
Yamashiro, Hirochika; Nonaka, Hirofumi

Article

Estimation of processing time using machine learning
and real factory data for optimization of parallel machine
scheduling problem

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Yamashiro, Hirochika; Nonaka, Hirofumi (2021) : Estimation of processing time
using machine learning and real factory data for optimization of parallel machine scheduling
problem, Operations Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 8, pp. 1-9,
https://doi.org/10.1016/j.orp.2021.100196

This Version is available at:
https://hdl.handle.net/10419/246451

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2021.100196%0A
https://hdl.handle.net/10419/246451
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Operations Research Perspectives 8 (2021) 100196

A
2

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Estimation of processing time using machine learning and real factory data
for optimization of parallel machine scheduling problem
Hirochika Yamashiro ∗, Hirofumi Nonaka
Nagaoka University of Technology, Japan

A R T I C L E I N F O

Keywords:
Machine learning
Gaussian process regression
Gradient boosted decision trees
Artificial neural networks
Identical parallel machine scheduling
Operations research

A B S T R A C T

Traditionally, mathematical optimization methods have been applied in manufacturing industries where
production scheduling is one of the most important problems and is being actively researched. Extant studies
assume that processing times are known or follow a simple distribution. However, the actual processing time
in a factory is often unknown and likely follows a complex distribution. Therefore, in this study, we consider
estimating the processing time using a machine-learning model. Although there are studies that use machine
learning for scheduling optimization itself, it should be noted that the purpose of this study is to estimate
an unknown processing time. Using machine-learning models, one can estimate processing times that follow
an unknown and complex distribution while further improving the schedule using the computed importance
variable. Based on the above, we propose a system for estimating the processing time using machine-learning
models when the processing time follows a complex distribution in actual factory data. The advantages of
the proposed system are its versatility and applicability to a real-world factory where the processing times
are often unknown. The proposed method was evaluated using process information with the processing time
for each manufacturing sample provided by research partner companies. The Light gradient-boosted machine
(LightGBM) algorithm and Ridge performed the best with MAPE and RMSE. The optimization of parallel
machine scheduling using estimated processing time by our method resulted in an average reduction of
approximately 30% for the makespan. On the other hands, the results of probabilistic sampling methods which
are Kernel Density Estimation, Gamma distribution, and Normal Distribution have shown poorer performance
than ML approaches. In addition, machine-learning models can be used to deduce variables that affect the
estimation of processing times, and in this study, we demonstrated an example of feature importance computed
from experimental data. In addition, machine-learning models can be used to deduce variables that affect the
estimation of processing times, and in this study, we demonstrated an example of feature importance computed
from experimental data.
1. Introduction

Traditionally, mathematical optimization methods have been ap-
plied in the manufacturing industries where production scheduling is
one of the most important problems and is being actively researched.

Li et al. [1] proposed a scheduling method for additive manufac-
turing machines, known as metal 3D printing, using a mixed-integer
linear programming (MILP) model. In their study, the authors used a
self-created dataset for evaluation. Many other studies have also used
datasets with predefined processing times [2–7]. However, processing
times in a real factory are not always known in advance.

This problem can be solved in two ways. The first is to sample
the processing time from a simple probability distribution, such as a
uniform or normal distribution instead of using a known processing
time. The second is a machine learning-based prediction method.

∗ Corresponding author.
E-mail addresses: s173358@stn.nagaokaut.ac.jp (H. Yamashiro), nonaka@kjs.nagaokaut.ac.jp (H. Nonaka).

Many studies have been conducted using the first, where the distri-
butions were uniform, for the evaluation of scheduling algorithms [8–
12]. For example, Lin et al. [13] proposed a method for solving the
parallel machine scheduling problem using heuristic rules and Mixed-
Integer Linear Programming (MILP) methods. The processing time
was sampled from a uniform distribution and the method was then
evaluated for each job and machine.

In contrast, Shen et al. [14] sampled the processing time from a
normal distribution to evaluate their proposed method. Their method
works on the assumption that the jobs follow a normal distribution and
allows bias in the processing time. Several other studies [2,15] have
also evaluated models by sampling the processing time from a normal
distribution.
vailable online 16 July 2021
214-7160/© 2021 Published by Elsevier Ltd. This is an open access article under th

https://doi.org/10.1016/j.orp.2021.100196
Received 4 March 2021; Received in revised form 9 July 2021; Accepted 12 July 2
e CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

021

http://www.elsevier.com/locate/orp
http://www.elsevier.com/locate/orp
mailto:s173358@stn.nagaokaut.ac.jp
mailto:nonaka@kjs.nagaokaut.ac.jp
https://doi.org/10.1016/j.orp.2021.100196
https://doi.org/10.1016/j.orp.2021.100196
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2021.100196&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Operations Research Perspectives 8 (2021) 100196H. Yamashiro and H. Nonaka

t
u
p
t
T
a
i

p
m
t
a
o
e
e

c
t
e
s
a
m
p
m
m
a
H
o
t

t

s
i
s

s
l
a
t
j
d
(
a
o
S

f
t

𝑓

c

Table 1
A comparison between this and previous studies on
analyzability when processing time is unknown.

Paper Analyzability
when the processing time is unknown

[1]-[7] ×
[8]-[15] O
Our O

Table 2
Comparison of the analyzability of processing time
when it does not follow a simple distribution.

Paper Analyzability when processing times
do not follow
a normal or uniform distribution

[1]-[15] ×
Our O

These distributions can be used for evaluation and for sampling
he known processing time. However, the distribution is not always
niform at actual manufacturing sites because of the irregularity in
rocessing times. There are also cases where it is difficult to assume that
he processing time follows a simple normal probability distribution.
he distribution of actual factory processing times is often unknown or
symmetrical. Therefore, the above-mentioned sampling methods are
nherently problematic.

To address this issue, in this study we investigate the prediction of
rocessing times from process information using a machine learning
odel. Specifically, product information such as product materials and

he number of products manufactured are considered as the input,
nd a regression model is constructed with the processing time as the
bjective variable. Machine learning models have been used in various
stimation problems in real factories [16–20] and may be useful in
stimating processing time in this study.

In the scheduling optimization field, some studies have used ma-
hine learning for scheduling optimization itself, rather than estimating
he unknown processing time, which is the objective of this study. For
xample, [21] proposed an automated guided vehicles (AGVs) real-time
cheduling method using deep Q-learning to minimize the makespan
nd delay rates. In another study, [22] proposed a method that uses
ultiple supervised learning methods and an ensemble technique to
redict the average tardiness and select the best dispatching rule from
ultiple dispatching rules. In addition, several other studies have used
achine learning to solve scheduling optimization [23–25]. In the

bove study, machine learning is used for scheduling optimization.
owever, in this study, instead of proposing a method for scheduling
ptimization using machine learning methods, we use machine learning
o estimate the processing time required for scheduling optimization.

