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Automatic design of hybrid stochastic local search algorithms for 
permutation flowshop problems with additional constraints 
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A B S T R A C T   

Automatic design of stochastic local search algorithms has been shown to be very effective in generating algo-
rithms for the permutation flowshop problem for the most studied objectives including makespan, flowtime and 
total tardiness. The automatic design system uses a configuration tool to combine algorithmic components 
following a set of rules defined as a context-free grammar. In this paper we use the same system to tackle two of 
the most studied additional constraints for these objectives: sequence dependent setup times and no-idle 
constraint. Additional components have been added to adapt the system to the new problems while keeping 
intact the grammar structure and the experimental setup. The experiments show that the generated algorithms 
outperform the state of the art in each case.   

1. Introduction 

Automatic algorithm design (AAD) has shown to be able to produce 
state-of-the-art algorithms for the permutation flowshop problem [43]. 
The method proposed by Pagnozzi and Stützle [43] is based on using an 
automatic configuration tool to assemble algorithmic components 
following rules defined as a context-free grammar. The algorithmic 
components were implemented in the EMILI framework, a flexible 
framework that allows the generation of stochastic local search (SLS) 
algorithms. In particular, the EMILI framework allows the definition of 
both high specialized problem-specific components as well as general 
problem-agnostic components. In order to use an automatic configura-
tion tool to design an SLS algorithm, such as irace, the grammar is 
converted to a set of parameters. In this paper, AAD is used to tackle the 
permutation flowshop problem with the sequence dependent setup 
times and the no-idle constraints. 

The permutation flowshop problem (PFSP) is a very well known 
problem [14]. It has been shown to be NP -hard for different objectives 
with the exception of the two machine case for the makespan objective 
[23]. The problem models a flowshop where a set of jobs have to be 
processed on a group of machines. Several additional constraints have 
been proposed in the literature to take into account different scenarios. 
Often, machines have to be set up before being able to process a job. For 
instance, a machine may need to be cleaned or calibrated before pro-
cessing another job. The setup time may depend not only on the job that 

has to be processed, but also on the changes made to the setup of the 
machine before processing the previous job. The permutation flowshop 
problem with sequence dependent setup times, PFSPsdst , has been 
introduced to model this scenario. This problem has been shown to be 
NP -hard, considering the makespan objective, even when there is only 
one machine [18]. Considering the complexity hierarchies for sched-
uling problems, this result can be extended to the total completion time 
and total tardiness objectives [46]. Several SLS algorithms such as 
iterated local search [65], iterated greedy [51] and population-based 
algorithms [30,50,58] have been proposed to solve the permutation 
flowshop problem with such constraint. 

No-idle permutation flowshop (PFSPni) is another such variant. 
PFSPni models a scenario where machines cannot have idle times. This 
constraint is necessary in some contexts such as the steel industry, 
ceramic production or in photolithography methods used in the pro-
duction of integrated circuits [45]. PFSPni with the makespan objective 
is also an NP -hard problem [1]. Following the same reasoning about 
complexity hierarchies for scheduling problems [46], the no-idle per-
mutation flowshop problem can be assumed to be NP -hard also when 
considering the total completion time and total tardiness objectives. 
Among the SLS algorithms proposed for this problem there are iterated 
greedy [40], memetic algorithms [55] and variable neighborhood 
search [61]. 

In this paper we extend the work carried out on automatic algorithm 
design for the permutation flowshop problem by considering the 
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permutation flowshop problem with the sequence dependent setup 
times and the no-idle constraints. For each constraint we consider the 
minimization of the makespan, the total completion time and the total 
tardiness. For each objective and constraint, the algorithms generated by 
our AAD system are compared with the best performing algorithm from 
the literature. The results show that the generated algorithms outper-
form the state of the art. 

The paper is structured as follows. In Section 2 there is a definition of 
PFSP, PFSPni and PFSPsdst . In Section 3, there is a description of how the 
automatic design works and how the system was updated for these 
problems. The experimental setup is reported in Section 4. We report the 
experimental results for the sequence setup times problem and the no- 
idle problem, respectively, in Section 5 and Section 6. Finally, the con-
clusions are in Section 7. 

2. Permutation flowshop with additional constraints 

In its standard formulation, the PFSP models a flowshop in which a 
series of n jobs {J1,…, Jn} have to be processed one at a time, in order, 
on a set of m machines {M1,…,Mm}. The jobs are released at time 0 and 
the jobs are executed in order with no preemption allowed. A solution is 
represented by a permutation π = {π(1),…, π(k),…, π(n)} that specifies 
the processing order of the jobs. The processing time needed for a job j 
on a machine i is indicated as pi,j. The completion time of a job π(j) on a 
machine i is given by Eq. (1), where Ci,j− 1 is the completion time of the 
last job processed on machine i while Ci− 1,j is the completion of job π(j)
on the previous machine, that is 

Ci,j = max
(
Ci,j− 1,Ci− 1,j

)
+ pi,π(j). (1) 

In PFSPsdst , each machine has to undergo a setup operation before 
being able to process the following job. A matrix S of dimension n ×n ×m 
is defined, where Si,l,k is the setup time that machine i needs when 
passing from working on job l to job k. The setup time has to be 
considered when computing the completion times for each job. Conse-
quently, Eq. (1) is modified as follows: 

Csdst
i,j = max

(
Ci,j− 1,Ci− 1,j + Si,π(j− 1),π(j)

)
+ pi,π(j) (2)  

The time required to setup the machine depends on the job that has to be 
processed and on the last job processed. 

