online databases where the relevant peer-reviewed scientific
journals are indexed). After this first stage, the scientific publications
are filtered and finally grouped into three main safety stock research
domains: safety stock dimensioning, safety stock management and
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safety stock allocation or positioning or placement. As a result, a set
of 193 scientific publications was selected from 1995 to 2019. A co-
occurrence analysis is performed in order to identify research concepts
related to the safety stock problem. This review might have limitations,
even with a large number of scientific publications analysed (is not
devoid of limitations). Two main limitations are pointed out. Firstly,
some of the relevant publication could be non-identified due to the
“search query” developed in the review methodology. Secondly, we
only considered publications that meet the defined criteria in three
“screening criteria” of our review methodology (e.g., only considered
peer-reviewed publications while excluding the conference proceedings
and only considers publication written in English). The current research
gaps and research opportunities are identified and discussed so that to
provides a road map to guide future research agenda on this topic.

Considering the presented literature review, we highlight several
relevant insights regarding different contexts:

» For the MRP context under both demand and lead time uncer-
tainty, the safety stock is the best technique in case of the low
level of stockout/inventory holding cost, and also in case of a high
level of demand variability and low level of lead time variability.
On the other hand, safety lead time is the best technique in case of
a high level of stockout/inventory holding cost ratio and in case
of a high level of demand and lead time variability [125];

For the manufacturing/remanufacturing context under stochastic
demand, should be adopted different inventory control policies
for different PLC phases (introduction, growth, maturity and de-
cline); Moreover, the inventory control policy is not sensitive to
the phase length and the demand changing rate [157];

Demand uncertainty is the most considered factor for determining
safety stock in different contexts, in contrast, lead-time uncer-
tainty is not sufficiently studied, especially in the MRP environ-
ment [165]. Fig. 7 reinforces this statement, showing that demand
uncertainty is the most considered uncertainty factor in proposed
studies in the literature;

There are several factors/parameters that should be considered,
such as the PLC, demand uncertainty (demand forecast and fore-
cast errors), lead time uncertainty, price fluctuations (e.g., price
fluctuation in the market, discount campaigns, promotions), sea-
sonality (sales pattern) and supplier constraints or supply disrup-
tions. Considering only basic parameters (e.g., lead time, actual
demand, forecast demand and forecast errors) for calculating
safety stock is insufficient. The ERP systems widely used by
companies consider values of these parameters from past data to
calculate the safety stock using statistical formulas.

In conclusion, the safety stock problem is still an interesting topic for
researches and practitioners, since, with the emergence of the industry
4.0 new challenges have been arisen in all processes of the supply
chain. Although the safety stock is used in inventory management
to deal with demand and supply uncertainties, it does not solve all
problems related to this domain. Other techniques or strategies, such
as buffering (reactive) and redesigning (proactive) can also be used for
solving or mitigating inventory management problems, such as safety
time or capacity buffer. The use of these techniques depends on the
specific case study and the context.
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