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A Novel Core-Based Optimization Framework for Binary Integer Programs- 
the Multidemand Multidimesional Knapsack Problem as a Test Problem 
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A B S T R A C T   

The effectiveness and efficiency of optimization algorithms might deteriorate when solving large-scale binary 
integer programs (BIPs). Consequently, researchers have tried to fix the values of certain variables called adjunct 
variables, and only optimize a small problem version formed from the remaining variables called core variables, 
by relying on information obtained from the BIP’s LP-relaxation solution. The resulting reduced problem is called 
a core problem (CP), and finding an optimal solution to a CP does not mean finding an optimal solution to the BIP 
unless the adjunct variables are fixed to their optimal values. Thus, in this work, we borrow several concepts 
from local search (LS) heuristics to move from a CP to a neighbouring CP to find a CP whose optimal solution is 
also optimal for the BIP. Thus, we call our framework CORE-LP-LS. We also propose a new mechanism to choose 
core variables based on reduced costs. To demonstrate and test the CORE-LP-LS framework, we solve a set of 126 
multidemand multidimensional knapsack problem (MDMKP) instances. We solve the resulting CPs using two 
algorithms, namely, commercial branch and bound solver and the state-of-the-art meta-heuristic algorithm to 
solve MDMKP. As a by-product to our experiments, the CORE-LP-LS framework variants found 28 new best- 
known solutions and better average solutions for most of the solved instances.   

1. Introduction 

The purpose of the core concept to solve a binary integer program 
(BIP), as stated in [41], is ǣto reduce the original problem by only 
considering a core of items for which it is hard to decide if they belong to 
the optimal solution or not, whereas the variables for all items outside 
the core are fixed to certain values, i.e., 0 and 1 for BIP.ǥ Thus, based on 
the core concept, variables can belong to one of two sets: the core var
iables’ set Ncore and the adjunct variables’ set Nadj, while the BIP vari
ables’ set is N = Ncore ∪ Nadj. The Nadj variables are fixed to either 0 or 1, 
while we create a core problem (CP) whose decision variables are those 
in Ncore only and solve it instead of solving the BIP itself, e.g., [6]. 
Consequently, the BIP solution, xBIP, can be represented as xBIP = (xadj,

xcore) where xadj and xcore represent the adjunct and core variable parts of 
the the solution, respectively. The CP is a reduction to the BIP; however, 
finding the CP’s optimal solution, xopt

core, does not mean finding the BIP’s 
optimal solution, xopt

BIP, unless we have xopt
BIP = (xopt

adj, x
opt
core), i.e., variables in 

Nadj are fixed to their optimal values in xopt
BIP. 

Fixing the Nadj variables to xopt
adj is a pre-requisite condition to finding 

xopt
BIP when using the core concept, so is it possible to find a CP that satisfy 

this condition? In other words, is it possible to find a CP whose optimal 
solution is also optimal for the BIP? In this paper, we propose a frame
work that tries to find such a CP which we call an optimal CP, as shown 
in Definition 1. The only guarantee that we find an optimal CP is to know 
xopt

BIP. Consequently, we search for the best CP that results in the best 
objective function value, hoping that this CP is an optimal CP. In other 
words, we solve the BIP by searching for optimal CP. 

Definition 1. An optimal CP is a CP whose adjunct variables are fixed 
to their values in the optimal solution of an BIP. 

The proposed framework borrows several concepts from local search 
(LS) algorithms [23]. For example, we suggest a method to define 
neighbouring CPs similar to neighbouring solutions in LS. Moreover, 
moving from a CP to another one depends on finding a descent direction. 

Like several previous researchers (e.g., [41], and [25]), we use the 
BIP’s LP-relaxation solution, LP(BIP), to identify the CP and to fix the 
Nadj variables. Similar to [41], we use a fixed core size; however, we try 
to identify related variables by considering the reactions of the 
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variables’ reduced costs. We increase the size of a CP by moving vari
ables from Nadj to Ncore if a variable in Nadj is related to another variable 
in Ncore. We call this step probing, and it is found to improve the per
formance of the proposed framework. 

We call the proposed framework CORE-LP-LS because we rely on LP- 
relaxation solutions to identify CPs, use an LS heuristic to move from a 
CP to a better, neighbouring CP, and the framework is based on the core 
concept. We select the multidemenand multidimensional knapsack 
problem (MDMKP) to test our algorithm; however, we can apply it to 
any BIP. Using a set of MDMKP instances, we try to find if we can find 
optimal BIP solutions by searching for optimal CPs, and how significant 
is the probing step. 

MDMKP, also known as the multidimensional knapsack/covering 
problem (KCP) [27], is about selecting some items from set N = {1,2, ..
., n} to maximize the sum of profits associated with the selected items 
where each item j ∈ N has profit cj. Thus, we use binary variable xj that 
has a value of 1 if item j ∈ N is selected, 0 otherwise. Equation 1 shows 
the objective function of MDMKP, while we define the decision variables 
in Equation 4. 

MDMKP constraint set R = {1,2, ...,m,m + 1,m + 2, ...,m + q} can 
be divided into two sets. The knapsack constraint set, Rknap = {1,2, ...,
m}, is one of these two constraint sets where each constraint has capacity 
bi, ∀i ∈ Rknap, and each item j ∈ N consumes aij units of this capacity. 
The second constraint set is the weighted covering constraint set, Rcover 
= {m+1,m+2, ...,m+q}, where we need to cover demand bi, ∀i ∈
Rcover, and each item j ∈ N covers aij units of this demand. The knapsack 
and weighted covering constraint sets are shown in Equations 2 and 3, 
respectively. The full mathematical model of the MDMKP is shown in 
Equations 1–4. 

Maximize z =
∑n

j=1
cjxj (1)  

s.t. 

∑n

j=1
aijxj ≤ bi,∀i ∈ Rknap (2)  

∑n

j=1
aijxj ≥ bi,∀i ∈ Rcover (3)  

xj ∈ {0, 1}, ∀j ∈ {1, 2, ..., n} (4) 

MDMKP assumes that the profit of item j ∈ N can take any value, cj ∈

R, ∀j ∈ N; however, capacity and demand limits can only take positive 
number bi ∈ R+, ∀i ∈ R, while capacity consumption and demand 
contribution can be any non-negative value, aij ≥ 0, ∀i ∈ R and ∀j ∈ N. 

MDMKP has several applications such as facility location ([11] and 
[42], and [40]), and capital budgeting and portfolio selection [7]. 
MDMKP subsumes the famous MKP [18] that only considers the knap
sack constraints, i.e. having q = 0 [33], while KP is a special case of MKP 
where we have a single knapsack constraint. Both KP and MKP are 
NP-hard problems ([32] and [18]), respectively, and since MKP is a 
special case of MDMKP; consequently, MDMKP is also NP-hard problem. 
Researchers have used exact [33], heuristic [10], and meta-heuristic 
algorithms to solve MKP instances. Examples of meta-heuristic algo
rithms used to solve MKP include genetic algorithm (GA), tabu search 
(TS), and ant colony optimization (ACO), as in [14], [21], and [2], 
respectively. For more information about MKP solution methodologies 
and variants, readers are referred to [29], [18], and [30]. 

Similar to MKP and other NP-hard problems, researchers have used 
heuristics and meta-heuristics to solve large MDMKP instances. Re
searchers have focused on Tabu search(TS)([12], [5], and [31]) and 
scatter search (SS)([28] and [19]) to solve MDMKP. The alternating 
control tree (ACT) of [27] is another algorithm solution framework used 
to solve MDMKP that integrate heuristic and exact techniques. 

