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An explicit Nash equilibrium for a market share attraction game 

Peter Schuur a,*, Bertan Badur b, Asli Sencer b 

a Department of Industrial Engineering and Business Information Systems, University of Twente, Enschede, the Netherlands 
b Department of Management Information Systems, Bogazici University, Istanbul, Turkey   

A R T I C L E  I N F O   

Keywords: 
Marketing management tool 
Market share attraction models 
Competitive models 
Non-cooperative games 
Nash equilibrium 

A B S T R A C T   

In competitive marketing, the speed of generating the best price has become as critical as its reliability. In this 
study, we aim to design a practical marketing management tool. We consider a non-cooperative marketing 
environment with multiple substitute products, where total market size is moderately price-sensitive. The price- 
demand relations are determined by a market share attraction model, where the attraction of each product is a 
linear function of its price. The product’s brand image is reflected in the parameters of this linear function. For 
the general case of multiple substitute products, we derive explicit expressions for the best-response functions. 
For the specific case of two substitute products, we derive closed form expressions for the prices at Nash equi-
librium. These expressions help managers in changing their marketing instruments other than price, so as to 
obtain substantial individual profits. We show how our closed form Nash equilibrium enables the examination of 
the profit loss due to competition. Relevant for practice is the fact that our model can be easily calibrated. We 
provide a simple procedure for estimating the model parameters.   

1. Introduction 

Over the past decades, research related to pricing strategies has 
expanded steadily. After all, a valid model that clearly explains the de-
mand as a function of price will help organizations to maximize profits 
and customer satisfaction. 

In case of competitive environments with substitute products, the 
problem is even more challenging, since the price of a certain product 
affects the demand of its substitutes, as well. The price competitions 
between the producers of mobile phones, beverages, and cars are ex-
amples of non-cooperative competitions where each producer tries to 
optimize his individual profit. In all these examples, it is crucial for a 
competitor to work with a reliable demand model that accurately esti-
mates the best price, given the substitute product prices. 

The relationship between demand and price of each substitute 
product can be modelled in various ways. A major determinant of this 
relationship is the behavior of the “total market size” with respect to the 
price changes of the substitute products. In many cases, the total market 
size is a decreasing function of the overall substitute prices. For instance, 
if air transportation is too costly in all airway companies, then people 
prefer to use ground transportation, and the total market size of air 
transportation decreases. 

In some cases, the total market size is only moderately affected by the 

average market price. For instance, in the pharmaceutical industry, the 
total market size of a set of antibiotics is almost fixed, since a patient has 
to purchase one of the substitute medicines with all sacrifices. Similarly, 
obligatory insurances mandated by governmental laws have fixed total 
market sizes, i.e., a citizen has to insure his car or house to any of the 
insurance companies, even at high insurance costs. Likewise, in a single- 
buyer multiple-producers example, a municipality has to allocate a fixed 
number of maintenance activities among several companies that 
compete in price to maximize their individual profits. When buying is 
obligatory, an upper bound on the market price is usually placed by a 
market authority such as the government. 

When there is no obligation to buy, then - in many cases - total 
market size is still moderately price-sensitive. Consider, for example, 
basic necessities like detergents. Usually, such markets are dominated by 
only a few brands. These brands compete on price. This will not keep the 
customer from buying the product. At most, he will switch between 
leading brands temporarily. 

In marketing theory, market share attraction (MSA) models are 
frequently used to express the relationship between demand and mar-
keting mix variables. Here, the market share of a product is modeled as 
the ratio of the attraction of that product to the sum of all attractions, 
where an attraction is a function of the marketing mix variables, mostly 
the price. 
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We consider in this study the problem of pricing competing substi-
tute products when total market size is moderately price-sensitive. The 
price-demand relations are determined by an MSA model. We model the 
attraction of each product as a linear function of its price. 

In a non-cooperative environment with two products, the linear 
attraction allows us to obtain closed form characterizations for the Nash 
equilibrium that are hard to be found in literature. In e-commerce en-
vironments, pricing decisions are made far more frequently than in 
brick-and-mortar systems, since the updates can be made easily in online 
catalogues. Here, the speed of generating the best price becomes as 
critical as its reliability. Electronic reverse auctions (ERAs) are other 
areas where generating fast and reliable prices is key. A closed form 
solution is the fastest key for the price-setter to obtain the best price, 
which becomes critical in digital competition. 

Furthermore, our linear attraction model helps to overcome 
computational complexity of the standard MNL model. Unlike numerous 
MSA models that use a different parameter for each marketing mix 
variable, our linear attraction model only uses a single parameter that 
reflects the overall demand-effect of all marketing mix variables other 
than price. So, the decision maker only needs to estimate this parameter. 

In contrast to the MNL model, our model offers a natural means to 
incorporate upper bounds on product prices. This is a value adding 
property especially in those marketing environments where upper 
bounds are mandated by governmental regulations. Traffic insurances or 
ERAs organized by municipalities are examples of these. 

The reliability of our model depends on its fitness to the empirical 
price and demand data collected from the competitive market. In this 
study, we generate a practical way to estimate the model parameters, so 
that reliability can be evaluated easily by goodness-of-fit tests. 

The organization of the paper is as follows: In Section 2, a literature 
survey is provided on MSA models and their applications in competitive 
environments. Moreover, we specify our contribution. In Section 3, we 
develop a model for pricing products in a non-cooperative environment. 
For the case of two product types, we derive a closed form expression for 
the Nash equilibrium vector. Managerial consequences are discussed in 
Section 4. Section 5 provides our conclusion. 

2. Literature review 

Price-demand models are comprehensively reviewed from different 
perspectives by Chen and Simchi-Levi [9]. Our study focuses on a spe-
cific subset of these models: we consider price-demand relations deter-
mined by an MSA model. In this section, we review MSA literature from 
two perspectives. First, in Section 2.1, from the cause-effect perspective: 
how do MSA models generate market shares given the marketing inputs? 
Next, in Section 2.2, from a decision-oriented perspective: how do MSA 
models operate as decision enablers? In Section 2.3, we motivate our 
model and outline its contribution. 

2.1. Market share models from a cause-effect perspective 

Market share models are commonly used in marketing research to 
model the relationship between market share and the marketing mix 
variables like price, quality, advertising expense, distribution effort, etc. 
This relationship may be linear, multiplicative, exponential, etc. with 
the danger that market shares do not add up to one. An alternative 
approach is found by Ghosh et al. [16] in the form of an attraction model 
where the total market shares add up to one. 

Based on Kotler [20] and several others [13,21,22,28], Bell et al. [5] 
present the first model where the term ’attraction’ is used to define the 
relative attractiveness of a firm compared to the others. Attraction may 
be a function of the firm’s advertising expenditure and effectiveness, the 
price, and the quality of the product, the reputation of the company, the 
service given during and after purchase, the location of retail stores and 
much more. Based on a set of intuitive assumptions, Bell et al. [5] arrive 
at the following: let Ai be the attraction of supplier i, i = 1,2,…, n, then 

the market share mi of supplier i is a normalization of the attractions 
formulated as mi = Ai/

∑n
j=1Aj. 

