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An integrated manufacturer-buyer chain with bounded production 
cycle length 
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Department of Management, Bar-Ilan University, Ramat-Gan 52900, Israel   
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A B S T R A C T   

A mathematical formulation is developed for modeling a joint two-echelon supply chain consisting of a single 
manufacturer (i.e., vendor) who continuously produces a production lot of size Q items with constant production 
rate P ≥ D, where D is the given demand rate set by the retailer (i.e., buyer). The unit production cost cV(P) is 
assumed to be a linearly decreasing function of the production rate P. This assumption may hold as long as 
economies of scale are in effect and production rate does not exceed very high level which entails heavy wear 
associated with expensive equipment. The optimization problem of minimizing the joint total cost is solved 
analytically. The proposed formulation avoids scenarios under which the production rate approaches the demand 
rate (i.e., producing almost without breaks) and scenarios under which the production cycle length (at the 
manufacturer’s warehouse) is unbounded. Very long production cycle lengths inevitably mean very large lots, 
which are associated with immense and inefficient warehouses. Moreover, they might be infeasible due to 
scheduled maintenance, holidays or end weeks. We prove that the optimal solution can consist of no more than 
two switching points along the shipment-size axis n.   

1. Introduction 

Joint manufacturer-buyer coordination offers operational and mon-
etary benefits. Scenarios under which the production cycle length (at the 
manufacturer’s warehouse) is bounded did not receive sufficient atten-
tion in existing literature of modeling the integrated manufacturer- 
buyer problem. 

1.1. A bound on the production cycle and applications in the real world 

A well-known strategy practiced in real world applications in order 
to reduce the cycle time is achieving higher productivity. Based on data 
collected through 1576 observations in a Serbian company that manu-
factures electrical and electronic equipment for motor vehicles, Brkić 
et al. [4] suggest using control charts on that sample. They show that the 
production cycle was reduced in 2012 by 28.53 percent, compared with 
2011, while production time was shortened by 19.17 percent. 

Outcomes of some pertinent studies on the cycle time reduction are 
presented by Lathashankar et al. [19]. In a case study of reputed con-
struction equipment manufacturing company of India [19] it was 
observed that the demand for the 4Ton compactors remained unmet as 
there were no dedicated fixtures for the tack welding operation of those 

compactors. A new design of a dedicated fixture for tack welding 
operation of front and rear chassis so as to reduce the cycle time of tack 
welding operation was developed and generated by using CATIA V5 R20 
modeling software. 

A case study in the gear box manufacturing industry is presented by 
Gnanavel et al. [12]. The motor tilting and clamping the motor with 
proper alignment are not only consuming more time, but also the cause 
of frequent injuries to the labors and give fatigue to workers. It was 
planned to design supporting equipment instead of using standard 
supporting blocks, crane, and eliminate the practice of manually guessed 
tilt and checking of the angle of tilt, motor clamping time etc. The new 
equipment has increased the average testing rate from 208 gear boxes 
per month to 302 gear boxes per month. 

The above applications as well as many others are very useful in 
facing limited production cycles. Yet, even after developing an efficient 
process of technological improvement that reduces the cycle time, a 
bound on the production cycle length may still exist. In addition, very 
long production cycle lengths might be infeasible due to scheduled 
maintenance, holidays, or weekends. Sarker and Babu [22] showed that 
in the case where products can only be stored in the inventory for a 
limited time (e.g., perishables), it may be beneficial either to reduce the 
production cycle or increase the production rate to shorten the storage 
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time of the products and to avoid spoilage. We suggest an operational 
research approach that aims to select the best production rate (along 
with shipment frequency and size) in terms of the overall integrated cost 
within the frame of the joint buyer-manufacturer problem. 

1.2. Mathematical models of the joint buyer-manufacturer problem 

Coordination among supply chain participants is necessary to ach-
ieve better performance [17]. The class of problems that are associated 
with minimizing the total system cost, coordinating the inventory 
replenishment, and establishing long-term relationships between 
players are known as joint economic lot sizing (JELS) problems or in-
tegrated production-inventory models. Ben-Daya et al. [3] presented a 
comprehensive and up-to-date review of the joint economic lot sizing 
problem and also provided some extensions of this important problem. 
The JELS problem has received considerable attention in recent years in 
the literature. David and Eben-Chaime [6] analyzed a simplified inte-
grated vendor-buyer supply chain consisting of a single item, a single 
manufacturer, and a single buyer. Further, they assumed a just-in-time 
(JIT) manufacturer and that the demand of the customer is continuous 
and follows a fixed rate), a fixed unit production cost, and a given, finite 
production rate P. The main contribution of their model is that it pro-
vides explicit optimal solutions for the shipment frequency and ship-
ment size. Chu and Leon [5] studied the problem of coordinating the 
single-vendor multiple-buyer (SVMB) inventory system under 
restricted information sharing. Glock and Ries [8] analyzed the case of a 
buyer sourcing a product from multiple suppliers under stochastic de-
mand and a lead time that varies linearly with the lot size. Hoque [14] 
also analyzed the vendor-buyer integrated production-inventory model 
under random lead-time. His-formulation considers a transport capacity 
constraint. Wu and Zhao [26] formulated a collaborative mechanism for 
optimizing the replenishment schedule under trade credit and a 
shelf-life constraint in a two-echelon supply chain. In order to determine 
the optimal replenishment schedule and the equitable trade credit 
period, they proposed an efficient solution procedure. Torres et al. [25] 
examined the effects of parameter variations on proposed performance 
measurements (e.g., joint cost, holding cost, ordering cost) in a 
manufacturer-buyer VMI (vendor-managed inventory)-coordinated 
scheme. A supply chain consisting of a single manufacturer and a sin-
gle retailer was analyzed by Shah [24]. She assumed that units in the 
warehouse are subject to deterioration at a constant rate. The demand 
was assumed to be a decreasing function of the selling price and an 
increasing function of the credit period offered by the retailer to the 
customers. The manufacturer was assumed to follow a lot-for-lot pro-
duction strategy. An algorithm utilizing optimality conditions and a 
Maple software program was then described to find the best strategy, 
which involves maximizing the joint profit for the case where the credit 
period and production rate are given constants. Astanjin and Sajadieh 
[2] investigated supply-chain coordination by developing two models, 
involving coordinated and independent decision-making for an imper-
fect manufacturing system with a probabilistic defect rate. Using a 
primal-dual interior point method, algorithms to find the optimal solu-
tion were suggested for both models. Gautam et at. [10] developed an 
inventory model for a vendor - buyer system where the production 
process employed at the vendor’s side is assumed to be imperfect and 
yields defectives. An integrated imperfect production model for buyers 
and vendors was proposed by Khanna et al. [18]. In this study, they 
considered a warranty policy for imperfect items and maintenance 
policy for the production system. 

1.3. Variable production rate 

The aforementioned papers, as well as many others that analyze the 
coordinated vendor-buyer problem, assume a given finite production 

rate. A variable production rate, however, is a key factor in increasing 
the flexibility of a supply network, as it allows a firm to respond to 
changes in customer orders without an associated major increase in cost 
or reduction in quality. In Glock [7], who addressed a single-stage 
production system, a convex function Cp(P) is attributed to the depen-
dence of the unit production cost on the production rate. The tacit 
argument for the convexity property is that at low rates of production, 
economies of scale are in effect: workers slow down while machines are 
running at a lower speed, meaning that costs are incurred when capacity 
is limited by slow production. At a certain, very low production rate, 
however, the unit production cost increases because workers have to 
work overtime; thus machines have less time for preventive mainte-
nance. Very high production rates entail heavy wear associated with 
more powerful and expensive equipment; hence the unit production cost 
starts to increase. A relatively small proportion of the literature on the 
joint manufacturer-buyer problem has considered the production rate as 
a decision variable [1]. Sajadieh and Larsen [21] dealt with the case 
where the retailer and the manufacturer face random demand and 
random yield, respectively. Their formulation as a Markov decision 
process is unusual in the literature as it allows a finite random discrete 
production rate P for the manufacturer. Marchi et al. [20] presented a 
joint economic lot-size model that allows investments financed coop-
eratively by the members of the supply chain, assuming a decreasing, 
inverse-proportional relationship for the function Cp(P). Jauhari et al. 
[15] proposed an iterative procedure to find the optimal solutions to a 
JELS problem under fuzzy demand and inspection errors. Aldurgam 
et al. [1] proposed a numerical line search algorithm to solve a JELS 
model with stochastic demand and a shipment constraint where the 
production rate at the manufacturer can be varied. Note that a variable 
production rate was also studied by Jauhari et al. [15], Sarkar et al. [23], 
Gautam et al. [11], and Kamna et al. [16]. The unit production cost 
function Cp(P) was assumed to be convex. Sarkar et al. [23] analyzed 
how the flexibility of the production rate affects the product quality as 
well the entire supply-chain cost under a single-setup multiple-delivery 
policy. They used classical optimization techniques to develop an iter-
ative search within a solution algorithm. 