In PFSPni, machines cannot have idle times, that is, as soon as a job is 
completed, the next one should be ready to start processing. The 
completion time is calculated as in Eq. (3) 

Cni
i,j = max

(
Ci,j− 1 + ai,π(j− 1),π(j),Ci− 1,j

)
+ pi,π(j), (3)  

where ai,π(j− 1),π(j) is calculated as in Eq. (4) and it is used to ensure that 
there is no idle time between the starting of job π(j) and the ending of the 
previous job π(j − 1), that is 

ai,π(j− 1),π(j) =
∑k=i

k=2
max

(
Ck− 1,j − Ck,j− 1, 0

)
. (4) 

The most common objective considered for the flowshop problem is 
minimizing the makespan, Cmax, that is the time needed to complete all 
jobs. The makespan is defined as Cmax = Cm,n. Another common objective 
considers minimizing the sum of the completion times which minimizes 
the occupation time of the machines. The sum of completion times is 
defined as 

TCT =
∑n

i=1
Cm,i.

This objective is also known as total completion time and it is equal to 
the minimization of the flowtime when the release times for all jobs are 
equal to zero. Finally, we consider also the minimization of the total 
tardiness, which tries to minimize the tardiness of all jobs. Assigning a 

due date to each job so that di is the due date of job Ji, the tardiness of Ji 
is defined as max(0,Cm,i − dπ(i)) and the total tardiness is 

TT =
∑n

i=1
max

(
0,Cm,i − dπ(i))

)
.

Summarizing, in this paper we are considering the makespan, sum of 
completion times and total tardiness objectives for both sequence 
dependent setup times constraint and the no-idle constraint. An analysis 
of the state of the art for these problems is given in Sections 5 and 6. 

3. Automatic algorithm design 

Historically, implementing an SLS algorithm for some problem has 
always been a manual engineering process. A designer would implement 
an SLS algorithm of his choice, usually the one he knows the most, as 
well as one or more alternative behaviors for each aspect of the algo-
rithm [20]. Moreover, SLS algorithms have often many parameters that 
need to be set in order to better adapt the algorithm to the problem it has 
to solve. The designer would choose among the alternative behaviors 
and set the parameters of the algorithm in a manual trial-and-error 
process or, more recently, using automatic algorithm configuration 
(AAC). Given an application scenario, AAC tools apply different tech-
niques in order to find the best parameter setting, known as configura-
tion, for a target application [21,22,34]. Automatic algorithm design 
stems from the work carried out on automatic algorithm configuration 
and is based on combining AAC tools with configurable algorithmic 
frameworks [59]. A configurable algorithmic framework implements 
one or more SLS algorithms as templates in such a way that for every 
design choice of the algorithm one can choose among different alter-
natives. The framework exposes all these choices as parameters so that 
an AAC tool can be used to find the best configuration, that is, a new 
algorithm adapted to solve a specific problem. 

This idea has been considered both in a top-down and bottom-up 
approach. The top-down approach focuses on one algorithm template 
and expresses all the design choices as parameters, e.g. implementing a 
simulated annealing algorithm where all the components are parame-
ters. Notable examples of this approach can be found in SAT solvers 
[27], frameworks for ant colony optimization algorithms [32] and for 
multi-objective evolutionary algorithms [2–4]. Recently, this approach 
has been applied to generate iterated local search algorithms for the 
standard PFSP [6,7], the unconstrained quadratic problem [11], the 
test-assignment problem [12] and the simulated annealing algorithm 
[15]. 

In the bottom-up approach instead, the template structure is not 
fixed, that is, different types of SLS algorithms can be instantiated. 
Moreover, some degree of hybridization between different algorithms is 
allowed, enabling the system to generate new combinations. Such 
flexibility requires the use of an algorithmic framework to define the 
components and handle their integration into an algorithm. Further-
more, since the template is not fixed, defining the set of parameters that 
the parameter tuner has to optimize is not a trivial task. For this reason, 
context-free grammars have been used to specify how the algorithms 
should be composed [8,36,42]. Grammars have the advantage of 
limiting all the possible combinations of components to only those that 
generate a valid algorithm. 

The bottom-up approach has been applied to several problems such 
as PFSP with the weighted tardiness objectives, unconstrained binary 
quadratic problem and traveling salesman problem with time windows 
[35]. The proposed system uses the ParadisEO framework [10] as 
algorithmic framework, irace as parameter tuner and the grammar is 
converted to a set of finite parameters following the approach proposed 
by Mascia et al. [37]. In a most recent publication [43], a system based 
on the same principles, but with a new algorithmic framework, the 
EMILI framework, has been used to generate new state-of-the-art algo-
rithms for the PFSP problem with the makespan, sum of completion 
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times, total tardiness objectives. This system, with some additions to the 
framework, is the same used in this study. 

A line of research related to automatic algorithm design can be 
considered the one on hyperheuristics [9]. These methods propose 
techniques to generate heuristics that can be seen as specific compo-
nents in automatic algorithm design [59]. Hyperheuristics based on 
genetic programming [29], where evolutionary algorithms are used to 
generate computer programs, have been used to generate heuristics and 
heuristic components for problems such as SAT problems [16,17], 
scheduling problems [5,19], bin packing [33,57] and traveling salesman 
problem [25,26]. Grammars have been also used together with genetic 
programming in methods called grammatical evolution [8,42]. Gram-
matical evolution has been applied to generate local search heuristics 
and ant colony optimization algorithms [8,54,63]. 