Tables 1 and 2 show a comparison between the previous studies and
he proposed methods.

Based on the aforementioned findings, this research proposes a
ystem to estimate the processing time and perform machine scheduling
n cases where the processing time follows a complex distribution,
imilar to a real-world factory scenario.

In this paper, Section 2 presents an overall diagram of the proposed
ystem, the actual machine learning model to be used, and the formu-
ation of the machine scheduling problem to be handled. In Sections 3
nd 4, we apply the proposed system to real-world factory data to show
he accuracy of the machine learning model and the rate at which
ob completion time is reduced. In Section 5, we verify whether the
istribution of actual processing time using the Kolmogorov–Smirnov
KS) test follows a normal distribution and show the necessity of using
machine learning model in a real factory. We also discuss the accuracy
f the machine learning model and the scheduling results. Finally, in
2

ection 6, the conclusions of this study and future work are discussed. t
2. Method

In this section, we describe a machine learning method for es-
timating the processing time and a method for machine scheduling
optimization. In this research, we use machine learning models to find
the variables required for scheduling a machine in an actual factory
and then perform scheduling. The advantage of the proposed system
is its versatility and applicability to a real-world factory where the
processing times are often unknown.

An overview of the system is shown in Fig. 1. We first measure
the data from the work site and store them in a database for machine
learning. Next, using the stored process information as input, a machine
learning model is used to estimate the processing time. Finally, we
perform scheduling optimization for a factory where the processing
times are unknown.

2.1. Machine learning

In this study, we used four typical machine learning models often
used for machine learning to estimate the processing time. In addition,
we used multiple linear regression as the baseline method. Of the
following models, the most accurate provided the estimated processing
time used for scheduling.

1. LightGBM
2. Gaussian Process
3. Ridge Regression
4. Artificial Neural Network

2.1.1. LightGBM [26–30]
LightGBM is a novel gradient boosting decision tree (GBDT) algo-

rithm proposed by Ke et al. [31]. A summary of the LightGBM learning
method is shown in Fig. 2. In LightGBM, a histogram of the input data is
sampled, and the data are weighted and input to simple decision trees.
Each decision tree is trained sequentially, and the weights of the input
data reflect the previous training results.

This model has several innovations that allow more computational
efficiency than the conventional GBDT algorithm. The first is a sam-
pling method called gradient-based one-side sampling, which, to limit
computational complexity, reduces the amount of data needed for
training by using samples rather than all of the input data. In addition,
it is sampled for the distribution of the data does to remain unchanged.
It is known that in this method, if the number of data points is
sufficiently large, the approximation of the distribution of the data will
be accurate. The second, called exclusive feature bundle (EFB), is a
method that reduces feature dimensionality. The features of real-world
data are often sparse and exclusive. We use EFB to combine multiple
features into one, thus reducing the amount of calculation. The best
way to summarize features is to consider a reduced version of the
graph-coloring problem and solve it using a greedy algorithm. Fig. 3
shows a simple example.

Given the supervised training set 𝑋 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, LightGBM aims to
ind an approximation 𝑓 (𝑥) to a certain function 𝑓 ∗(𝑥) that minimizes
he expected value of a specific loss function 𝐿(𝑦, 𝑓 (𝑥)) as follows:

̂ = arg min
𝑓

𝐸𝑦,𝑋𝐿(𝑦, 𝑓 (𝑥)). (1)

This model was used as a processing time prediction method be-
ause of its short training time and high estimation accuracy compared

o general machine learning models.



Operations Research Perspectives 8 (2021) 100196

3

H. Yamashiro and H. Nonaka

Fig. 1. Overview of the proposed system.

Fig. 2. Summary of the LightGBM learning method.



Operations Research Perspectives 8 (2021) 100196H. Yamashiro and H. Nonaka
Fig. 3. Example of exclusive feature bundling.
2.1.2. Gaussian process [32–36]
A Gaussian process [37] is a collection of a finite number of random

variables that have a Gaussian distribution. It is specified by the mean
and covariance functions. Gaussian process regression is a probabilistic
regression technique that employs a Bayesian methodology to derive a
non-linear model. It assumes that the output of the regression model is
dependent on the latent function 𝑓 (𝑋) and the Gaussian noise, 𝜖, with
a zero mean. The output of the regression model is given by Eq. (2).

𝑦 = 𝑓 (𝑋) + 𝜖. (2)

where the function 𝑓 (⋅) ∶ R𝑝 ↦ R. The latent function follows a
Gaussian distribution with a mean and variance given by

𝜇 = 𝐊(𝑋𝑡𝑟, 𝑋𝑡𝑒)𝑇 𝐤(𝑋𝑡𝑟 + 𝜎2𝐼)−1𝑦 (3)
𝜎 = 𝐤(𝑋𝑡𝑒)−

𝐊(𝑋𝑡𝑟, 𝑋𝑡𝑒)𝑇 𝐤(𝑋𝑡𝑟 + 𝜎2𝐼)−1𝐊(𝑋𝑡𝑟, 𝑋𝑡𝑒). (4)

where 𝐊(𝑋𝑡𝑟, 𝑋𝑡𝑒) is the covariance between the training inputs and test
point, and 𝐤(𝑋𝑡𝑟) and 𝐤(𝑋𝑡𝑒) are the autocovariances of the training and
test points, respectively. The covariance function reflects the presump-
tions about the latent function 𝑓 (𝑋), and therefore has a very important
purpose. In general, this covariance function is called a kernel function,
and the combination of various kernel functions can greatly change the
accuracy of the model.

2.1.3. Ridge regression [38–41]
Ridge regression is a model in which the 𝐿2 norm is introduced as

a regularization term in linear regression and the weights are trained
to minimize the following objective functions:

(𝐲 − 𝐗𝒘)𝑇 (𝐲 − 𝐗𝒘) + 𝛼‖𝒘‖2. (5)

where 𝛼 is a parameter that expresses the strength of the regularization.
This model is less prone to overfitting than simple linear regression
models.

2.1.4. Artificial neural network
An artificial neural network (ANN) is a powerful and widely used

machine learning model capable of combining several non-linear func-
tions to capture non-linear relationships between input data and a
label [42–47]. The ANN consists of a feed-forward phase and a back-
propagation phase. In the feed-forward phase, input data are propa-
gated forward through the layers of the ANN and configure the loss
function with the target value at the output layer. During the back-
propagation phase, the derivative of the loss function with respect
to each weight is calculated in the reverse direction, and then opti-
mization techniques are used to find the optimal weight. From among
4

the many neural network models, we used Residual neural network
(ResNet) [48] in this research. A ResNet represents a mass of layers
with a structure that adds the input to the output double or triple layers
ahead. Using this structure, we can create a model that is robust against
gradient loss and accuracy saturation even when the layers are deep.

