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A B S T R A C T

This paper addresses a new Mixed-model Assembly Line Sequencing Problem in the Footwear industry. This
problem emerges in a large company, which benefits from advanced automated stitching systems. However,
these systems need to be managed and optimised. Operators with varied abilities operate machines of various
types, placed throughout the stitching lines. In different quantities, the components of the various shoe models,
placed in boxes, move along the lines in either direction. The work assumes that the associated balancing
problems have already been solved, thus solely concentrating on the sequencing procedures to minimise the
makespan.

An optimisation model is presented, but it has just been useful to structure the problems and test
small instances due to the practical problems’ complexity and dimension. Consequently, two methods were
developed, one based on Variable Neighbourhood Descent, named VND-MSeq, and the other based on Genetic
Algorithms, referred to as GA-MSeq.

Computational results are included, referring to diverse instances and real large-size problems. These results
allow for a comparison of the novel methods and to ascertain their effectiveness. We obtained better solutions
than those available in the company.
1. Introduction

The production processes that rely on fashion have changed drasti-
cally. The footwear industry is one of those industries that has grown
far beyond satisfying a basic human need and has had to modernise
facilities, evolve planning methods, and respond to new and permanent
market demands. In particular, there is a strong constraint to produce
an increasing number of models of each category (women’s, men’s
and children’s shoes), according to people’s desires, while reducing the
required quantities for each category. Some companies, as in the case
of this study, have invested in modern facilities that can handle such
demands by running a large number of models simultaneously on the
assembly lines. However, this requires excellent planning to ensure that
the plants are well balanced and the operations are well coordinated.

The manufacture of shoes usually goes through essential processes
such as cutting, stitching and assembling. A specific sequence of tasks
must be followed for each shoe model, and the processing times for
each task are different for each shoe model. In the cutting phase,
materials are cut to prepare them for entering the production lines. In
particular, the cutting line produces the material for the construction
of the upper part of the shoe. The next step is the pre-stitching stage,
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E-mail addresses: parisa.sadeghi@inesctec.pt (P. Sadeghi), rui.d.rebelo@inesctec.pt (R.D. Rebelo), jsf@inesctec.pt (J.S. Ferreira).

where the workpieces are assembled for the stitching line. In the stitch-
ing line, the upper part of the shoe is made and sewed by the stitching
machines. Various edge treatments are performed on the material to
complete the upper parts. At this stage, the expertise of the operator
is of great importance. Finally, the upper and down parts are usually
assembled together and the shoes are completely finished.

However, the focus of this research is on the stitching process that
takes place at Kyaia, a large footwear company in Portugal whose
production is almost entirely for worldwide export. The company has
invested in completely new flexible assembly systems that must be
adequately balanced and sequenced. These automated stitching systems
comprise workstations consisting of specialised workers and machines,
and the boxes containing the shoe components move in any direction
between the workstations. Fig. 1 illustrates the situation. As mentioned
earlier, there are different models in the lines; each model has a unique
routing of various tasks, while each task in each routing has a different
processing time.

Considering that the production plan changes rapidly, it is critical to
know how many workstations are needed and how to assign operators
vailable online 22 June 2021
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Fig. 1. Company assembly systems.
Fig. 2. Sequencing problem.
and tasks to each workstation. In short, the new practical mixed-
model problem to solve is the sequencing of the tasks of operators and
machines in the stitching lines to minimise the maximum completion
time. The unique characteristics of the lines and their size justify
the originality and complexity of the problem. Fig. 2 intends to help
describe the sequencing problem.

Balancing and Sequencing problems are often linked when it comes
to assembly systems. Balancing essentially involves planning the con-
figuration of assembly systems, while sequencing involves determining
the order of tasks at each workstation to optimise one or more ob-
jectives. According to Scholl and Becker [1],Becker and Scholl [2]
and Sivasankaran and Shahabudeen [3], there are diverse types of
assembly line problems. They can be classified as Simple Assembly
Line (SAL), which refers to the assembly lines containing one model
in the line, and Mixed Model Assembly line (MAL), which refers to
the assembly lines containing different models of the same product at
the same time in the line. Sivasankaran and Shahabudeen [3] present
a literature review of assembly line problems, but most works about
mixed-model lines are purely academic and relatively few deal with
a real setting implemented results. Some references that concern real-
world cases are Chen et al. [4],Oksuz et al. [5], and Sadeghi et al. [6].
Moreover, as Xiaobo and Ohno [7] and Lopes et al. [8] claim, mixed-
model assembly lines are used in some production systems because they
balance product diversity and production efficiency. Based on Xiaobo
and Ohno [7], if a proper mixed-model balance is already achieved and
the focus is on sequencing, we face a mixed-model sequencing problem.
That is precisely the situation of this investigation (MALSP - Mixed-
model Assembly Line Sequencing Problems). We assume existing solutions
for the related balancing problems. The publications Sadeghi et al.
[9] and Sadeghi et al. [6] describe how that is accomplished. General
references on line sequencing are Dar-El and Cother [10], Graham
et al. [11], Miltenburg [12], Tavakkoli-Moghaddam and Rahimi-Vahed
[13] and Boysen et al. [14].
2

We have developed and tested an optimisation model for the se-
quencing problem to describe and understand the case under study.
However, it could not provide optimal solutions for the company’s
real instances due to their complexity and size. Consequently, we
resorted to approximation methods to obtain good quality solutions in
a short computation time. The decision was made to choose Variable
Neighbourhood Descent (VND) and Genetic Algorithms (GA). The pro-
posed solution methods, VND-MSeq and GA-MSeq, are an appropriate
adaptation of these metaheuristics to deal with the sequencing problem.
We emphasise that a metaheuristic choice in a practical context is a
straightforward and utterly sustained procedure, but it seemed that
these have an excellent potential to be adapted to the case under study.
Section 5 also discusses this choice in more detail. Moreover, VND
has not been directly applied to the given (MALSP) problem to our
knowledge.

The paper is organised as follows. Section 2 mainly contains a
detailed description of the real case and the form of the decision prob-
lem. Section 3 presents the relevant literature. Section 4 describes the
industrial sequencing problem and provides an optimisation model that
contributes to understanding the problem and solving small instances.
Section 5 presents the solution methods VND-MSeq, based on Variable
Neighbourhood Descent, and the solution method GA-MSeq, based on
Genetic Algorithms. The computational tests, results and comparisons
of the two methods are given in Section 6. Finally, we draw the main
conclusions in Section 7.

2. Industrial application

This section consists of a detailed description of the industrial appli-
cation. There are two different automated stitching systems located in
two separate places, as Fig. 1 shows. In both systems, a workstation is
a location with a machine, which can be assigned to an operator. Thus,
each workstation is a combination of a machine and an operator. Fig. 3



Operations Research Perspectives 8 (2021) 100193P. Sadeghi et al.
Fig. 3. A workstation in the stitching line.
Fig. 4. Simplified design of the U-shaped smaller stitching line.

shows the workstations. Two or more workstations may be performing
the same operation simultaneously, but it is possible that sometime
later, the operation of one of them is changed. Solving the sequencing
problems is determining the order and time of the operations at each
workstation, optimising one or more objectives.

Each machine at a workstation faces a conveyor. The boxes con-
taining the different shoe models of a certain size and colour move
between the workstations in each direction. The number of maximum
stopping points of the conveyor or workstations is different in the two
systems; the larger has 190 stopping points, and the smaller has about
42. The layout of these two sewing systems is different, the larger
consists of four parallel lines, the smaller has a ε𝑈ε shape, but with
serial manner. The larger system has, on one side, a warehouse (with
boxes) connected to the conveyor. This one has a special passage, near
the workstations and the warehouse, to change the boxes’ position and
allow them to move in any direction to the desired workstation. Hence,
sometimes, the boxes go to the warehouse and get back to the right
workstation, quickly and easily. The warehouse is at the end of the
lines and there is a conveyor connecting them, making the movement
easy and fast. In the smaller system there are two conveyors with some
separation in height between them. Fig. 4 is a simplified drawing of
this system with the two conveyors. Although the system has space for
buffers, experience shows that it is not necessary to consider them in
the modelling procedure.

There are diverse shoe models in the line simultaneously, depending
on the customer’s orders, and the only limit to the number of models
is the line’s capacity. The number of available shoe models in the lines
is explained in Section 6 which is the computational results.

Always the models are placed in a box, the maximum number in
the box is 10 pairs and this number is defined by the company, the
3

Table 1
Model routings of: SeqInstance.

Model Task Sequence Processing time Order quantity

A 10 2 7 20
A 20 1 8 20
A 30 3 4 20
B 10 1 3 10
B 20 2 5 10
B 30 4 5 10
B 40 3 3 10
B 50 5 6 10
C 20 2 7 29
C 40 1 3 29

balancing problem covers it, for more information see Sadeghi et al.
[6]. As mentioned before, the created boxes and the quantities of them
are not relevant for the sequencing problem, since they are defined.
However, for the calculation of the processing time, that must be taken
into account since it must be multiplied by the processing time of
each pair. As shown in Fig. 2, the processing time of tasks is different
according to the model.

To better understand the nature of the problem being solved, an
instance named SeqInstance is provided. Table 1 contains the three
models of SeqInstance, the tasks, and the respective model routings.
Table 2 shows the mapping of the different boxes’ tasks and models to
the operators and machines. Note that the maximum quantity in each
box is set to 10 pairs of shoes.