We use MDMKP to check the effectiveness and efficiency of the 
CORE-LP-LS framework. On the one hand, the effectiveness of the CORE- 
LP-LS framework, i.e., its ability to find optimal CPs leading to optimal 
BIP solutions, is checked by solving the CPs using an exact algorithm, 
namely the B&B algorithm of CPLEX12.10. Thus, we call this hybrid 
CORE-LS-LP-IP. We use an exact solver in this experiment because we 
want to block the effects of the algorithm used to solve the CPs. On the 
other hand, the efficiency of the CORE-LP-LS framework, its ability to 
find high-quality solutions in short times, is checked by replacing the 
exact solver with the state-of-the-art algorithm to solve MDMKP. For this 
purpose, we use the two-stage tabu search (TSTS) algorithm of [31] to 
solve the CPs. Thus, henceforth, we denote this algorithm by 
CORE-LP-LS-TSTS. In the efficiency experiment, we do not benefit from 
the parallel nature of the CORE-LP-LS framework, which is expected to 
expedite the execution of the algorithm. Using the two CORE-LS-LP 
hybrids, CORE-LS-LP-IP and CORE-LS-LP-TSTS, we were able to iden
tify 28 new best-known values out of 126 solved instances. Moreover, 
the average solution values found by the hybrids are better than the 
TSTS algorithm. Thus, finding new competitive algorithms to the 
state-of-the-art algorithm to solve MDMKP is another contribution of 
this work, although it is not the main objective of this paper. 

This paper is organized as follow. In section 2, we review previous 
work related to the core concept, whereas in sections 3 and 4, we explain 
the CORE-LP-LS framework and introduce the probing concept, 
respectively. Experiments are discussed and presented in sections 5– 7. 
Section 5 checks the effectiveness of the CORE-LP-LS framework by 
experimenting with the CORE-LP-LS-IP algorithm. And in section 6, we 
test the CORE-LP-LS-TSTS algorithm to check the framework efficiency. 
We check the importance of the probing step in section 7. Lastly, we 
present our conclusions and possible future extensions to this work in 
section 8. 

2. The Core concept 

Reducing a BIP to a set of core variables depends on defining effi
ciency measures, τj, ∀j ∈ N. Starting with KP, [6] relied on the bene
fit/cost ratio, τj =

cj
aj
. Because M constraints are considered in MKP 

compared to one constraint in KP, [36] replaced τj =
cj
aj 

by τj =
cj∑m

i=1
aij×ri

,

where ri is the surrogate multiplier of constraint, i ∈ M. [41] used the 
dual values of the LP-relaxation solution for the surrogate multipliers, 
which makes the efficiency measure dependant of variables’ reduced 
costs. [26] have generalized the core concept to any IP, even if the 
problem inputs are negative. In addition to an efficiency measure that 
depends on reduced costs, [26] used another measure that considers the 
effect of a variable on the objective function and resources’ consump
tion. Similar to previous researcher(e.g., [41], [25], [33], and [1]) 
CORE-LP-LS uses reduced costs to identify the core variables. 

Both [6] and and [38] used a fixed core size to solve KP, whereas 
[34] used a core size of that depends on the problem size. [41] used a 
percentage of the problem size to solve MKP. 

Several researchers highlighted the importance of problem charac
teristics on algorithms design and performance e.g.,[37], [38] and [35]. 
[25] have shown that it is better to have a flexible core size that depends 
on the problem difficulty. Because hard problems have low efficiency 
measure dispersion compared to easy problems, [25] have normalized 
the efficiency measure between [− 1,1] and used cut-off values to define 
variables in Ncore based on the normalized efficiency measures. 
CORE-LP-LS algorithm uses a fixed percentage of the problem size; 
however, the probing step, which takes into account problem charac
teristics, allows the expansion of the core set as explained later. 

Researches have suggested several local search algorithms that solve 
reduced versions of BIPs where the size and elements of the reduced 
problem keeps changing. Kernel search (KS) [3] is an example of such 
algorithms where promising variables form a kernel, while other vari
ables are divided into several buckets. A bucket variable might be added 
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to the kernel if it improves the solution value when solving a reduced 
problem from both the kernel and the bucket variables [4]. The KS 
variant of [20] allows variable removal from the kernel. 

The relax-and-fix (RF) [45] and the fix-and-optimize (FO) [24] are 
two related algorithms where RF generates feasible solutions, whereas 
FO improves solutions. RF and FO have been widely used to solve lot 
sizing problems (e.g., [8], [16], [43], and [13]). Both algorithms use a 
moving window to change the reduced problem elements, and after each 
solution, a set of variables is fixed. In both algorithms, variables chosen 
by the window are forced to be binary. 

[17] used a local branching constraint (LB-constraint) to define 
neighbouring solutions. Given feasible solution x to a BIP, we partition N 
into sets N0 and N1 that include variables having a value of 0 and 1, 
respectively, in x. A k-opt LB-constraint is defined in Equation 5. Both 
[17] and [15] used such neighbourhood definition to explore nodes in 
B&B and branch-and-cut algorithms. [44] also used LB-constraints in an 
algorithm that solves a series of reduced problems. Solutions to the core 
problem, which only includes variables having fractional values in the 
LP-relaxation solution, provides a lower bound (LB) for the MKP, while 
the LP-relaxation provides an upper bound (UB). LB-constraints are 

iteratively added to the problem to redefine the core problem and 
re-evaluate the UB and LB, until UB and LB converge. Researchers have 
improved [44] algorithm by considering only dominant solutions in 
[22] and improving the quality of UB by defining and solving mixed 
integer program programming relaxation instead of LP-relaxation in 
[46]. Unlike the LB-constraints, the neighbourhood definition in 
CORE-LP-LS forces one variable to change its value compared to the 
incumbent solution. Moreover, in the LB-based algorithms, added con
straints are not removed as algorithm progress, which does not happen 
in CORE-LP-LS. Lastly, the solution evolution and problem reduction in 
the KS, RF, and FO are completely different that CORE-LP-LS. 
∑

j∈N1

(
1 − xj

)
+
∑

j∈N0

xj ≤ k (5) 

The CORe ALgorithm (CORAL) [33] starts with a small core that 
increases in size without using LB-constraints. Similar to CORE-LP-LS, 
CORAL checks if changing a variable value, compared to its value in 
the incumbent solution, would improve the incumbent solution. How
ever, CORE-LP-LS uses the same core size, unless the size is temporarily 
increase at an iteration due to probing. Moreover, CORAL does not 

Table 1 
Computational results of the CORE-LP-LS-IP algorithm with probing for instances having n = 100 and n = 250.  

Instance BKV BFV-IP Core Statistics Instance BKV BFV-IP Core Statistics 
100-    250-    