2.2. Machine scheduling

The factory data used in this research are treated as identical
parallel machine scheduling problems because all jobs can be processed
by all machines and the processing time is not machine dependent.

In this study, to simplify the evaluation, we solve a parallel ma-
chine scheduling problem where the processing times of the work ma-
chine are identical, which is a machine scheduling problem where the
objective function is to minimize the total processing time (makespan).

We now describe the variables used in the optimization and def-
initions of the expressions. 𝐽 represents the number of jobs used for
optimization, and there are 𝑛 jobs. Similarly, 𝑀 represents the number
of machines used for optimization, and there are 𝑚 machines. 𝑝𝑖𝑗 is the
processing time of job 𝑗 on machine 𝑖.

The following notations are introduced:

𝐽𝑗 job 𝑗, 𝑗 = 1, 2,… , 𝑛

𝑀𝑖 machine 𝑖, 𝑖 = 1, 2,… , 𝑚

𝑝𝑖𝑗 processing time of job 𝑗 on machine 𝑖

𝑥𝑖𝑗 is a decision variable that is set to 1 if job 𝑗 is assigned to
machine 𝑖 and 0 if otherwise. We formulate the problem as follows:

min
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝑝𝑖𝑗𝑥𝑖𝑗 (6)

s.t.
𝑚
∑

𝑖=1
𝑥𝑖𝑗 = 1 ∀𝑗 = 1, 2,… , 𝑛 (7)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 = 1, 2,… , 𝑚 ∀𝑗 = 1, 2,… , 𝑛. (8)

Eq. (6) is an objective function and represents the time it takes to
complete all jobs. Eq. (7) denotes the assignment of a given job to only
one machine. In this study, the Gurobi optimizer was used to perform
the calculations.



Operations Research Perspectives 8 (2021) 100196H. Yamashiro and H. Nonaka

w
v
p
a

d
d
t
t
p
u
W
o

s
p

s
p

Table 3
Number of elements per item.

Columns Types of variables Number of categories

Number of processes Natural number –
Machine code Category 18
Work completion flag Category 2
Quality level Category 5
Material A Category 184
Parameter A Category 63
Parameter B Category 101
Parameter C Category 21
Parameter D Category 2
Parameter E Category 38
Actual processing time Natural number –

3. Experiments

To evaluate the proposed method, we used process information with
known processing times compiled for each production sample provided
by the research partners. The process information used in this study
included 22537 data points for one year from July 2018 to June 2019.
The operator manually pressed the start and end buttons to measure
the processing time. The number of elements in the preprocessed
data items is summarized in Table 3. With these items as inputs, we
constructed a machine learning model to predict the processing time
and solve a parallel machine scheduling problem using the estimated
processing time. The mean absolute percentage error (MAPE) is used as
an evaluation index for the machine learning model. The MAPE value
is given by the following formula:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑡=1

|

|

|

|

𝐴𝑡 − 𝐹𝑡
𝐴𝑡

|

|

|

|

∗ 100. (9)

here 𝐴𝑡 represents the measured value and 𝐹𝑡 represents the predicted
alue. MAPE calculates the absolute value of the error rate of the
redicted value and uses it as an evaluation index by calculating the
verage of the error rates.

The process information for 10 days is extracted and used as test
ata. The rest of the data were divided into training data and validation
ata at a 9 to 1 ratio using the product ID and were evaluated using
he K-Fold method. The reason for using the product ID to split the
raining and test data was to reproduce the situation of estimating the
rocessing time of an unknown product on the current sample when
sed in a real factory. The program was run on a server with Intel Xeon
-2123 3.60 GHz processors, 128 GB RAM, and a 64-bit Ubuntu 16.04

perating system.
The machine learning models to be compared in this study were

ubjected to hyperparameter tuning. The hyperparameter tuning was
erformed using Optuna, a parameter tuning framework.

Table 4 shows the tuned hyperparameter of the LightGBM. In this
tudy, three important parameters were tuned. 𝑛𝑢𝑚_𝑙𝑒𝑎𝑣𝑒𝑠 is the main
arameter to control the complexity of the tree model. 𝑚𝑖𝑛_𝑑𝑎𝑡𝑎_𝑖𝑛_𝑙𝑒𝑎𝑓

is a very important parameter to prevent overfitting in a leaf-wise
tree. 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ is a parameter that limits the depth of the tree, thus
suppressing overfitting. The range of values for the parameters to be
tuned is as follows:

number of leaves 2 ≤ 𝑛𝑢𝑚_𝑙𝑒𝑎𝑣𝑒𝑠 ≤ 128

minimum data in leaf 1 ≤ 𝑚𝑖𝑛_𝑑𝑎𝑡𝑎_𝑖𝑛_𝑙𝑒𝑎𝑓 ≤ 40

max depth 0 ≤ 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ≤ 50.

Eq. (10) represents the tuned kernel function. In the Gaussian
process, the kernel function is a parameter. In this study, we exper-
imented with RBF, Matern32, and Matern52 kernels, and found that
the 𝑅𝐵𝐹𝑘𝑒𝑟𝑛𝑒𝑙 attained the best MAPE value.
5

Table 4
Tuned LightGBM parameters.

Parameter Parameter value

objective regression
boosting_type gbdt
metric mape
num_leaves 83
min_data_in_leaf 21
max_depth 2

Table 5
Tuned network parameters.

Parameter Parameter value

hidden_layers 15
optimizer SGD
batch_size 992
learning_rate 0.000248
activation_function ReLU

𝑘(𝐱, 𝐱′) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐾𝑒𝑟𝑛𝑒𝑙 ∗ 𝑅𝐵𝐹𝐾𝑒𝑟𝑛𝑒𝑙

+𝑊 ℎ𝑖𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙. (10)

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑘𝑒𝑟𝑛𝑒𝑙 represents a constant kernel. The 𝑅𝐵𝐹𝑘𝑒𝑟𝑛𝑒𝑙 is an
abbreviation for the radial basis function kernel and is a general
kernel that is used for non-linear objective variables. The 𝑅𝐵𝐹𝑘𝑒𝑟𝑛𝑒𝑙
is expressed as follows:

𝑘(𝑥𝑖, 𝑥𝑗 ) = exp

(

−
𝑑(𝑥𝑖, 𝑥𝑗 )2

2𝑙2

)

. (11)

where 𝑙 is a parameter. 𝑊 ℎ𝑖𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙 is a kernel that considers the
observation noise, which is the variation in the target variable during
observation. In this study, we introduce the variation in processing time
for the same material due to the difference in number of performance,
assuming that the observed noise is the variation in processing time.
The value of 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐾𝑒𝑟𝑛𝑒𝑙 is set to 1 for each kernel.