It is customary to express the attraction as a function of the mar-
keting mix variables. The most frequently used forms nowadays are: (i) 
the multinomial logit (MNL) model, (ii) the multiplicative competitive 
interaction (MCI) model. In both models, the attraction is expressed as 
an exponential function. In the MNL model [27], the argument is a linear 
combination of the marketing mix variables. In the MCI model [20], the 
argument is a linear combination of the logarithms of the marketing mix 
variables. 

In this paper, we follow Gallego et al. [14] and express the attraction as 
a linear function of only the price. We motivate our choice in Section 2.3. 

2.2. MSA models as decision enablers in a non-cooperative marketing 
environment 

This section presents a literature review of MSA models in non- 
cooperative marketing decision environments. Relevant studies are 
classified according to the i) structure of the MSA models considered, 
and ii) type of competition, i.e., being duopoly or oligopoly. These 
features help us to identify studies of problems similar to ours. 
Furthermore, the strength of the findings is discussed in terms of the iii) 
existence and iv) uniqueness of a Nash equilibrium and v) existence of a 
closed form characterization of an equilibrium solution. Our findings are 
summarized in Table 1. 

Although MCI was frequently used in the early MSA studies, MNL - or 
generalizations thereof - has been more popular after 2000s. The scope 
of the models is quite wide, allowing oligopolies with many players. In 
all these studies, price is one of the variables of the attraction function. 
Gallego et al. [14] are exceptional in the fact that they consider 
attraction as a function of price only. Other studies incorporate variables 
such as marketing expenditures [3,8,18,19,23], quality [10], and service 
level standards [2,6,26]. Still others generalize the idea of attraction [1, 
7,11,12,15,25]. The practicality of these studies can be criticized due to 
the complexity of their attraction functions for the price-setters. 

The findings in many of the studies in Table 1 are strong, in the sense 
that existence of a Nash equilibrium is demonstrated. However, the 
uniqueness of the Nash equilibrium is only derived under specific con-
ditions or not even addressed. Nevertheless, in virtually all of these 
studies, closed form characterizations for the Nash equilibrium do not 
exist. Carpenter et al. [8], Basuroy and Nguyen [3], and Favory [11] 
provide closed form solutions for only special cases. In our literature 
survey, Gallego et al. [14] and Gallego and Wang [15] are the only ones 
where the linear attraction function is listed among other forms of 
attraction models. However, they do not provide closed form charac-
terizations, but show how the Nash equilibrium can be approximated by 
a tâtonnement process. We believe that the current study provides a 
valuable basis to fill this void. 

2.3. Motivation of our model and outline of its contribution 

Ever since their introduction, the original elements of the marketing 
mix (the 4Ps: product, price, place, promotion) have been criticized. Many 
researchers propose alternative approaches, by adding new elements to 
the original mix [4,17]. However, in all these approaches, one element of 
the mix prevails: the price that the customer is willing to pay. 

Motivated by the latter, we design a marketing management tool that 
is transparent in form and easily understandable for the practitioner, 
which primarily depends on the concept of pricing without ignoring the 
overall effect of other marketing instruments. 

In a similar spirit, Gallego et al. [14] consider a broad class of MSA 
models, where attraction is a function of price only. In particular, they 
discuss linear attraction and establish existence, uniqueness, and sta-
bility of the Nash equilibrium. However, as stated in Section 2.2, they do 
not provide a closed form expression. Following Gallego et al. [14], we 
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examine a marketing attraction model, where the attraction Ai is a lin-
early decreasing function of the price Pi, i.e., Ai = 1 − αiPi. Here we 
refer to the positive parameter αi as the price sensitivity. 

Although the attraction is formulated as a function of price only, our 
model does not ignore other marketing instruments. We employ the 
price sensitivity αi as an indirect way of introducing marketing in-
struments into the pricing decisions. A small αi shows that the firm is in a 
robust or stable state in terms of its brand image, quality, distribution 
performance, etc., allowing the firm to set a higher price without causing 
significant losses in its attraction. Conversely, a large αi shows that the 
attraction is highly price-sensitive, which produces obstacles for 
increasing the price. In finding a proper αi, fine-tuning of appropriate 
marketing instruments is crucial. In a way, one may conceive αi as well 
as Pi as variables. Here, Pi is a short-term variable. Conversely, αi is a 
long-term variable, which can be treated as a constant during the period 
under consideration. In that light, our model is based on two pillars: 
price and brand image, represented by Pi and 1/αi, respectively. Brand 
image determines the latitude that the price-setter has, since for the 
attraction to be non-negative, the price Pi may be no larger than 1/αi. 

Let us summarize the assumptions as well as the contributions of our 
model. We consider a non-cooperative marketing environment with 
multiple substitute products where total market size is moderately price- 
sensitive. We assume that each producer has sufficient production ca-
pacity to fulfill the total market demand. We focus on price-demand 
relations determined by a market share attraction (MSA) model. We 
assume the attraction Ai of product type i to be a linearly decreasing 
function of price. We assume prices to have upper bounds. 

For the general case of multiple substitute products, we derive 
explicit expressions for the best-response functions. For the specific case 
of two substitute products, we derive the product prices in a unique Nash 
equilibrium. Closed form characterizations for the Nash equilibrium are 
hard to be found in literature. However, the specific linear form of the 
attraction allows us to obtain closed form expressions as a composition 
of elementary functions of the model parameters. These expressions help 

managers in changing their marketing instruments other than price, so 
as to obtain substantial individual profits. They also enable the exami-
nation of the profit loss due to competition. Relevant for practice is the 
fact that our model can be easily calibrated. We provide a simple pro-
cedure for estimating the model parameters. 

Essentially, we propose an MSA model which we deem to be more 
practical and faster than the existing ones. Thus, it can be easily applied 
by the price-setters in competitive environments. This is due to three 
idiosyncrasies of the model. First, its linear attraction that provides 
computational advantages, such as simple and explicit best-response 
functions. Second, the closed form expression for the Nash equilib-
rium, providing each of the two firms with the profit increase due to 
improving its brand image. Third, the existence of a single parameter in 
the attraction model and a practical tool to estimate it. 

3. Model development 

In this section, we introduce a framework for optimizing pricing 
decisions in a supply chain with multiple products, multiple suppliers of 
these products, and a single market for these products. We assume the 
total market demand to be either fixed or (at most) moderately price- 
sensitive. Think, e.g., of insurance policies that are legally obliged (see 
Section 1). 

We consider a non-cooperative environment. The objective of each 
product type is to maximize its own profit. Without harming generality, 
we assume that each of the competitive products under consideration 
has its own supplier, called firm in the sequel. Competition is therefore 
between the various firms that aim for conquering the market. 

This section is organized as follows. Section 3.1 introduces our 
Market Share Attraction model as well as the notation. The focus of our 
analysis is on the case of only two product types. It is presented in 
Section 3.2. Section 3.3 briefly considers the case of more than two 
product types. 