There are priority constraints between tasks and constraints on the
scheduling of operators and machines. Table 3 shows the input data
and the solutions to be obtained. What are the starting time (S: Time)
and ending time (E: Time) of task 20 of model 𝐴 in box 1 assigned to
operator 𝑂𝑝1 and machine 𝑀𝑎1? This 𝑂𝑝1 and 𝑀𝑎1 are the names of
an operator and a machine and they are defined in the balancing so
they are now the input parameter.

3. Relevant literature

This section presents a review of the relevant literature on MALSP,
while also considering the practical problem of this work. Boysen et al.
[14]) provided a classification for MALSP using a tuple notation that
reflects features such as workstation boundaries, response to imme-
diate work overload, setups, processing times, parallel workstations,
concurrent work, number of workstations, start discipline, homogeneity
of workstations, return speed, line layout, and goals. Bautista et al.
[15] presented an extension of MALSP to deal with work overload and
identified several mixed-product sequencing problems.
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Table 2
Task assignment of SeqInstance (result of balancing) which is input data for
sequencing.

Task Model Box no. Box quantity Operator Machine

10 A 1 10 Op2 Ma2
20 A 1 10 Op1 Ma1
30 A 1 10 Op6 Ma4
10 A 2 10 Op2 Ma2
20 A 2 10 Op1 Ma1
30 A 2 10 Op6 Ma4
10 B 1 10 Op2 Ma2
20 B 1 10 Op1 Ma1
30 B 1 10 Op6 Ma4
40 B 1 10 Op4 Ma3
50 B 1 10 Op4 Ma5
20 C 1 10 Op1 Ma1
40 C 1 10 Op4 Ma3
20 C 2 10 Op6 Ma4
40 C 2 10 Op4 Ma3
20 C 3 9 Op6 Ma4
40 C 3 9 Op4 Ma3

Table 3
Input data and solutions that should be obtained for SeqInstance.

Task Model Box no. Operator Machine S: Time E: Time

20 A 1 Op1 Ma1 ? ?

There are varied types of sequencing problems and various ways of
olving them, such as accurate and approximate methods. For example,

mixed-model Just In Time (JIT ) problem is solved by Miltenburg
et al. [16] and Ng and Mak [17]. Miltenburg et al. [16] employed
dynamic programming. Ng and Mak [17] mentioned it is difficult to
solve such a problem mainly when there is a significant number of
products with high production quantities, the solution method used
is Branch and Bound (𝐵&𝐵). Xiaobo and Ohno [7] applied B&B to
olve the problem of finding an optimum sequence that decreases the
otal line stoppage time for the mixed-model assembly line in a JIT
roduction system. Bolat et al. [18] and Bard et al. [19] also adopted
&B methods to schedule jobs in an assembly line.

By prioritising all the tasks waiting for processing on the ma-
hines, dispatching rules can generate solutions. The prioritisation may
onsider task and machine attributes. When a machine is freed, a
ispatching rule examines the waiting tasks and chooses the highest
riority task. According to Pinedo and Chao [20], there exist numer-
us basic dispatching rules, but, in their work, they mentioned the
ost used ones. Xanthopoulos et al. [21] applied a series of simula-

ion experiments involving seventeen dispatching rules and considered
our. Kasemset and Pintaruean [22] examined six dispatching rules for
he given sequencing problem of their work.

Below are some pertinent publications that deal with our research
roblems about the Variable Neighbourhood Search (VNS), VND and

GA. VND and GA are the ones that are used in this work, and VNS is
in the same category as VND.

Prandtstetter and Raidl [23] combined integer linear programming
with VNS and considered six distinct neighbourhood structures; they
mentioned that the results perform well on real-world instances. Yaz-
dani et al. [24] presented a VNS algorithm to find the appropriate
sequencing of operations on the machines to optimise the defined
objective. In the study by Driessel and Mönch [25], job scheduling on
parallel machines is addressed. Precedence constraints and sequence-
dependent setup times are present in their paper and the solving
approaches are several VNS methods. Chen et al. [4] scheduled a
job production sequence with a hybrid approach, by VNS and Parti-
cle Swarm Optimisation (PSO), which achieves a near-optimal solu-
tion. Zhang et al. [26] mentioned that VNS algorithm has the excellent
capability of local search with systematic neighbourhood search struc-
tures, while others such as Adamo et al. [27] used VND with a single
neighbourhood structure.
4

GA metaheuristic is usually employed in sequencing and scheduling
problems. Bierwirth and Mattfeld [28] used GA to reduce the mean
flow-time. Cochran et al. [29] applied a multi-population GA to solve
a multi-objective parallel machine scheduling problem. Multi-objective
GA approaches were provided by Mansouri [30] for solving a JIT
MALSP. Lei [31] carried out a study on multi-objective production
scheduling and stated that the methods involved include Evolution-
ary Algorithm (EA), GA, Tabu Search, Simulated Annealing, Genetic
Programming, Ant Colony Optimisation, Heuristics and Local search.

Regarding EA and GA, they are selected in almost half of the
researched articles. In connection with the scheduling problem, Rebai
et al. [32] solved the problem by three linear programs, a B&B algo-
rithm, a local search and a GA. According to the computational results,
the deviation of the metaheuristic solutions from the optimal solution
is minimal. In another research, Huang et al. [33] employed GA, adap-
tive learning, and heuristics integrated into a sequential GA. Hence,
highly satisfactory schedules were gained in a short period. Moradi
and Zandieh [34] solved a MALSP with an imperialist competitive
algorithm and compared their results with GA. As observed by Gen and
Lin [35], among EA, distinct versions of GA since 1970 have attracted
much attention; however, implementations vary widely. Rabbani et al.
[36] mentioned that GA is better than PSO algorithm for the given
multi-objective mixed-model two-sided assembly line sequencing prob-
lem. Zhang et al. [37] also used a GA for a multi-objective balancing
and sequencing problem of a mixed-model assembly line, attaining
better results than a non-dominated sorting genetic algorithm.

Concerning the footwear industry, the more generic references are
mentioned here. Costa and Ferreira [38] did a simulation analysis for a
flexible flow line scheduling problem in the footwear industry. Zangia-
comi et al. [39] solved a production planning and scheduling problem
for mass customisation systems; Süer et al. [40] used a three-phase
hierarchical method for solving cell loading and scheduling; Chen et al.
[41] proposed a GA on a hybrid flow shop scheduling problem. The
research from Guimarães et al. [42] focused on the macro ergonomic
evaluation of the workers, and Chen et al. [43] resort to simulation
to configure the layouts of stitching lines. Chen et al. [44] aimed at
solving a balancing problem by using a hybrid GA; Ulutas and Islier
[45] considered a dynamic facility layout problem, and Dang and Pham
[46] designed an assembly line by using simulation. Lopes et al. [47]
contemplated a scheduling problem applied to an injection moulding
machine in a footwear company. Quyen et al. [48] solved a resource-
constrained assembly line balancing problem in a single model line
and, as already mentioned, Sadeghi et al. [6] dealt with MALBP in this
industry. Fani et al. [49] combined simulation and optimisation into a
footwear company model to solve a planning and scheduling problem.

The literature review that the authors carried out did not reveal
any sequencing problem similar to the complex one treated in this
article. That is not surprising since the case under study originates from
new automatic assembly systems designed specifically for footwear
production.

Attending to Boysen et al. [14], we can identify many characteristics
of the industrial problem. It is a mixed-model sequencing problem;
considering the homogeneity of workstations, they are composed of
operators and machines with the same characteristics (operator and
machine), but their capabilities are distinct. Regarding the layout work-
stations are in a serial manner; in what concerns parallelism, some
workstations can work on the same operation simultaneously. The
processing times of tasks are fixed. On the other hand, some realistic
features do not seem covered in that work. The systems have conveyors
that allow the boxes with components to move in distinct directions.
A warehouse is accessible automatically whenever needed. Besides,
the unity is not a pair of shoes but pairs in boxes, moving in the
systems. Consequently, the solution methods proposed also have merit
for the originality of the adaptation and the implementation’s success,
as mentioned in the conclusions section.
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4. The problem statement

The problem type studied in this paper has already been classified
as MALSP. The footwear company has two distinct stitching systems,
which are explained in detail in Section 2. Before proceeding to the
sequencing problem, the balancing problem is resolved, which the
authors addressed in other works. Notice that the objectives of the
balancing problem are to minimise the number of workstations and
smooth the operators’ workload. In any case, and due to the strong
interaction with sequencing, we provide some general statements about
balancing. The equipment selection is considered in the balancing
because the operators have different skills and the machines are of
various types. When production orders arrive at the lines, the boxes
are prepared with a maximum quantity of 10 pairs per box; then, daily
line balancing is carried out, with the assignment of each task of a box
model to an operator and a machine, but without programming the
corresponding sequencing.

We propose now an optimisation model for the company mixed-
model assembly sequencing problem. In particular, it will help better
to understand the situation and the development of resolution methods.

Objective: The objective is to minimise the makespan, i.e., min-
imise the last completion times of all the tasks (associated with all
boxes) of all operators and machines. This objective was selected after
discussions with managers and the research team working with the
company.