3.1. Grammar based AAD with the EMILI framework 

An idea of how the grammar works can be given by making a small 
example. Let us consider a rule deriving an iterated local search (ILS) 
algorithm as shown in Eq. (5)   

The rule states that to instantiate an ILS algorithm one needs to 
instantiate first the components <LocalSearch>, <Termination>,

<Perturbation> and <Acceptance>. For example, an ILS algorithm for 
the PFSP could be described by 

ilspfsp ::= ‘ils′ lspfsp‘time20′

‘random moveexchange2′

‘better′

. (6) 

The algorithm described in Eq. (6) is an ILS that uses lspfsp as local 
search, it is executed for 20 s, performs two random steps in the ex-
change neighborhood as perturbation and accepts only improving 

solutions. Fig. 1 shows a snapshot of the grammar used for this study. 
The different components available for each component type are listed 
in Section 3.2. 

When converting the grammar to parameters, a distinction has to be 
made between simple and complex rules. Simple rules can be directly 
translated to parameters. For instance, a rule that sets all possible al-
ternatives for a neighborhood can be directly translated into a cate-
gorical parameter. Complex rules, that is recursive rules or groups of 
rules that can form a loop, need to be explicitly expanded. This means 
that the rule, or the group of rules in case of loops, generate a new set of 
parameters each time it is expanded. Consequently, a limit needs to be 
set to the total number of expansions. A more detailed explanation of 
how the grammar is defined and converted in parameters can be found 
in [37]. In this work we fix the maximum number of expansions to three. 

The EMILI framework is based on a generalized version of a hybrid 
SLS algorithm. Hybrid SLS algorithms are defined in [20] as those that 
manipulate at each search step a single solution combining two or more 
search types. The framework supports also “simple” SLS algorithms that 
are identified in [20] as SLS algorithms that use only one type of search 
step. An outline of an iterated local search algorithm, which represents a 
hybrid SLS template as implemented in the framework, is shown in Al-
gorithm 1. 

The algorithm works as follows. An initial candidate solution is 
generated using a heuristic (Line 2). Then an SLS is applied to the 
candidate solution (Line 3). The algorithm executes the main loop until 
the termination criterion is met (Line 4). In the main loop, the candidate 
solution is perturbed (Line 5), the SLS is applied to the perturbed solu-
tion (Line 6), and an acceptance criterion is used to decide whether to 
keep the current candidate solution or to accept the perturbed solution 
(Line 7). 

As explained in [37], this structure can describe many different SLS 
algorithms. For instance, simulated annealing can be instantiated by 
choosing an initial solution component that returns a random candidate 
solution, a perturbation that generates random neighboring solutions of 

the candidate solution, an acceptance criterion based on the Metropolis 
condition and not applying any SLS to the perturbed solution. 

The EMILI framework classifies algorithmic components in problem 
dependent and problem independent components. The first are com-
ponents that have to access and modify the data structures representing 
the problem and the solution. Typically, initial solution heuristics, 
neighborhoods and perturbations belong to this category. Problem in-
dependent components, instead, only need to compare solutions or ac-
cess information about the search process (e.g. number of iterations). 
These components can be defined once and then used with any problem 

Fig. 1. Context-free grammar that contains the rules used to build algorithm templates for this study. Note that rules ILS together with LocalSearch define a recursion 
that can be exploited to generate hybrids combining various algorithms. 

1: Output The best solution found π∗
2: π := Init()
3: π := SLS(π)
4: while ! termination criterion do
5: π′ := Perturbation(π)
6: π′ := SLS(π′)
7: π := AcceptanceCriterion(π, π′)
8: end while
9: Return the best solution found in the search process

Algorithm 1. ILS.  

< ILS> :: = ‘ils’ <LocalSearch> <Termination> < Perturbation> <Acceptance> . (5)   
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and solution definition. Termination criteria and acceptance criteria 
usually can be implemented as problem independent. 

In the next section, we will give a brief description of the algorithmic 
components used for this study. 

3.2. Algorithmic components 

All the components used in this work are listed in Table 1. Most of 
these components were implemented for the previous work on PFSP as 
general components and, therefore, can be used in this work without any 
change. The components added to the framework for this work are 

reported in the table in bold. In the following, we give a description of 
the components implemented for this study and a brief presentation of 
the components already present in the framework. A more detailed 
description of these components can be found in our previous publica-
tion [43]. 

3.2.1. Neighborhood 
A neighborhood of a solution consists of all the solutions that can be 

generated by applying a modification rule. The framework provides 
several base neighborhood definitions for PFSP: exchange, insert, trans-
pose, binsert, finsert and twinsert. The first two are based on exchanging 
the position of two jobs (exchange) and removing one job and inserting it 
in another position (insert). The others, with the exception of twinsert, 
represent a subset of the first two. The transpose neighborhood ex-
changes only adjacent jobs. In binsert a removed job can be inserted only 
before its original position, while in finsert the insertion point has to be 
after the original position. Instead, twinsert considers all the permuta-
tions that can be created by removing and inserting groups of two 
adjacent jobs. The two jobs are reinserted in the same order in which 
they are removed. Additionally, Taillard’s technique to speedup the 
exploration of the insert neighborhood has been adapted to PFSPni and 
PFSPsdst . 

3.2.2. Construction heuristics 
SLS algorithms use construction heuristics to generate the initial 

solution from which they start to explore the solution space. In our 
previous study several construction heuristics for the PFSP have been 
implemented in the EMILI framework as general components and, 
therefore, were also used in this study. Typically, construction heuristics 
build a solution by adding solution components in a step-by-step process 
until a complete solution is constructed. A construction heuristic can be 
defined by the way the solution component is selected, the selection 
rule, and how it is added to the partial solution, the construction rule. 
Solution components can be added in two ways by either appending the 
solution component at the end of the partial solution or inserting it in the 
position that gives the best solution value. Heuristics that use insertion 
as construction rule are also called insertion heuristics. In some cases, a 
local search may be applied to the partial solution. 1: Output The best solution found π∗,

2: π := Init()
3: π := ls (π)
4: k := 0
5: while ! termination criterion do
6: π′ := Shake(π, k)
7: π′ := ls (π′)
8: π := NeighborhoodChange(π, π′, k)
9: end while
10: Return the best solution found in the search process

Algorithm 2. VNS.  