5-2-0-0 28384 28384 40,40,40,1,36 5-2-0-0 78486 78486 40,40,40,0,1 
5-2-0-1 26386 26386 40,40,40,0,1 5-2-0-1 75132 75132 40,40,40,0,1 
5-2-0-2 23484 23484 40,40,40,0,1 5-2-0-2 71003 71003 40,52,44.5,1,15 
5-2-0-3 27374 27374 40,40,40,0,1 5-2-0-3 80311 80311 40,40,40,0,1 
5-2-0-4 30632 30632 40,40,40,0,1 5-2-0-4 70935 70935 40,47,44.0,1,10 
5-2-0-5 44674 44674 40,52,46.2,1,23 5-2-0-5 130981 130981 40,48,44.3,2,38 
5-2-1-0 10379 10369 40,46,42.5,1,38 5-2-1-0 26666 26666 40,40,40,0,1 
5-2-1-1 11114 11114 40,40,40,0,1 5-2-1-1 26864 26864 40,48,45.4,1,17 
5-2-1-2 10124 10124 40,40,40,0,1 5-2-1-2 27280 27280 40,55,47.2,1,61 
5-2-1-3 10567 10567 40,40,40,0,1 5-2-1-3 26269 26269 40,40,40,0,1 
5-2-1-4 10658 10658 40,40,40,0,1 5-2-1-4 27293 27293 40,40,40,0,1 
5-2-1-5 17550 17550 40,42,40.1,1,13 5-2-1-5 44419 44410 40,53,43.2,1,132 
5-5-0-0 21892 21892 40,40,40,0,1 5-5-0-0 68026 68026 40,50,50,0,1 
5-5-0-1 26280 26280 40,40,40,0,1 5-5-0-1 60795 60795 40,56,50,1,35 
5-5-0-2 20628 20628 40,40,40,0,1 5-5-0-2 62093 62093 40,49,44.5,2,85 
5-5-0-3 21547 21547 40,40,40,0,1 5-5-0-3 66567 66567 40,40,40,0,1 
5-5-0-4 25074 25074 40,40,40,0,1 5-5-0-4 61929 61929 40,40,40,0,1 
5-5-0-5 40327 40327 40,40,40,0,1 5-5-0-5 127934 127934 40,40,40,0,1 
5-5-1-0 10263 10263 40,40,40,0,1 5-5-1-1 26665 26665 40,40,40,0,1 
5-5-1-1 10625 10625 40,40,40,0,1 5-5-1-2 26648 26648 40,53,48.3,1,26 
5-5-1-2 10198 10198 40,40,40,0,1 5-5-1-2 26648 26648 40,53,48.3,1,26 
5-5-1-3 10030 10030 40,40,40,0,1 5-5-1-3 25923 25923 40,54,44.8,1,6 
5-5-1-4 9964 9964 40,46,43.3,1,6 5-5-1-4 26064 26126 40,52,46.3,1,23 
5-5-1-5 15603 15603 40,45,42.4,1,13 5-5-1-5 41372 41372 40,45,42.0,3,82 
10-5-0-0 21852 21852 40,50,45.3,1,10 10-5-0-0 56306 56354 40,56,47.4,2,35 
10-5-0-1 20645 20645 40,43,41.6,1,6 10-5-0-1 59619 59619 40,57,51.3,3,73 
10-5-0-2 19517 19517 40,40,40,0,1 10-5-0-2 54912 54954 40,42,41.4,1,8 
10-5-0-3 20596 20596 40,54,46.4,4,27 10-5-0-3 52399 52399 40,40,40,0,1 
10-5-0-4 19423 19264 40,59,52.8,3,45 10-5-0-4 58234 58234 40,40,40,0,1 
10-5-0-5 35933 35933 40,43,40.6,3,24 10-5-0-5 99682 99689 40,41,40.2,4,37 
10-5-1-0 10018 10018 40,54,48.4,2,16 10-5-1-0 26976 26976 40,56,48.6,2,28 
10-5-1-1 9839 9839 40,40,40.0,0,1 10-5-1-1 26658 26660 40,52,45.6,1,5 
10-5-1-2 10000 10000 40,40,40.0,0,1 10-5-1-2 25749 25825 40,57,48.2,2,23 
10-5-1-3 10544 10544 40,59,52.7,1,21 10-5-1-3 27181 27172 40,57,49.7,4,71 
10-5-1-4 10011 10011 40,40,40.0,0,1 10-5-1-4 26856 26816 40,57,48.7,3,45 
10-5-1-5 16230 16230 40,44,41.3,1,18 10-5-1-5 46244 46244 40,49,44.6,6,84 
10-10-0-0 22054 22054 40,61,54.8,1,24 10-10-0-0 52441 52442 40,55,49.2,3,18 
10-10-0-1 20103 20103 40,40,40.0,0,1 10-10-0-1 53745 53745 40,62,58.5,3,35 
10-10-0-2 19381 19381 40,49,44.3,4,28 10-10-0-2 46927 46927 40,40,40,0,1 
10-10-0-3 17434 17434 40,40,40.0,0,1 10-10-0-3 54856 54856 40,55,50.5,2,31 
10-10-0-4 18833 18833 40,44,41.3,2,8 10-10-0-4 49675 49683 40,47,42.6,1,5 
10-10-0-5 33837 33837 40,48,44.6,2,8 10-10-0-5 92989 92991 40,50,43.2,5,141 
10-10-1-0 8560 8560 40,45,42.1,1,14 10-10-1-0 26696 26696 40,42,41.4,1,9 
10-10-1-1 8493 8493 40,47,42.9,4,25 10-10-1-1 25893 25893 40,54,45.9,2,17 
10-10-1-2 9266 9266 40,40,40.0,0,1 10-10-1-2 26517 26517 45,60,55.4,6,34 
10-10-1-3 9823 9823 40,40,40.0,0,1 10-10-1-3 26684 26684 40,65,59.1,4,30 
10-10-1-4 8929 8929 40,40,40.0,0,1 10-10-1-4 26676 26676 40,62,56.4,5,71 
10-10-1-5 14152 14152 40,45,42.2,1,40 250-10-10-1-5 42629 42629 40,59,56.2,3,18  
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remove any core variable, whereas CORE-LP-LS allows that. 

3. CORE-LP-LS Framework 

We start this section by describing how to create a CP of a BIP, fol
lowed by defining neighbouring cores. We then show how we use a LS 
algorithm to move from one core to a better one in pursuit for the 
optimal core, while implicitly, we optimize the BIP. 

3.1. Core problem creation 

Algorithm 1 shows a pseudo-code of the steps needed to create a CP 
of a BIP of size r. The inputs to the algorithm are both BIP and r, while 
the output is set Ncore and partial solution xadj. The algorithm starts by 
solving LP(BIP), from which we get the variables’ reduced costs Π = {π1,

π2, ..., πn}, where πj is the reduced cost of variable j ∈ N. We then rank 
variables in an ascending order based on their absolute reduced costs, as 
shown in line 3. The ranked variables are saved to vector RV, from which 
we choose the first r variables to form set Ncore. Consequently, we 

include the remaining n − r variables into set Nadj, as shown in lines 4–5. 
Note that the minimum value of r should be equal to the number of 
variables whose reduced costs is 0. In our implementation to solve 
MDMKP instances, we compare r to the number of variables having 
0 reduced cost and choose the larger number. 

Since Nadj has variables whose reduced costs are not equal to 0, and 
these variables are bounded in LP(BIP). We fix variables in Nadj such that 
variables having negative reduced cost are fixed to 0; otherwise, they are 
fixed to 1. Based on these fixed values, we can further partition Nadj into 
sets Nadj

0 and Nadj
1 that include variables fixed to 0 and 1, respectively. 

Henceforth, we use CP(BIP, r) to denote the resulting CP, which can be 
represented using Equations 6 –10. The solution of the BIP problem is 
also a function of BIP and r, x(CP(BIP, r)) = (xadj(CP(BIP, r)),
xincumb

core (CP(BIP, r))), where xincumb
core (CP(BIP, r)) is the incumbent solution 

of the core problem. 

Maximize zcore =
∑

j∈Ncore

cjxj (6) 

Table 2 
Comparison between CORE-LP-LS-TSTS and TSTS in solving MDMKP instances having n = 100.  

instance CORE-LP-LS-TSTS TSTS  

Best Avg Changes CPs time Best Avg    
Number Number (s)   