Table 1 
Studies in MSA Models in Non-Cooperative Marketing Environments.    

Problem Definition Strength of the Findings   
Type of MSA Model Type of Competition Existence of a Nash 

Equilibrium 
Uniqueness of a Nash 
Equilibrium 

Closed Form Solution 

No: References in 
Chronological Order 

MNL/MCI/Other Cooperative/ 
Duopoly/ Oligopoly 

YES/NO YES-UCC (Under 
Certain Conditions) 
/NO 

YES/NO 

1 Karnani [19] MCI Oligopoly NO NO NO 
2 Monahan [23] MCI Duopoly YES NOT ADDRESSED NO 
3 Carpenter et al. [8] MCI Oligopoly YES NOT ADDRESSED YES 
4 Choi et al. [10] MNL Duopoly and Oligopoly YES NO NO 
5 Gruca et al. [18] MCI Oligopoly YES YES-UCC NO 
6 Basuroy and Nguyen  

[3] 
MNL Oligopoly YES YES-UCC YES 

7 So [26] Generalized MCI Oligopoly YES YES-UCC NO 
8 Bernstein and 

Federgruen [6] 
Generalized MNL Oligopoly YES YES-UCC NO 

9 Rhim and Cooper [25] MNL Oligopoly YES YES-UCC NO 
10 Gallego et al. [14] Generalized Attractions 

Including LINEAR Attraction 
Oligopoly YES YES-UCC NO 

11 Allon and Federgruen  
[2] 

Generalized Attractions 
Including MNL Extensions 

Oligopoly YES YES-UCC NO 

12 Federgruen and Yang  
[12] 

Generalized Attraction Oligopoly YES YES-UCC NO 

13 Aksoy et al. (2013) MNL Oligopoly YES YES-UCC NO 
14 Wang (2013) Generalized Attraction Cooperative (Single 

Firm) 
Not Applicable for 
Cooperative 
Competition 

Not Applicable for 
Cooperative Competition 

Not Applicable for 
Cooperative 
Competition 

15 Gallego and Wang [15] General Nested MNL 
Attraction and LINEAR 
Attraction 

Cooperative (Single 
Firm) and Oligopoly 

YES YES-UCC NO 

16 Boonen et al. [7] Generalized Attraction Oligopoly YES NOT ADDRESSED NO 
17 Favory [11] Generalized Attractions 

Including MNL Extensions 
Oligopoly YES YES YES  
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3.1. Introductory remarks and notation 

Throughout, we use the following notation: 
Indices 
i: index of product type (and of the corresponding firm) 
(i = 1,2,…,n) 
Parameters 
ci: production costs per unit for product type i 
αi: price sensitivity, coefficient indicating decrease of attraction with 

price for product type i 
The above parameters are positive. For future reference, we assume 

that 0 < αi <
1
ci
. The latter restriction guarantees that the maximum 

obtainable attraction defined below is positive for prices that exceed 
production costs (see (2)). Incidentally, this restriction is identical to 
restriction (iii) in Proposition 1 of Gallego et al. [14], where it is shown 
to ensure existence, uniqueness, and stability of the Nash equilibrium. 

Decision Variables 
Pi = price per unit for product type i 
Auxiliary Variables 
Key to our analysis is the following Market Share Attraction model 

where the attraction is a linearly decreasing function of the price. 
Ai = 1 − αiPi = attraction of product type i 
mi =

Ai∑n
j=1

Aj
= market share of product type i 

d = total market demand during the period under consideration 
Qi = mid = quantity produced (to the market) of product type i 
Throughout, we assume that for each product type, separately, there 

is enough capacity to fulfill the total market demand d. The coefficient αi 
measures factors additional to price, such as quality, social awareness, 
sustainability, etc. The higher these factors score for the product type in 
question, the smaller the corresponding value of αi. Note that, in this 
way, the parameter αi has been fixed externally. On the other hand, ci - 
the production cost per unit - has been fixed by the firm. Evidently, the 
total market demand d is depending on the prices Pi. This paper con-
siders those markets where this dependence is only moderate (see the 
examples in Section 1). We assume that the parameters αi and ci remain 
fixed during the period under consideration. Crucial is the setting of the 
prices Pi. 

Since both profit and attraction are assumed to be non-negative, we 
only consider values of the price Pi such that 

ci ≤ Pi ≤
1
αi

(1) 

Consequently, mi and Qi are non-negative, whereas Ai satisfies 

0 ≤ Ai ≤ ai  

where the maximum obtainable attraction ai is given by 

ai ≡ 1 − αici ϵ (0, 1) (2) 

In the sequel, the parameters ai play a crucial role. In particular, the 
Nash equilibrium vector is expressed solely in terms of the ai (see Section 
3.2.3). 

Finally, to exclude that all attractions vanish, we require that 

∑n

i=1
Ai > 0. (3) 

We now define the profit potential πi as the least upper bound on the 
profit that can be obtained per unit from a product type i. From (1) it is 
clear that 

πi ≡
1
αi

− ci =
ai

αi
(4) 

Note that this profit potential can only be realized approximately as 
Pi approaches 1

αi 
from below, since putting Pi equal to 1

αi 
would wipe out 

the production quantity Qi. 

Central in our discussion is the profit per product type i given by (Pi −

ci)Qi = (Pi − ci)mid. As mentioned earlier, we assume that the total 
market demand d is moderately price-sensitive. Consequently, in a 
broad Pi range, d remains (nearly) constant. Hence, for purposes of profit 
analysis, d can be left out of the equation. Instead, let us focus henceforth 
on the profit made for product type i per overall unit demanded, which 
can conveniently be written in terms of the attractions as 

(Pi − ci)mi =
1∑n

j=1
Aj
(Pi − ci)Ai

=
1
αi

1
∑n

j=1Aj
(1 − Ai − αici)Ai

=
1
αi

1
∑n

j=1Aj
(ai − Ai)Ai

(5) 

By changing the decision variables in the profit function from Pi to Ai 

we obtain several computational benefits, as will be shown in the sub-
sequent analysis. 

The next section shows that - in a non-cooperative case of two 
competing product types - competition is leading. Instead of dominance 
of one product type, there will be co-existence in the form of a Nash 
equilibrium. For the equilibrium vector we derive a closed form 
expression in terms of the maximum obtainable attractions. 

3.2. Pricing two competing product types in a non-cooperative 
environment 

In this section we consider a non-cooperative environment where the 
objective of each product type is to maximize its own profit. We confine 
our discussion to the case of only two competing products. We analyze 
the above price competition problem by modeling it as a strategic game 
in which:  

(i) the players are the two firms  
(ii) each player i can choose its attraction Ai = 1 − αiPi by specifying 

its price Pi  
(iii) on the basis of the choices made in (ii), the payoff (profit) of 

player i is (cf (5)) 

Πi(A1,A2) ≡
1
αi

1
A1 + A2

(ai − Ai)Ai (6)   

The competition game starts as soon as one of the two firms decides to 
change its price setting. The other firm will react by adapting its own 
prices. And so on. 