1: Output The best solution found π∗,
2: π := NRZ()
3: π := FirstImprovement(π, local minima, sttinsert)
4: π∗ := π
5: while ! time is over do
6: π′ := IGst(π)
7: π′ := FirstImprovement(π′, local minima, sttinsert)
8: π := psa(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 3. IRstms .  

Table 2 
Parameter settings for IRstms .   

Component Parameter Value 

IRstms      

IGst  d  6  
psa Ts  4.2073   

Te  0.0441   
β  0.0042   
it  206  

Table 1 
Algorithmic components implemented in the EMILI framework that were used in 
this work.  

Type Component Parameters 

Construction 
Heuristics 

NEH [41], NEHtb [13], NEHedd [28], 
LR [31], NLR  

- 

FRB5 [47], RZ [48], NRZ, NRZ2,

SLACK,  
-  

NAG [40]  〈x,y〉
NEHrs  - 

Iterative 
improvements 

First Improvement 〈In,T,N〉

Best improvement 〈In,T,N〉

VND 〈P, In,T,{N1,…,

Nk}〉

iRZ 〈In〉
STH  〈b〉
als  〈l1, l2〉

Neighborhoods transpose, exchange, insert, binsert -  
finsert, sttinsert, nitinsert, twinsert 

Termination criteria local minimum - 
maxsteps 〈maxi〉
maxstepsorlocmin 〈maxi〉
nstepsorlocmin -  
non_imp_it 〈maxi〉

Perturbation criteria random_move 〈N,num〉

vr_move 〈{d,num, (N1,…,

Nk)}〉

IGlsps  〈d〉
IG,IGst , IGni  〈d〉
IGio  〈d〉
MRSILSp  〈p〉
shake  〈{P1,…,Pn}〉

Acceptance criteria better 〈∅〉

improveif 〈st , sn〉

ft 〈T〉
psa 〈Ts,Te,β, it〉
sa  〈Ts,Te,β,α, it〉
rsacc 〈Tp〉

karacc 〈Tp〉

neighchange  〈A〉
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The NEH heuristic [41] is rated as one of the most effective heuristics 
for PFSP. This insertion heuristic selects the jobs in descending order of 
the sum of processing times. NEH has been so influential that several 
improvements and variations have been proposed. The ones imple-
mented in EMILI are NEHtb [13], NEHedd [28], FRB5 [47] and NEHrs. 
NEHtb introduces a different rule to break ties when a job can be inserted 
in more than one position resulting in the same objective function value. 
NEHedd selects the job in descending order of due dates and is feasible 
only for the total tardiness objective. FRB5 executes a local search on the 
partial solution after each step of the heuristic. Finally, the NEHrs heu-
ristic modifies the initial step of the NEH by choosing randomly the first 
job of the permutation. 

Considering the other heuristics implemented, the LR heuristic [31] 
uses for the selection an index function that considers the idle times and 
an approximation of the sum of completion times. At each step the index 
function is calculated and the job with the smaller value is appended at 
the end of the partial solution. NLR is an insertion heuristic that uses the 
index function of the LR heuristics to select the next job. The RZ heuristic 
appends first to the partial solution the jobs that minimize a function 
based on the weighted sum of processing times [48]. The generated 
solution is improved by means of a local search. NRZ and NRZ2 are 
insertion heuristics that are based on the RZ heuristic. NRZ uses the 
solution generated by RZ before applying the local search as selection 
rule of an insertion heuristic. The generated solution is still improved as 
in RZ with a local search. In NRZ2 the local search is not applied, 

generating a typically worse solution but in little time. SLACK is a 
construction heuristic for the total tardiness objective that appends jobs 
to the partial solution by selecting at each step the job with the minimal 
tardiness. 

For this work, the NAG insertion heuristic [40] proposed for PFSPni
TCT 

was implemented in EMILI. This heuristic uses the index function of the 
LR heuristic and after each insertion another index function is used to 
select y jobs to remove and reinsert in the partial solution. A number x of 
initial sequences is generated by choosing for each sequence a different 
first job to append to the partial solution. The parameters y and x can 

Table 3 
Average RPD results of EMBO, MRSILS, IGrs and IRstms. If the result of one of the algorithms is in bold face it means that it is statistically significantly better then the 
others according to the Wilcoxon signed-rank test with a 95% confidence using the Bonferroni correction to take into account multiple comparisons.   

t = 60     t = 120     t = 240     
Instances EMBO  MRSILS  IGrs  IRstms  EMBO  MRSILS  IGrs  IRstms  EMBO  MRSILS  IGrs  IRstms  

20 × 5  0.77 0.08 0.17 0.06 0.53 0.05 0.12 0.02 0.35 0.04 0.09 0.01 
20 × 10  0.75 0.10 0.20 0.09 0.54 0.07 0.16 0.05 0.37 0.05 0.12 0.03 
20 × 20  0.50 0.07 0.12 0.05 0.36 0.04 0.09 0.02 0.25 0.03 0.07 0.01 
50 × 5  3.88 1.39 1.25 1.04 3.62 1.19 1.06 0.86 3.41 1.02 0.90 0.74 
50 × 10  4.08 1.53 1.33 1.01 3.84 1.31 1.15 0.84 3.61 1.14 0.98 0.71 
50 × 20  3.52 1.39 1.23 0.88 3.32 1.19 1.06 0.71 3.13 1.05 0.90 0.60 
100 × 5  4.49 2.02 1.45 1.31 3.98 1.68 1.20 1.01 3.66 1.40 0.96 0.75 
100 ×