100-5-2-0-0 28384 28384.0 0 15 18.2 28384 28384.0 
100-5-2-0-1 26386 26386.0 0 15 14.2 26386 26386.0 
100-5-2-0-2 23484 23484.0 0 15 17.5 23484 23484.0 
100-5-2-0-3 27374 27374.0 0 16 16.7 27374 27374.0 
100-5-2-0-4 30362 30362.0 0 16 24.9 30632 30362.0 
100-5-2-0-5 44674 44652.3 0 22 32.0 44674 44674.0 
100-5-2-1-0 10364 10364.0 0 13 26.2 10364 10364.0 
100-5-2-1-1 11114 11114.0 0 14 14.1 11114 11114.0 
100-5-2-1-2 10124 10124.0 0 13 19.4 10124 10112.4 
100-5-2-1-3 10567 10567.0 0 14 12.3 10567 10567.0 
100-5-2-1-4 10658 10658.0 0 14 13.9 10547 10547.0 
100-5-2-1-5 17545 17545.0 0 23 25.8 17545 17539.6 
100-5-5-0-0 21892 21892.0 0 14 15.2 21892 21892.0 
100-5-5-0-1 26280 26280.0 0 15 13.3 26280 26280.0 
100-5-5-0-2 20628 20628.0 0 15 17.6 20628 20628.0 
100-5-5-0-3 21547 21547.0 0 15 13.7 21547 21547.0 
100-5-5-0-4 25074 25074.0 0 14 14.7 25074 25074.0 
100-5-5-0-5 40327 40327.0 0 23 25.2 40327 40327.0 
100-5-5-1-0 10263 10263.0 0 13 22.8 10263 10263.0 
100-5-5-1-1 10625 10625.0 0 14 14.1 10625 10625.0 
100-5-5-1-2 10198 10198.0 0 13 29.7 10198 10139.6 
100-5-5-1-3 10030 10030.0 0 14 31.8 10030 10030.0 
100-5-5-1-4 9964 9964.0 0 13 59.5 9964 9964.0 
100-5-5-1-5 15603 15600.2 0 24 36.2 15603 15603.0 
100-10-5-0-0 21852 21845.9 1 16 24.5 21852 21852.0 
100-10-5-0-1 20645 20610.7 0.3 14.6 54.8 20645 20603.4 
100-10-5-0-2 19157 19157.0 0 13 33.01 19517 19157.0 
100-10-5-0-3 20556 20526.1 1.9 16.8 37.4 20596 20506.8 
100-10-5-0-4 19283 19269.2 0.3 14.6 31 19278 19252.2 
100-10-5-0-5 35816 35790.6 1.5 26.7 26.7 35933 35857.0 
100-10-5-1-0 10018 9991.8 0.7 13.8 29.4 10018 10018.0 
100-10-5-1-1 9839 9839.0 0 13 26.9 9839 9839.0 
100-10-5-1-2 10000 10000.0 0 13 22.6 10000 10000.0 
100-10-5-1-3 10510 10510.0 0 13 36.9 10544 10512.3 
100-10-5-1-4 10011 10011.0 0 13 40.4 10011 9983.5 
100-10-5-1-5 16230 16209.8 0.9 25.6 35.6 16230 16230.0 
100-10-10-0-0 22054 22034.1 0.2 9.2 23 22054 22054.0 
100-10-10-0-1 20103 20103.0 0 8 17.7 20103 20103.0 
100-10-10-0-2 19132 19132.0 1.2 9.2 23.7 19381 19367.2 
100-10-10-0-3 17434 17434.0 0 8 43.3 17434 17434.0 
100-10-10-0-4 18833 18789.2 2.6 12 33.4 18792 18789.7 
100-10-10-0-5 33837 33823.4 1.2 16.2 37.3 33837 33836.6 
100-10-10-1-0 8542 8542.0 0 12 44 8560 8524.5 
100-10-10-1-1 8439 8416.2 1.3 14.3 38.3 8493 8439.0 
100-10-10-1-2 9266 9266.0 0 13 45.7 9266 9266.0 
100-10-10-1-3 9823 9823.0 0 12 27.5 9823 9811.4 
100-10-10-1-4 8929 8929.0 0 12 30.9 8929 8929.0 
100-10-10-1-5 14151 14151.0 0 25 58.6 14152 14152.0  
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s.t. 
∑

j∈Ncore

aijxj ≤ bcore
i ,∀i ∈ {1, 2, ...,m} (7)  

∑

j∈Ncore

aijxj ≥ bcore
i , ∀i ∈ {m+ 1,m+ 2, ...,m+ q} (8)  

xj ∈ {0, 1}, ∀j ∈ Ncore (9)  

bcore
i = bi −

∑

j∈Nadj
1

aij, ∀i ∈ R (10)  

3.2. Neighbouring cores 

In a typical LS algorithm, we define the neighbourhood of solution x,
N (x), as shown in Equation 11, where solution y ∈ X is a neighbouring 
solution to x based on N (x). Generally, neighbourhood N (x) is defined 

relative to a given metric (or quasi-metric) function δ(x, y) introduced in 
the solution space S, and a limit to this metric α. For example, the 
incumbent solution of a BIP, xincumb

BIP , is a binary vector of size n. To find a 
neighbouring solution, y ∈ N (xincumb

BIP ), we might define δ(y, xincumb
BIP ) in 

terms of the hamming distance between solutions xincumb
BIP and y. If we use 

α = 1, then y ∈ N (xincumb
BIP ) is a neighbouring solution that has the same 

values of variables in xincumb
BIP , except only for one variable. For example, if 

n = 3, α = 1 and xincumb
BIP = {1,1, 0}, then N (xincumb

BIP ) = {{ 0,1,0},{1,0,0},
{1,1,1}}. If, however, α = 2, then N (xincumb

BIP ) = {{ 0,0,0},{0,1,1},{1,0,
1}}. We call the variables that has different values in solutions y and x 
catalyst variables, and α is the number of catalyst variables. 

N (x) = {y ∈ X|δ(x, y) ≤ α} (11) 

To map the concept of neighbouring solutions to neighbouring CPs, 
we modify the BIP itself by fixing the catalyst variables to their values in 
y. We denote the resulting BIP by BIPmod and use Algorithm 1 to find the 
CP associated with BIPmod. Solution x(CP(BIP, r) and any of its 

Table 3 
Comparison between CORE-LP-LS-TSTS and TSTS in solving MDMKP instances having n = 250.  

instance CORE-LP-LS-TSTS TSTS  

Best Avg Changes CPs time Best Avg    
Number Number (s)   

250-5-2-0-0 78486 78486.0 0 23 52.8 78486 78400.0 
250-5-2-0-1 75132 75132.0 0 23 61.2 75132 74956.2 
250-5-2-0-2 70987 70987.0 0 23 79.8 70987 70888.9 
250-5-2-0-3 80311 80311.0 0 23 90.6 80311 80219.8 
250-5-2-0-4 70935 70919.2 0.1 23.6 91.2 70935 70836.4 
250-5-2-0-5 130910 130910.0 0 32 79.9 130468 129551.5 
250-5-2-1-0 26666 26666.0 0 21 58.2 26659 26573.8 
250-5-2-1-1 26864 26816.5 0.3 23.2 76.9 26864 26815.2 
250-5-2-1-2 27274 27274.0 0 21 108 27280 27237.6 
250-5-2-1-3 26269 26253.8 0.2 22.9 60.8 26250 26184.1 
250-5-2-1-4 27293 27273.2 1.3 27 136.5 27269 27225.4 
250-5-2-1-5 44410 44397.3 0.3 40.8 232.2 44402 44341.8 
250-5-5-0-0 68026 68026.0 2.2 28.8 97.8 68026 68024.3 
250-5-5-0-1 60795 60770.7 0.8 29.8 92.1 60757 60714.9 
250-5-5-0-2 62088 62083.1 0.3 23.3 56.3 62093 62073.0 
250-5-5-0-3 66657 66657.0 0 22 85.6 66567 66525.5 
250-5-5-0-4 61929 61929.0 0 22 45.5 61929 61913.7 
250-5-5-0-5 127934 127934.0 0 33 101.2 127885 127785.2 
250-5-5-1-0 26966 26966.0 0 20 47.5 26966 26917.0 
250-5-5-1-1 26665 26665.0 0 19 50.2 26665 26557.5 
250-5-5-1-2 26591 26597.8 0.6 23.9 98.2 26620 26562.4 
250-5-5-1-3 25923 25892.8 0.2 20.7 61.1 25923 25779.5 
250-5-5-1-4 26058 26038.2 0.1 20.7 84.5 26036 25976.6 
250-5-5-1-5 41372 41336.1 2.1 45.1 94.9 41350 41237.2 
250-10-5-0-0 56327 56282.6 2.2 28.3 108.6 56315 56029.8 
250-10-5-0-1 59604 59583.8 1.7 30.7 160.9 59605 59568.8 
250-10-5-0-2 55034∗ 54936.5 1.7 32.8 105.4 54814 54727.0 
250-10-5-0-3 52416∗ 52389.8 1.3 28.7 155.1 52256 52188.3 
250-10-5-0-4 58234 58234.1 1.5 23 104.4 58058 57906.9 
250-10-5-0-5 99752∗ 99716.7 2.4 45.9 206.2 99763∗ 99419.8 
250-10-5-1-0 26970 26945.5 2.5 23.5 101.5 26941 26874.6 
250-10-5-1-1 26658 26611.4 2.7 32.4 106.9 26575 26535.7 
250-10-5-1-2 25749 25725.5 0.2 19.8 67.9 25667 25597.3 
250-10-5-1-3 27153 27139.2 1.7 28.4 152.9 27159 27129.5 
250-10-5-1-4 26815 26815.0 0 19 76.3 26815 26772.6 
250-10-5-1-5 46244 46214.4 1.4 39.6 129.2 46195 46161.8 
250-10-10-0-0 52441 52400.2 2.6 37 181.2 52441 52407.8 
250-10-10-0-1 53745 53703.1 2.5 32 178.3 53745 53686.2 
250-10-10-0-2 46927 46927.0 0 20 113 46839 46801.3 
250-10-10-0-3 54856 54809.8 0.4 23.6 134.6 54816 54777.4 
250-10-10-0-4 49699∗ 49668.7 3.4 34.1 207 49699∗ 49618.9 
250-10-10-0-5 93006∗ 92972.2 1.5 39.8 128.2 92904 92786.4 
250-10-10-1-0 26696 26696.0 1 27.4 80.5 26696 26644.3 
250-10-10-1-1 25876 25804.2 1.8 23.6 120.6 25818 25794.5 
250-10-10-1-2 26517 26494.5 2.8 27.4 183.4 26517 26478.3 
250-10-10-1-3 26684 26665.9 2.9 29 199.1 26684 26624.7 
250-10-10-1-4 26676 26625.5 3.5 27 160.7 26631 26617.1 
250-10-10-1-5 42629 42534.7 3 47 249.5 42629 42531.0  
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neighbouring solutions y(CP(BIPmod, r) should at least have α variables 
with different values. Unlike classical neighbourhoods, the differences 
between the two solutions could exceed α since we are creating a sub- 
region in which we solve a reduced optimization problem. 