Section 3.2 is organized as follows. In Section 3.2.1, it is shown that 
our model can be calibrated in an effortless way. In Sections 3.2.2 and 
3.2.3, we use our Market Share Attraction approach, introduced in 
Section 3.1, to analyze the price setting process. In Section 3.2.2, we 
demonstrate the existence of a unique non-trivial Nash-equilibrium and 
indicate how to approximate it iteratively. Remarkably, our model 
permits us to derive a closed form expression for the Nash equilibrium. 
We do so in Section 3.2.3. In Section 3.2.4, we explore monotonicity and 
magnitude of the equilibrium attractions, as well as the equilibrium 
prices. 

3.2.1. Calibrating the model 
Above, in (ii) and (iii), we tacitly assume that the players know all 

price sensitivities. In practice, this means that somehow the firms must 
have estimated these. Surprisingly, this estimation can be done in a 
straightforward way. To see this, note that m1A2 = m2A1. Inserting 
Ai = 1 − αiPi, we find that C1α1 + C2α2 = C3, where C1 = m2P1, C2 =

− m1P2, and C3 = m2 − m1. Since the current price levels and market 
shares are known to the firms, so are the coefficients Ck. Thus, we obtain 
a first linear equation for the price sensitivities. Undoubtedly, there have 
been price changes in the recent past, or else they still may be created. In 
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both cases, the associated price levels and market shares yield the co-
efficients of a second linear equation for the αi. Solving this simple 
system of two linear equations with two unknowns, we find values for 
the αi which can be used in the competition game. Obviously, when 
further price changes occur, the associated price levels and market 
shares yield the coefficients of a series of linear equations, which are 
approximately fulfilled and yield an estimate of the αi by linear 
regression (cf. Section 4.1). 

To illustrate, suppose the current prices set by firm 1 and firm 2 are 
44 and 50, leading to market shares 0.4 and 0.6, respectively. Since the 
cheaper firm has the lower market share, it is to be expected that α2 
< α1. Suppose firm 1 lowers its price to 42, while firm 2 retains its price. 
Suppose this leads to market shares 0.45 and 0.55, respectively. Solving 
the system of linear equations, we find α1 = 0.0189 and α2 = 0.0150.

3.2.2. Pricing two competing product types 
In this section, let us analyze the price competition problem for two 

product types for which there is ample capacity. Each firm i can perform 
an action Ai, which in practice is given implicitly, since it refers to the 
attraction Ai = 1 − αiPi evoked by setting the price Pi. 

Let us recall the following two important concepts from game theory. 
A vector A∞ = (A∞

1 ,A∞
2 ) is a Nash equilibrium iff 

Π1
(
A∞

1 ,A
∞
2

)
≥ Π1

(
A1,A∞

2

)
∀A1  

Π2
(
A∞

1 ,A
∞
2

)
≥ Π1

(
A∞

1 ,A2
)
∀A2 

Thus, at a Nash equilibrium, no one firm can do better by unilaterally 
changing its strategy. 

The best-response function of a firm specifies the action that maxi-
mizes its payoff for any given action of the other firm. Denote the best- 
response function of firm i by ri. Clearly, a Nash equilibrium (A∞

1 ,A∞
2 ) 

satisfies: (i) A∞
1 = r1(A∞

2 ) and (ii) A∞
2 = r2(A∞

1 ). 
We now have the following: 
Proposition 1: 
For the price competition problem for two product types with ample ca-

pacity, the best-response functions ri, i = 1, 2, reacting on an opposite ac-
tion x, are given by 

ri(x) = − x +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ai + x)x

√
for 0 ≤ x ≤ 1 (7) 

Proof: 
Assume firm 1 sets a price P0

1, giving A0
1 = 1 − α1P0

1 > 0. In view of 
(6), the profit objective to be maximized by product type 2 then becomes 

1
α2

1
A0

1 + A2
(a2 − A2)A2 (8) 

Now, write A ≡ A0
1 + A2, then (8) can be rewritten as 

1
α2

(
a2 − A + A0

1

)(
A − A0

1

)

A
≡

1
α2

G(A)

Introducing B = a2 + A0
1 yields: 

G(A) =
(B − A)

(
A − A0

1

)

A
= B + A0

1 −
BA0

1

A
− A 

Differentiating with respect to A gives: dG
dA =

BA0
1

A2 − 1. Hence, G is 

maximal for A* =

̅̅̅̅̅̅̅̅̅

BA0
1

√

> A0
1. Thus firm 2 sets a price P0

2 =
1

α2
(1 − A0

2)

with A0
2 ϵ (0,1) given by 

A0
2 = A* − A0

1 =

̅̅̅̅̅̅̅̅

BA0
1

√

− A0
1 = − A0

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a2 + A0

1

)
A0

1

√

= r2
(
A0

1

)

Next, analogously to the above, firm 1 sets a price corresponding 
with 

A1
1 = − A0

2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a1 + A0

2

)
A0

2

√

= r1
(
A0

2

)
. ▪ 

From (7) we see that the best-response function ri(x) is mono-
tonically increasing, showing that the best-response attraction of firm i 
increases as a result of a higher attraction provided by the other firm. 
The process where both firms keep on setting prices - by iterative 
application of the best-response strategy - is called tâtonnement. In Gal-
lego et al. [14] it is proven - for a broad class of attraction models 
including ours - that the sequence of prices obtained by tâtonnement 
globally converges to a unique Nash equilibrium vector. Confined to our 
case, a proof requires far less abstraction. Let us therefore present the 
proof below, also to keep our paper self-contained. 

Proposition 2: 
Consider the tâtonnement price sequence for firm 1: 

An+1
1 = φ

(
An

1

)
, n = 0, 1, 2,⋯ A0

1 ∈ (0, 1] given (9)  

where φ ≡ r1∘r2. The sequence (9) converges monotonically to a positive 
fixed point A∞

1 of φ. Moreover, the vector (A∞
1 , r2(A∞

1 )) is the unique non- 
trivial Nash equilibrium. 

Proof: 
Clearly ri: [0,1]→[0,1]. Hence φ: [0,1]→[0,1]. Let us prove that the 

price setting sequence (9) converges. It is readily verified that ri in (7) 
has the four properties:  

1) ri is continuous  
2) ri is monotonically increasing  
3) ri is concave  
4) ri(0) = 0 

Taking into account that an increasing concave function of a concave 
function is concave, we find that φ = r1∘r2 has - like ri - the properties 1) 
up to 4). 

Note that, for small values of x, one has that ri(x) > x. Hence φ(x) >
x for small x. Since φ: [0,1]→[0,1] is concave and since φ(x) > x for 
small x, the function φ has exactly one fixed point on the interval (0,1]. 

Now consider the sequence (9). A simple induction proof gives us 
that the sequence (9) is monotonic. Since the sequence is also bounded 
(0 ≤ An

1 ≤ 1), it converges, say to A∞
1 . Then continuity of φ yields: 

An+1
1 = φ(An

1)→φ(A∞
1 ) and so φ(A∞

1 ) = A∞
1 which means that An

1 con-
verges to a fixed point of φ. 