10  
4.49 1.92 1.33 1.23 4.05 1.58 1.08 0.94 3.79 1.31 0.88 0.68 

100 ×
20  

4.41 1.91 1.36 1.20 4.02 1.60 1.10 0.93 3.78 1.34 0.89 0.66 

200 ×
10  

5.52 2.17 1.30 1.37 4.67 1.80 0.98 1.00 3.98 1.45 0.69 0.64 

200 ×
20  

5.32 2.02 1.29 1.28 4.59 1.70 0.99 0.93 3.92 1.40 0.73 0.59 

500 ×
20  

5.35 1.71 1.05 1.31 5.00 1.42 0.69 0.83 4.41 1.12 0.34 0.42 

Average 3.59 1.36 1.00 0.90 3.21 1.14 0.81 0.68 2.89 0.95 0.63 0.49  

Fig. 2. Average RPD and 95% confidence intervals of EMBO, MRSILS, IGrs and IRstms for t = 60 (left), T = 120 (center) and T = 240 (right).  

1: Output The best solution found π∗,
2: π := NEH()
3: π := IRsttct 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := IG(π)
7: π′ := IRsttct 2(π′)
8: if f (π′) < f (π∗) then
9: π∗ := π′
10: end if
11: end while
12: Return π∗

Algorithm 4. IRsttct .  
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assume values in the interval [1,n]. 

3.2.3. Iterative improvement 
Iterative improvement algorithms are local search algorithms that 

explore the solution space in an iterative fashion by going from one 
solution to an improving neighboring solution. This process typically 
stops when no improving neighbor can be found or, in some cases, after 
a certain number of steps. These algorithms take as input the starting 
solution, the neighborhood relation and the way to choose which 
candidate neighbor is selected for the next iteration, known as pivotal 
rule. The algorithm can consider also multiple neighborhood relations as 
in the variable neighborhood descent (VND). 

The algorithms already implemented in the EMILI framework and 
that were used in this study comprehend the most widely used pivotal 
rules FirstImprovement and BestImprovement as well as the iRZ local 
search and VND. In FirstImprovement the exploration of the neighbor-
hood of the current solution is stopped as soon as an improving solution 
is found. In BestImprovement instead, the whole neighborhood is 
explored and the best neighbor is returned. The iRZ algorithm iterates 
the local search phase defined in the RZ heuristic until it cannot find any 
improving solutions. The VND explores, in order, a set of neighborhoods 
passing from one neighborhood to the next when no improvement is 
found. Each time an improving solution is found the algorithm starts 
again from the first neighborhood. The algorithm stops when it scanned 
all the neighborhoods with no improvement. Additionally, two other 
algorithms have been implemented for this study, STH [58] imple-
mented for PFSPsdst

MS and als that has been implemented as a problem 
independent component. STH selects a block of jobs of size [1,3] and 
evaluates b insertion points, choosing the best. The process is iterated b 
times, where b is a parameter of the algorithm. The als local search takes 
as parameters two iterative improvements algorithms (l1 and l2) and, at 
each iteration, applies them alternatively. 

3.2.4. Perturbation 
The perturbation in an SLS has the role of letting the search process 

escape local minima by changing the current solution in a way that 
cannot be undone by the local search. The most simple way of imple-
menting a perturbation is by taking a random neighbor of the current 
solution. random_move will perturb the current solution by executing 
num random steps in the N neighborhood. Instead, vr_move expands the 
concept of random_move by allowing to specify multiple neighborhoods 
N. The number of random steps to execute per neighborhood is specified 
by the parameter num. The neighborhood is changed to the next one 
after it iterations. 

A widely used perturbation scheme for the PFSP is the iterated 
greedy (IG) perturbation. This scheme is composed of a destruction 
phase and a construction phase. In the destruction phase a number d of 
jobs are removed from the solution. In the construction phase, the jobs 
are inserted in the partial solution, one by one, in the position that 
minimizes the objective function value. This perturbation is imple-
mented in IG, IGni and IGst where the last two use Taillard’s acceleration 
for, respectively, PFSPni

MS and PFSPsdst
MS to find the best insertion point in 

the construction phase. In IGio the jobs to be reinserted are considered in 
the descending order of sum of processing times. With IGlsps, a local 
search is used to further improve the partial solution after each rein-
sertion. The MRSILSp perturbation keeps a pool of size solutions con-
taining the best size solutions. If the pool is full, the worst solution of the 
pool is discarded; when the pool is not yet full, the current solution is 
perturbed by executing t random steps in the transpose neighborhood 
and returned. When the pool is full, a random solution is selected from 
the pool and perturbed using the IG perturbation. 

3.2.5. Termination condition 
Termination conditions are components that trigger the stop of an 

SLS algorithm when a certain condition is verified. Several termination 
conditions have been considered. local minima will stop the execution 
when there is no more improvement. maxsteps instead stops the execu-
tion when maxi iterations have been completed. maxstepsorlocmin 
combines the first two: the algorithm will be stopped either when there 
is no more improvement or after maxi iterations. non_imp_it stops the 
algorithm if no improvement is achieved in maxi iterations. Finally, 
nstepsorlocmin works in the same way as maxstepsorlocmin, but the maxi 
parameter is always set to the number of jobs. 