We tuned the parameter 𝛼 in the Ridge regression and found that
𝛼 = 7.146 was optimal. The range of values for the parameter to be
tuned is as follows:

𝛼 0.000001 ≤ 𝛼 ≤ 100000.

Table 5 shows the parameters of the tuned network. In this study,
we constructed a network with fifteen hidden layers, consisting of five
Residual Blocks stacked on top of each other, each consisting of three
layers. In addition, as in general ResNet, the activation function is
input after the batch normalization layer. The range of values for the
parameters to be tuned is as follows:

optimizer Adam, SGD, Adagrad, Adadelta and RMSprop

learning rate 0.000001 ≤ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ≤ 10

batch size 100 ≤ 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ≤ 1000.

The first step is to estimate the processing time for the extracted test
data and perform scheduling optimization. The optimization procedure
optimizes it using the number of jobs, the number of machines per day,
and the estimated processing times. To evaluate the optimal schedule,
we compare the makespan of the current schedule with the makespan of
the optimal schedule, calculate the reduction rate of the makespan, and
use the average value of the two. Eq. (12) is a method for calculating
the makespan reduction rates, where 𝐶𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the makespan of the
current schedule and 𝐶𝑇𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 is the optimized makespan. An example
of calculating the makespan shortening rate is shown in Fig. 4.
𝐶𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐶𝑇𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

𝐶𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡
. (12)



Operations Research Perspectives 8 (2021) 100196H. Yamashiro and H. Nonaka
Fig. 4. An example of calculating the makespan.

Fig. 5. A residual plot of LightGBM.

Fig. 6. A residual plot of Ridge Regression.

4. Results

The data were divided by the K-Fold method, and the mean MAPE
and RMSE were calculated. The mean MAPE and RMSE values for
each machine learning model are shown in Table 6. In addition, we
performed a Welch’s t-test to confirm the significance of the difference
between the output of each method. Consequently, the null hypothesis
on MAPE and RMSE can be rejected at the five percent significance
level for the difference between LightGBM and GP. Conversely, the
null hypothesis on MAPE and RMSE could not be rejected at the five
percent significance level for the difference between LightGBM and
Ridge Regression. Therefore, LightGBM and Ridge Regression were
selected as the best-performing methods. To complement our analysis,
we further conducted a residual plot for the top three methods based
on the MAPE to analyze the distribution residuals. Figs. 5–7 show the
residual plots for the three methods. As a result, errors are evenly
distributed which means techniques do not tend to under/overestimate
the time.

Because LightGBM was the most accurate of the machine learning
models in terms of the mean MAPE values, the predicted processing
time of LightGBM was used to optimize the parallel machine schedul-
ing. The mean reduction rate of the makespan for the optimal schedule
6

Fig. 7. A residual plot of Gaussian process.

Table 6
MAPE value and RMSE for each model.

Models MAPE RMSE

LightGBM 21.960 358.255
Ridge regression 22.515 361.122
Gaussian process 22.896 369.993
Artificial neural network 36.353 526.234
KDE 47.647 732.424
Gamma 50.673 727.504
Multiple regression 444469.903 47848190.368
Multiple regression with lasso 23.286 359.123

was 29.468%. Table 7 summarizes the makespan of the current sched-
ule, the makespan of the optimized schedule using the actual processing
time, and the makespan of the optimized schedule using the processing
time predicted by the machine learning model.

5. Discussion

We tested whether the processing time of the data used in this study
follows a normal distribution using the Kolmogorov–Smirnov (KS) test
for the null hypothesis that the two distributions to be compared are the
same. In this study, the KS test was performed using the distribution of
processing times in the real data and the normal distribution created
from the mean and variance of processing times. A KS test resulted
in a 𝑝-value of zero, rejecting the null hypothesis. This indicates that
the actual factory data used in this study does not follow the normal
distribution because the processing times are biased by differences in
worker inputs and other similar factors despite the products being
identical. Fig. 8 shows the histogram of the real data and the histogram
of the normal distribution created from the real data.

We also sampled the processing time using a normal distribution
and evaluated the sampled processing time by MAPE and RMSE using
the evaluation data. As parameters of the normal distribution, we
used the mean and variance of the actual processing time. The results
show that the MAPE value is approximately 0.5, which is inferior to
the performance of machine learning models such as LightGBM and
Ridge regression. This is because the KS test rejects normality and
unlike machine learning models, the sampling process does not use
features, resulting in large local errors. Conversely, since the histogram
clearly shows that the data distribution is not Gaussian, sampling
with a gamma distribution may be considered. We performed the KS
test and MAPE/RMSE evaluation as well as the normal distribution.
The parameters of the gamma distribution, 𝛼 and 𝛽, were sampled
using the NUTS method, which is the MCMC sampling method, and
the EAP estimator was obtained. The results Fig. 10 showed that the
KS test rejected the null hypothesis and did not follow the gamma
distribution. The MAPE was also in the low 0.4 range, indicating that
the performance was inferior to machine learning.



Operations Research Perspectives 8 (2021) 100196H. Yamashiro and H. Nonaka
Table 7
Comparison of the current schedule makespan and the optimized schedule makespan.

Current schedule Schedule optimized Schedule optimized by LightGBM Schedule optimized by Ridge
by actual processing time predicted processing time predicted processing time

27833 23529 23146 24258
45722 21941 25462 17410
32668 16460 17447 30822
32616 31465 32410 24605
26300 21108 23355 26556
35448 30432 26777 22628
45746 19090 17998 18715
28154 22091 21050 20895
24538 20950 19063 19290
28807 18437 16292 16313
Table 8
Training time for each machine learning model.

Machine learning model Training time

LightGBM 19.593
Ridge regression 12.062
Gaussian process 3649.024
Artificial neural network 93500.670

The kernel density estimation (KDE) is a non-parametric method
of estimating the probability density function of a random variable.
KDE is a basic data smoothing problem that makes inferences about
a population based on a finite sample of data. The KDE method is to
approximate the distribution of training data. Fig. Fig. 9 shows the
histogram of the real data and the histogram of the predicted values
from KDE. We compared the results of the KS test and MAPE/RMSE
as well as the normal and gamma distributions. The results show that
the KS test fails to reject the null hypothesis, indicating that the KDE
method is capable of generating an adequate distribution. However,
the MAPE value was in the low 0.4 range. This is because, unlike
machine learning models, KDE does not use features, which leads to
large local errors. In conclusion, the results show that a method that
uses probability sampling is inferior to the machine learning method
in terms of MAPE/RMSE. This is mainly because it does not take into
account the features, which leads to local errors.

We performed variable selection using Lasso regression for multiple
regression. The Lasso regression is one of the linear regression models
that introduce the 𝐿1 regularization. In this model, we minimize the
following objective function:

‖𝑦 − 𝐗𝒘‖

2
2 + 𝜆‖𝒘‖0. (13)

where 𝜆 denotes the parameter that controls the 𝐿1 term. When 𝜆 = 0,
the equation is the same as in ordinary multiple regression analysis.
One of the characteristics of lasso regression is that the weights of some
variables may become zero by performing 𝐿1 regularization. In this
study, we use this property to filter the variables.