In view of the fact that φ(x) > x for small x, the sequence An
1 does not 

converge to the fixed point φ(0) = 0, but instead to the unique positive 
fixed point of φ. 

Conclusion: The sequence (9) converges monotonically to a positive 
fixed point A∞

1 of φ. Now, define A∞
2 = r2(A∞

1 ). Then A∞
1 = r1r2(A∞

1 ) =

r1(A∞
2 ). Hence, (A∞

1 , r2(A∞
1 )) is the unique non-trivial Nash equilibrium. 

▪ 
Note that the sequence An

1 decreases monotonically (and hence the 
associated profit increases monotonically) iff firm 1 sets a price P0

1 low 
enough to guarantee that A0

1 > A∞
1 . In that case also the sequence An

2 =

r2(An
1) decreases monotonically (by monotony of r2). 

The present section tells us how to approximate the Nash equilibrium 
iteratively. Closed form representations for the Nash equilibrium are 
rarely obtained in literature (see Section 2.2). Therefore, the closed form 
expression for the Nash equilibrium that emerges in Section 3.2.3 comes 
as a surprise. 

3.2.3. A closed form expression for the Nash equilibrium 
The next theorem gives a closed form expression for the Nash 

equilibrium. 
Theorem 1: 
For the price competition problem for two product types, with ample ca-

pacity, the unique non-trivial Nash equilibrium is the vector (A∞
1 , A∞

2 ) = (A∞
1 ,

r2(A∞
1 )) with 

P. Schuur et al.                                                                                                                                                                                                                                  



Operations Research Perspectives 8 (2021) 100188

6

A∞
1 =

2
9
a1 −

4
9
a2 + 2

̅̅̅
p
3

√

cos

(
1
3

arccos

(

−
3q
2p

̅̅̅
3
p

√ )

−
2π
3

)

(10)  

where 

p =
1

27
(
4a2

1 + 20a1a2 + 16a2
2

)

q =

(
1
27

)2(
− 16a3

1 + 123a2
1a2 + 240a1a2

2 + 128a3
2

)

Here, as before, ai = 1 − αici denotes the maximum obtainable attrac-
tion. Moreover, A∞

2 is given by (10) with the indices i = 1 and i = 2 inter-
changed. As for magnitude, the value of A∞

1 is bounded by: 

0 < A∞
1 <

1
2

a1 −
a2

1

20a1 + 32a2
(11) 

The profit in equilibrium is given by: 

Πi
(
A∞

1 ,A∞
2

)
=

1
αi

(
ai − 2A∞

i

)
(12) 

The equilibrium market share m∞
i is given by: 

m∞
i =

ai − 2A∞
i

ai − A∞
i

(13) 

In the special case that a1 = a2 one has that A∞
1 = A∞

2 = 1
3a1. 

Proof: 
The non-trivial Nash equilibrium (A∞

1 ,A∞
2 ) is characterized by 

(i) A∞
1 > 0 (ii) A∞

1 = r1 (A∞
2 ) and (iii)A∞

2 = r2 (A∞
1 ). So 

A∞
1 = − A∞

2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a1 + A∞

2

)
A∞

2

√

(14)  

A∞
2 = − A∞

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a2 + A∞

1

)
A∞

1

√

(15) 

In (14), put w =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a1 + A∞

2 )A
∞
2

√
. Then, (14) and (15) imply that w =

A∞
1 + A∞

2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a2 + A∞

1 )A
∞
1

√
. So 

w2 =
(
a1 +A∞

2

)
A∞

2 =
(
a2 +A∞

1

)
A∞

1 

Hence 
(
a2 +A∞

1

)
A∞

1 =
(
a1 +w − A∞

1

)(
w − A∞

1

)

i.e., 

w2 = w2 + w
(
a1 − 2A∞

1

)
− A∞

1

(
a1 − A∞

1

)

Hence 

w
(
a1 − 2A∞

1

)
= A∞

1

(
a1 − A∞

1

)
(16) 

Recall that 

0 < A∞
1 ≤ a1 = 1 − α1c1 (17) 

Combining (16) and (17) we find that a1 − 2A∞
1 ≥ 0, so 0 < A∞

1 ≤ 1
2a1. 

Squaring (16) yields: 
(
a2 +A∞

1

)
A∞

1

(
a1 − 2A∞

1

)2
=
(
A∞

1

)2( a1 − A∞
1

)2 

So, A∞
1 is root of the equation f(x) = 0 with f(x) = (a2 + x)(2x − a1)

2 

− x(x − a1)
2. 

For future reference, note that f(0) = a2
1a2 > 0 and f

(
1
2a1

)

< 0. Let 

us write out the third-degree polynomial f in full: f(x) = ax3 +bx2 +cx +
d with a = 3,b = − 2a1 + 4a2, c = − 4a1a2, and d = a2

1a2. 
Since b2 − 3ac > 0, the derivative f ′

(x) = 3ax2 + 2bx + c has two 
distinct zeros x1 and x2 satisfying 

x1 =
− b −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2 − 3ac

√

3a
<

− b −
̅̅̅̅̅
b2

√

3a
≤ 0,

and 

x2 =
− b +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2 − 3ac

√

3a
>

− b +
̅̅̅̅̅
b2

√

3a
≥ 0.

To obtain an upper bound for x2, note that 

b2 − 3ac = B − A with B =

(

b +
9
2

a1

)2

and A =
9
4
a2

1.

Since A < B, one has 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2 − 3ac

√
≤

̅̅̅
B

√
(

1 −
(

A
2B

))

Thus 

x2 =
− b +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2 − 3ac

√

3a
≤

1
2
a1 −

a2
1

20a1 + 32a2 

Consequently, the sign of f(x) is as follows: 
f increases from -∞ to f(x1) > f(0) > 0. Hence f has its smallest zero 

x1 bounded by x1 < x1 < 0. Next, f decreases from f(x1) to f(x2) where 

0 < x2 < 1
2a1 and f increases for x > x2. Thus f(x2) < f

(
1
2a1

)

< 0. 

Hence, f has its second zero x2 between 0 and x2 and its third zero 
x3 > 1

2a1.

So, since 0 < A∞
1 ≤ 1

2a1, the root corresponding with a Nash equi-
librium is A∞

1 = x2 which is found to be as stated in the theorem by 
using the classical formula of Viète (see [24]). From the fact that 0 <

x2 < x2 < 1
2a1 we infer the inequality (11). 

Furthermore, combining (6) with (16) we find: 

Πi
(
A∞

1 ,A∞
2

)
=

1
αiw

(
ai − A∞

i

)
A∞

i =
1
αi

(
ai − 2A∞

i

)

Expression (13) for the market shares is a direct consequence of (16). 
Finally, when a1 = a2, then by combining (14) and (15) we find that 
A∞

1 = A∞
2 = 1

3a1. ▪ 
Remarkably, all relevant entities in Theorem 1 are expressed in 

explicit form in only two parameters, namely ai = 1 − αici. Once pro-
duction cost ciand price sensitivity αi are known, then all equilibrium 
entities are known as well. To illustrate this phenomenon, we present in 
Table 2 the equilibrium market share m∞

1 for some key values of ai.