The following indices, parameters and decision variables are con-
sidered in the mixed-integer optimisation model.

Indices:
𝑗, 𝑗′: index for model, 𝑗, 𝑗′ ∈ [𝐽 ], [𝐽 ] = {1, 2,… , 𝐽}
𝑖, 𝑖′: index for task, 𝑖, 𝑖′ ∈ [𝐼], [𝐼] = {1, 2,… , 𝐼}
𝑘, 𝑘′: index for number of boxes, 𝑘, 𝑘′ ∈ [𝐾], [𝐾] = {1, 2,… , 𝐾}
𝑜: index for operator, 𝑜 ∈ [𝑂], [𝑂] = {1, 2,… , 𝑂}
𝑚: index for machine, 𝑚 ∈ [𝑀], [𝑀] = {1, 2,… ,𝑀}
Input parameters:
𝑃𝑖𝑗 = processing time of task 𝑖 for model 𝑗
𝑆𝑖𝑗𝑘 = sequence of task 𝑖 for model 𝑗
𝑄𝑗𝑘 = quantity of model 𝑗 in box 𝑘
𝐸𝐶𝑖𝑗 = earliest completion time of task 𝑖 for model 𝑗
𝑋𝑖𝑗𝑘𝑜 = 1: if task 𝑖 of model 𝑗 of box 𝑘 is assigned to operator 𝑜; 0:

otherwise
𝑌𝑖𝑗𝑘𝑚 = 1: if task 𝑖 of model 𝑗 of box 𝑘 is assigned to machine 𝑚; 0:

otherwise
𝐴𝑣 = available time
𝐺𝑀 = great number
Decision variables:
𝐶𝑖𝑗𝑘 = completion time of task 𝑖 of model 𝑗 of box 𝑘
𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ = 1: if completion time of task 𝑖′ of model 𝑗′ of box 𝑘′ is

greater than completion time of task 𝑖 of model 𝑗 of box 𝑘; 0: otherwise
𝐶𝑚𝑎𝑥: the largest completion time

Optimisation model:

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (𝐶𝑚𝑎𝑥)

subject to:

𝐶𝑖′𝑗𝑘 ≥ 𝐶𝑖𝑗𝑘 + 𝑃𝑖′𝑗𝑄𝑗𝑘, 𝑖, 𝑖′ ∈ [𝐼], 𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾], 𝑆𝑖′𝑗 > 𝑆𝑖𝑗

(C1)
𝐶𝑖𝑗𝑘 ≥ 𝐶𝑖′𝑗′𝑘′ + 𝑃𝑖𝑗𝑄𝑗𝑘 − 𝐺𝑀(𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),

𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 ≠ 𝑗′), 𝑘, 𝑘′ ∈ [𝐾],
𝑜 ∈ [𝑂] 𝑋𝑖𝑗𝑘𝑜𝑋𝑖′𝑗′𝑘′𝑜 = 1

𝐶𝑖′𝑗′𝑘′ ≥ 𝐶𝑖𝑗𝑘 + 𝑃𝑖′𝑗′𝑄𝑗′𝑘′ − 𝐺𝑀(1 − 𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),
𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 ≠ 𝑗′), 𝑘, 𝑘′ ∈ [𝐾],

(C2)
5

𝑜 ∈ [𝑂] 𝑋𝑖𝑗𝑘𝑜𝑋𝑖′𝑗′𝑘′𝑜 = 1 t
𝐶𝑖𝑗𝑘 ≥ 𝐶𝑖′𝑗′𝑘′ + 𝑃𝑖𝑗𝑄𝑗𝑘 − 𝐺𝑀(𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),
𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 = 𝑗′), 𝑘, 𝑘′ ∈ [𝐾], (𝑘 ≠ 𝑘′),

𝑜 ∈ [𝑂] 𝑋𝑖𝑗𝑘𝑜𝑋𝑖′𝑗′𝑘′𝑜 = 1
𝐶𝑖′𝑗′𝑘′ ≥ 𝐶𝑖𝑗𝑘 + 𝑃𝑖′𝑗′𝑄𝑗′𝑘′ − 𝐺𝑀(1 − 𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),

𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 = 𝑗′), 𝑘, 𝑘′ ∈ [𝐾], (𝑘 ≠ 𝑘′),
𝑜 ∈ [𝑂] 𝑋𝑖𝑗𝑘𝑜𝑋𝑖′𝑗′𝑘′𝑜 = 1

(C3)

𝐶𝑖𝑗𝑘 ≥ 𝐶𝑖′𝑗′𝑘′ + 𝑃𝑖𝑗𝑘 − 𝐺𝑀(𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),
𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 ≠ 𝑗′), 𝑘, 𝑘′ ∈ [𝐾],

𝑚 ∈ [𝑀] 𝑌𝑖𝑗𝑘𝑚𝑌𝑖′𝑗′𝑘′𝑚 = 1
𝐶𝑖′𝑗′𝑘′ ≥ 𝐶𝑖𝑗𝑘 + 𝑃𝑖′𝑗′𝑘′ − 𝐺𝑀(1 − 𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),

𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 ≠ 𝑗′), 𝑘, 𝑘′ ∈ [𝐾],
𝑚 ∈ [𝑀] 𝑌𝑖𝑗𝑘𝑚𝑌𝑖′𝑗′𝑘′𝑚 = 1

(C4)

𝐶𝑖𝑗𝑘 ≥ 𝐶𝑖′𝑗′𝑘′ + 𝑃𝑖𝑗𝑘 − 𝐺𝑀(𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),
𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 = 𝑗′), 𝑘, 𝑘′ ∈ [𝐾], (𝑘 ≠ 𝑘′),

𝑚 ∈ [𝑀] 𝑌𝑖𝑗𝑘𝑚𝑌𝑖′𝑗′𝑘′𝑚 = 1
𝐶𝑖′𝑗′𝑘′ ≥ 𝐶𝑖𝑗𝑘 + 𝑃𝑖′𝑗′𝑘′ − 𝐺𝑀(1 − 𝑈𝑖𝑗𝑘𝑖′𝑗′𝑘′ ),

𝑖, 𝑖′ ∈ [𝐼], 𝑗, 𝑗′ ∈ [𝐽 ], (𝑗 = 𝑗′), 𝑘, 𝑘′ ∈ [𝐾], (𝑘 ≠ 𝑘′),
𝑚 ∈ [𝑀] 𝑌𝑖𝑗𝑘𝑚𝑌𝑖′𝑗′𝑘′𝑚 = 1

(C5)

𝐶𝑖𝑗𝑘 ≤ 𝐴𝑣, 𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾] (C6)

𝐶𝑖𝑗𝑘 ≥ 𝐸𝐶𝑖𝑗𝑄𝑗𝑘, 𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾] (C7)

𝐶𝑖𝑗𝑘 ≤ 𝐶𝑚𝑎𝑥, 𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾] (C8)

Here are some explanations about the constraints:
(C1): The sequence of any task 𝑖 for each model 𝑗 inside box 𝑘 must

e respected.
(C2) and (C3): Each operator 𝑜 must work on only one task 𝑖 of

odel 𝑗 of box 𝑘, at any time (tasks of the same operator do not overlap
n time).

(C4) and (C5): Each machine 𝑚 must work on only one task 𝑖 of
odel 𝑗 of box 𝑘, at any time (tasks of the same machine do not overlap

n time).
(C6): The completion time of task 𝑖 of model 𝑗 of box 𝑘 should be

ess than the available time.
(C7): The completion time of task 𝑖 of model 𝑗 of box 𝑘 cannot be

ess than the earliest competition time.
(C8): Cmax (Makespan) is the longest completion time.
The optimisation model was developed with CPLEX optimisation

tudio. It helped gain insight into the problem’s structure, solve small
ize instances, and evaluate the approximate methods VND-MSeq and
A-MSeq, to present subsequently. However, it was not possible to
ttain optimal solutions for the large real industrial instances. We will
eturn to this subject in Section 6.

. Solution methods

This section proposes and explains two solution methods, first the
ND-MSeq and then the GA-MSeq. The link: https://drive.inesctec.pt/
/rZEN9nLKfRcemLX gives access to more details, examples and images
hat can help clarify the subjects of this section.

.1. Solution method: VND-MSeq

VND is chosen as one of the solution approaches to the sequencing
roblem (MALSP). This metaheuristic selection took into account its
daptability to the problem, which is very important, and the existing
xperience. It should be noted that this method also has the advan-
age of facilitating diversification when testing diverse neighbourhood
tructures. Further, to our knowledge, VND was not directly applied to
ALSP.

Variable Neighbourhood Descent Mixed-Model Sequencing (VND-
Seq) is composed of two parts. The first part is a constructive heuristic

o generate the initial solution; in the second part, VND is used to
mprove it. The assignment of the tasks, related to the various models,
o the operators and machines, is determined by the approach provided
n Sadeghi et al. [6]. Now, the issue is the use of VND-MSeq to sequence

he tasks/boxes on the production lines.

https://drive.inesctec.pt/s/rZEN9nLKfRcemLX
https://drive.inesctec.pt/s/rZEN9nLKfRcemLX
https://drive.inesctec.pt/s/rZEN9nLKfRcemLX
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Table 4
LNS values for different tasks.