1.4. Contribution 

Table 1 summarizes the work most relevant to the suggested problem 
and classifies papers according to key characteristics. The present study 
considers the supply chain addressed by David and Eben-Chaime [6], 
and follows a similar approach to that presented in their paper; however, 
it seeks to derive explicit optimal solutions for a more general problem. 
Similar to the work of Jauhari et al. [15] and Aldurgam et al. [1], we 
seek to find the optimal production rate. However, none of these studies 
derived explicit solutions, nor did they consider a bound on the length of 
the production cycle. 

An approximated solution to the constrained integrated 
manufacturer-buyer supply problem was recently published by Herbon 
[13]. They assume the unit cost is independent of the production rate. 
We postulate a linear approximation for the dependence of the unit 
production cost on the production rate, Cp(P), in order to facilitate the 
mathematical analysis, and seek the optimal production rate P. This 
assumption is reasonable for a wide range of production rates, and 
especially when the production rate is bounded from below, as is 
assumed in our model. Our work contributes to the literature in the 
following respects:  

(1) Our solution approach is mostly analytical. Analytical ap-
proaches have an advantage over enumerative search procedures, 
which are commonly suggested in the existing literature (e.g., [1, 
20,23]), as they yield theoretical insights into the problem under 
consideration. 

A. Herbon                                                                                                                                                                                                                                        
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(2) Unlike the case in which the production cycle length is un-
bounded, for the bounded problem the specific problem param-
eters might impose infeasibility.  

(3) Interestingly, a bound on the production cycle length enables 
optimal selection of intermediate production rates, thus avoiding 
the utilization of solely optimal endpoint production rates (e.g., 
production always at the maximal rate) which characterizes the 
unbounded problem. 

(4) We show that in the special case where the unit cost is indepen-
dent of the production rate (for an unbounded production cycle 
length), the demand-to-production rate ratio does not depend on 
the shipment quantity. 

(5) The results indicate that the unit cost sensitivity has a dichoto-
mous effect on decision variables and on the optimal joint cost. 

2. Supply-chain description and problem formulation 

This section presents the integrated inventory and production system 
that is analyzed in this paper. The mathematical formulation of the 
problem and the assumptions are introduced. Consider a two-echelon 
supply chain where a single manufacturer (i.e., vendor) continuously 
produces a production lot of size Q items with constant production rate, 
D ≤ P ≤ U, where D is the given demand rate set by the retailer (i.e., 
buyer) and U is the maximal production rate. The demand rate is equal 
to the demand that is driven by the market and is observed by the single 
buyer. We define the demand-to-production rate ratio r = D/P, which 
facilitates the presentation of the formulas. 

Produced items associated with the lot are stored in the manufac-
turer’s warehouse and are delivered to the retailer’s warehouse (corre-
sponding to the simultaneous sudden changes in inventory levels in both 
warehouses shown in Fig. 1) in n (integer) equal in-transit shipments; 
that is, each shipment is of size q = Q/n. As is commonly practiced, each 
production lot incurs a set-up cost of K that is assumed to be independent 
of its size. 

The additional key assumptions of the suggested model are as 
follows:  

A1 The two players cooperate, i.e., they share information and have 
signed a pre-agreement about the process of dividing the total 
profit.  

A2 Each player prohibits shortages.  
A3 The production cycle length is bounded by a given length Tp.  

A4 The unit production cost, cV(P), is a linearly decreasing function 
of the production rate P. 

Thus, the total cost per unit time is 

C(P,Q, n) = DcV(P) +
DK
Q

+
kV D⋅n

Q

+hV

(
D
P

Q
n
+ Q

/

2
(

1 −
D
P

)

−
Q
2n

)

+
kBD⋅n

Q
+ hB

Q
2n

(1)  

where kB and kV denote the cost of a single in-transit shipment associ-
ated with the buyer and the vendor, respectively and hB and hV denote 
the holding cost of a unit per unit-time associated with the buyer and the 
vendor, respectively. We assume the unit cost cV(P) is a linearly 
decreasing function of the production rate P with rate α. This assumption 
may hold as long as economies of scale are in effect and the production 
rate does not exceed so high level that they entail heavy wear associated 
with expensive equipment. We note that the convex unit cost 

Table 1 
A comparison of the proposed model with related work.  

Papers Adjustable 
production rate 

Shipment 
freq. 

Bounding 
production cycle 

Unit production cost Solution method Additional characteristics 

David, I., Eben- 
Chaime (2008) 

NO Integer NO Const Explicit NA 

Glock, C.H. [7] Yes Integer NO Convex Solution procedure Unequal-sized batch shipments 
Sajadieh and Larsen  

[21] 
Yes (Integer) Given NO Const MDP solution 

procedure 
Random demand 

Shah [24] NO Contin. NO Const Solution procedure Deteriorating items 
Marchi et al. [20] NO Integer NO Decreasing, inverse- 

proportional 
Enumerative 
procedure 

Joint financing of investments 

Jauhari et al. [15] Yes Integer NO Convex Iterative procedure Fuzzy demand and inspection errors 
Aldurgam et al. [1] Yes Integer NO Convex Numerical line search 

algorithm 
Stochastic demand and a shipment 
constraint 

Sarkar et al. [23] Yes Integer NO Convex Iterative procedure Multiple buyers and imperfect 
production 

Gautam and Khanna  
[9] 

NO Integer NO Const Solution procedure Set-up cost reduction 

Gautam et al. [10] NO Given NO Const Explicit Carbon emissions; Imperfect 
production 

Herbon [13] Yes Integer Yes Const Approx. Buyer’s and Manufacture’s unit 
holding cost are different 

Proposed model Yes Integer Yes Linear Explicit Lower bound on production rate  

Fig. 1. Inventory levels at the buyer’s and the vendor’s, and the 
total inventory. 

A. Herbon                                                                                                                                                                                                                                        
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functioncV(P) = a/P + bP would be more accurate with respect to a 
linear function for very high production rates, but suffers a drawback of 
approaching infinite unit cost for very low values of P. Ours simplifi-
cation is relatively reasonable for a wide domain of production rates and 
also allows for analytical treatment of the problem. Keeping in mind that 
P ≥ D, the unit cost is, 

cV(P) = cV − α(P − D), (2)  

where the unit cost sensitivity α, keeps 0 < α < cV/(U − D) in order to 
prevent negative values ofcV(P) and cV is the maximal unit cost under 
feasible production designs (i.e., when P = D). This function approxi-
mates the unit cost until some maximal value of the production rate, PM, 
after which a possible increase may be observed (e.g., due to too much 
tools scrap, or due to a very expensive production capacity). Accord-
ingly, we assume PM > U. The general problem considered in this paper 
is: 

Problem (P1): 

min
r,q,n

C(r, q, n),

s.t

(3.1)D/U ≤ r ≤ rmax

(3.2)
rnq
D

≤ Tp

q > 0

n ≥ 1, Integer

(3)  

where C(r,q,n)is given in (1) and accordingly, 

C(r,q,n)=D(cV − αD(1/r− 1))+
DK
nq

+
kD
q
+hV

(
rq+nq

/
2(1− r)−

q
2

)
+hB

q
2
,

(4)  

where we define k = kB + kVwithout losing generality, in order to 
simplify tracking. The suggested formulation considers two additional 
constraints. The first excludes scenarios under which continuous pro-
duction is realized. To represent this constraint, we denote rmax as a 
bound on r and accordingly there is a minimal production rate, P = Pmin. 
The second excludes scenarios under which the production cycle length 
(at the manufacturer’s warehouse) is unbounded. Unbounded produc-
tion cycle lengths are associated with oversized and inefficient ware-
houses. Furthermore, unbounded production cycles might not even be 
feasible due to scheduled maintenance, holidays or end weeks. To avoid 
these scenarios, we confine the production cycle duration and denote the 
upper bound as Tp. Optimization problem (P1) is non-linear and has 
mixed integer variables. 