Table 2 shows that enlarging the maximum obtainable attraction a1- 
in order to obtain a larger equilibrium market share m∞

1 - is most effective 
in the lower a1 region. One way to enlarge a1 is by reducing the pro-
duction cost c1. Reducing c1 with 22.2% will enlarge a1 from 0.1 to 0.3. 

The explicit expressions for the equilibrium entities in Theorem 1 
enable us to derive monotonicity and magnitude properties which will 
be useful in discussing managerial model consequences in Section 4. 

Table 2 
The equilibrium market share m∞

1 as a function of ai = 1 − αici.  
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3.2.4. Monotonicity and magnitude properties for equilibrium entities 
Although it may not be immediately apparent from the explicit 

expression (10), we have the following monotonicity properties, which 
will be useful further on. 

Proposition 3: 
For fixed a2 ∈ (0, 1), the equilibrium attraction A∞

1 is a monotonically 
increasing function of a1. In particular 

0 <
∂A∞

1

∂a1
<

1
2
∀a1, a2 ∈ (0, 1) (18) 

For fixed a1 ∈ (0, 1), the equilibrium attraction A∞
1 is a monotonically 

increasing function of a2, i.e., 

∂A∞
1

∂a2
> 0 ∀a1, a2 ∈ (0, 1)

Proof: 
Since A∞

2 < a2 and since r1 is monotonically increasing, we find that 
A∞

1 = r1(A∞
2 ) < r1(a2) =− a2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a1 + a2)a2

√
. Hence 

(
A∞

1 + a2
)2

< (a1 + a2)a2 (19) 

From the proof of Theorem 1 we recall that A∞
1 is a root of the 

equation f(x) = 0 with f(x) = (a2 + x)(2x − a1)
2
− x(x − a1)

2. More-
over, it was shown that f ’(A∞

1 ) < 0. Differentiating f(A∞
1 ) = 0 with 

respect to a1 and using (19) we obtain 

f ’( A∞
1

) ∂A∞
1

∂a1
= 2
[(

A∞
1 + a2

)2
− (a1 + a2)a2

]
< 0 (20) 

Hence ∂A∞
1

∂a1
> 0. From (11) we know that 0 < A∞

1 < 1
2a1.

Consequently f ′

(A∞
1 ) − 4[(A∞

1 + a2)
2
− (a1 + a2)a2] = A∞

1 (5A∞
1 −

4a1) < 0. Combining the latter with (20), we find that ∂A∞
1

∂a1 
< 1

2 .

Finally, differentiating f(A∞
1 ) = 0 with respect to a2 yields: 

f ’( A∞
1

) ∂A∞
1

∂a2
= −

(
2A∞

1 − a1
)2

< 0  

whence ∂A∞
1

∂a2
> 0. ▪ 

Intuitively, one would say: the better the brand image, the larger the 
market share and the larger the price that can be asked for the product. 
In other words, when α1 gets small, market share and price will be rising, 
when at Nash equilibrium. The next proposition confirms this intuition. 
It will play a key role in our managerial analysis in Section 4. 

Proposition 4: 
For fixed α2, the equilibrium market share m∞

1 and the equilibrium price 
P∞

1 are monotonically decreasing functions of α1, i.e., 

∂m∞
1

∂α1
< 0 and

∂P∞
1

∂α1
< 0 (21) 

In addition 

∂m∞
1

∂α2
> 0 and

∂P∞
1

∂α2
> 0 (22) 

Proof: 
Since ∂m∞

1
∂α1

= − c1
∂m∞

1
∂a1

, it suffices to show that ∂m∞
1

∂a1
> 0. By (13) we have 

m∞
1 =

a1 − 2A∞
1

a1 − A∞
1

. Differentiating with respect to a1 we find (a1 − A∞
1 )

2∂m∞
1

∂a1 
=

A∞
1 − a1

∂A∞
1

∂a1
, which is positive since by (20) 

f
′ (

A∞
1

)
(

A∞
1 − a1

∂A∞
1

∂a1

)

= A∞
1 f

′ (
A∞

1

)
− 2a1

[(
A∞

1 + a2
)2

− (a1 + a2)a2
]
= 3f

(
A∞

1

)
− a2

(
2A∞

1 − a1
)2 

= − a2
(
2A∞

1 − a1
)2

< 0.

Differentiating P∞
1 = (1 − A∞

1 )/ α1 with respect to α1 and using (18), 
we obtain 

α2
1
∂P∞

1

∂α1
= A∞

1 − 1 − α1
∂A∞

1

∂α1
= A∞

1 − 1 + (1 − a1)
∂A∞

1

∂a1
< A∞

1 − a1 < 0 

As for the α2 derivatives, note that ∂P∞
1

∂α2
= c2

α1

∂A∞
1

∂a2
> 0, whereas ∂m∞

1
∂α2

=

−
∂m∞

2
∂α2

> 0. ▪ 
Now that we have explored monotonicity, let us consider the 

magnitude of attraction and price in equilibrium. 
Proposition 5: 
The equilibrium attraction A∞

i satisfies: 

0 < A∞
i <

1
3

(23) 

The equilibrium price P∞
i satisfies: 

2
3αi

< P∞
i <

1
αi

(24) 

Proof: 
For symmetry reasons, we may confine ourselves to i = 1. Let RHS 

(a1 , a2) denote the right-hand side of (10). Since ∂A∞
1

∂a1 
and ∂A∞

1
∂a2 

are both 
positive for a1 , a2 ∈ (0,1), it suffices to show that RHS (1,1) = 1

3. In 
view of the proof of Theorem 1, we are done if we can show that 1

3 is 
the second root of the equation f(x) = 0 with f(x) = (1 + x)
(2x − 1)2

− x(x − 1)2. The latter follows directly by rewriting f as 
f(x) = (3x − 1)(x2 + x − 1). ▪ 

Fig. 1 illustrates the spatial behavior of A∞
1 as a function of a1 and a2. 

It shows that the attraction of product type 1 at Nash equilibrium in-
creases with the maximum attainable attractions of both products and 
converges to its least upper bound of 1/3 given by (23). In Section 4, we 
attempt to modify the maximum attainable attractions ai = 1 − αici by 
changing the parameters αi and ci. This provides further managerial 
insights on the dynamic structure of the game. 

3.3. Pricing more than two competing product types in a non-cooperative 
environment 

A practical enhancement of our model is to increase the number of 
firms in the non-cooperative case to n > 2. From Gallego et al. [14] we 
know that there exists a unique and stable Nash equilibrium. Let us 
discuss the possibility of obtaining closed form solutions for the Nash 
equilibrium. 