Task Model Box no. LNS value

10 A 1 1
20 A 1 2
30 A 1 0
10 A 2 1
20 A 2 2
30 A 2 0
10 B 1 4
20 B 1 3
30 B 1 1
40 B 1 2
50 B 1 0
20 C 1 0
40 C 1 1
20 C 2 0
40 C 2 1
20 C 3 0
40 C 3 1

5.1.1. VND-MSeq: Constructive heuristic
Different dispatching rules are used to produce possible initial so-

lutions for VND-MSeq. Thus, the one which is closer to the average
objective function is chosen. According to Pinedo and Chao [20] and
as mentioned earlier, there are many dispatching rules, but the ones
applied in this section are as follows:

1. Largest Number of Successors (LNS);
2. Critical Path (CP);
3. Longest Processing Time (LPT);
4. Shortest Processing Time (SPT);

The first rule, which is the Largest Number of Successors, is used
in three distinctive ways, and the Critical Path method is applied in
two manners. The Longest Processing Time and Shortest Processing Time

ethods are each used in one way. Therefore, seven Tables of Tasks
TT) with different arrangements, and consequently, seven possible
nitial solutions, are constructed. As mentioned before, the one closer
o the average objective function will be chosen as the initial solution.
oreover, a TT comprises all the available tasks; by changing the task’s

osition in that table, new solutions will be achieved. Next, we describe
he applied dispatching rules in more detail.
Largest Number of Successors (LNS): LNS rule gets a task and

alculates the number of tasks next to it in that task’s model routing.
he LNS value for task 10 of model 𝐴 is 1 because there is only one
ask after task 10 in that model’s routing diagram. This value for task
0 of the same model (𝐴) is 2. Table 4 shows LNS values for all tasks
f SeqInstanc. This table is a sample of a TT for the given example.

After calculating these values, they are sorted, considering the LNS
alues from the higher to the lower ones. This sorting process is done
n three ways, and consequently, they could generate three different
olutions. These three ways are explained in detail with the example in
he given link at the beginning of this section (Section 5).
Critical Path (CP): CP rule, for each task, adds the processing

imes of the selected task and of the tasks that are next to it, in the
outing diagram of the picked task. Table 5 displays the CP values
or SeqInstance. Then, they are sorted in a descending mode but in
wo different ways. Therefore, they build two sequences of tasks and
s a result, two different initial solutions are generated. Generally,
he CP method gives priority to the tasks with higher CP values. The
ables related to these two ways are explained in the given link at the
eginning of this section (Section 5).
Longest Processing Time (LPT) and Shortest Processing Time

SPT): These two rules consider each task’s processing time without any
ttention to its sequence in the related model routing diagram. Tasks
re sorted in the LPT from the higher to the lower values, while on
he SPT method, it happens oppositely: the sorting process is from the
6

Table 5
Table of tasks - CP values for different tasks.

Task Model Box no. Box quantity Box processing
time

CP value

10 A 1 10 70 110
20 A 1 10 80 190
30 A 1 10 40 40
10 A 2 10 70 110
20 A 2 10 80 190
30 A 2 10 40 40
10 B 1 10 30 220
20 B 1 10 50 190
30 B 1 10 50 110
40 B 1 10 30 140
50 B 1 10 60 60
20 C 1 10 70 70
40 C 1 10 30 100
20 C 2 10 70 70
40 C 2 10 30 100
20 C 3 9 63 63
40 C 3 9 27 90

Table 6
Initial solution following by LNS, it is also a table of tasks.

Task Model Box no. S: Time E: Time

10 B 1 0 30
20 B 1 30 80
20 A 1 80 160
20 A 2 160 240
40 B 1 80 110
10 A 1 160 230
10 A 2 240 310
30 B 1 110 160
40 C 1 0 30
40 C 2 30 60
40 C 3 110 137
30 A 1 230 270
30 A 2 310 350
50 B 1 160 220
20 C 1 240 310
20 C 2 160 230
20 C 3 350 413

lower to the higher values. Since the sequence of the tasks in these two
approaches is not considered, then the constructive heuristic changes
the task position of a TT task to create a feasible sequence of tasks. Two
tables of the example related to the LPT and SPT are presented in the
given link at the beginning of this section (Section 5).

Feasible solutions are created by knowing which operator and ma-
chine are assigned to each TT task and considering the earliest starting
time of the tasks. Operators and machines should not overlap in time
to perform the tasks. As an example, the initial solution of Table 6 is
obtained by the first way of the method LNS. Finally, after generating
the seven potential initial solutions for improvement by the metaheuris-
tic VND, the one that is closest to the average is selected as the initial
solution.

In the next section, the improvement process will be explained.

5.1.2. VND-MSeq: Variable neighbourhood descent
The metaheuristic VND is now applied as an improvement proce-

dure. According to Driessel and Mönch [25], VNS often outperform
other methods for scheduling based approaches. Additionally, accord-
ing to Roshanaei et al. [50], VNS metaheuristic technique, has quickly
gained widespread success. Also, according to Amiri et al. [51], VNS is
one of the famous metaheuristics, which has been successfully applied
to solve optimisation problems. It can escape from local optima through
systematic changes of the neighbourhood structures during the search
process. The used VND follows the main structures of VNS, but the

change of neighbourhoods is defined in a deterministic way. Five
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Fig. 5. Ns1, swap.
Fig. 6. General rules of VND-MSeq solution method.
neighbourhood structures (Ns1 - Ns5) will be designed, in the following,
to apply VND.

As mentioned in the previous section, a TT represents a solution.
The position of each task in the table shows its priority for assignment
to each operator and machine. By changing the position of a task in a
solution, it is possible to create a new solution. Therefore, the concept
of neighbourhood structures can be used to change task positions in any
solution. However, any change to the position of a task can result in
an infeasible TT. Consequently, each neighbourhood structure should
be applied in such a way as to avoid infeasibility. The dimension of
each neighbourhood structure is firstly based on the given problem and,
secondly, related to the defined numbers of search iterations and of
neighbour solutions, which should be searched in each iteration. These
aspects will be explained in more detail later.

A key issue linked with each neighbourhood structure is related
to feasibility, which should occur in all Ns1 to Ns5. By randomly (or
by any other rule) changing the sequence of a task, an infeasible TT
7

may be obtained. One possibility to avoid this situation is to change
the position of the tasks in the table so that tasks that are before to
the task selected in the routing diagram are considered first. This rule
is called Precedence Preserving and used in the whole paper to avoid
infeasibility concerning model routings. Finally, the objective function
will be calculated for the sequences of tasks (different solutions).

Ns1: This neighbourhood is based on the Swap structure and works
as follows. Firstly, random numbers between zero and the number
of available tasks that show each task’s position are generated. For
small instances, two random numbers are considered for one swap
and for large instances, eight random values are considered for four
swaps (eight tasks two by two). Next, the tasks are swapped by taking
the random values two by two resulting in a new sequence of tasks.
Besides, feasibility should be checked and the position of tasks should
be changed if necessary. In the SeqInstance, which is a small one, by
considering the incumbent solution of Table 6 and by generating two
random values, a new TT is organised, as shown in Fig. 5. Generally,
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in this neighbourhood space, three steps are taken as follows and as
displayed in Fig. 5.

1. The first step involves the swapping of the selected tasks by
changing their positions in the TT.

2. The second step includes a change in the positions of the tasks in
the same model routing with the previous step’s selected tasks.
These tasks are the ones with a smaller number of sequence
when compared to the picked tasks in the routing diagram. They
are named as Related tasks. That means that they should be
assigned first (the precedence preserving rule).

3. The third step requires a sequence by adding the remaining tasks
(tasks that have not been considered and changed before) in the
TT.

The number of solutions to be searched at each iteration does not
involve all neighbour solutions because of time-consuming. The num-
ber of repetitions is based on parameter tuning and specially Taguchi
Method (TMet), which is explained in Section 6.

Ns2: This neighbourhood structure is similar to the previous one
(Ns1), but instead of being swapped, tasks are transferred; it is based
on the structure Transfer. Ns2 (as in Ns1) uses two random numbers
for small instances and eight random numbers for the large ones.
Tasks from the first position (the first random value) are transferred
to the second position (the second random value). After that, to meet
the sequencing constraint, the tasks, which are before the transferred
task, should also be transferred (second step, the precedence preserving
rule). The last step, as previously mentioned, is adding the remaining
tasks. The number of searches for new solutions is the same as in Ns1,
which is tuned based on TMet. A figure related to the example and NS2
structure is in the given link at the beginning of Section 5.

Ns3: This neighbourhood is based on Transfer structure but uses
Intelligence, which takes advantage of the critical path. Ns3 is named
Transfer, Intelligence. Firstly, the critical path is obtained, and the
critical path tasks are transferred one by one to the beginning of the
TT. This gives them a priority for allocation. Afterwards, the other two
steps (2 and 3) explained before are followed. The transference of all
the critical tasks forms the first neighbour, then the next neighbour is
found by transferring some of the critical tasks. This process is repeated
until all neighbours of a current solution are considered. The number
of searched solutions in Ns3 is dependent on the dimension of each
problem. In general, 150 solutions have been used for large instances.
The related figure is in the link at the beginning Section 5.