3.2.1. Minimizing neighbourhood size 
To improve the efficiency of the CORE-LP-LS algorithm, we need to 

minimize the number of created CPs. For example, if we use a swapping 
operator, having two catalyst variables, for a problem of size n, then we 
will have n × n − 1 CPs. Thus, it is essential not to create a large number 
of CPs; still, we need to increase the probability of finding xopt

BIP. We, 
therefore, use a single flip operator to define the catalyst variables. 

We use Algorithm 2 to explain how we define neighbouring CPs to 
solution xincumb

BIP . We first partition xincumb
BIP into two comprehensive and 

mutually exclusive sets: I1 = {xq : xq = 1 in xincumb
BIP } and I0 = {xq : xq =

0 in xincumb
BIP }. Sets I1 and I0 include variables that have values of 1 and 

0 in xincumb
BIP , respectively. We then choose the set that has the least 

number of variables from I1 and I0, as shown in lines 2–3 of Algorithm 2. 
If set |I1| ≤ |I0| then we create new cores by flipping the values of vari
ables in I1 from 1 to 0. On the other hand, we flip the values of the 
variables in I0 from 0 to 1 if |I1| ≥ |I0|. Intuitively, choosing the set that 
has the least number of elements would minimize the number of created 
CPs that we need to solve. 

After choosing the index of the set, for which we are going to apply 
the flip operator, the main loop for creating the set of CPs, CPset, begins. 
We, therefore, initialize CPset and the counter iter to ∅ and 1, respec
tively, as shown in lines 4 and 5 of algorithm 2. The number of CPs that 
we can create is equal to the number of variables in Iindex, as shown in the 
loop parameters of line 7 in Algorithm 2. Note that for each CP, there is 

Table 4 
Comparison between CORE-LP-LS-TSTS and TSTS in solving MDMKP instances 
having n = 500.  

instance BKV CORE-LP-LS-TSTS TSTS 
500-30-30  Best,Avg Best,Avg 

-0-2-1 85188 85311∗(85311.0)  85194(85115.8) 
-0-2-2 82073 82334∗(82334.0)  82071(81984.1) 
-0-2-3 77393 77450∗(77450.0)  77141(77071.3) 
-0-2-4 82304 82347∗(82347.0)  82217(82132.2) 
-0-2-5 83525 83648∗(83549.4)  83500(83339.0) 
-0-2-6 145967 146154∗(146018.2)  146004(145665.0) 
-0-2-7 152246 152320∗(152271.2)  152015(151966.0) 
-0-2-8 157687 157788∗(157523.5)  175552(157426.8) 
-0-2-9 153751 154078∗(153982.3)  153766(153605.4) 
-0-2-10 142173 142237∗(142237.0)  142084(141931.6) 
-0-2-11 185226 185250∗(185032.0)  185056.0(184196.9) 
-0-2-12 194614 194585(194492.3) 194509(194371.6) 
-0-2-13 20246 208425∗(208363.3)  208292(208206.0) 
-0-2-14 215849 215944∗(215877.2)  215844(215694.2) 
-0-2-15 194224 194310∗(194222.3)  194193(194126.4) 
-1-5-1 51666 51601(51532.4) 51561(51516.0) 
-1-5-2 50101 50172∗(50013.2)  50009(49901.4) 
-1-5-3 51226 51153(50824.3) 51140(50992.3) 
-1-5-4 51637 51681∗(51662.3)  51602(51496.0) 
-1-5-5 52078 52224∗(51983.2)  51963(51896.0) 
-1-5-6 84052 84072∗(83983.5)  83947(83875.2) 
-1-5-7 82850 82870∗(82585.3)  82859(82555.4) 
-1-5-8 82722 82763∗(82603.8)  82735(82598.4) 
-1-5-9 82825 82831∗(82562.4)  82560(82459.4) 
-1-5-10 82845 82958∗(82876.3)  82580(82534.0) 
-1-5-11 88887 88762(88762.0) 88831(88794.8) 
-1-5-12 87254 87287∗(87199.0)  87280(87170.4) 
-1-5-13 87315 87183(87139.2) 87228(87187.6) 
-1-5-14 87583 87546(87493.5) 87568(87527.4) 
-1-5-15 87956 87849(87789.3) 87930(87852.8)  
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an associated xadj that we save as well. 
The main procedure to create CPset is described in lines 7–15 of 

Algorithm 2. For the variable in position iter of Iindex, we first create 
BIPmod, in which we fix the chosen variable to its complementary value 
1 − index. Again, we use Algorithm 1 to find CP(BIPmod, r) and 
xadj(CP(BIPmod,r)). We expand Ncore to include more variables using the 
probing algorithm that we explain in the next section. The new CP is 
added to set CPset. Algorithm 2 is repeated each time a new xincumb

BIP is 
found. 

3.3. Searching for the best CP 

The CORE-LP-LS algorithm is simply an LS algorithm where instead 
of searching neighbouring solution points to solution xincumb, we search 
neighbouring CPs that are associated with the neighbouring solutions. 
We use Algorithm 3 to show how we implement a first-move LS strategy 
with any neighbourhood and CP definition; however, any other move 
strategy, such as best move, can be implemented. Algorithm 3 starts by 
finding an initial incumbent solution for the BIP, xincumb

BIP , as shown in 
lines 2–5 of Algorithm 3. 