3. Optimization with unbounded production cycle length 

This section addresses a relaxed problem of formulation (2). This 
solution strategy enables intermediate insights to be obtained, while the 

optimal solution serves as a lower bound to solutions of the original 
problem. We consider problem (P2) as a relaxed formulation of problem 
(P1): 

Problem (P2): 

min
r,q,n

C(r, q, n).
s.t
(5.1)D/U ≤ r ≤ rmax
q > 0
n ≥ 1, Integer

(5)  

3.1. Optimization of the demand-to-production rate ratio r given n and q 

Following (4), 

∂C(r, q, n)
/

∂r = hV q(1 − n / 2) + α D2

r2 . (6) 

The first-order optimality condition (FOC) is 

hV q(1 − n / 2) + α D2

r2 = 0, q > 0, n ≥ 1, (7)  

which has the solution 

rup(n, q) = D
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅α
hV q(n/2 − 1)

√

, q > 0, n ≥ 3. (8) 

We begin by stating the conclusion: 

r ∗ (q, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D/U n ≤ 2
rmax n ≥ 3 and rup(n, q) ≤ D/U
argmin

r=D/U,rmax

{C(r, q, n)} n ≥ 3 and D/U < rup(n, q) < rmax

D/U n ≥ 3 and rmax ≤ rup(n, q)

We summarize the above in an explicit form: 

Proposition 1. For a given delivery frequency n (integer) and shipment 
quantity q (problem (P2)), the optimal demand-to-production rate ratio r is 

r∗(q, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D/U n ≤ 2
rmax n ≥ 3andrup(n, q) ≤ D/U

rmax

{
n ≥ 3andD/U < rup(n, q) < rmaxand
hV q(1 − n/2)(rmax − D/U)〈αD((D/rmax) − U)

}

D/U
{

n ≥ 3andD/U < rup(n, q) < rmaxand
hV q(1 − n/2)(rmax − D/U) ≥ αD((D/rmax) − U)

}

D/U n ≥ 3andrmax ≤ rup(n, q)
(9)  

Proof. . For n ≤ 2,∂C(r,q,n)/∂r > 0; thus, r∗(q,n) = D/U. The other 
four cases result from the position of the maximal point rup(n, q) relative 
to the endpoints r = D/U and r = rmax, and from the value of C(r, q, n) at 
the endpoints r = D/U and r = rmax.□ 

Of particular interest is the case where the unit cost is independent of 
the production rate, i.e., when α = 0. In this case, r∗(q, n) = r∗(n), 
meaning the demand-to-production rate ratio r does not depend on 
rup(n, q) and eventually does not depend on the shipment quantity q. 
Consequently, r∗(q, n) is applied and   

min
r,q,n

C(r, q, n) may be written now as min
n

{

min
q>0

C(q, n)
}

. Utilizing (8) 

and (9), r∗(n, q) becomes 

C(q, n) = D(cV − αD(1 / r∗(q, n) − 1)) +
DK
nq

+
kD
q

+ hV

(
r∗(q, n)q+ nq

/
2(1 − r∗(q, n)) −

q
2

)
+ hB

q
2

(10)   
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r∗(q,n)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D/U, n≤ 2

rmax, n≥ 3andq>
αU2

hV

(n
2
− 1

)

rmax,

⎧
⎪⎪⎨

⎪⎪⎩

n≥ 3and
αD2

hV(n/2 − 1)(rmax)
2 < q≤

αU2

hV(n/2 − 1)
and

hV q(1 − n/2)(rmax − D/U)〈αD((D/rmax) − U)

⎫
⎪⎪⎬

⎪⎪⎭

D/U,

⎧
⎪⎪⎨

⎪⎪⎩

n≥ 3and
αD2

hV(n/2 − 1)(rmax)
2 < q≤

αU2

hV(n/2 − 1)
and

hV q(1 − n/2)(rmax − D/U)≥αD((D/rmax) − U)

⎫
⎪⎪⎬

⎪⎪⎭

D/U, n≥ 3andq≤
αD2

hV(rmax)
2
(n/2 − 1)

(11) 

Following (11), r∗(n,q) can only take on two possible endpoint 
values, r = D/Uand r = rmax. The following technical lemma argues that 
there always exists a specific threshold defined as the switching point 
along the q-axis after which the optimal demand-to-production rate ratio 
alters. 

Lemma 1. Given n ≥ 3, there exists a single switching point along the q 
axis, q = q1

s (n), where r∗(q, n) switches from D/U to rmax and 

q1
s (n) =

αDU
hV rmax(n/2 − 1)

(12)  

Proof. See Appendix A. 

Following Lemma 1 and (11), 

r∗(q, n) =

⎧
⎪⎪⎨

⎪⎪⎩

D/U n ≤ 2
D/U n ≥ 3andq ≤ q1

s (n)
rmax n ≥ 3andq > q1

s (n)
(13) 

The demand-to-production rate ratio associated with the highest 
inefficiency is defined as r∗(n, q) - that is, the scenario under which the 
maximal costs are obtained (i.e., the worst possible scenario). Thus, r∗(n,
q) = min{rmax, rup(n,q)},q > 0, n ≥ 3 when rup(n, q) > D/U and r∗(n,q) =

D/U,q > 0, n ≥ 3 when rup(n, q) ≤ D/U. Interestingly, r∗(n, q) serves as 
an upper bound on production inefficiency. Consequently, one can 
evaluate the potential savings due to shifting from the worst possible 
scenario to any production state. 

3.2. Optimizing the shipment size q given n 

The first derivative of the objective with respect to the variable q, 
q ∕= q1

s (n), is 

∂C(r∗(n,q),q,n)
/

∂q=αD2( 1
/
(r∗(q,n))2)∂r∗(n,q)

/

∂q−
DK
nq2 −

kD
q2 +

hV

(

r∗(q,n)+q∂r∗(n,q)
/

∂q+n
/

2(1− r∗(q,n))− nq
/

2∂r∗(n,q)
/

∂q−
1
2

)

+
hB

2 

The FOC for the problem min
q>0

C(q, n)is   

Following (13), r∗(q, n) is a stepwise constant function of q, that is, 
∂r∗(n, q)/∂q = 0 (excluding at the transition point q = q1

s (n)), and the 
FOC for the problem min

q>0
C(q,n)reduces to 

−
DK
nq2 −

kD
q2 + hV

((
1 −

n
2

)
r∗(q, n)+

n
2
−

1
2

)

+
hB

2
= 0, n ≥ 1, q ∕= q1

s (n),

(14)  

where r∗(q, n) is given in (13). Taking into account that ∂2C(r∗(n, q), q,
n)/∂q2|q∕=q1

s (n) > 0, we summarize the above analysis by the following: 

Proposition 2. For a given delivery frequency n (integer), the problem 
(P2) min

q>0
C(q, n) has a minimal global solution q∗(n)specified below:  

a) Forn ≤ 2, 

q∗(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D
(

K
n + k

)

hV

((
1 − n

2

)
D
U + n

2 −
1
2

)

+ hB
2

√
√
√
√
√
√
√

(15)    

b) Denote by q∗
rmax

(n) and q∗
D/U(n) the points resulting from the minimum of 

C(r∗(n, q) = rmax, q, n) and C(r∗(n, q) = D/U, q, n), respectively. To 
simplify the notations, we also denote qs

D/U(n) = min(q∗
D/U(n), q

1
s (n))

and qs
rmax

(n) = min(q∗
rmax

(n),q1
s (n)). Forn ≥ 3 the optimal shipment size is 

given by 

q∗(n) = argmin{(
r∗(n,q)=D

/
U,qs

D/U (n)

)
,(r∗(n,q)=rmax ,qs

rmax (n))

}C(r∗(n, q), q, n), (16)  

where 

q∗
rmax

(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D
(

K
n + k

)

hV

((
1 − n

2

)
rmax +

n
2 −

1
2

)

+ hB
2

√
√
√
√
√
√
√

and q∗
D/U(n)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D
(

K
n + k

)

hV

((
1 − n

2

)
D
U + n

2 −
1
2

)

+ hB
2

√
√
√
√
√
√
√

. (16.1) 

Proof. Forn ≤ 2, q∗(n) in (15) is the only solution of FOC (14) and 
always exists. 

For n ≥ 3, we conclude from (13) that at q = q1
s (n), the cost function 

C(r∗(n,q),q,n)is not always differentiable with variable q. Following the 
convexity of C(r∗(n, q), q, n) with variable q, we are left with the two 
options on the right-hand side of (16).□ 

Interestingly, coefficient α does not directly affect the optimal in- 
transit shipment size, q∗(n). It acts indirectly, by affecting which one 
of the three values q∗

rmax
(n), q∗

D/U(n) or q1
s (n)is eventually chosen. In order 

to find q∗(n), one should consider q = q∗
rmax

(n) only if it is greater than 

αD2( 1
/
(r∗(q, n))2)∂r∗(n, q)

/

∂q −
DK
nq2 −

kD
q2 +

hV

(

r∗(q, n) + q∂r∗(n, q)
/

∂q + n
/

2(1 − r∗(q, n)) − nq
/

2∂r∗(n, q)
/

∂q −
1
2

)

+
hB

2
= 0   
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q1
s (n); otherwise q1

s (n)is chosen. One should consider q = q∗
D/U(n) only if 

it is smaller than q1
s (n); otherwise q1

s (n)is chosen. Each feasible solution 
should be evaluated by inserting it into C(q,n). 