From the results of Table 7, our proposed system were able to reduce
the makespan by approximately 30% compared to the current schedule
by using LightGBM/Ridge regression to estimate the processing time
from the process information and scheduling with the estimated values.
The reason for this is thought to be that with the current schedule, the
processing is concentrated on a specific machine, and the scheduling
optimization has allocated the processing to other machines.

In addition, the MAPE and RMSE value of ANN is low compared to
the computation time, it is better to use LightGBM or Ridge regression.
Table 8 shows the training time for each machine learning model.

In addition, machine learning models can be used to deduce vari-
ables that affect the estimation of processing time. We show an example
of feature importance computed from experimental data using SHapley
Additive exPlanations. In this study, the feature importance was calcu-
lated using LightGBM, which had the best mean MAPE value. Fig. 11
shows the importance of the item ‘‘Material A’’. In ‘‘Material A’’, it can
7

Fig. 8. The histogram of the real data and the normal distribution.

Fig. 9. The histogram of the real data and the predicted distribution by KDE.

be interpreted that the material that tends to increase the value of the
processing time is used in part 25.

Based on the above-mentioned results, it can be concluded that
the analysis of explainable machine learning models can be useful
for making decisions in actual factories. Specifically, it can be used
in integration with productivity improvement methods such as value
stream mapping (VSM), which can contribute to further schedule im-
provement.

6. Conclusion

In this study, we proposed a system for estimating the processing
time and scheduling machines when the processing times are complexly
distributed in real-world factory data. The advantages of our system are



Operations Research Perspectives 8 (2021) 100196H. Yamashiro and H. Nonaka
Fig. 10. The histogram of the real data and the predicted gamma distribution.

Fig. 11. Importance of item ‘‘Material A’’.

that scheduling optimization is possible for jobs with complex distri-
butions with unknown processing times, and that process information
can be analyzed by the machine learning model used in the learning
process.

To verify the proposed method, we predicted the processing times
using actual factory data and solved a parallel machine scheduling
problem using the predicted processing times to perform scheduling
optimization. Four machine learning models were used to estimate
the processing time. LightGBM had the best accuracy with a MAPE
value of approximately 22%. Parallel machine scheduling optimization,
using the estimated LightGBM processing time reduced the makespan
by approximately 30%. Unlike previous studies that assumed a normal
distribution for processing time, the factory processing time used in this
study did not follow a normal distribution. This demonstrates the need
to estimate the processing time using a machine learning model.

In this study, the experiment was only conducted at one factory;
therefore, it is necessary to verify whether the proposed method can
be applied to other factories. However, the factory where the experi-
ment was conducted has a large number of data, and the results are
considered to be reliable.

The effectiveness of applying a machine learning technique to a
real factory for scheduling optimization will depend on the amount of
input data used. Therefore, problems such as scalability and general-
izability warrant further investigation. Several studies have used the
computation of the feature importance of the trained model to perform
such analyses in real factories [49–52]. Therefore, we believe that such
analyses with an explainable machine learning model would be useful
to support decision-making in real factories and will lead to further
8

improvements in scheduling. In particular, after identifying items that
significantly affect the processing time and by focusing on them, the
processing time can be reduced. By analyzing the work related to those
items, productivity methods such as VSM [53–55], and also scheduling
could be improved. Furthermore, the reduced processing time can be
used to further reduce the schedule. In addition, a framework for im-
proving production efficiency [56–58] can also be applied to factories
where the processing times are not known.

In this paper, we focused on methods for offline scheduling, but in
the future, we may apply these methods to online scheduling problems.
In such cases, selecting a method to minimize the makespan by using
a causal verification model such as A/B test would be possible.

In the experiments of this study, we assumed that the working time
of a job is constant for all machines. However, in the future, it may be
possible to deal with the case where the working time of a job varies
from machine to machine.

CRediT authorship contribution statement

Hirochika Yamashiro: Conception and design of study, Acquisition
of data, Analysis and/or interpretation of data, Writing – original draft.
Hirofumi Nonaka: Conception and design of study, Acquisition of
data, Analysis and/or interpretation of data, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

All authors approved the version of the manuscript to be published.

References

[1] Li Q, Kucukkoc I, Zhang DZ. Production planning in additive manufacturing and
3D printing. Comput Oper Res 2017;83:157–72. http://dx.doi.org/10.1016/j.cor.
2017.01.013.

[2] González-Neira EM, Urrego-Torres AM, Cruz-Riveros AM, Henao-García C,
Montoya-Torres JR, Molina-Sánchez LP, et al. Robust solutions in multi-objective
stochastic permutation flow shop problem. Comput Ind Eng 2019;137:106026.
http://dx.doi.org/10.1016/j.cie.2019.106026.

[3] Chergui A, Hadj-Hamou K, Vignat F. Production scheduling and nesting in
additive manufacturing. Comput Ind Eng 2018;126:292–301. http://dx.doi.org/
10.1016/j.cie.2018.09.048.

[4] Fera M, Fruggiero F, Lambiase A, Macchiaroli R, Todisco V. A modified genetic
algorithm for time and cost optimization of an additive manufacturing single-
machine scheduling. Int J Ind Eng Comput 2018;9(4):423–38. http://dx.doi.org/
10.5267/j.ijiec.2018.1.001.

[5] Kucukkoc I. MILP models to minimise makespan in additive manufacturing
machine scheduling problems. Comput Oper Res 2019;105:58–67. http://dx.doi.
org/10.1016/j.cor.2019.01.006.

[6] Min L, Cheng W. A genetic algorithm for minimizing the makespan in the case
of scheduling identical parallel machines. Artif Intell Eng 1999;13(4):399–403.
http://dx.doi.org/10.1016/S0954-1810(99)00021-7.

[7] Wu X, Che A. A memetic differential evolution algorithm for energy-efficient par-
allel machine scheduling. Omega 2019;82:155–65. http://dx.doi.org/10.1016/j.
omega.2018.01.001.

[8] Fanjul-Peyro L, Ruiz R, Perea F. Reformulations and an exact algorithm for
unrelated parallel machine scheduling problems with setup times. Comput Oper
Res 2019;101:173–82. http://dx.doi.org/10.1016/j.cor.2018.07.007.

[9] Wang S, Wang X, Yu J, Ma S, Liu M. Bi-objective identical parallel machine
scheduling to minimize total energy consumption and makespan. J Cleaner Prod
2018;193:424–40. http://dx.doi.org/10.1016/j.jclepro.2018.05.056.