We then generate the neighbouring CPs and save them to CPset using 
Algorithm 2. We also rank the CPs in CPset based on a user criterion. For 
example, we can rank CPs based on their sizes or based on the reduced 
cost of the catalyst variable the defined the CP. We, then start the search 
loop, as shown in lines 8–18. We find the BIP solution associated with 
the ith CP, as shown in line 9. If this solution is better than zincumb

BIP , then we 
update the incumbent value and solution, create a new CPset and rank it, 
and re-initialize the CP counter to 1, as shown in lines 10–16. This 
procedure is continued until a termination criterion is met. Possible 
termination criteria might include the number of investigated neigh
bouring solutions and time limits, to name a few. 

4. Probing 

A significant input that affects the success of the CORE-LP-LS algo
rithm, or any other core-based algorithm, is the choice of r. As a rule of 
thumb to use the CORE-LP-LS framework, r should guarantee that all 
variables that have 0 reduced costs are included in Ncore. Moreover, the 
larger the size of r, the higher the probability of having better solutions; 
however, more time is needed to solve the CPs. Therefore, finding a good 
balance between time and solution quality is crucial. 

As discussed in the previous section, we are not inspecting swapping 
neighbourhood, swap(p,q), where we swap the values of variables xq and 
xp, we only flip the value of one variable. However, it is expected that 
variables are associated with each other such that we cannot obtain a 
better solution than xincumb

BIP unless we simultaneously change two or 
more variable values. Consequently, if two variables need to change 
their values, compared to xincumb

BIP , to find a better solution where one of 
them is included in Ncore whereas the other is in Nadj, then it is impossible 
to move to the better solution if the variable in Nadj is fixed to the wrong 
value. So, the probing step tries to identify such a variable in Nadj and 
move it to Ncore. 

The probing step is an LP-based heuristic that compares reduced 
costs’ changes that result from solving LP(BIPincumb), and LP(BIPmod),
where BIPincumb is the BIP that lead to identifying xincumb

BIP . So xincumb
BIP is the 

BIP itself if zincumb is not updated ; otherwise, it is the BIPmod that 
updated zincumb, as shown in Algorithm 3. We use the reduced costs’ 
changes as a measure to assess which variables are to be moved from 
Nadj to Ncore, i.e. increasing the number of core variables. 

Algorithm 4 shows the details of the probing step and how we move 
variables from Nadj to Ncore. An important input to Algorithm 4 is the 
reduced cost values that we obtain from LP(BIPmod). These reduced cost 
values are denoted by ΠBIPmod = {πBIPmod

0 ,πBIPmod
1 ,...,πBIPmod

n }. Πref = {πref
0 ,
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Data: BIP and r
Result: xincumb

BIP
1 begin
2 CP(BIP, r) and xad j(BIP, r)← apply Algorithm 1 to BIP ;
3 xbest

core ← optimize the resulting CP(BIP, r);
4 xincumb

BIP = (xincumb
core (CP(BIP, r)), xad j(CP(BIP, r))) ;

5 zincumb
BIP = f (xincumb

BIP (BIP, r));
6 CPset ← using Algorithm 2 ;
7 rank the CPs in CPset ;
8 i = 1 while Termination criteria not met do
9 zincumb

BIPmod ← find BIP solution associated with CPi ∈ CPset ;
10 if zincumb

BIPmod > zincumb
BIP then

11 zincumb = zincumb
BIPmod ;

12 xincumb = (xincumb
core (CPi(BIPmod, r)), xad j(CPi(BIPmod, r)));

13 CPset ← using Algorithm 2 ;
14 rank the CPs in CPset ;
15 i = 1 ;
16 continue

17 ;
18 i + +;
19 End ;

20 End ;

Algorithm 3. LS heuristic implementing first move strategy to identify the optimal core  
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πref
1 , ..., πref

n }, on the other hand, is the reduced cost values of the variable 
that were obtained when solving BIPincumb. Using ΠBIPmod and Πref , we 
calculate the changes in reduced cost for each variable j ∈ N, as shown in 
Equation 12, and save these changes to ΔΠ = {δπ1, δπ2, ..., δπn}. Equa
tion 12 has several cases. Two cases are used when the catalyst variable 
is in I1, namely cases 1 and 3, while cases 2 and 4 are used when the 
catalyst variable is in I0. We also distinguish the cases based on the value 
of πref

j . If j ∈ N does not belong to the previous four cases, then it is 
assigned a large negative value, as shown in case 5 where M is a large 
number. 

To explain the intuition behind Equation 12 and the probing heu
ristic, we consider the case of index = 1, xincumb

j = 1 and πref
j = 0, then δπj 

is simply − πBIPmod
j as shown in case 1 of Equation 12. Assume that var

iables c and v satisfy this condition, and after fixing the catalyst variable 
to 0 and solving LP(BIPmod), we have πBIPmod

c = − 10 and πBIPmod
v = 10. 

We can interpret these two values as follow: variable c tries to change its 
value to 0 similar to the catalyst variable, while variable v keeps it value 
to 1 and have a stronger evidence to maintain its value of 1. Because of 
the reaction of variable c, we pick variable c to create BIPmod2, in which 
both variable c and the catalyst variable are fixed to 0. Based on the 
LP(BIPmod2) solution, we create a new core based on LP(BIPmod2),
which we label by Ncore2. Any variable in Ncore2 is moved to Ncore if it is 
not already included in Ncore. 

We only consider Q variables that 1) have the highest δπj changes 
and 2) have xincumb

j = index, as shown in lines 2 and 3 of Algorithm 4. We 
then create Q new BIPmod2 problems, in which we flip the values of two 
variables. One variable is the catalyst variable that defines CP, and the 
other is one of the Q variables, as shown in line 6 of Algorithm 4. We find 
Ncore of each BIPmod2. Adjunct variables associated with CP(BIPmod, r)
that becomes core variable in CP(BIPmod2, r) are added to the core 
variables of CP(BIPmod), as shown in line 8 of Algorithm 4. The new Nadj 

set excludes any variable that becomes a core one. 

δπj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− πBIPmod
j , πref

j = 0; xincumb
j = 1; index = 1; j ∕= catalyst

πBIPmod
j , πref

j = 0; xincumb
j = 0; index = 0; j ∕= catalyst

πref
j − πBIPmod

j

|πref
j |

, πref
j ∕= 0; xincumb

j = 1; index = 1; j ∕= catalyst

πBIPmod
j − πref

j

|πref
j |

, πref
j ∕= 0; xincumb

j = 0; index = 0; j ∕= catalyst

− M otherwise
(12)  

5. CORE-LP-LS effectiveness 

Before implementing any heuristic or meta-heuristic algorithm to 
solve the CPs, we investigate first the effectiveness of the CORE-LP-LS 
framework by solving the core problems using Exact methods. In this 
section, we first describe the used benchmark instances followed by our 
algorithm implementation. We then show the experiment results. 

5.1. Benchmark Instances 

We use the first two benchmark instances that were used in [31]. The 
two sets can be downloaded from http://grafo.etsii.urjc. 
es/optsicom/binaryss/#instances. Each set has 48 instances. The first 
and second benchmark sets have n = 100 and n = 250, respectively. 
Instances in both sets have different number of Rknap and Rcover con
straints. Thus, the names of the instances are written to show first the 
number of variables, followed by the number of Rknap constraints, and 
then Rcover constraints. For example, instance 250-5-2-0-1 indicates that 
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this instance has 250 variables, 5 Rknap constraints, and 2 Rcover 

constraints. 

5.2. IP implementation 

We use the IP solver of CPLEX 12.10 to solve the CPs. We use the 
default settings of the branch and bound (B&B) algorithm in CPLEX 
12.10; however, to reduce the algorithm execution time, we expedite the 
execution of the algorithm by following three rules:  

• Do not solve the CP if its LP-relaxation value, UB, is less than the 
current zincumb

BIP .  
• After improving the UB using cutting planes, if UB is less than the 

current zincumb
BIP , then we stop solving the CP. We implement an in

formation callback1 that is called every time a new UB is found.  
• Terminate the algorithm if zincumb

BIP is equal to or better than BKV of the 
solved instance, where BKVs are found from [31]. If we fail to find 
BKV, then we terminate the algorithm once we check all variables in 
Iindex.  