3.3. Optimizing the number of shipments n 

In this sub-section we use the above explicit results for r∗(q, n) and 
q∗(n) to reveal certain properties the objectiveC(n), which then allows 
an efficient search for the optimal number of shipments n∗

, to be 
developed. For n ≤ 2, assigning r∗(q,n) = D/Uand using the expression 
for q∗(n) in (15),   

The condition that C(1) < C(2)is 

4D(K + k)[hV(D /U)+ hB]〈2D(K + 2k)[hV + hB]

For n ≥ 3,   

C(r=rmax,q∗(n,rmax),n)=D(cV − αD(1/rmax − 1))+
DK

nq∗(n,rmax)
+

kD
q∗(n,rmax)

+,

hV

(

rmaxq∗(n,rmax)+nq∗(n,rmax)

/

2(1− rmax)−
q∗(n,rmax)

2

)

+hB
q∗(n,rmax)

2
(17.2)  

where q∗(n,D /U) = min(q∗
D/U(n), q

1
s (n)) and q∗(n, rmax) = max(q∗

rmax
(n),

q1
s (n)). Therefore, C(n) = min{C(r = D /U,q∗(n,D /U),n),C(r = rmax,q∗(n,

rmax),n)}. 
The optimal shipment size is obtained, by definition, from 

argmin
n>0

C(q∗(n), r∗(n, q), n). To avoid a full search, that is, to find the 

optimal n∗in an efficient manner, we start by analyzing the objective. 
The following result states that once the optimal demand-to-production 
rate ratio is r∗(q∗(n),n) = rmaxalong the n-axis, it remains unchanged for 
higher values of n. The following technical lemma supports Lemma 3 in 
showing that the optimal demand-to-production rate ratio is a two- 

stepwise production rate function of n. 

Lemma 2. Under hB ≥ hV(1 − 2rmax), if there exists n′ , where 
r∗(n′

, q∗(n′

)) = rmax, then q∗(n) = max{q∗
rmax

(n), q1
s (n)}and r∗(n, q∗(n)) =

rmax for n > n′ . 

Proof. q1
s (n) is strictly decreasing with n (see (12)) and currently there 

are two possible scenarios, q∗
rmax

(n′

) ≥ q1
s (n

′

)and q∗
rmax

(n′

) < q1
s (n

′

), 
complying with r∗(n′

,q∗(n′

)) = rmax. See Appendix B for completing the 
proof. 

We conclude from Lemma 2 that there exists no more than one 

switching point ns ≥ 3 along the n-axis where the optimal demand-to- 
production rate ratio alters from D/U to rmax. Therefore, the objective 
as a function of n is 

C(r∗(n, q), q∗(n), n ≥ 1) =
{

C(r = D/U, q∗(n, r = D/U), n) n < ns
C(r = rmax, q∗(n, r = rmax), n) n ≥ ns

(18) 

Following (18), the switching point nc
s(the continuous point) is the 

root of 

C(r=D /U, q∗(n,D /U), n) = C(r= rmax, q∗(n, rmax), n) (19)  

We summarize the above by: 

Lemma 3. Under an unlimited production cycle, the switching point 
(integer) ns is ns =

⌊
nc

s
⌋
+ 1, where ⌊x⌋ denotes the "integer part" (rounding 

down of x). 

Define   

where 

C1 ≡ D(cV − αD(U/D − 1));

C(r=D /U, q∗(n), n ≤ 2) = D(cV − αD(U /D − 1)) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D
(

K
n
+ k

)

[hV((2 − n)D/U + n − 1) + hB]

√

C(r = D/U, q∗(n,D/U), n) = D(cV − αD(U/D − 1)) +
DK

q∗(n,D/U)
+

kD
q∗(n,D/U)

+

hV

(

q∗(n,D/U)D
/

U + nq ∗ (n,D/U)

/

2(1 − D/U)) −
q∗(n,D/U)

2

)

+ hB
q∗(n,D/U)

2

(17.1)   

C
(

r =D
/

U, q∗
D/U(n), n

)
= C1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D
(

K
n
+ k

)√
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(hV(2D/U + n(1 − D/U) − 1) + hB)
√ ]

,
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C
(

r=rmax,q∗
rmax

(n),n
)
=C2+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2D
(

K
n
+k

)√
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(hV(2rmax+n(1− rmax)− 1)+hB)
√ ]

,

where C2 ≡ D(cV − αD(1 /rmax − 1)), and 

The following technical lemma assists in specifying C(n), which is 
composed of the above four functions (in the general case). 

Lemma 4. 
The cost functions C(r=D/U,q∗

D/U(n),n),C(r=D/U,

q∗(n,D/U)=q1
s (n),n),C(r=rmax,q∗

rmax
(n),n) and C(r=rmax,q∗(n,rmax)=q1

s (n),
n) are quasi-convex functions with the continuous variable n. 

Proof. See Appendix C. 

Following Lemma 4, each of the curves C(r = D/U,q∗
D/U(n),n), C(r =

D/U, q∗(n,D /U) = q1
s (n),n) C(r = rmax, q∗

rmax
(n), n) and C(r = rmax, q∗(n,

rmax) = q1
s (n), n)is a unimodal function of variable n having a single 

global minimum. We denote the minimal global points (integers) of the 
above four costs functions (all are unimodal) by n∗

D/U, n∗
D/U(q

1
s ), n∗

rmax
and 

n∗
rmax

(q1
s ), accordingly. These minima may be found through any common 

procedure for a one-dimensional search. Looking at C(n), we are left 
with two local minimal points, one within n ∈ [1, ns − 1] and the other 
within n ∈ [ns,∞). The following theorem summarizes the overall opti-
mization search when the production cycle is unlimited. 

Theorem 1. The optimal shipment frequency n∗ (of problem (P2)) is 
specified by the following procedure: 

Step 1. If 4D(K + k)[hV(D /U) + hB]〈2D(K + 2k)[hV + hB], then C1,2 =

C(1) and n1,2 = 1; otherwise, C1,2 = C(2) and n1,2 = 2. 

Step 2. Solve (19) to obtain nc
s and switching point (integer) ns =

⌊
nc

s
⌋
+ 1. 

Step 3. nD/U = argmin
{min(n∗

D/U ,ns − 1),min(n∗
D/U(q

1
s ),ns − 1)}

C(n). 

Step 4. nrmax = argmin
{max(n∗

rmax ,ns),max(n∗
rmax (q

1
s ),ns)}

C(n). 

Step 5. n∗ = argmin
n1,2,nrmax ,nD/U

C(n). 

Step 6. End. 

Any optimal solution to the problem with an unlimited production 
cycle length that is also feasible under the general problem (P1) is also 
optimal for the general problem. In order to highlight the importance of 
the intermediate theoretical results obtained in this section, Figs. 2 and 3 
present, respectively, the optimal size of the in-transit shipments q and 
the integrated cost C, both as a function of the number of in-transit 
shipments, n, for the following set of parameter values: D = 200 
(daily), U = 500 (daily), K = 5000, kV=50, kB=50, hV=10, hB=10, 
rmax=0.75 and α = 0.03. The optimal solution for the unbounded pro-
duction cycle length is n∗ = 8, r∗ = 0.4 (i.e., P∗ = 500), and q∗ = 71.9, 
with accordingly an optimal cost (excluding fixed costs) of C∗ =

2229.89. As shown in Lemma 2, the optimal demand-to-production rate 
ratio starts at r∗(n) = D/U for n < nsand shifts to r∗(n) = rmax for n ≥ ns, 
where ns = 32. The stepwise decreasing function of q∗(n) and the 
unimodality of C∗(n) with n are shown in Figs. 2 and 3, accordingly. 

4. Optimization under a bound on the production cycle length 

In the previous section intermediate results were developed. Those 
analytical results have their own importance since, under an unlimited 
production cycle length (as is generally assumed in the existing litera-
ture), the optimal demand-to-production rate ratio is composed of only a 

Fig. 3. Optimal cost (103$) per unit time, C∗(n), as a function of the number 
of shipments. 

C
(
r = D

/
U, q ∗ (n,D/U) = q1

s (n), n
)
= D(cV − αD(U/D − 1)) +

DKhV rmax(n/2 − 1)
αnDU

+
kDhV rmax(n/2 − 1)

αDU
+

hV
αDU

hV rmax(n/2 − 1)

(

D
/

U +
n
2
(1 − D/U)) −

1
2

)

+ hB
αDU

2hV rmax(n/2 − 1)
;

Fig. 2. Optimal shipment size q∗(n) as a function of the number of shipments.  