3.2.6. Acceptance criterion 
In an SLS algorithm, the acceptance criterion influences the balance 

1: Output The best solution found π∗,
2: Input current solution π.
3: π := IRsttct 3(π)
4: π∗ := π
5: while maxsteps() do
6: π′ := IG(π)
7: π′ := IRsttct 3(π)
8: π := sa(π′, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 5. IRsttct2.  

1: Output The best solution found π∗,
2: Input current solution π.
3: π := VND(π, nstepsorlocmin, binsert, exchange, twinsert)
4: π∗ := π
5: while nstepsorlocmin() do
6: π′ := IGlsps(π,FirstImprovement(local minima, exchange))
7: π′ := VND(π′, local minima, binsert, exchange, twinsert)
8: π := π′
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 6. IRsttct3.  

Table 4 
Average RPD results of IGrs and IRsttct . If an algorithm is statistically significantly 
better according to the Wilcoxon signed-rank test with a 95% confidence, the 
result is shown in bold face.   

t = 60   t = 120   t = 240   
Instances IGrs  IRsttct  IGrs  IRsttct  IGrs  IRsttct  

20× 5  0.35 0.01 0.30 0.001 0.24 0 
20× 10  0.18 0.01 0.15 0.003 0.12 0.002 
20× 20  0.13 0.003 0.11 0.001 0.09 0.001 
50× 5  2.40 1.16 2.08 0.89 1.86 0.70 
50× 10  1.94 1.00 1.74 0.78 1.55 0.63 
50× 20  1.49 0.78 1.31 0.63 1.18 0.52 
100× 5  3.89 2.22 3.22 1.57 2.68 1.01 
100× 10  2.79 1.80 2.33 1.28 1.95 0.84 
100× 20  2.12 1.37 1.76 0.97 1.45 0.63 
200× 10  3.24 1.99 2.59 1.39 1.95 0.78 
200× 20  2.27 1.55 1.79 1.10 1.34 0.59 
500× 20  3.25 0.68 1.79 0.44 1.13 0.19 
Average 2.00 1.05 1.60 0.76 1.29 0.49  
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between intensification and diversification. The most simple of such 
criteria, improve, accepts only improving solutions. With improveif, a 
certain degree of diversification is introduced by allowing the criterion 
to accept worsening solutions if no improving solution has been met for 
a certain number of iterations. The framework also provides several 
variants of acceptance criteria based on the Metropolis condition [38]. 
This probabilistic criterion, commonly used in simulated annealing, 
accepts incumbent solutions with a probability Pa defined as in Eq. (7) 

Pa =

⎧
⎨

⎩

1 if f (π
′

) ≤ f (π)

exp
(

f (π) − f (π
′

)

T

)

otherwise.
(7) 

Commonly in simulated annealing the temperature T is updated 
during the algorithm execution. The temperature would start at a certain 
value Ts and then decrease, according to a schedule, until it reaches a 
final value Te. The schedule we used updates the temperature every it 
iterations following the rule Tn+1 = α⋅Tn − β where α and β are real 
values between 0 and 1. The criteria sa and psa update the temperature 
using this rule, with psa setting α always equal to 1. Instead, ft, rsacc and 
karacc do not update the temperature. In the rsacc [52] acceptance 
criterion, the temperature Trs is linked to the average processing time of 
the instance to be solved and it is calculated as 

Trs = Tp⋅
∑n

i=1
∑m

j=1pi,j

n⋅m⋅10
, (8)  

where Tp is a parameter. The karacc [24] acceptance criterion adapts the 
rsacc criterion to the total tardiness by calculating the temperature Tkar 
as 

Tkar = Tp⋅
∑n

j=1LBCmax − dj

n⋅10
, (9)  

where LBCmax is the lower bound for the makespan calculated using the 
method defined by Taillard [60]. Additionally, an SLS algorithm can be 
set to always accept the perturbed solution regardless of its solution 
quality. 

Table 5 
Parameter settings for IRsttct .   

Component Parameter Value  Component Parameter Value 

IRsttct     IRsttct2      

IG d  2  maxsteps maxi  32      
IG d  9 

IRsttct3      sa  ts  2.0027  
IGlsps  d  5   te  0.7216       

β  0.0313       
α  0.4397       
it  308  

Fig. 3. Average RPD and 95% confidence intervals of IGrs and IRsttct for t = 60 (left), T = 120 (center) and T = 240 (right).  

1: Output The best solution found π∗,
2: π := NEH()
3: π := IRsttt 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := random_move(π, binsert)
7: π′ := IRsttt 2(π′)
8: π := rsacc(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 7. IRsttt .  

1: Output The best solution found π∗,
2: Input current solution π.
3: π := als(π,FirstImprovement(local minima, finsert),
4: FirstImprovement(maxstepsorlocmin, twinsert))
5: π∗ := π
6: while maxstepsorlocmin() do
7: π′ := IG(π)
8: π′ := als(π′,FirstImprovement(local minima, finsert),
9: FirstImprovement(maxstepsorlocmin, twinsert))
10: π := rsacc(π, π′)
11: if f (π′) < f (π∗) then
12: π∗ := π′
13: end if
14: end while
15: Return π∗

Algorithm 8. IRsttt2.  
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3.2.7. Adding VNS to the EMILI framework 
The VNS algorithm is considered as a special case of the ILS algo-

rithm. The similarity is evident if we consider the outline of both algo-
rithms, shown in Algorithm 2 for the VNS and in Algorithm 1 for the ILS. 
Both use a heuristic to generate an initial solution and use a local search 
for intensification. A VNS algorithm is characterized by the shake and 
the neighborhood change as shown in Algorithm 2. The shake works as a 
perturbation applying random changes to the current solution according 
to one neighborhood. The shake keeps a set of neighborhoods and selects 
the one to apply according to the parameter k. The neighborhood change 
component acts as an acceptance criterion and controls the parameter k. 
When the current solution is accepted, k is set to zero otherwise it is 
incremented by one. 