• To reduce the computation time, we ranks CPs based on |Ncore|, i.e., 
we solve first CPs that have small number of variables. 

We empirically choose r = 40 to do this experiment, which was 
enough to create core problems that lead to feasible solutions for in
stances having n = 100 and n = 250. For the initial problem, if solving 
the CP having |Ncore| = 40 does not lead to a feasible solution, then we 
increase |Ncore| by five variables. This expansion was needed once, with 
instance 250-10-10-1-2. Note that we do not use probing with the first 
BIP. Moreover, we use Q = 10 in the probing algorithm. Table 1 shows 
the results for instances having 100 and 250 variables respectively. 

5.3. Experiment 

We summarize the results of our experiment to solve the two sets of 
benchmark instances in Table 1. We describe here columns 1–4 that 
show the results of instances having 100 variable; however, columns 5–8 
are the same, except they are used to describe the results of instances 
having 250 variables. After the instance name in columns 1, we report 
the instance BKV in column 2, followed by the best framework value 
(BFV) obtained, where framework stands for the CORE-LP-LS frame
work. Thus, the best CORE-LP-LS-IP solutions are denoted by BFV-IP in 
Table 1. To give an insight about the solved CPs, we report some sta
tistics about the CPs in column 4. We report the minimum, maximum, 
and the average number of core variables in the solved CPs that were 
needed to execute the CORE-LP-LS-IP algorithm. Moreover, we report 
how many times the CORE-LP-LS-IP algorithm updates the incumbent 
solution, and the number of solved CPs using the exact IP algorithm. For 
example, for instance 100-5-2-0-0, show the following values in column 
4: 40, 40, 40, 1, 36. These values mean that all CPs had 40 variables, 
xincumb was changed once and the algorithm terminated after solving 36 
CPs. 

Inferior and superior results relative to the BKVs are underlined and 
written in bold, respectively. Table 1 shows that we are able to find all 
the BKVs for instances having n = 100, except for two instances. Simi
larly, for the 250 variable instances, we missed four BKVs; however, we 
were able to identify 9 new BKVs. The BKVs of the six missed instances 
were obtained by increasing r to 60 or increasing Q to 20. 

A solution showing no changes in xincumb
BIP means that the BKV was 

obtained from solving the first CP. Due to probing, the maximum CP 
sizes solved were 59 and 62 for the 100-variable and 250-variable in
stances, respectively. 

6. CORE-LP-LS Efficiency 

Although we solve several CPs that are smaller in size than the BIP, 
using exact methods to solve these CPs is still time-consuming, espe
cially if we do not solve them in parallel. Thus, we replace the exact B&B 
algorithm that was used in the previous experiments with the TS-based 
algorithm of [31], which can be considered as the state-of-the-art al
gorithm to solve MDMKP instances. We compare the new algorithm, 
which we call CORE-LP-LS-TSTS to the TSTS algorithm. We try to find if 
embedding the TSTP algorithm within the CORE-LP-LS framework 
would improve the TSTS results, and not increase its computation time. 

The processor used to conduct all the experiments reported in this 
paper is the 2.20 GHz Core(TM) i7-3632QM. We do not benchmark our 
processor to the one used in [31]; instead, we run the TSTS algorithm 
using our processor. The TSTS source code is available from http://www 
.info.univ-angers.fr/pub/hao/mdmkp.html. 

In addition to the two sets of instances solved in the previous section, 
[31] have also solve instance having n = 500 that can be downloaded 
from http://people.brunel.ac.uk/~mastjjb/jeb/info.html. Instances in 
this set are characterized by having m = q = 30. CPs’ sizes of this set 
ranged between 50 and 190. 

6.1. CORE-LP-LS-TSTS implementation 

The TS-based algorithm of [31], TSTS, uses two improvement op
erations, namely flip and swap. The algorithm searches for a solution of 
any size in the first stage, while in the second stage, the algorithm 
searches solutions having the size of stage one solution. In both stages, 
the two search operations, flip and swap, are used. Please note that by 
solution size, we mean the number of variables included in the optimal 
solution. For more details about the algorithm, readers are referred to 
[31]. 

To replace B&B with TSTS, we implement the following: 

First CP. The first CP is solved using a B&B algorithm for instances 
having n = 100 and n = 250, while we use the TSTS algorithm for 
instances having n = 500. Using two algorithms in the CORE-LP-LS 
framework proves the flexibility of the algorithm by implementing 
various solution techniques. For example, users can use B&B, TSTS, 
or any other algorithm depending on the CPs’ sizes. 
Starting TSTS Solutions for following CPs. For all CPs, except the 
first one that we solve to find the first xincumb

BIP , the starting solution of 
any CP is found by modifying xincumb

BIP . Basically, variables in Nadj are 
fixed to the values found by Algorithm 1, whereas variables in Ncore 

are copied from xincumb
BIP , except for the catalyst variable. 

Termination Criterion Per CP. The termination criterion used in 
[31] is based on time. In our implementation, we terminate phase I 
and phases II of the TSTS algorithm if the solution does not improve 
for 10,000 iterations. 
Termination Criterion for the CORE-LP-LS-TSTS algorithm. We 
use two termination criterion. For instances having n = 100 and n =

250, we solve 50% of the CPs resulting from the last xincumb
BIP . For 

example, assume that |I#| = 50, then we solve the first 25 CPs. Now, 
if xincumb

BIP was updated after solving 10 CPs, and based on the new 
xincumb

BIP , we have |I#| = 60 then we solve another 30 CPs. We termi
nate the CORE-LP-LS-TSTS algorithm if after solving the 30 CPs, 
xincumb

BIP is not updated. For instances having n = 500, we use time as a 
termination criterion. 
Hash Vectors. We use the same hash functions that were used in 
[31]. In [31] all the neighbours of a solution are checked. In our 
implementation, we only check a neighbourhood limited by Ncore. In 
a first implementation of the algorithm, we used to re-initialize the 
hash vectors when we solve a new CP; however, this implementation 
lead to inferior results compared to the current implementation 

1 https://www.ibm.com/support/pages/ilog-cplex-manuals 
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where we initialize the hash vectors once at the start of the 
algorithm. 

6.2. Comparison Experiment 

Tables 2 and 3 compare the CORE-LP-LS-TSTS to the stand-alone 
TSTS algorithm for instances having n = 100 and n = 250, respec
tively. Both tables start by the instance name. For the CORE-LP-LS-TSTS 
solutions, we report the best and average solutions first, followed by the 
average numbers of core changes, the number of solved CPs and 
computation time. 

To compare CORE-LP-LS-TSTS to TSTS, we solve each instance, using 
both algorithms, ten times using ten different seeds. As a termination 
criterion for the TSTS algorithm, we increase the average CORE-LP-LS- 
TSTS computation time needed to solve each instance by 20%. Thus, 
computation time is biased towards TSTS. 

We use boldface numbers to show if one of the two compared algo
rithms reached a better solution than the other one. Moreover, we use 
superscript * to show new BKVs. 

For instances having n = 500 and m = q = 30, we do not solve the 
first CP using an exact method; instead, we solve it using TSTS. More
over, we allow the algorithm to start with a small core size. If stage 1 of 
the TSTS algorithm fails to find a feasible solution, then we increase the 
core size by five variables and try again to find a starting feasible 
solution. 

Unlike the experiments reported in Tables 2 and 3, we check if al
gorithm CORE-LP-LS-TSTS is capable of finding the BKVs. Thus, for each 
instance, we allow the algorithm to run for 600 s and report the best and 
average results found from 10 runs. On the other hand, we allow the 
TSTS algorithm to run for the same time and report the best and average 
solutions of 10 runs as well. In column 2, after the instance name, we cite 
the BKVs that were reported in [31]. 