C
(
r = rmax, q ∗ (n, rmax) = q1

s (n), n
)
= D(cV − αD(1/rmax − 1)) +

DKhV rmax(n/2 − 1)
αnDU

+
kDhV rmax(n/2 − 1)

αDU
+

hV
αDU

hV rmax(n/2 − 1)

(

rmax +
n
2
(1 − rmax)) −

1
2

)

+ hB
αDU

2hV rmax(n/2 − 1)
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single switching point along the shipment frequency axis, n. This 
property simplified the analysis to find the optimal r∗(n) and q∗(n) given 
n. Reverting to the data in the numerical example presented in Section 3, 
but assuming that the bound on the production cycle length is reduced to 
Tp = 4, does not alter the optimal solution (i.e., n∗ = 8, P∗ = 500 and q∗

= 71.9); however some of the values of the shipment sizes n presented in 
Figs. 2 and 3 for the unbounded problem become infeasible under the 
original problem (P1). In particular, for n ≥ 34, the constraint r ≤ DTp

nq is 
violated. Of course, further decreasing Tp eventually alters the optimal 
solution as well. For example, when Tp = 1, for n ≥ 4, the constraint r ≤
DTp
nq is violated and the optimal solution (under the postulate of not 
violating this constraint) is n∗ = 7, P∗ = 500 and q∗ = 71.43. 

We now solve the general problem (P1), which considers the 
constraint on the production cycle length, rnq

D ≤ Tp, together with the 
existing constraint on the demand-to-production rate ratio r. Thus, r∗(n,

q) ≤ min
{

DTp
nq , rmax

}

. 

4.1. Optimization of the demand-to-production rate ratio r given n and q 

In the case where DTp
nq < D/U, it means that the production lot Q 

cannot be accomplished within the production cycle length Tp; that is, 

there is no optimal solution. We define rmax
TP

(q,n) ≡ min
(

rmax,
DTp
nq

)

. Thus, 

given a feasible couple (q,n), 

r∗B(q,n)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D/U n≤ 2
rmax

TP
(q,n) n≥ 3andrup(n,q)≤D/U

argmin
r=D

/
U,rmax

TP
(q,n)

{C(r,q,n) n≥ 3andD
/

U < rup(n,q)< rmax
TP

(q,n)

D/U n≥ 3andrmax
TP

(q,n)≤ rup(n,q)

,

(20)  

where r∗B(q, n) represents the demand-to-production rate ratio r for the 
bounded problem. More explicitly, 

r∗B(q,n)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D/U n≤2

rmax
TP

(q,n) n≥3andD
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅α
hV q(n/2− 1)

√

≤D
/

U

argmin
r=D

/
U,rmax

TP
(q,n)

{C(r,q,n)n≥3andD
/

U<D
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅α
hV q(n/2− 1)

√

<rmax
TP

(q,n)

D/U n≥3andrmax
TP

(q,n)≤D
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅α
hV q(n/2− 1)

√

.

(21) 

Following the result obtained by the analysis of the relaxed problem 
in Section 3, we axiomatically assume the existence of a switching point 
along the q-axis qs(n), i.e., shifting from the demand-to-production rate 

ratio D/U to rmax
TP

(q, n). Starting from the hypothetical equation C
(

r= D
U,

q, n
)

= C
(

r= DTp
nq , q, n

)

: 

hV q(1 − n/2)
(

DTp

nq
− D

/

U
)

= αD
( (

nq
/

Tp
)
− U

)

After several algebraic manipulations, 

q =
hV(2 − n)DUTp

2 + 2αnDU2Tp(
2αDUn2 + hV nTp(2 − n)D

)

q =
UTp

(
hV(2 − n)Tp + 2αnU

)

n
(
hV(2 − n)Tp + 2αnU

)

q =
UTp

n
.

In order for the optimal demand-to-production rate ratio to switch 
directly from r = D/U to r = DTp/nq (i.e., as shown in the third line in 
(21)) when q increases, q(n)should exceed the value UTp/n. Such a 
scenario is infeasible since it implies that even when production occurs 
under the maximal rate, the bound on the production cycle length Tp is 
such that the cycle is not long enough to produce the entire production 
lot Q = nq. The switching point is obtained from the second line in (21): 

q1
s (n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αDU
hV rmax(n/2 − 1)

rmax
TP

(q, n) = rmax

DTp

nrmax
rmax

TP
(q, n) =

DTp

nq

(22) 

Define the intersection point q2
s (n) =

DTp
nrmax 

where rmax
TP

(q, n) becomes 
DTp
nq . We summarize without proof in the following proposition: 

Proposition 3. For a given delivery frequency n (integer) and shipment 
quantity q for problem (P1), the optimal demand-to-production rate ratio r is 

rB
∗(q, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D/U n ≤ 2

D/U n ≥ 3andq ≤ q1
s (n)

rmax n ≥ 3andq1
s (n) < q ≤ q2

s (n)

DTp

nq
n ≥ 3andq > q2

s (n)

(23)  

The demand-to-production rate ratio in (23) generalizes that derived 
in (13). In contrast to the case where the cycle length is unlimited, under 
which the optimal production rate can take only endpoints, the general 
problem may also choose intermediate production rates. Furthermore, 
unlike the case of the unbounded cycle length, given a couple (q,n), the 
possibility of infeasible solutions arises. 

As in the case of the relaxed problem in sub-Section 3.1, we address 
the worst possible production scenario, that is, the production rate that 
is most inefficient, for the more general problem. 

Proposition 4. For problem (P1), 

(a)if DTp
nq < D/U, then there is no feasible production rate. 

(b)if n ≤ 2, then r∗(n,q) = min
{

DTp
nq , rmax

}

. 

Otherwise (i.e., if n ≥ 3): 
(c) The demand-to-production rate ratio associated with the highest 

inefficiency,r∗(n, q) is given by 

r∗(n,q)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{rmax,rup(n,q)}
DTp

nq
≥ rmaxandrup(n,q)>D

/

U

D/U
DTp

nq
≥ rmaxandrup(n,q)≤D

/

U

DTp

nq
DTp

nq
< rmaxandrup(n,q)>

DTp

nq

rup(n,q)
DTp

nq
< rmaxand

DTp

nq
≥ rup(n,q)>D

/

U

D/U
DTp

nq
< rmaxandrup(n,q)≤D

/

U

,

(24)  

where rup(n, q) is given in (8). 
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Proof. DTp
nq < D/U means UTp < nq, i.e., the production cycle time is 

insufficient to produce the production lot Q = nq. For n ≤ 2, ∂C(r,q,n)/∂r 

> 0; thus, r∗(q, n) = D/U and r∗(n, q) = min
{

DTp
nq , rmax

}

. The other five 

cases result from the concavity of C(r, q, n) with the demand-to- 
production rate ratio r and from the positions of the endpoints r = D /
U and r = rmax relative to the points rup(n, q) and DTp

nq . □ 

Our main objective is to seek the minimal cost thus, we now go back 
to computer∗(q,n). 

4.2. Optimizing the number of shipments n 

We start by seeking the optimal shipment size q given n, q∗
B(n). For 

the two options under which the demand-to-production rate ratio is 
fixed, the formulas for q∗

rmax
(n)and q∗

D/U(n) in (16.1) represent the asso-
ciated global minimal values (which might be infeasible). Considering 
that ∂2C(r∗(q, n), q, n)/∂q2

⃒
⃒
q∕=q1

s (n)
> 0, we summarize the above analysis 

by the following: 

Proposition 5. For problem (P1), denote by q∗
rmax

(n), q∗
D/U(n) the minimal 

points of C(r∗B(n, q) = rmax, q, n) and C(r∗B(n, q) = D/U, q, n), respectively, as 
presented in (16.1). The problem has a minimal global solution q∗

B(n), 
specified below: 

For n ≤ 2, the shipment size is given by 

q∗
B(n) = min

(
q∗

D/U(n), q
1
s (n),UTp

/
n
)
. (24.1) 

(b)To simplify notations we also denote 

qs,Tp
D/U(n) = min(q∗

D/U(n), q
1
s (n),UTp /n) whenrmax

TP
(q.n) = rmax; 

and qs,Tp
rmax (n) = min(max(q∗

rmax
(n), q1

s (n)),UTp /n) whenrmax
TP

(q.n) = rmax; 

and qs,Tp
DTp/nq(n) = min(max(q∗

DTp/nq(n), q
2
s (n)),UTp /n) whenrmax

TP
(q.n) =

DTp
nq . 

For n ≥ 3, the shipment size is given by  

We now seek the optimal number of shipments, r∗B(n). We denote the 
optimal cost given n by C∗

B(n), which is obtained by inserting the optimal 
shipment size q∗

B(n) and the associated optimal demand-to-production 
rate ratio r∗B(n, q) into (4). Lemma 2, which implies that when reach-
ing the demand-to-production rate ratio r = rmax, the ratio remains 
unchanged for all greater n, does not hold for the general problem. When 
n increases, there is a possibility that rmax

TP
(q, n) = rmax alters into 

rmax
TP

(q, n) = DTp
nq and that the optimal demand-to-production rate ratio 

alters into r = DTp
nq (according to Proposition 3). Once the ratio reaches r 

=
DTp
nq , however, it remains unchanged, as is shown in the following 

proposition: 

Proposition 6. Under hB ≥ hV(1 − 2rmax), for problem (P1), the optimal 
demand-to-production rate ratio r∗B(n) is a quasi-concave function of n. 