[10] Zhang G, Xing K, Cao F. Discrete differential evolution algorithm for distributed
blocking flowshop scheduling with makespan criterion. Eng Appl Artif Intell
2018;76:96–107. http://dx.doi.org/10.1016/j.engappai.2018.09.005.

[11] Goren S, Sabuncuoglu I. Optimization of schedule robustness and stability
under random machine breakdowns and processing time variability. IIE Trans
2009;42(3):203–20. http://dx.doi.org/10.1080/07408170903171035.

http://dx.doi.org/10.1016/j.cor.2017.01.013
http://dx.doi.org/10.1016/j.cor.2017.01.013
http://dx.doi.org/10.1016/j.cor.2017.01.013
http://dx.doi.org/10.1016/j.cie.2019.106026
http://dx.doi.org/10.1016/j.cie.2018.09.048
http://dx.doi.org/10.1016/j.cie.2018.09.048
http://dx.doi.org/10.1016/j.cie.2018.09.048
http://dx.doi.org/10.5267/j.ijiec.2018.1.001
http://dx.doi.org/10.5267/j.ijiec.2018.1.001
http://dx.doi.org/10.5267/j.ijiec.2018.1.001
http://dx.doi.org/10.1016/j.cor.2019.01.006
http://dx.doi.org/10.1016/j.cor.2019.01.006
http://dx.doi.org/10.1016/j.cor.2019.01.006
http://dx.doi.org/10.1016/S0954-1810(99)00021-7
http://dx.doi.org/10.1016/j.omega.2018.01.001
http://dx.doi.org/10.1016/j.omega.2018.01.001
http://dx.doi.org/10.1016/j.omega.2018.01.001
http://dx.doi.org/10.1016/j.cor.2018.07.007
http://dx.doi.org/10.1016/j.jclepro.2018.05.056
http://dx.doi.org/10.1016/j.engappai.2018.09.005
http://dx.doi.org/10.1080/07408170903171035


Operations Research Perspectives 8 (2021) 100196H. Yamashiro and H. Nonaka
[12] Tang D, Dai M, Salido MA, Giret A. Energy-efficient dynamic scheduling for a
flexible flow shop using an improved particle swarm optimization. Comput Ind
2016;81:82–95. http://dx.doi.org/10.1016/j.compind.2015.10.001.

[13] Lin S-W, Ying K-C. Uniform parallel-machine scheduling for minimizing total
resource consumption with a bounded makespan. IEEE Access 2017;5:15791–9.
http://dx.doi.org/10.1109/ACCESS.2017.2735538.

[14] Shen J, Zhu Y. A parallel-machine scheduling problem with periodic maintenance
under uncertainty. J Ambient Intell Humaniz Comput 2019;10(8):3171–9. http:
//dx.doi.org/10.1007/s12652-018-1032-8.

[15] Framinan JM, Fernandez-Viagas V, Perez-Gonzalez P. Using real-time information
to reschedule jobs in a flowshop with variable processing times. Comput Ind Eng
2019;129:113–25. http://dx.doi.org/10.1016/j.cie.2019.01.036.

[16] Carvalho TP, Soares FA, Vita R, Francisco RdP, Basto JP, Alcalá SG. A systematic
literature review of machine learning methods applied to predictive mainte-
nance. Comput Ind Eng 2019;137:106024. http://dx.doi.org/10.1016/j.cie.2019.
106024.

[17] Kang Z, Catal C, Tekinerdogan B. Machine learning applications in production
lines: A systematic literature review. Comput Ind Eng 2020;149:106773. http:
//dx.doi.org/10.1016/j.cie.2020.106773.

[18] Khalifa RM, Yacout S, Bassetto S. Developing machine-learning regression model
with Logical Analysis of Data (LAD). Comput Ind Eng 2020;106947. http://dx.
doi.org/10.1016/j.cie.2020.106947.

[19] Morariu C, Morariu O, Răileanu S, Borangiu T. Machine learning for predictive
scheduling and resource allocation in large scale manufacturing systems. Comput
Ind 2020;120:103244. http://dx.doi.org/10.1016/j.compind.2020.103244.

[20] Dalzochio J, Kunst R, Pignaton E, Binotto A, Sanyal S, Favilla J, et al. Machine
learning and reasoning for predictive maintenance in industry 4.0: Current
status and challenges. Comput Ind 2020;123:103298. http://dx.doi.org/10.1016/
j.compind.2020.103298.

[21] Hu H, Jia X, He Q, Fu S, Liu K. Deep reinforcement learning based AGVs real-
time scheduling with mixed rule for flexible shop floor in industry 4.0. Comput
Ind Eng 2020;149:106749. http://dx.doi.org/10.1016/j.cie.2020.106749.

[22] Priore P, Ponte B, Puente J, Gómez A. Learning-based scheduling of flexible man-
ufacturing systems using ensemble methods. Comput Ind Eng 2018;126:282–91.
http://dx.doi.org/10.1016/j.cie.2018.09.034.

[23] Jong W-R, Chen H-T, Lin Y-H, Chen Y-W, Li T-C. The multi-layered job-shop
automatic scheduling system of mould manufacturing for Industry 3.5. Comput
Ind Eng 2020;149:106797. http://dx.doi.org/10.1016/j.cie.2020.106797.

[24] Waschneck B, Reichstaller A, Belzner L, Altenmüller T, Bauernhansl T, Knapp A,
et al. Optimization of global production scheduling with deep reinforcement
learning. Proc CIRP 2018;72(1):1264–9. http://dx.doi.org/10.1016/j.procir.2018.
03.212.

[25] Zhou Z, Li F, Zhu H, Xie H, Abawajy JH, Chowdhury MU. An improved genetic
algorithm using greedy strategy toward task scheduling optimization in cloud
environments. Neural Comput Appl 2020;32(6):1531–41. http://dx.doi.org/10.
1007/s00521-019-04119-7.

[26] Fan J, Ma X, Wu L, Zhang F, Yu X, Zeng W. Light Gradient Boosting Machine:
An efficient soft computing model for estimating daily reference evapotran-
spiration with local and external meteorological data. Agricult Water Manag
2019;225:105758. http://dx.doi.org/10.1016/j.agwat.2019.105758.

[27] Ma X, Sha J, Wang D, Yu Y, Yang Q, Niu X. Study on a prediction of P2P network
loan default based on the machine learning LightGBM and XGboost algorithms
according to different high dimensional data cleaning. Electron Commer Res Appl
2018;31:24–39. http://dx.doi.org/10.1016/j.elerap.2018.08.002.

[28] Sun X, Liu M, Sima Z. A novel cryptocurrency price trend forecasting model
based on LightGBM. Finance Res Lett 2020;32:101084. http://dx.doi.org/10.
1016/j.frl.2018.12.032.