Ns4: It is based on Transfer, Intelligence and Random Swap. In details,
Ns4 transfers all the critical path tasks and swap other tasks randomly.
The structure of the transferred critical tasks in this neighbour structure
is different from Ns3. This structure transfers in groups of two the criti-
cal path tasks to the beginning of the TT. Steps 2 and 3 are also applied
in the same way as in all other neighbourhood structures. Moreover, by
choosing four random numbers in large instances, swapping tasks are
performed for four different tasks. For small instances, a swap is not
applied. This structure searches all the neighbour solutions of a current
solution. The related figure is in the link at the beginning Section 5.

Ns5: This neighbourhood is based on Transfer, Intelligence and Ran-
dom Transfer. In details, Ns5 transfers critical path tasks and transfers
other tasks randomly. This structure is the same as Ns2, with the only
distinction associated with the tasks chosen, which are the critical path
tasks. For this reason, we did not provide a Figure. However, only one
transfer for the critical path tasks is applied for small instances, as
mentioned earlier. In large instances, two transfers are done, one for
the critical tasks and the other for the remaining tasks. The number of
search processes in this structure is the same as in Ns1 and Ns2.

VND-MSeq method starts with all the neighbourhood structures and
applies them to the current solution. Then, the best solution is chosen as
the incumbent one. The search process stays on the structure that gives
the best solution and searches that neighbourhood until obtaining an
8

Fig. 7. Generating initial populations.

improvement. Otherwise, all other structures are applied to the current
solution, and then the search moves towards the best one. This process
repeats to the number of iterations established, which is obtained based
on parameter tuning and especially TMet (see Section 6). Fig. 6 portrays
the general rules of VND-MSeq.

5.2. Solution method: GA-MSeq

The second solution method is based on GA and is called Genetic
Algorithm Mixed-Model Sequencing (GA-MSeq). According to Gen and
Lin [35] GA, among evolutionary algorithms, has attracted much atten-
tion from the 1970s, and at the same time, it is well known that GA has
an excellent exploration capability.

GA-MSeq method will also enable comparison and evaluation of
the results achieved with VND-MSeq. Different dispatching rules, such
as those in the previous section, are used for generating initial pop-
ulations but in different ways. The procedures are explained in the
following and consist of two main steps: First, the creation of the initial
populations and second, the improvement procedure by a GA.

5.2.1. GA-MSeq: Initial Population
The first step is the generation of the initial population. A diverse

set of initial solutions is used to facilitate the exploration of the search
space. Moreover, a constructive heuristic is adopted to avoid getting
infeasible solutions. The initial populations are provided by using
four dispatching rules (LNS, CP, LPT, SPT), which were explained in
Section 5.1.1. Based on these four rules, tasks are sorted in seven
different ways, as in the previous solution method (VND-MSeq). The
assignment of tasks to the operators and machines starts from the first
task of TT and continues following their orders. With this procedure,
seven solutions are generated; therefore, to reach other solutions, after
creating one primary solution based on each dispatching rule, changes
should be made in the TT. These changes modify the positions of
different tasks to get new solutions. For GA-MSeq, initial population
sizes are 70 and 28, large and small instances, respectively.

To achieve 70 solutions in large instances, nine results are ob-
tained in every seven preliminary solutions and, in small instances,
three results are obtained to have 28 solutions. Each solution should
be feasible, taking into account all the constraints that are given in
the optimisation model, but not considering the available time, as in
the previous method VND-MSeq. To sum up, the general process for
producing initial populations is shown in Fig. 7.
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Fig. 8. Configuration of a gene.

Fig. 9. A Chromosome for the SeqInstance instance.

5.2.2. GA-MSeq: Genetic algorithm
The second step is the improvement procedure which is a GA. In

this step the encoding and decoding of the solutions (chromosomes) is
a critical procedure. In general, it should take into account the problem
under study. There are various types of encoding, such as permutation
encoding, binary encoding and others. Also, different methods for the
decoding are available (see Kucukkoc and Zhang [52] and Yu et al.
[53]).

Solution encoding and decoding:
In this study, each chromosome represents a feasible solution. Solu-

tion encoding is necessary and it is based on permutation. Fig. 8 depicts
the configuration of a gene, which is composed of two distinct parts.
One considers the allocation (line balancing) of operators and ma-
chines. The other part is about the process information or sequencing
that is the task, model, and box.

The allocation part assigns any task of a model (from any box) to
an operator and machine with the ability to perform it. This part is
not the focus of the work, as it is supposed to have prior knowledge
of these allocations. However, they are necessary for the definition of
gene provided, to lead to a viable solution, more quickly.

The permutation of the genes creates a chromosome. The position
of the genes determines their order of assignment to the given operator
and machine. Therefore, the permutation of the genes, which forms
a solution, should be feasible, and it is achieved by having a feasible
sequence of tasks. Returning to the example from Section 2, we have:

1. Task assignment in Table 2;
2. An initial solution in Table 6.

The chromosome related to this solution is depicted in Fig. 9.
The used decoding method is close to list scheduling, a method

adopted in many types of research, according to Yu et al. [53]. This
method firstly creates a task list, then picks tasks sequentially and
schedules them as early as possible, on the chosen machine, by the
available assignment rule. Fig. 10 describes the used decoding.

Selection process: This process includes both the selection of a
gene and a chromosome to apply different operators such as crossover
and mutation. Moreover, the selection is also used to choose a new
generation in each iteration. GA-MSeq employs two types of selection
methods:
9

1. Randomised Selection: As the name implies, this method is com-
pletely randomised and the GA-MSeq chooses random values,
which can identify a chromosome or clarify the position of a
gene.

2. Tournament Selection: In the reproduction of a new population,
the chromosomes are sorted according to fitness. Then, the
individual having the highest fitness (smallest makespan) is the
winner.

The randomised selection is applied to choose parents for a
crossover, picking chromosomes for mutation and selecting genes for
crossover and mutation. Furthermore, the tournament selection is used
to select the chromosomes as the new generation in each iteration.

Crossover and mutation: Crossovers and mutations are applied
while taking into account the sequencing problem. Two-point crossover
is used in two different ways: Two-point crossover-1 and Two-point
crossover-2. Mutation is applied in three ways based on Inversion
and Insertion, but in a particular way, named as: Mutation inversion,
Mutation insertion and Mutation insertion-critical genes. The details are
presented in continue.

Two-point crossover-1: Firstly, the parents based on the selection
process as explained above are chosen. Secondly, since two points in
this type of crossover are needed, two random numbers between zero
and a maximum number of available genes are generated. These two
numbers determine the positions of two genes. All the genes of each
parent between two selected points are transferred to each child, in
the same positions as the parents. The precedence preserving rule is
used to avoid infeasibility, by considering the routing diagram of the
task in the selected chromosome and changing the position of genes.
The other genes of each child are the same as those of other parents,
which were not used before in this child. This type of crossover and
the applied rules are explained in detail on the example (SeqInstance)
given in Figs. 11 and 12. Fig. 11 shows two chosen chromosomes and
the genes between two points, which are between positions 6 and 12
in colour. Fig. 12 depicts the offsprings, and the cells with dots are the
Related genes or the ones whose positions are changed according to the
precedence preserving rule.

Two-point crossover-2: In this crossover, after choosing parents
two points are selected . Only the genes of the first and second points
are copied to each other’s child, considering the precedence preserving
rule. According to this rule, if a gene is copied to a child, then its Related
genes, which are of the same model and box, are also copied to that
child by considering the sequencing constraint of that model routing.
More explanations with helpful figures on the instance SeqInstance are
presented in the link that is given at the beginning of Section 5.

Mutation inversion: In general, a mutation is any type of change in
a chromosome. However, after choosing a chromosome, this mutation
randomly selects two mutation points and reverses the order of the
genes between these two points. The rule of precedence preserving is
applied in a way to avoid infeasible solutions. Fig. 13 illustrates this
type of mutation.

Mutation insertion: The second mutation is based on the insertion
of genes from the first position into the second one, considering the
sequence of tasks in the selected model routing (precedence preserving
rule). In large instances, four random numbers are chosen to apply two
insertions, and in small instances, only one insertion is applied. More
explanations about this are provided at the given link at the beginning
of Section 5.

Mutation insertion-critical genes: The primary issues in this mu-
tation are the same as the previous one, but with one difference
associated with the selection of the genes for insertion. In this mutation,
the first and second genes should be chosen from the critical ones,
which are related to the critical tasks, and they should be transferred
to the beginning of the picked chromosome. Therefore, through this
method, we give priority to the critical tasks for the assignment.
Moreover, genes are transferred considering their routing diagram.
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Fig. 10. The decoding method.
The mutation process is similar to the previous one, but with the
fundamental difference noted earlier. For this reason, we do not include
more examples. Below, there are more details.
10
1. Random selection of a chromosome.
2. Determination of the critical genes of that chromosome.
3. Random selection of two critical genes.
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Fig. 11. Chromosomes of Two-point crossover-1.
Fig. 12. Offsprings of Two-point crossover-1.
4. Transference of the selected genes to the beginning of the picked
chromosome.