6.3. Analysis 

We compare first CORE-LP-LS-TSTS with TSTS in terms of best re
sults obtained by both algorithms. Table 5 summarize the results shown 
in Tables 2–4. We report first in column 1 the set name, followed by the 
number of instances in each set in column 2. Column 3 shows if any of 
the best results exceeds the BKVs reported in [31]. In columns 4–5, we 
show the number of instances for which the CORE-LP-LS-TSTS algorithm 
achieves better and worse results, respectively, when compared to the 
TSTS results. Finally, in columns 6–7, we show the number of better and 
worse average results when comparing CORE-LP-LS-TSTS with TSTS. 

Table 5 shows that the number of better results obtained by the 
CORE-LP-LS-TSTS algorithm increases with the increase in the instance 
size. For instances having n = 100, the CORE-LP-LS-TSTS algorithm got 
better results for only three instances, compared to 7 better instances 
that were found by the TSTS algorithm. However, when comparing in
stances having n = 250 or n = 500, then the CORE-LP-LS-TSTS algo
rithm performs better than the TSTS algorithm. For example, better 
results were obtained for 23 out of the 30 instances for the third set that 
has n = 500. Moreover, the number of new BKV that the CORE-LP-LS- 
TSTS algorithm finds for instances having n = 100, n = 250, and n =

500 are 0, 5, and 22, respectively. Note that for instances having n =

250, the number of new BKVs found by the CORE-LP-LS-IP algorithm 
was 9, of which 4 of these BKVS were also identified by the CORE-LP-LS- 
TSTS algorithm. Thus, we were able to obtain six new BKVs for instances 
having n = 250 using the CORE-LP-LS framework. 

For average solutions, TSTS was slightly better than CORE-LP-LS- 
TSTS only for instances having n = 100. For the other two sets of in
stances, the average results obtained by CORE-LP-LS-TSTS are better 
than TSTS. The total results show that out of the 126 solved instances, 
CORE-LP-LS-TSTS was able to get 79 better average solutions compared 
to 21 for TSTS. Based on [9], average solutions are a better measure to 
assess algorithms since best results are over-optimistic concerning an 
algorithm performance. 

We can attribute better average solutions to the following. First, 
solving a problem formed from 20% − 40% of the original problem 
variables reduces the solution variability because the search region is 
smaller. Moreover, the BKVs of several instances were found by solving 
the first CP, i.e., instances for which the number of core changes is 0 in 
Tables 2 and 3. Similarly, for instances having n = 500, better solutions 
than the current BKVs were obtained from the first CP or after inspecting 
a small number of CPs. 

In our implementation, we did not use parallel processors. Moreover, 
we used a first-move LS strategy to reduce computation time. Consid
ering the number of solved CPs in Tables 2 and 3, the average number of 
CPs did not exceed 50 CP. Also, for instances having n = 500, we only 
solved less than 10 CPs to report the solutions in Table 4. Algorithm 
efficiency can improve if we solve the CPs in parallel because we can 
inspect several CPs at the same time. However, the TSTS algorithm does 
not allow the use of parallel processors due to the use of hash vectors. 

The TSTS algorithm uses hash vectors and functions to avoid re- 
inspecting some solution points. As stated earlier, re-initializing the 
hash vectors with every CP deteriorated the performance of the CORE- 
LP-LS-TSTS algorithm; thus, we initialize them once at the start. The 
neighbourhoods of solutions marked as visited in the TSTS algorithm 
consider the whole neighbourhood of the solution; however, in the 
CORE-LP-LS-TSTS algorithm, solutions are marked visited without 
checking the whole neighbourhood of the solution, only the neigh
bourhood in Ncore. This was the reason for not finding the current or new 
BKVs for some of the instances in Table 4. 

7. Probing importance 

The probing step would increase the CPs’ sizes, but does this increase 
in the core sizes improves the algorithm performance? In this experi
ment, we check if probing is essential to the effectiveness of our algo
rithm. Consequently, we choose 10 instances from Table 1, for which the 
size of the solved CPs exceeded 50 variables, and we skip the probing 
step, i.e., we keep the sizes of all CPS as 40 variable 

Table 6 shows the results of this experiment. Columns 2 and 3 of 
Table 6 shows the solution values found by the CORE-LP-LS-IP algorithm 
with and without probing, respectively. Columns 4 and 5 show the 

Table 5 
Comparison between CORE-LP-LS-TSTS and TSTS in terms of best and average 
results reported in Tables 2–4.  

Set Number New CORE-LP-LS-TSTS vs TSTS  

Instances BKVs Best Average    

Better Worse Better Worse 

100 48 0 3 7 8 14 
250 48 5 22 6 47 1 
500 30 22 23 7 24 6 
Total 126 27 48 20 79 21  

Table 6 
Effect of not using probing on the CORE-LP-LS-IP algorithm effectiveness.  

instance Best Best Number of Number of  
probing no probing xincumb

BIP Changes  solved CPs 

100-10-5-0-0 21852 21852 2 41 
100-10-5-0-3 20596 20594 3 48 
100-10-5-1-0 10018 10018 1 5 
100-10-5-1-3 10544 10544 1 22 
100-10-10-0-0 22054 22029 1 29 
250-5-5-0-1 60795 60785 2 143 
250-10-5-0-1 59619 59604 5 207 
250-10-5-1-2 25737 25719 0 67 
250-10-10-0-1 53745 53720 2 97 
250-10-10-1-3 26684 26608 1 82  
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number of xincumb
BIP updates and the number of solved CPs, respectively. 

Table 6 clearly shows that probing has improved the quality of results; 
the solution values of 7 out of the ten instances have deteriorated 
without probing. 

8. Conclusions and future work 

The CORE-LP-LS framework is a solution methodology by which we 
can avoid solving a large BIP and instead solve several CPs derived from 
the BIP. Each CP has associated adjunct variables that have fixed values. 
Classifying variables as core or adjunct ones depends on the reduced 
costs that we obtain from the LP-relaxation solutions. A CP solution, 
along with the adjunct variables’ values, leads to a BIP solution, and we 
use an LS heuristic to move from a CP to a better one. 

We define neighbouring CPs by forcing one or more variables, 
catalyst variables, to have values different than their values in the BIP 
solution associate with the CP solution. We modify the BIP to take into 
account the catalyst variables’ new values. We then create a new CP 
based on the modified BIP. We also enlarge the core variables’ set using 
a probing heuristics and solve the resulting CP. If the resulting CP is 
better than the current incumbent solution, then we update it like any LS 
algorithm. The probing step is experimentally found to improve the 
effectiveness of the CORE-LP-LS framework. 

The framework is flexible. We used three variants of this framework. 
One that uses an IP solver, CORE-LP-LS-IP. Another variant that uses 
TSTS algorithm, CORE-LP-LS-TSTS. We also use a hybrid variant in 
which we solve the first core problem using an IP solver, while we solve 
the rest of the core problems using TSTS. 

To check the effectiveness, efficiency, and probing importance, we 
solve a set of 126 instances having different sizes. The framework out
performs previous algorithms when solving large instances. We were 
able to identify 28 new best solutions that were not identified before, 
mostly for large instances. Moreover, even if other algorithms are better 
in terms of finding the best solution value by running the algorithm 
several times, the average solutions obtained by the CORE-LP-LS 
framework are better. Thus, the CORE-LP-LS framework variants pro
vided competitive algorithms to the state-of-the-art one. 

For future work, we need to develop a parallel implementation 
version of this algorithm. A parallel implementation enables us to use 
better LS strategies like best-move strategy instead of the first-move 
strategy used in this work since computation time would decrease. 
Trying other neighbourhoods definitions is necessary, especially if we 
want to use our algorithm to solve other problems. 

More analysis is also needed to map solutions’ landscapes to the 
problem parameters [39]. Landscape analysis usually studies how 
meta-heuristic and heuristic solutions navigate through the search re
gions. The CORE-LP-LS framework involves such navigation as defined 
by the neighbourhood; however, defining CPs and searching an area, 
instead of evaluating a solution point, needs further investigation. 
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