[29] Zhao Q, Ye Z, Su Y, Ouyang D. Predicting complexation performance between
cyclodextrins and guest molecules by integrated machine learning and molecular
modeling techniques. Acta Pharm Sinica B 2019;9(6):1241–52. http://dx.doi.org/
10.1016/j.apsb.2019.04.004.

[30] Song Y, Jiao X, Qiao Y, Liu X, Qiang Y, Liu Z, et al. Prediction of double-high
biochemical indicators based on lightgbm and XGBoost. In: Proceedings of the
2019 international conference on artificial intelligence and computer science.
2019, p. 189–93. http://dx.doi.org/10.1145/3349341.3349400.

[31] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: A highly
efficient gradient boosting decision tree. In: Advances in neural information
processing systems. 2017, p. 3146–54.

[32] Lv Y, Yang X, Zhang G. Durability of phase-change-material module and its
relieving effect on battery deterioration during long-term cycles. Appl Therm
Eng 2020;115747. http://dx.doi.org/10.1016/j.applthermaleng.2020.115747.

[33] Kumari SA, Srinivasan S. Ash fouling monitoring and soot-blow optimization
for reheater in thermal power plant. Appl Therm Eng 2019;149:62–72. http:
//dx.doi.org/10.1016/j.applthermaleng.2018.12.031.

[34] Zhu L, Chen J, Chen C-I. Prognostics of tool failing behavior based on autoasso-
ciative Gaussian process regression for semiconductor manufacturing. In: 2020
IEEE international conference on industrial technology (ICIT). IEEE; 2020, p.
316–21. http://dx.doi.org/10.1109/ICIT45562.2020.9067286.
9

[35] Faghihpirayesh R, Imbiriba T, Yarossi M, Tunik E, Brooks D, Erdoğmuş D.
Motor cortex mapping using active gaussian processes. In: Proceedings of the
13th ACM international conference on pervasive technologies related to assistive
environments. 2020, p. 1–7. http://dx.doi.org/10.1145/3389189.3389202.

[36] Raissi M, Perdikaris P, Karniadakis GE. Machine learning of linear differential
equations using Gaussian processes. J Comput Phys 2017;348:683–93. http:
//dx.doi.org/10.1016/j.jcp.2017.07.050.

[37] Williams CK, Rasmussen CE. Gaussian processes for regression. In: Advances in
neural information processing systems. 1996, p. 514–20.

[38] Li K-C, et al. Asymptotic optimality of 𝐶_𝐿 and generalized cross-validation
in ridge regression with application to spline smoothing. Ann Statist
1986;14(3):1101–12. http://dx.doi.org/10.1214/aos/1176350052.

[39] Pasha G, Shah M. Application of ridge regression to multicollinear data. J Res
(Science) 2004;15(1):97–106.

[40] An S, Liu W, Venkatesh S. Face recognition using kernel ridge regression. In:
2007 IEEE conference on computer vision and pattern recognition. IEEE; 2007,
p. 1–7. http://dx.doi.org/10.1109/CVPR.2007.383105.

[41] Ogutu JO, Schulz-Streeck T, Piepho H-P. Genomic selection using regularized
linear regression models: ridge regression, lasso, elastic net and their extensions.
In: BMC proceedings, vol. 6. Springer; 2012, p. S10. http://dx.doi.org/10.1186/
1753-6561-6-S2-S10.

[42] Son H, Hyun C, Phan D, Hwang HJ. Data analytic approach for bankruptcy pre-
diction. Expert Syst Appl 2019;138:112816. http://dx.doi.org/10.1016/j.eswa.
2019.07.033.

[43] Lee BC, Brooks DM, de Supinski BR, Schulz M, Singh K, McKee SA. Methods
of inference and learning for performance modeling of parallel applications. In:
Proceedings of the 12th ACM SIGPLAN symposium on principles and practice
of parallel programming. 2007, p. 249–58. http://dx.doi.org/10.1145/1229428.
1229479.

[44] Mellit A, Pavan AM. A 24-h forecast of solar irradiance using artificial neural
network: Application for performance prediction of a grid-connected PV plant at
trieste, Italy. Sol Energy 2010;84(5):807–21. http://dx.doi.org/10.1016/j.solener.
2010.02.006.

[45] Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network
(ANN) modeling and its application in pharmaceutical research. J Pharm Biomed
Anal 2000;22(5):717–27. http://dx.doi.org/10.1016/S0731-7085(99)00272-1.

[46] Çepelioğullar Ö, Mutlu İ, Yaman S, Haykiri-Acma H. A study to predict pyrolytic
behaviors of refuse-derived fuel (RDF): Artificial neural network application. J
Anal Appl Pyrolysis 2016;122:84–94. http://dx.doi.org/10.1016/j.jaap.2016.10.
013.

[47] Benali L, Notton G, Fouilloy A, Voyant C, Dizene R. Solar radiation forecast-
ing using artificial neural network and random forest methods: Application
to normal beam, horizontal diffuse and global components. Renew Energy
2019;132:871–84. http://dx.doi.org/10.1016/j.renene.2018.08.044.

[48] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, p. 770–8. http://dx.doi.org/10.1109/CVPR.2016.90.

[49] Wen S, Buyukada M, Evrendilek F, Liu J. Uncertainty and sensitivity analyses of
co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression
and machine-learning models. Renew Energy 2020;151:463–74. http://dx.doi.
org/10.1016/j.renene.2019.11.038.

[50] Zhang J, Wang P, Gao RX. Deep learning-based tensile strength prediction in
fused deposition modeling. Comput Ind 2019;107:11–21. http://dx.doi.org/10.
1016/j.compind.2019.01.011.

[51] Li F, Wu J, Dong F, Lin J, Sun G, Chen H, et al. Ensemble machine learning
systems for the estimation of steel quality control. In: 2018 IEEE international
conference on big data (big data). IEEE; 2018, p. 2245–52. http://dx.doi.org/
10.1109/BigData.2018.8622583.

[52] Yang H, Park M, Cho M, Song M, Kim S. A system architecture for manufacturing
process analysis based on big data and process mining techniques. In: 2014
IEEE international conference on big data (big data). IEEE; 2014, p. 1024–9.
http://dx.doi.org/10.1109/BigData.2014.7004336.

[53] Hines P, Rich N. The seven value stream mapping tools. Int J Oper Prod Manag
1997. http://dx.doi.org/10.1108/01443579710157989.

[54] Wang P, Wu P, Chi H-L, Li X. Adopting lean thinking in virtual reality-based
personalized operation training using value stream mapping. Autom Constr
2020;119:103355. http://dx.doi.org/10.1016/j.autcon.2020.103355.

[55] Heravi G, Firoozi M. Production process improvement of buildings’ prefab-
ricated steel frames using value stream mapping. Int J Adv Manuf Technol
2017;89(9–12):3307–21. http://dx.doi.org/10.1007/s00170-016-9306-9.