Proof. See Appendix D. 

We conclude from Proposition 6 that in general, there are no more 

than two switching points: the first, n1
s,B, from r = D/U into r = rmax, and 

the second, n2
s,B, from r = rmax into r =

DTp
nq . Therefore, the objective as a 

function of n is 

CB
(
r∗B(n, q), q∗

B(n), n ≥ 1
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CB(I, n) n < n1
s ,B

CB(II, n) n1
s ,B ≤ n ≤ n2

s ,B
CB(III, n) n > n2

s ,B
, (25)  

where 

CB(I, n) ≡ CB

(
r=D

/
U, q∗

B(n)=min
(

q∗
D/U(n), q

1
s (n),UTp

/
n
)
, n
)

(25.1)  

CB(II, n) ≡ CB

(
r= rmax, q∗

B(n)=min
(

max
(

q∗
rmax

(n), q1
s (n)

)
,UTp

/
n
)
, n
)

(25.2)  

CB(III,n)≡CB

⎛

⎜
⎝r=

DTp

nq
,q∗

B(n)=min

⎛

⎜
⎝max

⎛

⎜
⎝q∗

DTp
nq
(n),q2

s (n)

⎞

⎟
⎠,UTp

/

n

⎞

⎟
⎠,n

⎞

⎟
⎠,

(25.3) 

Fig. 5. Optimal shipment frequency n∗
B as a function of the bound on the 

production cycle length. 

q∗
B(n) = argmin{(

qs,Tp
D/U (n),r∗(n,q)=D

/
U

)
,(qs,Tp

rmax (n),r∗(n,q)=rmax),

(

qs,Tp
DTp/nq

(n),r∗(n,q)=DTp
nq

)}C(r∗(n, q), q, n). (24.2)   

Fig. 4. Optimal demand-to-production rate ratio r∗(n) as a function of the 
number of shipments. 
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where 

q∗
DTp
nq
(n) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D
(

K
n + k

)

hV

(

n/2 − 1
2

)

+ hB
2 − αD

(
n

Tp

)

√
√
√
√
√
√
√

. (25.4) 

Following (25), the continuous switching points n1,c
s,B and n2,c

s,B, where 
n1

s,B =
⌊
n1,c

s,B
⌋
+ 1 and n2

s,B =
⌊
n2,c

s,B
⌋
+ 1, are the roots (if they exist) of 

CB(I, n) = CB(II, n) and of CB(II,n) = CB(III,n), respectively. 
The following technical lemma assists in specifying CB(n), which is 

composed of the above three functions (in the general case). Due to the 
similarity with Lemma 4, in which the quasi-convexity is shown, we 
present the following lemma without proof. 

Lemma 5. The cost functions CB(I, n), CB(II, n) and CB(III, n) are quasi- 
convex functions with the continuous variable n. 

Following Lemma 5, each of the five curves CB(r = D /U, q∗
B(n) =

q∗
D/U(n),n), CB(r = D /U,q∗

B(n) = q1
s (n),n), CB(r = rmax,q∗

B(n) = q∗
rmax

(n),n), 

CB(r = rmax, q∗
B(n) = q1

s (n), n), and CB

(

r= DTp
nq , q

∗
B(n)= q2

s (n), n
)

is a 

unimodal function with a single global minimum. We denote the mini-
mal global points (integers) of the above five cost functions (all are 
unimodal) by n∗

D/U, n∗
D/U(q

1
s ), n∗

rmax
, n∗

rmax
(q1

s ), and n∗
DTp
nq
(q2

s ), accordingly, 

and they can all be found through any common one-dimensional search 
procedure. Looking at CB(n), we are left with three local minimal points, 
one within n ∈ [1,n1

s,B − 1], the second within n ∈ [n1
s,B,n2

s,B − 1], and the 
third within n ∈ [n2

s,B,∞). The following theorem summarizes the overall 
optimization when the production cycle is unlimited. 

Theorem 2. The optimal shipment frequency n∗
B for problem (P1) is 

specified by the following procedure: 

Step 1. If CB(rB
∗(q,1) =D /U,q∗

B(1),1) < CB(rB
∗(q,2) = D /U,q∗

B(2),2), 
then C1,2 = CB(1) and n1,2 = 1; otherwise, C1,2 = CB(2) and n1,2 = 2. 
Step 2. Solve CB(I, n) = CB(II, n) and CB(II, n) = CB(III, n) to obtain 

n1,c
s,B and n2,c

s,B, respectively; then the integer switching points are n1
s,B =

⌊
n1,c

s,B

⌋
+ 1 and n2

s,B =
⌊
n2,c

s,B

⌋
+ 1, respectively. 

Step 3. nD/U = argmin{
min(n∗

D/U
,n1

s,B − 1),

min(n∗
D/U

(q1
s ),n

1
s,B − 1)

}CB(n). 

Step 4. nrmax = argmin{
max{min(n∗rmax ,n2

s,B − 1),n1
s,B},

max{min(n∗rmax (q1
s ),n

2
s,B − 1),n1

s,B}

}CB(n). 

Step 5. nDTp/nq = argmin{
min(n∗

DTp/nq
,n2

s,B ),

min(n∗
DTp/nq

(q1
s ),n

2
s,B )

}CB(n). 

Step 6. n∗
B = argmin

n1,2 ,nrmax ,nD/U ,nDTp/nq

CB(n). 

Step 7. End. 

Fig. 6. Optimal shipment size q∗
B as a function of the bound on the production 

cycle length. 

Fig. 7. Optimal cost (103$) per unit time, C∗
B(n), as a function of the bound on 

the production cycle length. 

Fig. 8. Optimal shipment frequency n∗ as a function of the unit cost sensitivity.  

Fig. 9. Optimal shipment size q∗ as a function of the unit cost sensitivity.  

Fig. 10. Optimal cost (103$) per unit time, C∗(n), as a function of the unit cost 
sensitivity. 
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Obviously, once the optimal shipment frequency n∗
B is obtained, the 

decision maker can utilize, (24.1) and (24.2) in Proposition 5 to obtain 
q∗

B and later (23) in Proposition 3 to obtain r∗B. 

5. Numerical illustration and sensitivity of key parameters 

In this section, we demonstrate numerically the solution of the pro-
posed problem and highlight its significance. A sensitivity analysis of the 
key parameters of the problem is also presented. In particular, the bound 
on the production cycle length and the rate of decrease of the unit cost 
cV(P) with the production rate P are investigated. The general problem 
analyzed in Section 4 allows no more than two switching points, with 
shipment frequency n and this is demonstrated in the following sub- 
section. 

5.1. Switching points with shipment frequency n 

Here we present three examples. The first demonstrates two 
switching points, the second demonstrates one switching point, and the 
third no switching points. Utilizing the data of the example in Section 3, 
i.e., with Tp = 4, the optimal demand-to-production rate ratio (see also 
Fig. 4) is: 

r∗(n) =

⎧
⎨

⎩

0.4 n < 32
0.75 32 ≤ n ≤ 148

[0.4, 0.75] n > 149
.

Omitting the restriction about the production cycle length, i.e., 
assigning Tp = ∞, the optimal demand-to-production rate ratio is 

r∗(n) = {
0.4 n < 32
0.75 n ≥ 32 . Decreasing the bound on the production cycle 

length to Tp = 1 changes the optimal policy into r∗(n) = 0.4, n ≥ 1. 

5.2. The effect of the bound on the production cycle length Tp 

A restriction on the production cycle length might be imposed in real 
life. In such scenarios, the managerial alternatives include outsourcing, 
increasing production rates (e.g., additional shifts and machines), and 
working with smaller production lots (which incurs significant fixed 
costs). The monetary penalties (associated with total costs) as well as the 
service levels (associated with the number of shipments and their size) 
are the main performance measures that are affected by the bound. The 
optimal demand-to-production rate ratio is 0.4 (i.e., P = 500) for all 
instances (when Tp ≤ 1.5). Figs. 5–7 present the optimal shipment fre-
quency n, the optimal shipment size q, and the optimal joint cost CB for 
different values of Tp. 