4. Experimental settings 

In this section we report the setup used for the automatic design and 
for the comparisons with the current state-of-the-art algorithms. In order 
to apply the automated design approach presented in this paper, the 
grammar presented in Section 3 needs to be adapted to each objective 
and PFSP variant. The resulting six grammars maintain the same general 
structure shown in Fig. 1, but have different variant-specific and 
objective-specific components. For example, the speedup for the insert 
neighborhood for PFSPsdst

MS is not present in the grammars for PFSPsdst
TCT 

and PFSPsdst
T and the same applies for no-idle. Considering these differ-

ences, the number of parameters to tune were 627 for the three objec-
tives of PFSPni, 535 for PFSPsdst

MS and 507 for PFSPsdst
TCT and PFSPsdst

T . 
The configuration space generated from the grammar needs to be 

explored by an automatic configuration tool. For this task we chose 
irace, a publicly available AAC tool [34]. For each objective and PFSP 
variant, irace was run twice with a budget of 105 experiments per run for 
a total of 2⋅105 experiments. The best configurations at the end of the 
first run were given as initial configurations for the second run. The 
training set used for the automatic configuration is the same one used in 
[43]. This set is composed of 40 randomly generated instances following 
the procedure described in [39]. The instances are divided in groups of 
five with jobs size n ∈ {50,60, 70,80,90,100} with 20 machines plus 
five instances of size 250 × 30 and five of size 250× 50. 

The automatically generated algorithms are compared with the 
current state of the art using the most commonly used benchmark in-

stances for each PFSP variant and objective. The state-of-the-art algo-
rithms have been implemented to the best of our ability following the 
respective papers using, for the experiments, the parameter settings 
reported by the authors. Regarding PFSPsdst , the experiments for the 
three objectives were made using the benchmark presented in Ruiz and 
Maroto [49]. This benchmark is composed of four sets of instances. Each 
set is based on the original 120 instances of the Taillard’s benchmark 
[60] comprising 12 groups of 10 instances with jobs n ∈ {20,50, 100,
200,500} and machines m ∈ {5, 10, 20}. The four sets of instances, 
called SDST10, SDST50, SDST100 and SDST125, have the setup times 
sampled uniformly in the range [1,9], [1,49], [1,99] and [1,124]. 

In the case of PFSPni, for makespan and sum of completion times we 
used the benchmark presented in Ruiz et al. [53] that is composed of 250 
instances in groups of 5 with number of jobs n ∈ {50,100,150,200,250,
300,350, 400,450,500} and machines m ∈ {10,20,30,40,50}. The in-
stances generated for this benchmark do not consider due dates. Hence 
for PFSPni

T we used the benchmark presented in Vallada et al. [64] that 
was proposed for the standard PFSP. This benchmark is composed of 540 
instances divided in groups of 45 with number of jobs n ∈ {50,150,250,
350} and machines m ∈ {10,30,50}. In all cases, with the only exception 
of PFSPni

T , the performances have been evaluated computing the relative 
percentage variation (RPD) that can be calculated as follows: 

RPD =
Ra − R*

R*  

where Ra is the solution reported by algorithm a and R* is the best 
known solution. In the case of PFSPni

T , since the benchmark set has in-
stances where the total tardiness of the best solution is equal to zero, the 
relative deviation index (RDI) was used. The RDI is calculated as 

RDI =
Ra − R*

Rw − R*  

where Rw is the worst solution generated considering all the tested al-
gorithms. 

The tuning was executed on a Xeon 5410 CPU at 2.33 Ghz while the 
experiments were conducted on an Opteron 6410 CPU running at 2.1 
Ghz. All machines use CentOS 6.2. All the algorithms in the comparisons 
have been implemented in the EMILI framework and each execution was 
single threaded. All the parameter settings as well as the best solutions 

Table 6 
Average RPD results of IGrs and IRsttt . If an algorithm is statistically significantly better according to the Wilcoxon signed-rank test with a 95% confidence, the result is 
shown in bold face.   

t = 60   t = 120   t = 240   
Instances IGrs  IRsttt  IGrs  IRsttt  IGrs  IRsttt  

20 × 5  0.28 0.03 0.22 0.01 0.18 0.01 
20 × 10  0.11 0.01 0.09 0.00 0.08 0.00 
20 × 20  0.08 0.00 0.06 0.00 0.05 0.00 
50 × 5  2.20 1.17 1.92 0.85 1.72 0.59 
50 × 10  1.82 1.02 1.61 0.76 1.44 0.53 
50 × 20  1.34 0.75 1.18 0.54 1.06 0.38 
100 × 5  3.71 2.27 3.05 1.61 2.47 1.00 
100 ×

10  
2.62 1.67 2.15 1.17 1.73 0.75 

100 ×
20  

2.02 1.33 1.66 0.94 1.34 0.60 

200 ×
10  

3.12 2.11 2.50 1.46 1.87 0.78 

200 ×
20  

2.24 1.60 1.77 1.09 1.29 0.58 

500 ×
20  

1.86 0.88 1.47 0.61 1.13 0.35 

Average 1.78 1.07 1.47 0.75 1.20 0.46  

F. Pagnozzi and T. Stützle                                                                                                                                                                                                                    



Operations Research Perspectives 8 (2021) 100180

9

found for each benchmark are reported in the supplementary pages 
[44]. In the following, we report the algorithms generated by our AAD 
system, as well as the results of the comparison with state-of-the-art 
algorithms for each of the constraints and objectives tackled. Finally, 
all the algorithms tested are executed with a maximum running time 
that is calculated as Tmax = n⋅(m /2)⋅t ms, where n is the number of jobs, 
m is the number of machines and t is a parameter. In our tests we used for 

the parameter t the values {60,120,240}. 