[56] Leusin ME, Frazzon EM, Uriona Maldonado M, Kück M, Freitag M. Solving the
job-shop scheduling problem in the industry 4.0 era. Technologies 2018;6(4):107.
http://dx.doi.org/10.3390/technologies6040107.

[57] Dias LS, Pattison RC, Tsay C, Baldea M, Ierapetritou MG. A simulation-based
optimization framework for integrating scheduling and model predictive control,
and its application to air separation units. Comput Chem Eng 2018;113:139–51.
http://dx.doi.org/10.1016/j.compchemeng.2018.03.009.

[58] Negri E, Ardakani HD, Cattaneo L, Singh J, Macchi M, Lee J. A digital twin-
based scheduling framework including equipment health index and genetic
algorithms. IFAC-PapersOnLine 2019;52(10):43–8. http://dx.doi.org/10.1016/j.
ifacol.2019.10.024.

http://dx.doi.org/10.1016/j.compind.2015.10.001
http://dx.doi.org/10.1109/ACCESS.2017.2735538
http://dx.doi.org/10.1007/s12652-018-1032-8
http://dx.doi.org/10.1007/s12652-018-1032-8
http://dx.doi.org/10.1007/s12652-018-1032-8
http://dx.doi.org/10.1016/j.cie.2019.01.036
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1016/j.cie.2020.106773
http://dx.doi.org/10.1016/j.cie.2020.106773
http://dx.doi.org/10.1016/j.cie.2020.106773
http://dx.doi.org/10.1016/j.cie.2020.106947
http://dx.doi.org/10.1016/j.cie.2020.106947
http://dx.doi.org/10.1016/j.cie.2020.106947
http://dx.doi.org/10.1016/j.compind.2020.103244
http://dx.doi.org/10.1016/j.compind.2020.103298
http://dx.doi.org/10.1016/j.compind.2020.103298
http://dx.doi.org/10.1016/j.compind.2020.103298
http://dx.doi.org/10.1016/j.cie.2020.106749
http://dx.doi.org/10.1016/j.cie.2018.09.034
http://dx.doi.org/10.1016/j.cie.2020.106797
http://dx.doi.org/10.1016/j.procir.2018.03.212
http://dx.doi.org/10.1016/j.procir.2018.03.212
http://dx.doi.org/10.1016/j.procir.2018.03.212
http://dx.doi.org/10.1007/s00521-019-04119-7
http://dx.doi.org/10.1007/s00521-019-04119-7
http://dx.doi.org/10.1007/s00521-019-04119-7
http://dx.doi.org/10.1016/j.agwat.2019.105758
http://dx.doi.org/10.1016/j.elerap.2018.08.002
http://dx.doi.org/10.1016/j.frl.2018.12.032
http://dx.doi.org/10.1016/j.frl.2018.12.032
http://dx.doi.org/10.1016/j.frl.2018.12.032
http://dx.doi.org/10.1016/j.apsb.2019.04.004
http://dx.doi.org/10.1016/j.apsb.2019.04.004
http://dx.doi.org/10.1016/j.apsb.2019.04.004
http://dx.doi.org/10.1145/3349341.3349400
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb31
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb31
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb31
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb31
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb31
http://dx.doi.org/10.1016/j.applthermaleng.2020.115747
http://dx.doi.org/10.1016/j.applthermaleng.2018.12.031
http://dx.doi.org/10.1016/j.applthermaleng.2018.12.031
http://dx.doi.org/10.1016/j.applthermaleng.2018.12.031
http://dx.doi.org/10.1109/ICIT45562.2020.9067286
http://dx.doi.org/10.1145/3389189.3389202
http://dx.doi.org/10.1016/j.jcp.2017.07.050
http://dx.doi.org/10.1016/j.jcp.2017.07.050
http://dx.doi.org/10.1016/j.jcp.2017.07.050
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb37
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb37
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb37
http://dx.doi.org/10.1214/aos/1176350052
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb39
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb39
http://refhub.elsevier.com/S2214-7160(21)00017-8/sb39
http://dx.doi.org/10.1109/CVPR.2007.383105
http://dx.doi.org/10.1186/1753-6561-6-S2-S10
http://dx.doi.org/10.1186/1753-6561-6-S2-S10
http://dx.doi.org/10.1186/1753-6561-6-S2-S10
http://dx.doi.org/10.1016/j.eswa.2019.07.033
http://dx.doi.org/10.1016/j.eswa.2019.07.033
http://dx.doi.org/10.1016/j.eswa.2019.07.033
http://dx.doi.org/10.1145/1229428.1229479
http://dx.doi.org/10.1145/1229428.1229479
http://dx.doi.org/10.1145/1229428.1229479
http://dx.doi.org/10.1016/j.solener.2010.02.006
http://dx.doi.org/10.1016/j.solener.2010.02.006
http://dx.doi.org/10.1016/j.solener.2010.02.006
http://dx.doi.org/10.1016/S0731-7085(99)00272-1
http://dx.doi.org/10.1016/j.jaap.2016.10.013
http://dx.doi.org/10.1016/j.jaap.2016.10.013
http://dx.doi.org/10.1016/j.jaap.2016.10.013
http://dx.doi.org/10.1016/j.renene.2018.08.044
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/j.renene.2019.11.038
http://dx.doi.org/10.1016/j.renene.2019.11.038
http://dx.doi.org/10.1016/j.renene.2019.11.038
http://dx.doi.org/10.1016/j.compind.2019.01.011
http://dx.doi.org/10.1016/j.compind.2019.01.011
http://dx.doi.org/10.1016/j.compind.2019.01.011
http://dx.doi.org/10.1109/BigData.2018.8622583
http://dx.doi.org/10.1109/BigData.2018.8622583
http://dx.doi.org/10.1109/BigData.2018.8622583
http://dx.doi.org/10.1109/BigData.2014.7004336
http://dx.doi.org/10.1108/01443579710157989
http://dx.doi.org/10.1016/j.autcon.2020.103355
http://dx.doi.org/10.1007/s00170-016-9306-9
http://dx.doi.org/10.3390/technologies6040107
http://dx.doi.org/10.1016/j.compchemeng.2018.03.009
http://dx.doi.org/10.1016/j.ifacol.2019.10.024
http://dx.doi.org/10.1016/j.ifacol.2019.10.024
http://dx.doi.org/10.1016/j.ifacol.2019.10.024

	Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem
	Introduction
	Method
	Machine learning
	LightGBM fan2019light,ma2018study,sun2020novel,zhao2019predicting,song2019prediction
	Gaussian process lv2020durability,kumari2019ash,zhu2020prognostics,faghihpirayesh2020motor,raissi2017machine
	Ridge regression li1986asymptotic,pasha2004application,an2007face,ogutu2012genomic
	Artificial neural network

	Machine scheduling

	Experiments
	Results
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