Figs. 5–7 show that bounds on the production cycle length that 
exceed 1.2 days are not active, i.e., the optimal solution does not alter 
with Tp. For bounds below the threshold of approximately 1.2 days, the 
production cycle length coincides with the imposed bound. After this 
threshold, the ratio between the actual production cycle length and the 
bound decreases with Tp quite sharply. For example, when Tp = 1.5, the 
value of this ratio is 0.768. Fig. 7 shows an exponential increase in the 
optimal joint cost with a decreasing bound on the production cycle 
length, Tp. We conclude that it is worthwhile for managers to make 
significant efforts to relax the bound on the production cycle length. 
Fig. 5 shows a non-increasing response of the optimal shipment fre-
quency (i.e., n) to decreases in the bound on the production cycle length, 
Tp. Of particular interest is the periodic but decreasing trend seen for the 
optimal shipment size q when the bound on Tpbecomes stricter (see 
Fig. 6). It can be explained by the fact that both n and the combined 
value Q = nq increase (or, more accurately, do not decrease) with Tp. 
Since the value of n (integer) sometimes does not alter with decreasing 
Tp, the shipment size q must adjust itself to comply with the active 
constraint. 

It is worth noting that for all instances of the bound on the produc-

tion cycle length Tp, the optimal production rate is maximal, that is, P∗ =

U, and that for the special case where Tp = 0.2 days, two optimal so-
lutions are obtained with the optimal cost of 9100$. The two alternatives 
are (n∗

B = 1,q∗
B = 100) and (n∗

B = 2,q∗
B = 50). In such a scenario, the 

decision makers may choose the best alternative based on considerations 
other than the joint total cost, such as the storage capacity in the buyer’s 
warehouse or the vendor’s flexibility in splitting the production lot into 
two shipments. 

5.3. The effect of unit cost sensitivity α 

Our model assumes that the unit production cost cV(P) is a linearly 
decreasing function of the production rate P, with the rate of decrease 
denoted by α. Such a decrease can be linked to the relatively high costs 
associated with higher production durations. Increasing P means 
shortening the production time, and in most cases, also decreasing the 
unit cost. This of course may only hold true for limited increases in the 
production rate, as significant monetary investments are likely to be 
needed to achieve very high production rates. We go back to the almost 
unbounded scenario (e.g., Tp = 6) and investigate the effect of changing 
the unit cost sensitivity α. Figs. 8–10 present the shipment frequency n, 
the optimal shipment size q, and the optimal joint cost C for different 
values of α. 

Figs. 8–10 indicate that the unit cost sensitivity has a dichotomous 
effect on decision variables and on the optimal cost. When α = 0.023, 
the optimal shipment frequency n∗ jumps from 8 to 17, and the optimal 
shipment size q∗jumps from 52.36 to 71.96. The optimal cost decreases 
linearly with the unit cost sensitivity, but the slope alters and suddenly 
increases at the value of α = 0.023. Unlike the effect of the bound on the 
production cycle length, increasing α changes the optimal production 
rate from P∗ = 266.66 (the minimal value) to P∗ = 500 (the maximal 
value). 

6. Conclusions 

6.1. Summary 

This paper analyzes an integrated manufacturer-buyer supply chain 
with bounded production cycle length and discrete shipment size. The 
proposed formulation avoids scenarios under which the production rate 
approaches the demand rate (that is, producing almost without breaks) 
and scenarios under which the production cycle length (at the manu-
facturer’s warehouse) is unbounded. For the case of the unbounded 
production cycle length, we observe a stepwise decreasing function for 
the optimal shipment size q∗(n) and unimodality of the joint cost func-
tion C∗(n) with n, as shown in Figs. 2 and 3, accordingly. Unlike the case 
in which the production cycle length is unbounded, for the bounded 
problem, the specific problem parameters might impose infeasibility. 

Utilizing the optimality properties of the solution, we optimally solve 
the bounded problem, obtain intermediate explicit expressions, and 
develop an efficient convex searching procedure to find the shipment 
frequency. In particular, we prove that the optimal solution can have no 
more than two switching points along the shipment-size axis n. We find, 
for the special case where the unit cost is independent of the production 
rate (i.e., when α = 0), that r∗(q,n) = r∗(n), meaning that the demand- 
to-production rate ratio r does not depend on the shipment quantity q. 
Interestingly, we find an upper bound on the production inefficiency. 
Consequently, one can evaluate the potential savings due to shifting 
from the worst possible scenario to any other production state, including 
the actual one. Numerical examples indicate that smaller bounds on the 
production cycle length simultaneously increase the fluctuations of the 
optimal shipment size q∗ and decrease the optimal shipment size n∗. 
Such trends imply smaller production lots Q∗ and accordingly greater 
production set-up costs. Numerical examples also indicate that the unit 
cost sensitivity has a dichotomous effect on decision variables and on the 
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optimal cost. 

6.2. Managerial implications and future research 

The effect of the bound on the production cycle length has both 
theoretical and practical implications. Numerical illustration shows that 
decreasing the bound on the production cycle length can substantially 
increase the optimal joint cost. This observation should encourage 
manufacturers to invest monetary efforts in relaxing this limitation as 
much as possible, for example, by ensuring that there is sufficient ca-
pacity. Another possible strategy to cope with the bound on the pro-
duction cycle length is to outsource some of the operations planned for 
the period when the machines are idle and, as a result, to increase the 
bound on the production cycle. A third possibility would be to increase 
the production rate by outsourcing some of the work, thus avoiding the 
sharp expected increase in the total costs. Future research could 
compare these alternatives. 

Contrary to what one might expect, imposing a bound on the pro-
duction cycle length does not only have negative consequences. In the 
case of the unlimited bound, only the endpoints of the demand-to- 
production rate ratio are optimal; i.e., only two values, the highest 
demand-to-production rate ratio r∗(n) = D/U and the lowest one, r∗(n) =
rmax, may be chosen. Theoretically, production under the maximal 
value, P = U is feasible; however, practically speaking, such a policy 

may be unstable and risky for long durations. In the bounded case, on 
the other hand, intermediate values for the demand-to-production rate 
ratio as a function of shipment size n may also be selected. 

All numerical examples presented in Section 5 show that the optimal 
demand-to-production rate ratio is always r∗ = D/U. Since setting α = 0 
instead of α = 0.03 in the dataset presented in Section 3 produced r∗ =

rmax, we conclude that the unit cost sensitivity is a key parameter in 
changing the optimal demand-to-production rate ratio. 

We presented examples where multiple solutions are optimal. A 
more formal analysis that investigates these scenarios and introduces the 
conditions under which multiple optimal solutions exist is suggested for 
future research. Such research will enable decision makers to choose the 
best policy among available solutions, not only based on total cost, but 
also on other criteria. The suggested model has several limitations which 
are mainly related to the relatively simplified supply chain addressed in 
this paper. Obviously, many other research directions could follow from 
the current work. These include: analyzing the case where the players do 
not cooperate; analyzing different models of the unit production cost 
function; and modeling the supply chain when the demand is considered 
random. 

Declaration of Competing Interest 

None.  

Appendix A. Proof of Lemma 1 

We show existence of the switching point q1
s (n)by addressing the two endpoints in (11). First, we show that 

hV q(1 − n/2)(rmax − D /U) ≥ αD((D/rmax) − U)when q =
αD2

hV(rmax)
2
(n/2 − 1)

hV
αD2

hV(rmax)
2
(n/2 − 1)

(1 − n/2)(rmax − D /U) ≥ αD((D/rmax) − U)

D(rmax − D /U) ≤ rmaxU(rmax − D /U).

U ≥ D
rmax

, which is true. Second, we show that 

hV q(1 − n/2)(rmax − D /U)〈αD((D/rmax) − U) when q =
αU2

hV

(
n
2 − 1

)

hV
αU2

hV

(
n
2 − 1

) (1 − n/2)(rmax − D /U)〈αD((D/rmax) − U).

U2(D /U − rmax)〈D((D/rmax) − U)

U2(D /U − rmax)〈D
U

rmax
(D /U − rmax)

U ≥ D
rmax

, which is true. Thus, the switching point is the root of 

hV q(1 − n/2)(rmax − D /U) = αD((D/rmax) − U), (A.1)  

that is, q1
s (n) = αDU

hVrmax(n/2− 1).□ 

Appendix B. Proof of Lemma 2 

By definition of q∗
rmax

(n) and q1
s (n)we need to show that the condition in which the optimal demand-to-production rate ratio under which r∗(n, q∗(n))

= rmax also remains for n > n′ . We start by assuming q∗
rmax

(n′

) ≥ q1
s (n

′

), i.e., 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D
(

K
n′ + k

)

hV

((
1 − n′

2

)
rmax +

n′
2 − 1

2

)

+ hB
2

√
√
√
√
√
√
√

≥
2αDU

hV rmax(n′
− 2)
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2D
(

K
n′ + k

)

[hV rmax(n
′

− 2)]2

hV(rmax(2 − n′
) + n′

− 1) + hB
≥ 4α2D2U2 (B.1) 

Given that there exists n = n′ such that (B.1) is true, implying that r∗(n′

,q∗(n′

)) = rmax, it is sufficient to show that 

2D
(

K
n + k

)

[hV rmax(n − 2)]2

hV(rmax(2 − n) + n − 1) + hB
≥ 4α2D2U2 for n ≥ n

′

.