For x = (x1, x2,…, xn) ∈ [0,1]n, let x(i) ≡ (x1, x2,…, xi− 1, xi+1,…, xn)

∈ [0, 1]n− 1 and let ‖ x(i)‖1 ≡
∑n

j=1,j∕=ixj. Reasoning as in the proof of 
Proposition 1, one readily finds: 

Proposition 6: 
For the price competition problem for n product types with ample capacity 

the best-response functions ri, i = 1, 2,…, n reacting on an opposite action 
x(i) ∈ [0, 1]n− 1 are given by 

ri
(
x(i))= − ‖x(i)‖1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ai+ ‖x(i)‖1)‖x(i)‖1

√

Hence, a non-trivial Nash equilibrium A∞ = (A∞
1 , A∞

2 , …, A∞
n ) is 

characterized by 
(i) A∞

i > 0 and (ii) A∞
i = ri(A∞(i)) for i = 1,2,…,n 

In view of Section 3.2.3, one may wonder whether in the n > 2 case 
there are closed form representations for the Nash equilibrium. Let us 
illustrate why we deem the latter unlikely. 

Consider the case n = 3: 

A∞
1 = − A∞

2 − A∞
3 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a1 + A∞

2 + A∞
3

)(
A∞

2 + A∞
3

)√

A∞
2 = − A∞

1 − A∞
3 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a2 + A∞

1 + A∞
3

)(
A∞

1 + A∞
3

)√
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A∞
3 = − A∞

1 − A∞
2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
a3 + A∞

1 + A∞
2

)(
A∞

1 + A∞
2

)√

Putting w = A∞
1 + A∞

2 + A∞
3 , as in the proof of Theorem 1, we find 

that (cf. (16)) w(ai − 2A∞
i ) = A∞

i (a1 − A∞
i ). To obtain an equation for 

A∞
1 , we previously considered this expression for i = 1. We squared both 

sides and took advantage of the fact that w2 can be expressed as a 
quadratic function in terms of A∞

1 (to be precisely as (a2 + A∞
1 )A∞

1 ). Next, 
A∞

1 was obtained in closed form as a root of the resulting third-degree 
polynomial. Here, that approach does not work, since now w2 can be 
expressed in either A∞

1 and A∞
2 or in A∞

1 and A∞
3 , but not – in a simple way 

– in strictly A∞
1 . Ending up with a polynomial of degree higher than four - 

of which A∞
1 is to be a root - will not yield a closed form expression for 

A∞
1 , as known from Galois theory. Consequently, we will have to resort 

to the best-response functions from Proposition 6 and approximate the 
Nash equilibrium iteratively (with linear convergence rate) by a 
tâtonnement process [14]. 

4. Managerial consequences of the model 

Let us explore the managerial consequences of our model, thereby 
focusing on profits. In Section 4.1, we present a simple estimation pro-
cedure for the best pricing of a new product upon market entry, based on 
only a few pricing experiments in a multiple product environment. In the 
subsequent sections, we exploit the closed form expression for the Nash 
equilibrium. Section 4.2 analyzes how the profits at Nash equilibrium 
are influenced by brand image, as reflected in the price sensitivity. 
Section 4.3 examines the profit loss due to competition, by comparing 
the profit potential of a single monopolist firm with its equilibrium 
profit, resulting from the market entry of a second firm. 

4.1. Estimating the best entry price of a new product in a multiple product 
environment 

Consider firm 1, a manufacturer that recently started producing and 
selling a new vacuum cleaner. They have already explored the market by 
performing T = 4 pricing experiments (see Table 3). Unit production 

cost is c1 = 10. The total market amounts to d = 18,000 per period. 
Evidently, firm 1 is curious about the price they should set to 

maximize their profit. One may wonder whether this question can be 
answered at all, since no direct information about individual competi-
tors is available. The only information available - furnished by the T 
pricing experiments - is the market share per experiment of the ensemble 
of competitors that results from the price setting of firm 1. The power of 
our model is that this limited information is sufficient to estimate the 
best price. Remarkably, we do not need a pricing model for more than 
two competing firms to achieve this. 

Let us use the index j = 1 to denote firm 1. And let us denote ‘them’ 
by index j = 2. Here, ‘them’ is the ensemble of all competing substitute 
vacuum cleaner firms. Key to our analysis is the following Market Share 
Attraction model: mj =

Aj
A1+A2

, where we assume that A1 = 1 − α1P1 with 
P1 the price per vacuum cleaner from firm 1. We make no modelling 
assumption for A2 except that it is positive. 

Surprisingly, the data from Table 3 is sufficient to estimate the price 
sensitivity α1 as well as the attraction A2. We do not need any 
assumption about A2, except the supposition that A2 is invariant during 
the experiments, which is plausible, since A2 models the attraction of the 
ensemble of all competitors. We have the following: 

Claim 
Suppose firm 1 conducted T ≥ 2 pricing experiments. On each price 

setting P(t)
1 the market responded with a market share of m(t)

1 , t = 1,2,…,T. 
Then, the price sensitivity α1 and the attraction A2 can be estimated through 
linear regression. 

Proof: 

Let us write: A(t)
1 ≡ 1 − α1P(t)

1 ,m(t)
2 ≡ 1 − m(t)

1 , yt ≡
m(t)

2

m(t)
1
,xt ≡ ytP(t)

1 . 

According to the above model, we approximately have: A2 = ytA(t)
1 =

yt(1 − α1P(t)
1 ). 

Hence yt = axt + b+ εt, with a = α1 and b = A2, whereas εt repre-
sents the error term. 

Since yt and xt are known, we can estimate a and b by linear 
regression. ▪ 

Now, let us return to our example. Combining the above with 
Table 3, we find the regression data of Table 4. 

Linear regression gives: α1 = 0.0156 and A2 = 3.7237. Hence, the 
total profit for firm 1 for their new vacuum cleaner - as a function of 
price - can be estimated by: 

(P1 − c1)m1d = (P1 − 10)
(1 − 0.0156P1)

(1 − 0.0156P1) + 3.7237
18, 000  

which is plotted in Fig. 2. 

Fig. 1. The spatial behavior of A∞
1 .  

Table 3 
Market shares resulting from four pricing experiments.  

Pricing experiment t Unit selling price Market share 

1 55 0.04 
2 50 0.05 
3 45 0.07 
4 40 0.10  
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Using the best-response function (7), with a1 = 1 − α1c1 = 0.844, 
we find for the best price: P1 = (1 − r1(A2))/α1 = 38.4317. In conclu-
sion, our model enables a simple estimation procedure for the entry 
pricing of a new product on the basis of only a few pricing experiments. 
The above analysis shows how our two-product model can be useful in a 
multiple product environment. 