5. Observation of the sequencing diagram of the selected genes.
Consider any genes that should be assigned before them.

Evaluation function and GA conditions: Evaluation function and
GA conditions: The evaluation function determines the quality of a
candidate solution. Therefore, the fitness evaluation is based on the ob-
jective function, which is the minimisation of the maximum completion
time (makespan or Cmax). The population size for large instances is
70, and for small sizes, it is 28 chromosomes. Percentages of crossover,
mutation, and iteration runs of GA-MSeq are tuned based on TMet,
which is explained in Section 6. Fig. 14 depicts the general rules of
GA-MSeq.
11
6. Computational results

6.1. Tests design

Computational tests are run on some small-size instances and real
instances. The real instances from the company are of large dimension.
But since they are associated with the smaller and larger stitching
systems, mentioned in Section 4, they are divided into medium-size and
large-size data, for comparison purposes. The real instances used are
in https://drive.inesctec.pt/s/rZEN9nLKfRcemLX to provide the reader
with a more favourable view of the data. The work in process is also
considered in the data. They are transformed into new models and,
therefore, increasing the number of available models.

https://drive.inesctec.pt/s/rZEN9nLKfRcemLX
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Fig. 13. Mutation inversion.
Fig. 14. General rules of GA-MSeq solution method.

The given optimisation model of this paper on the small-size in-
stances reaches the optimal solution by using the Solver IBM ILOG
CPLEX optimisation Studio, version 12.8. The computational tests were
run on an Intel (R) Core (TM) i5-5200U CPU with 8 Gbs of Random
Access Memory. All the defined methods are implemented in C++
and compiled with Microsoft Visual Studio 2008, running until the
termination conditions are achieved, and according to the mentioned
rules. The solution methods developed to solve these problems are also
compared with each other and with reality.

The way to calculate some indicators, which are used in the next
section, is explained as follows.

1. The Gap_Seq is the gap of the optimal result to the given methods
which is calculated according to:

𝐺𝑎𝑝_𝑆𝑒𝑞 =
( 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑜𝑏𝑗 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑜𝑏𝑗

)

× 100
12

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑜𝑏𝑗
Here, Improvement_obj is the objective value of the final solution,
achieved by using each developed method (VND-MSeq and GA-
MSeq). Optimal_obj is the optimal solution determined by the
optimisation model.

2. The Improvement_Seq, is related to the initial and final solutions
of each developed method (VND-MSeq and GA-MSeq). It is
calculated as follows:

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡_𝑆𝑒𝑞 =
( 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑜𝑏𝑗 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑜𝑏𝑗

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑜𝑏𝑗

)

× 100

Here, Improvement_obj is the same as mentioned above, and the
Initial_obj is the initial solution determined by each method.

3. The Gain_Seq, is associated with the difference between the
available time in the company (Av), which is a one-day pro-
duction plan, and the objective of each proposed method. This
calculation is according to the next expression:

𝐺𝑎𝑖𝑛_𝑆𝑒𝑞 =
(𝐴𝑣 − 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑜𝑏𝑗

𝐴𝑣

)

× 100

6.2. Parameter tuning

As stated by Talbi [54], parameter tuning may allow great flex-
ibility and robustness, but needs careful initialisation. In this work,
there are some parameters for both given methods, which should be
tuned; therefore, a series of experiments are accomplished, and suitable
data are analysed with statistical techniques Fallahi et al. [55]. The
parameters can take discrete values, named as levels. Each level has
a known value, otherwise if it does not have any known, then some
benefit from the literature is considered Boyabatli and Sabuncuoglu
[56]. TMet is employed to work with the combination of the levels of
the investigated parameters.

Two types of parameters are considered for VND-MSeq method: the
number of searched neighbours in 3 neighbourhood structures (Ns1,
Ns2, and Ns5) and the number of iteration runs of VND-MSeq. The
parameters related to the searched size are defined based on the other
neighbourhood sizes (Ns3 and Ns4), which were all neighbours of any
incumbent solution. In the other parameter, which is the iteration runs
of VND-MSeq, the running time limits and the literature values are
considered. Therefore, for VND-MSeq, there are 4 parameters with 2
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Table 7
Different parameters and levels for VND-MSeq.

No.of Ns1 searched
solutions (P1)

No.of Ns2 searched
solutions (P2)

No.of Ns5 searched
solutions (P3)

No.of run
iterations(P4)

Small-size Level 1 5 5 5 20
Level 2 10 10 10 30

Medium-size Level 1 45 45 45 40
Level 2 90 90 90 50

Large-size Level 1 75 75 75 40
Level 2 150 150 150 50
Table 8
Different parameters and levels for GA-MSeq.

Percentage of
two-point
crossover-1 (P1)

Percentage of
two-point
crossover-2 (P2)

Percentage of
mutation
inversion (P3)

Percentage of
mutation
insertion (P4)

Percentage of
mutation
insertion-critical
genes (P5)

No.of run
iterations (P6)

Small-size
Level 1 0.2 0.3 0.1 0.05 0.1 20
Level 2 0.4 0.4 0.15 0.1 0.15 30
Level 3 0.5 – – – – –

Medium-size/
Large-size

Level 1 0.2 0.3 0.1 0.05 0.1 40
Level 2 0.4 0.4 0.15 0.1 0.15 50
Level 3 0.5 – – – – –
Table 9
Selected values of parameters affecting VND-MSeq and GA-MSeq.

P1 P2 P3 P4 P5 P6

Small-size-VND-MSeq Level 2 (Val = 10) Level 2 (Val = 10) Level 2 (Val = 10) Level 1 (Val = 30) – –
Medium-size-VND-MSeq Level 2 (Val = 90) Level 1 (Val = 45) Level 1 (Val = 45) Level 2 (Val = 50) – –
Large-size-VND-MSeq Level 1 (Val = 75) Level 2 (Val = 150) Level 2 (Val = 150) Level 2 (Val = 50) – –
Small-size-GA-MSeq Level 2 (Val = 0.4) Level 1 (Val = 0.3) Level 2 (Val = 0.15) Level 2 (Val = 0.1) Level 1 (Val = 0.1) Level 2 (Val = 30)
Medium-size-GA-MSeq Level 3 (Val = 0.5) Level 2 (Val = 0.4) Level 1 (Val = 0.1) Level 1 (Val = 0.05) Level 2 (Val = 0.15) Level 2 (Val = 30)
Large-size-GA-MSeq Level 3 (Val = 0.5) Level 2 (Val = 0.4) Level 1 (Val = 0.1) Level 1 (Val = 0.05) Level 2 (Val = 0.15) Level 2 (Val = 30)
Table 10
Results of the sequencing problems for the small-size instances, using the optimisation model and VND-MSeq.

Instances No.of
models

No.of
boxes

No.of
tasks

No.of used
operators

No.of used
machines

Initial solution Improved solution Optimal solution

Objective
(Cmax)

Time (s) Objective
(Cmax)

Time (s) Objective
(Cmax)

Time (s) Gap_Seq

Small-size-1 2 3 3 2 2 200 0.06 200 0.28 200 0.05 0%
Small-size-2 3 5 4 3 3 290 0.06 270 0.66 270 0.06 0%
Small-size-3 3 8 4 4 4 458 0.10 422 1.30 412 0.12 2%
Small-size-4 4 6 5 3 3 396 0.12 360 1.38 340 0.26 6%
Small-size-5 4 13 5 4 4 746 0.36 650 27.03 614 16,390 6%
Small-size-6 6 34 6 4 4 2,570 1.95 2,400 100.04 2,400 73,426 0%
Table 11
Results of the sequencing problems for the small-size instances, using the optimisation model and GA-MSeq.

Instances No.of
models

No.of
boxes

No. of
tasks

No.of used
operators

No.of used
machines

Best initial population Improved solution Optimal solution

Objective
(Cmax)

Time (s) Objective
(Cmax)

Time (s) Objective
(Cmax)

Time (s) Gap_Seq

Small-size-1 2 3 3 2 2 200 0.17 200 0.51 200 0.05 0%
Small-size-2 3 5 4 3 3 270 0.32 270 1.44 270 0.06 0%
Small-size-3 3 8 4 4 4 428 0.50 418 3.17 412 0.12 1%
Small-size-4 4 6 5 3 3 352 0.40 342 2.87 340 0.26 1%
Small-size-5 4 13 5 4 4 658 2.37 614 63.59 614 16,390 0%
Small-size-6 6 34 6 4 4 2,400 10.32 2,400 102.41 2,400 73,426 0%
o
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levels, shown in Table 7. Then by applying TMet and Minitab soft-
ware 19, different tests are designed based on the Orthogonal arrays.
An orthogonal array means that the parameter levels are weighted
equally. According to this array, and considering a two-level design, 8
experiments are needed. These 8 experiments run on 2 instances from
ach category size (small, medium, and large), and hence, 48 runs are
13

equired. V
For GA-MSeq we regard 6 parameters; 5 of them are the percentages
f crossovers and mutations, and 1 is the number of GA-MSeq iteration
uns. These percentages are defined so that the totals of minimum and
aximum cases are equal to 60% and 90% for crossovers, 25% and 40%

or mutations. These values are selected base on the literature and the
unning time limits. The number of iteration runs is the same as for

ND-MSeq and Table 8 depicts these values. As the parameters have
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Table 12
Real instance data and number of operators and machines used.