For n = n’ the claim is true. We show that the derivative of the left-hand side is positive (the derivative of the right-hand side is 0). 

∂/∂n

⎡

⎢
⎣

2D
(

K
n
+ k

)

[hV rmax(n − 2)]2

hV(rmax(2 − n) + n − 1) + hB

⎤

⎥
⎦ =

[hV(rmax(2 − n) + n − 1) + hB]

[

2D
(
− K
n2

)

[hV rmax(n − 2)]2 + 4hV rmaxD
(

K
n
+ k

)

[hV rmax(n − 2)]
]

[hV(rmax(2 − n) + n − 1) + hB]
2 −

hV(1 − rmax)

[

2D
(

K
n
+ k

)

[hV rmax(n − 2)]2
]

[hV(rmax(2 − n) + n − 1) + hB]
2  

[hV(rmax(2 − n) + n − 1) + hB]

[

2D
(
− K
n2

)

[hV rmax(n − 2)] + 4hV rmaxD
(

K
n
+ k

)]

−

hV(1 − rmax)

[

2D
(

K
n
+ k

)

[hV rmax(n − 2)]
]

[hV(rmax(2 − n) + n − 1) + hB]
[
2DK[hV rmax(2 − n)] + 4hV rmaxD

(
Kn + kn2)]−

hV(1 − rmax)
[
2D

(
Kn + kn2)[hV rmax(n − 2)]

]

[hV n(1 − rmax)][2hV rmax][2DK] + [hV n(1 − rmax)]
[
2hV rmaxD

(
kn2)]+

hV(1 − rmax)[2hV rmax][2D(Kn)] + [hV(1 − rmax)][hV rmax(2)]
[
2D

(
kn2)]+

[2hV rmax − hV + hB][2hV rmax][2DK] + [2hV rmax − hV + hB][2hV rmaxD(Kn)]+
[2hV rmax − hV + hB]

[
4hV rmaxDkn2]〉0 

For the opposite direction, i.e., assuming q∗
rmax

(n′

) < q1
s (n

′

) and r∗(n′

, q∗(n′

)) = rmax, then q∗(n) = q1
s (n) at least for n = n′

, n′

+ 1, n′

+ 2, .., n′′ (sin-
ceq1

s (n)strictly decreases with n), after which q∗
rmax

(n′′ + 1) > q1
s (n′′ + 1). Therefore, q∗(n) = q∗

rmax
(n) also for n > n′′ following the former scenario. We 

conclude that in both cases,q∗(n) ≥ q1
s (n), and according to (13), r∗(q,n) = rmax.□ 

Appendix C. Proof of Lemma 4 

We start with C(r = rmax,q∗
rmax

(n),n)and take the first derivative with respect to variable n. 

C
′
(

r = rmax, q∗
rmax

(n), n
)
=

[

2D
(

K
n
+ k

)]1/21
2
hV(1 − rmax)[(hV(2rmax + n(1 − rmax) − 1) + hB)]

− 1/2
−

1
2

[

2D
(

K
n
+ k

)]− 1/2(2DK
n2

)

[(hV(2rmax + n(1 − rmax) − 1) + hB)]
1/2 

The FOC becomes: 
[

2D
(

K
n
+ k

)]

hV(1 − rmax) =

(
2DK

n2

)

[(hV(2rmax + n(1 − rmax) − 1)+ hB)] (C.1) 

The second derivative becomes: 
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C′′
(

r = rmax, q∗
rmax

(n), n
)
= −

[

2D
(

K
n
+ k

)]1/21
4

hV(1 − rmax)hV(1 − rmax)[(hV(2rmax + n(1 − rmax) − 1) + hB)]
− 3/2

−

1
2

[

2D
(

K
n
+ k

)]− 1/2(2DK
n2

)
1
2
hV(1 − rmax)[(hV(2rmax + n(1 − rmax) − 1) + hB)]

− 1/2
−

1
2

[

2D
(

K
n
+ k

)]− 1/2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
2DK

n2

)
1
2

hV(1 − rmax)[(hV(2rmax + n(1 − rmax) − 1) + hB)]
− 1/2

−

(
4DK

n3

)

[(hV(2rmax + n(1 − rmax) − 1) + hB)]
1/2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

−

{
1
4

[

2D
(

K
n
+ k

)]− 3/2(2DK
n2

)}(
2DK

n2

)

[(hV(2rmax + n(1 − rmax) − 1) + hB)]
1/2 

We now seek the sign of C′′(rmax,n). By multiplying C′′(rmax,n)by the positive function [(hV(2rmax + n(1 − rmax) − 1) + hB)]

[

2D
(

K
n + k

)]

, it becomes 

−
1
4

[

2D
(

K
n
+ k

)]2

hV(1 − rmax)hV(1 − rmax)−

[

D
(

K
n
+ k

)](
2DK

n2

)

hV(1 − rmax)[(hV(2rmax + n(1 − rmax) − 1) + hB)]+

[

D
(

3
K
n
+ 4k

)](
DK
n3

)

[(hV(2rmax + n(1 − rmax) − 1) + hB)]
2 

Utilizing (C.1) by assigning the FOC in the above expression, 

= −
1
4

[(
2DK

n2

)

[(hV(2rmax + n(1 − rmax) − 1) + hB)]

]2

−

[

D
(

K
n
+ k

)](
2DK

n2

)

hV(1 − rmax)[(hV(2rmax + n(1 − rmax) − 1) + hB)]+

[

D
(

3
K
n
+ 4k

)](
DK
n3

)

[(hV(2rmax + n(1 − rmax) − 1) + hB)]
2
=

[

D
(

K
n
+ k

)](
2DK

n2

)

hV(1 − rmax)[(hV(2rmax + n(1 − rmax) − 1) + hB)]+

[

D
(

2
K
n
+ 4k

)](
DK
n3

)

[(hV(2rmax + n(1 − rmax) − 1) + hB)]
2
> 0 

Thus, each point that is the root of the FOC is a local minimum. A similar procedure for C(r = D/U, q∗
D/U(n), n) results in the same conclusion. 

We show the convexity of 

C
(

r = rmax, q1
s (n) =

αDU
hV rmax(n/2 − 1)

, n
)

= D(cV − αD(1/rmax − 1)) +
DKhV rmax(n/2 − 1)

αDU
+

kDhV rmax(n/2 − 1)
αDU

+

hV

(
αDU

hV rmax(n/2 − 1)
D
/

U +
nαDU

2hV rmax(n/2 − 1)
(1 − D/U)) −

αDU
2hV rmax(n/2 − 1)

)

+ hB
αDU

2hV rmax(n/2 − 1)

C′

(

r = rmax, q1
s (n) =

αDU
hV rmax(n/2 − 1)

, n
)

=
DKhV rmax

2αDU
+

kDhV rmax

2αDU
−

αDU
rmax(n − 2)2 (2 − 2D/U))−

(
2αDU

rmax(n − 2)2 (D/U − 1/2)
)

− hB
αDU

hV rmax(n − 2)2  

C′′

(

r = rmax, q1
s (n) =

αDU
hV rmax(n/2 − 1)

, n
)

=
2

(n − 2)3
αDU
rmax

(2 − 2D/U))+

(
4αDU

rmax(n − 2)3 (D/U − 1/2)
)

+ hB
2αDU

hV rmax(n − 2)3 > 0 

A similar procedure for C(r = D/U, q1
s (n), n) results in the same conclusion.□ 

Appendix D. Proof of Proposition 6 

We divide the proof into two scenarios: 
If there does not exist any n’ under which rmax

TP
(q∗

B(n
′

),n′

) =
DTp

n′ q∗
B(n

′
)
, the claim is proved in Lemma 2 (i.e., starts with r∗B(n) = D/U and alters into r∗B(n)

= rmax). 
In the case where n = n′ , the demand-to-production rate ratio r∗B(q∗(n′

), n′

) =
DTp

n′ q∗(n′ ) is optimal, thus we show that for all n > n′ , the optimal 

demand-to-production rate ratio remains as r∗B(q∗(n), n) =
DTp

nq∗(n). If r
max
TP

(q∗
B(n

′

), n′

) =
DTp

n′ q∗
B(n

′
)
, it is left to show that nq∗

B(n) does not decrease with n. 

Considering the components in the third line of (24.2), i.e., q∗
B(n) = min(max(q∗

DTp/nq(n), q
2
s (n)),UTp /n), and since nq∗

DTp/nq(n) increases with n and 

nq2
s (n) does not decrease with n, the proof is complete. 
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