4.2. The influence of brand image on the profit at Nash equilibrium 

Note that Theorem 1 expresses the Nash equilibrium vector - for two 
competing substitute product types - as a composition of elementary 
functions of the parameters αi and ci. From these, ci - the production cost 
per unit - is determined by the firm itself, although there is usually 
limited room for improvement. The price sensitivity αi, however, is 
inversely proportional to the brand image, which is determined exter-
nally. It is affected by factors related to past performance of the firm 
and/or product type, such as quality, social awareness, etc. The higher 
these factors score for the product type in question, the smaller the 
corresponding value of αi. By means of an effective marketing strategy, 
brand image can be improved and thus αi can be lowered. At Nash 
equilibrium, (24) tells us that 2

3αi
< P∞

i < 1
αi

. Hence, the equilibrium 
price P∞

i increases in a controlled way, when αi tends to zero. In view of 
(21), this increase happens monotonically. Consequently, for fixed ci, we 
find an increase - as αi tends to zero - of the Nash profit Πi(A∞

1 ,A∞
2 )

= m∞
i (P∞

i − ci) =
1
αi

(ai − 2A∞
i ) (see (12)). Fig. 3 illustrates the general 

behavior of the Nash profit of firm 1 as a function of the price sensitivity 
α1. In fact, the increase in profit - for decreasing α1 - is unbounded, since 

by (11) Π1(A∞
1 ,A∞

2 ) = 1
α1

(a1 − 2A∞
1 ) > 1

α1

(
a2

1
10a1+16a2

)

> 1
α1

(
a2

1
10a1+16.

)

, 

which tends to infinity as α1 tends to zero. Note that the latter inequality 
gives a lower bound for the Nash profit of firm 1 that is independent of 
any parameter of the competing firm 2. This is an important result. It 
suggests that by building up a solid brand image (i.e., a small α1), any 
firm can be assured of sufficient profit, regardless of any action of any 

competitor. 
The Nash profit of firm 1 in Fig. 3 reflects the single period profit 

obtained by subtracting the total manufacturing costs from the total 
revenue, as discussed in Section 3.2. This profit excludes fixed costs, 
such as marketing expenditure, facility, and machinery investments, etc. 
Recall from (5) that Π1(A∞

1 ,A∞
2 ) represents the profit made for product 

type i per overall unit demanded. Thus, an upper bound for the projected 
fixed costs attributed to any single period is given by d Π1(A∞

1 ,A∞
2 ),

where d is the total market demand in that period. 
As an example, in Fig. 3, the Nash profit of firm 1 for the price 

sensitivity α1 = 0.02 is - roughly - 10. Suppose d has the value 10,000. 
Then the firm experiences positive net profits, as long as the projected 
fixed costs attributed to the period under consideration are less than 
100,000. 

After evaluating the past period, firm 1 may allocate a budget for 
launching a marketing campaign to improve brand image. Our model 
enables an easy check in order to verify whether this campaign proceeds 
successfully, i.e., whether the value of α1 indeed decreases: just execute 
the calibration procedure from Section 3.2.1 iteratively, and monitor - in 
this way - the value of α1 during the campaign. 

Table 4 
Data for linear regression.  

Experiment t Unit selling price Market share yt  xt  

1 55 0.04 24 1320 
2 50 0.05 19 950 
3 45 0.07 13.29 597.86 
4 40 0.10 9 360  

Fig. 2. Estimated profit for the new vacuum cleaner as a function of entry price.  

Fig. 3. Profit Π1(A∞
1 ,A∞

2 ) of firm 1 under Nash equilibrium as function of the 
price sensitivity α1. The parameter values are: α2 = 0.01, c1 = 14, c2 = 1 
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4.3. Profit loss due to competition 

Let us explore the managerial consequences for a firm of having to 
compete in a non-cooperative environment rather than to be a monop-
olist. Suppose firm 1 is acting as a monopolist in the market. Suppose, 
furthermore, that a second firm - say firm 2 - enters the market. Then, let 
us examine the impact on the profit of firm 1 which used to serve the 
whole market. 

As a monopolist, firm 1 has a profit potential of π1 =
a1
α1 

by (4). When 
firm 2 enters the market, the equilibrium profit of firm 1 amounts to 
Π1(A∞

1 ,A∞
2 ) = 1

α1
(a1 − 2A∞

1 ) = π1 − 2 A∞
1

α1
. Hence, firm 1 suffers a profit 

loss of 2 A∞
1

α1 
due to competition. In relative terms, this profit loss amounts 

to a fraction of magnitude 2 A∞
1

a1 
of the profit in the monopolist case. Note 

that this relative profit loss only depends on the two maximum obtain-
able attractions a1 and a2. Hence, we can tabulate it as in Table 5. As for 
the diagonal values: when a1 = a2, it holds that A∞

1 = A∞
2 = 1

3a1, yielding 
a relative profit loss of 2/3. 

Table 5 shows row-wise, as well as column-wise monotonicity. As for 
row-wise, when a2 increases, making the entering firm 2 potentially 
more attractive, then the relative profit loss of firm 1 increases if firm 1 
does not change its potential attractivity. As for column-wise, if a1 in-
creases, whereas a2 is fixed, then the relative profit loss of firm 1 de-
creases. In the latter case, the relative profit loss of firm 1 can be shown 
to be bounded from above in a uniform way. Let us illustrate this by an 
example. Suppose firm 1 has improved its price sensitivity α1 in such a 
way that a1 > 0.9. Then - in view of (23) - one has the following: for all 
a2, the relative profit loss of firm 1 is smaller than 2/(3*0.9) = 0.741. 
Hence, a strong brand image will keep the relative profit loss of a firm - 
due to a new entrant - manageable. 

5. Conclusion and future research 

This paper aims to design a practical marketing management tool. 
We consider a non-cooperative marketing environment with multiple 
substitute products, where total market size is moderately price- 
sensitive. The price-demand relations are determined by a market 
share attraction model, where the attraction of each product is a linearly 
decreasing function of its price. We assume that each producer has 
sufficient production capacity to fulfill the total market demand. 

For the general case of multiple substitute products, we derive 
explicit expressions for the best-response functions. The latter enable us 
to approximate the unique Nash equilibrium iteratively by a 
tâtonnement process. For the specific case of two substitute products, we 
derive the product prices in a unique Nash equilibrium in closed form as 
a composition of elementary functions of the model parameters. These 
expressions help managers in changing their marketing instruments 
other than price, so as to obtain substantial individual profits. We show 
how our closed form Nash equilibrium enables the examination of the 
profit loss due to competition. Relevant for practice is the fact that our 
model can be easily calibrated. We provide a simple procedure for 
estimating the model parameters. 

Key features of our model that enhance usability are the following. 
First, its linear attraction that provides computational advantages, such 
as simple and explicit best-response functions in a multiple product 
environment. Second, for the two-product case, the closed form 
expression for the Nash equilibrium, providing each of the two firms 
with the profit increase due to improving its brand image. Third, the 
existence of a single parameter in the attraction model and a practical 
tool to estimate it. 

A limitation of this paper is the assumption of ample production 
capacity for each of the competing substitute products. For future work, 
we suggest exploring the influence of limited production capacity on the 
Nash equilibrium. 

A second direction of future research is of a more practical nature: 
how accurate is our model in a real-life case? We experimented with 
emulating an electronic reverse auction. Sessions with university stu-
dents showed promising results regarding the usefulness of our model in 
guiding the bidding decisions. 
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