Instances No.of
models

No.of
boxes

No.of
tasks

No.of available
operators

No.of available
machines

No.of machine
types

Max operator
abilities

No. of used
operators

No.of used
machines

Used % of
Av

Medium-size-1 15 127 15 28 41 15 11 10 10 80%
Medium-size-2 11 171 10 26 40 10 8 9 9 80%
Medium-size-3 16 159 15 28 41 14 12 11 11 80%
Medium-size-4 41 209 30 27 42 20 19 13 14 80%
Medium-size-5 35 94 47 17 31 5 39 11 12 80%
Large-size-1 303 334 70 86 146 15 36 69 71 60%
Large-size-2 320 356 62 86 152 16 31 70 73 60%
Large-size-3 298 335 68 86 148 14 36 67 70 60%
Large-size-4 326 377 73 86 143 15 36 73 77 60%
Large-size-5 344 399 69 86 148 14 36 70 71 60%
Large-size-6 185 354 85 86 141 14 41 82 88 60%
Large-size-7 196 401 70 86 141 14 33 74 80 60%
Large-size-8 157 283 77 86 144 14 42 78 84 60%
Large-size-9 148 291 93 86 143 14 45 78 81 60%
Table 13
Results of the sequencing problems for the small-size instances, using the optimisation model and GA-MSeq.

Instances No.of
models

No.of
boxes

No. of
tasks

No.of used
operators

No.of used
machines

Best initial population Improved solution Optimal solution

Objective
(Cmax)

Time (s) Objective
(Cmax)

Time (s) Objective
(Cmax)

Time (s) Gap_Seq

Small-size-1 2 3 3 2 2 200 0.17 200 0.51 200 0.05 0%
Small-size-2 3 5 4 3 3 270 0.32 270 1.44 270 0.06 0%
Small-size-3 3 8 4 4 4 428 0.50 418 3.17 412 0.12 1%
Small-size-4 4 6 5 3 3 352 0.40 342 2.87 340 0.26 1%
Small-size-5 4 13 5 4 4 658 2.37 614 63.59 614 16,390 0%
Small-size-6 6 34 6 4 4 2,400 10.32 2,400 102.41 2,400 73,426 0%
Table 14
Real instance data and number of operators and machines used.

Instances No.of
models

No.of
boxes

No.of
tasks

No.of available
operators

No.of available
machines

No.of machine
types

Max operator
abilities

No. of used
operators

No.of used
machines

Used % of
Av

Medium-size-1 15 127 15 28 41 15 11 10 10 80%
Medium-size-2 11 171 10 26 40 10 8 9 9 80%
Medium-size-3 16 159 15 28 41 14 12 11 11 80%
Medium-size-4 41 209 30 27 42 20 19 13 14 80%
Medium-size-5 35 94 47 17 31 5 39 11 12 80%
Large-size-1 303 334 70 86 146 15 36 69 71 60%
Large-size-2 320 356 62 86 152 16 31 70 73 60%
Large-size-3 298 335 68 86 148 14 36 67 70 60%
Large-size-4 326 377 73 86 143 15 36 73 77 60%
Large-size-5 344 399 69 86 148 14 36 70 71 60%
Large-size-6 185 354 85 86 141 14 41 82 88 60%
Large-size-7 196 401 70 86 141 14 33 74 80 60%
Large-size-8 157 283 77 86 144 14 42 78 84 60%
Large-size-9 148 291 93 86 143 14 45 78 81 60%
distinct levels, and each level may have different values, TMet analysis
is applied again. According to the orthogonal array and considering
mixed-level design, 33 experiments are expected. With 33 runs for 1
instance of each category size (small, medium and large), 99 runs are
required.

The appendix includes the results of the experiments based on
TMet analysis. Table 9 represents the selected values of the parameters
involved in VND-MSeq and GA-MSeq, based on TMet analysis.

6.3. Computational results

This section addresses the sequencing results. Firstly, and for the
small-instances, the results of the optimisation model are reported and
then compared with those achieved by the two developed methods
(VND-MSeq and GA-MSeq). Secondly, the two approximate sequencing
methods are applied to the real instances considering the values for
the defined parameters. Then, these results are compared with existing
results. The existing results in this work, are called Company Reality,
which is also equal to Av. The input data for the sequencing, as
14
mentioned earlier, are the output data of the balancing. Meanwhile,
a Lower Bound (LB) for the problem is calculated.

Table 10 features the results of the computational tests on the
generated instances achieved by the optimisation model and VND-MSeq
method.

VND-MSeq finds an optimal solution in three instances, and the
three instances have a Gap_Seq equal to 2%, and 6%. As can be seen,
instances number 5 and 6 are solved optimally but in hours, while VND-
MSeq solved them quickly; particularly, instance 6 has a Gap_Seq equal
to zero. Table 11 shows the results of the other method, GA-MSeq,
for the small-size instances. GA-MSeq returns the optimal solution in
four instances, and the other two instances have Gap_Seq equal to 1%.
Therefore, the complete results in small-sized instances by GA-MSeq
are better than by VND-MSeq. In summary, the average Gap_Seq for the
small-size instances solved by VND-MSeq is 2%, and GA-MSeq is close
to 0%. Moreover, both methods’ initial solutions and populations are
expected to be of good quality since they are not randomly generated
but based on different dispatch rules. A test of the optimisation model’s
running times is performed, and the results show that they increase
significantly as the number of boxes increases. It is also clear that the
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Fig. 15. Comparison of VND-MSeq and GA-MSeq results for real data problems.
Table 15
A comparison between VND-MSeq and GA-MSeq methods for the
sequencing problems.

Method Improvement_Seq Gain_Seq

Min Max Average Min Max Average

VND-MSeq 0% 20% 13% 1% 20% 11%
GA-MSeq 0% 12% 8% 3% 20% 11%

xecution time of instance 6, without a significant dimension, is about
hours; therefore, using the optimisation model is not a good option

or daily sequencing.
Two sequencing methods solve the medium and large size real in-

tances. The results of both methods were then compared with Company
eality. The input data for the sequencing is taken from Sadeghi et al.
6]. In this work, the production plans could be met, for medium and
arge size problems, in 60% and 80% of the Av, respectively. The final
nformation of the used instances is presented in Table 12.

Next, VND-MSeq and GA-MSeq are used for real instances. Their
esults are shown in Tables 13 and 14. Every indicator tabComResSe-
OptVNDMSeq in this table are explained before. A comparison of both
sed methods is provided in Table 15.

Finally, according to the sequencing results, the following points can
e listed:

1. The best objective value for the initial population of GA-MSeq
is better than the objective value of the initial solution of VND-
MSeq. In some instances, if it is not better, then they are equal
to each other.

2. The time of gaining the initial solution of VND-MSeq is better
than in GA-MSeq. It is because, in GA-MSeq, a population is
created, but in VND-MSeq, only a solution is gained.

3. Improvement_Seq in VND-MSeq is better than in GA-MSeq.
4. In general, Gain_Seq in GA-MSeq is better than in VND-MSeq,

which means that GA-MSeq produces, in general, better re-
sults. However, the difference between the final solutions is not
significant.
15
5. The running times of both methods, for the small and medium-
size instances, are less than 7 minutes.

6. VND-MSeq has less running times than GA-MSeq, for small and
medium-size instances.

7. The running times of VND-MSeq, for large-size instances, are
about 1 h and 30 min maximum, which is acceptable for prac-
tical purposes. However, in maximum, these values are 1 hour
in GA-MSeq. Therefore, GA-MSeq has less running times than
VND-MSeq, for the majority of large-size instances.

8. There is an instance that cannot be improved by both methods
(instance of Medium-Size-4). The reason is that the Cmax on that
instance is equal to the working time of one of the operators in
the line.

Fig. 15 summarises the comparisons illustrated for the medium and
large-size instances.

7. Conclusions

The industrial context of this work is a large footwear export-
ing company with new automated flexible stitching systems. The re-
search work focused on modelling and solving the specific Mixed-model
Assembly Line Sequencing Problems (MALSP).

The paper mostly contributed at two levels, in the scientific area
of assembly line sequencing and the practical solution of complex
industrial problems arising in two distinct automatic stitching systems.
A new mixed-model sequencing problem was described, and an op-
timisation model was presented and tested. The real problems’ size
prevented the direct use of exact optimisation methods, so the authors
devised two approximate methods, named VND-MSeq and GA-MSeq.
The company invested in entirely new flexible assembly systems, whose
operation needed to be optimised. Let us remark that the difficulties
of sequencing the mixed-model tasks were treated somewhat manual,
although they already depended on balancing solutions obtained previ-
ously. According to the industrial case description, the units moving in
the lines are not pairs of shoes but boxes containing copious quantities
of product components. Such boxes are automatically transported, in
any direction, between workstations or from the warehouse to any
workstation. In the end, the methods designed and implemented helped
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the project team contribute to improving the company’s procedures and
overcoming those daily difficulties.

The optimisation model presented allowed understanding the prob-
lem better and solving small-size instances. Besides, the model can
be adapted to other similar industrial cases. As mentioned, the first
contribution to the resolution of the MALSP were two approximate
methods, VND-MSeq, based on Variable Neighbourhood Descent, and
GA-MSeq, based on Genetic Algorithms. Although following known
metaheuristics, they were designed and adapted accordingly. Moreover,
they include several dispatching rules to generate initial solutions and
populations.

The methods were compared in various ways, in many instances,
from generated to those based on real data. The average optimal gaps
for both methods (Gap_Seq), relative to the small-size instances, are
smaller than 3%. GA-MSeq could not find the optimal solutions in
two examples, with the gaps 1%. The objective function values of
GA-MSeq slightly exceed those obtained by VND-MSeq. VND-MSeq
performs better on small and medium-size instances in terms of running
times, but the opposite is true for large-size instances, where GA-MSeq
performed considerably better. As for the practical cases, the instances
are based precisely on the data available in the company, only modified
to use the developed methods (we called them Company Reality).

In conclusion, the developed methods’ results show a significant
improvement compared to the company’s known results. Additionally,
the solution approaches achieve results faster than before and with
less planning effort. Another relevant insight of the implementation
is allowing the generation of the list of boxes for each workstation,
avoiding the current situation of a list of recommended boxes to select
later, whenever the workstation needs to work.

According to the team leader at Kyaia, the benefits are reducing
stocks between operations and each order’s production time due to
better balance and sequencing. The work carried out achieves better
results through the more comprehensive analysis of all models and
resources simultaneously, one of the current difficulties. It was also
observed that the operators’ occupancy rate globally increased because
of better attention to their qualifications. These promising indicators
make the optimisation approach bring effective advantages to the
company’s overall efficiency.
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Appendix

The Appendix covers the Taguchi Method (TMet) analysis results to
select the best values for the parameters of VND-MSeq and GA-MSeq.
Tables A.16 and A.17. present the experiments that should be carried
out for both methods, using the Minitab software 19 software. According
to TMet, both should run on the selected instances for the defined
numbers 48 and 99. The results of these runs are in Tables A.18 and
A.19. As mentioned in Section 6, the experiments of VND-MSeq were
run on two instances; the values in Tables A.18 represent their average.

The signal-to-noise ratios (S/N ratios, which are a measure of ro-
bustness) for all instance sizes of VND-MSeq and GA-MSeq are shown
in Figs. A.16 and A.17. In terms of the minimisation function of the
problems, each parameter’s selected value or level is the one with the
smaller S/N ratio. Although the mean values of the S/N ratios are
negative (see Figs. A.16 and A.17), the selection process only considers
their absolute values. These selected values are used in both solution
methods to run in different instances. Table 9 in Section 6 has the
results.
Fig. A.16. S/N ratios charts of TMet analysis related to VND-MSeq.
Fig. A.17. S/N ratios charts of TMet analysis related to GA-MSeq.
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Table A.16
Recommended experiments for VND-MSeq by TMet in Minitab software.

Test P1 P2 P3 P4

Small-size

1 5 5 5 20
2 5 5 10 30
3 5 10 5 30
4 5 10 10 20
5 10 5 5 30
6 10 5 10 20
7 10 10 5 20
8 10 10 10 30

Medium-size

1 45 45 45 40
2 45 45 90 50
3 45 90 45 50
4 45 90 90 40
5 90 45 45 50
6 90 45 90 40
7 90 90 45 40
8 90 90 90 50

Large-size

1 75 75 75 40
2 75 75 150 50
3 75 150 75 50
4 75 150 150 40
5 150 75 75 50
6 150 75 150 40
7 150 150 75 40
8 150 150 150 50

Table A.17
Recommended experiments for GA-MSeq by TMet in Minitab software.

Test P1 P2 P3 P4 P5 P6

Small-size

1 0.2 0.3 0.1 0.05 0.1 20
2 0.4 0.3 0.1 0.05 0.1 20
3 0.5 0.3 0.1 0.05 0.1 20
4 0.2 0.3 0.1 0.1 0.15 30
5 0.4 0.3 0.1 0.1 0.15 30
6 0.5 0.3 0.1 0.1 0.15 30
7 0.2 0.3 0.15 0.05 0.15 30
8 0.4 0.3 0.15 0.05 0.15 30
9 0.5 0.3 0.15 0.05 0.15 30
10 0.2 0.3 0.15 0.1 0.1 30
11 0.4 0.3 0.15 0.1 0.1 30
12 0.5 0.3 0.15 0.1 0.1 30
13 0.2 0.3 0.15 0.1 0.15 20
14 0.4 0.3 0.15 0.1 0.15 20
15 0.5 0.3 0.15 0.1 0.15 20
16 0.2 0.4 0.1 0.1 0.15 20
17 0.4 0.4 0.1 0.1 0.15 20
18 0.5 0.4 0.1 0.1 0.15 20
19 0.2 0.4 0.1 0.1 0.1 30
20 0.4 0.4 0.1 0.1 0.1 30
21 0.5 0.4 0.1 0.1 0.1 30
22 0.2 0.4 0.1 0.05 0.15 30
23 0.4 0.4 0.1 0.05 0.15 30
24 0.5 0.4 0.1 0.05 0.15 30
25 0.2 0.4 0.15 0.1 0.1 20
26 0.4 0.4 0.15 0.1 0.1 20
27 0.5 0.4 0.15 0.1 0.1 20
28 0.2 0.4 0.15 0.05 0.15 20
29 0.4 0.4 0.15 0.05 0.15 20
30 0.5 0.4 0.15 0.05 0.15 20
31 0.2 0.4 0.15 0.05 0.1 30
32 0.4 0.4 0.15 0.05 0.1 30
33 0.5 0.4 0.15 0.05 0.1 30

(continued on next page)
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Table A.17 (continued).
Test P1 P2 P3 P4 P5 P6

Medium-size/
Large-size

1 0.2 0.3 0.1 0.05 0.1 40
2 0.4 0.3 0.1 0.05 0.1 40
3 0.5 0.3 0.1 0.05 0.1 40
4 0.2 0.3 0.1 0.1 0.15 50
5 0.4 0.3 0.1 0.1 0.15 50
6 0.5 0.3 0.1 0.1 0.15 50
7 0.2 0.3 0.15 0.05 0.15 50
8 0.4 0.3 0.15 0.05 0.15 50
9 0.5 0.3 0.15 0.05 0.15 50
10 0.2 0.3 0.15 0.1 0.1 50
11 0.4 0.3 0.15 0.1 0.1 50
12 0.5 0.3 0.15 0.1 0.1 50
13 0.2 0.3 0.15 0.1 0.15 40
14 0.4 0.3 0.15 0.1 0.15 40
15 0.5 0.3 0.15 0.1 0.15 40
16 0.2 0.4 0.1 0.1 0.15 40
17 0.4 0.4 0.1 0.1 0.15 40
18 0.5 0.4 0.1 0.1 0.15 40
19 0.2 0.4 0.1 0.1 0.1 50
20 0.4 0.4 0.1 0.1 0.1 50
21 0.5 0.4 0.1 0.1 0.1 50
22 0.2 0.4 0.1 0.05 0.15 50
23 0.4 0.4 0.1 0.05 0.15 50
24 0.5 0.4 0.1 0.05 0.15 50
25 0.2 0.4 0.15 0.1 0.1 40
26 0.4 0.4 0.15 0.1 0.1 40
27 0.5 0.4 0.15 0.1 0.1 40
28 0.2 0.4 0.15 0.05 0.15 40
29 0.4 0.4 0.15 0.05 0.15 40
30 0.5 0.4 0.15 0.05 0.15 40
31 0.2 0.4 0.15 0.05 0.1 50
32 0.4 0.4 0.15 0.05 0.1 50
33 0.5 0.4 0.15 0.05 0.1 50

Table A.18
Average results of experiments related to VND-MSeq.

Test Average results

Small-size

1 511
2 518
3 525
4 525
5 517
6 501
7 512
8 518

Medium-size

1 26,037
2 26,679
3 26,128
4 25,756
5 25,312
6 25,885
7 26,454
8 25,712

Large-size

1 32,139
2 31,345
3 31,568
4 31,237
5 32,016
6 32,315
7 32,060
8 32,455
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Table A.19
Results of experiments related to GA-MSeq.

Test Results Test Results Test Results Test Results

Small-size

1 638 10 650 19 658 28 638
2 650 11 614 20 642 29 658
3 642 12 656 21 658 30 658
4 658 13 650 22 660 31 650
5 642 14 632 23 658 32 624
6 624 15 630 24 658 33 658
7 660 16 642 25 654 – –
8 638 17 658 26 654 – –
9 628 18 658 27 658 – –

Medium-size

1 24,051 10 24,651 19 24,617 28 24,651
2 24,651 11 24,651 20 24,120 29 24,651
3 24137 12 24,651 21 24,137 30 24,651
4 24,651 13 24391 22 24,051 31 24,651
5 24,156 14 24,651 23 24,111 32 24,051
6 24,137 15 24,111 24 23651 33 24,114
7 24,471 16 24,214 25 23,871 – –
8 24,410 17 24,111 26 24,871 – –
9 24,257 18 24,471 27 24,871 – –

Large-size

1 31,560 10 31,742 19 32,406 28 31,988
2 31,832 11 31,256 20 31,978 29 32,090
3 31,588 12 32,539 21 31,036 30 31,186
4 32,284 13 32,326 22 31,160 31 31,470
5 31,670 14 33,338 23 32,646 32 33,068
6 31,844 15 30,750 24 30,746 33 31,276
7 31,422 16 31,059 25 30,874 – –
8 31,610 17 32,050 26 32,788 – –
9 31,746 18 32,340 27 31,510 – –
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