5. Results for sequence dependent setup times PFSP 

5.1. Makespan 

Many different metaheuristics have been proposed for this problem 
like GRASP, genetic and memetic algorithms [49] before the introduc-
tion of the IGrs algorithm [51]. The IGrs algorithm is a very simple and 
powerful metaheuristic based on the NEH heuristic, a FirstImprovement 
local search that explores the iRZ neighborhood, the IG perturbation and 
a fixed temperature Metropolis like acceptance criterion. This algo-
rithm, similarly to when it was proposed for the minimization of the 
makespan in the standard PFSP [43], has remained the best performing 
algorithm for quite sometime before new algorithms were proposed. 

In 2014, MRSILSst [65] showed to outperform IGrs. MRSILSst is an ILS 
algorithm that uses the NEH heuristic to generate the initial solution, an 
insertion based local search, a strictly improve acceptance criterion and 
the MRSILSp perturbation presented in Section 3. Recently, a migrating 
birds optimization, EMBO was proposed as new state of the art [58]. The 
EMBO algorithm divides the population in a leader solution and two 
groups of followers. At each iteration, the leader solution is updated by 
applying the STH algorithm. Afterwards, k solutions are selected among 
the swap and insert neighborhood of the leader solution. Each follower 
is considered going from the closest to the leader to the furthest. The 
solution produced applying the STH algorithm is compared with k − x 
best neighbors from the previous follower solution and x neighbors 
selected among the swap and insert neighborhood of the current fol-
lower. Additionally, a tabu list is used to improve the neighbors selec-
tion. All the solutions are characterized by an age variable that is 
incremented at each iteration if the solution is not updated. If the age 
variable reaches maxage the solution is substituted by a random one. 

The automatically generated algorithm, IRstms, is shown in Algorithm 
3 with the parameters in Table 2. This algorithm is a rather simple IG 
algorithm. It uses the NRZ heuristic to generate the initial solution and a 
FirstImprovement local search exploring the insert neighborhood. The 
perturbation is the same as IGrs with a stronger destruction phase while 
the acceptance is closer to a classical SA acceptance. 

The IRstms was compared with EMBO, MRSILSst as well as IGrs over the 
benchmark presented in [49]. The results are presented in Table 3 and in 
Fig. 2. IRstms outperforms all the other tested algorithms, being 

Table 7 
Parameter settings for IRsttt .   

Component Parameter Value  Component Parameter Value 

IRsttt     IRsttt2      

random_move num  1      
rsacc Tp  0.2631  IG d  3      

rsacc Tp  3.3614  

Fig. 4. Average RPD and 95% confidence intervals IGrs and IRsttt for t = 60 (left), T = 120 (center) and T = 240 (right).  

1: Output The best solution found π∗,
2: π := NRZ2()
3: π := IRnims 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := IGlsps(π,FirstImprovement(local minima, nitinsert))
7: π′ := IRnims 2(π′)
8: π := psa(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 9. IRnims.  

1: Input current solution π.
2: Output The best solution found π∗,
3: π := FirstImprovement(π, local minima, nitinsert)
4: π∗ := π
5: while maxsteps() do
6: π′ := IGni(π)
7: π′ := FirstImprovement(π′, local minima, nitinsert)
8: π := psa(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 10. IRnims2.  
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statistically significantly better for almost all the instance sizes with IGrs 
being the second best followed by MRSILS and EMBO. Considering the 
smallest running time, IGrs shows better results than IRstms when 
considering instances with 200 or more jobs. Although the difference 
between the two algorithms gets smaller, this result does not change for 
instances with 500 jobs even when considering longer running times. In 
this case, IRstms may be less efficient due to the lack of instances with this 
size in the training set. Another interesting finding about IGrs perfor-
mance is that, differently from the results presented in the papers 
introducing EMBO and MRSILSst [58,65], IGrs is always able to outper-
form MRSILS and EMBO. One possible explanation is that this result is 
due to our implementation. This can be excluded in the case of EMBO,

where a comparison with the best solutions found by the original 
implementation, as reported by the authors, shows that our imple-
mentation has better results. A similar comparison cannot be done with 
MRSILS, but we are confident that the algorithm was implemented as 
described by the authors. Since we could not find in the papers any 
reference about the use of Taillard’s acceleration, another possible 
explanation is that EMBO and MRSILS were compared with a IGrs al-
gorithm that was not using this acceleration greatly reducing its 
performance. 

Finally, the performance of IGrs in our experiments and the similarity 
of IRstms to this algorithm further confirms that the IG algorithm is quite 
effective when solving the PFSP with the makespan objective even when 
we take into account the sequence dependent setup times constraint. 

5.2. Total completion time 

Although the makespan objective for PFSPsdst has been extensively 
studied, the total completion time and total tardiness for the PFSPsdst 

have not received the same attention by the research community. To the 
best of our efforts, we were unable to find algorithms proposed for 
PFSPsdst

TCT and PFSPsdst
T . The algorithms generated for these problems will 

be compared with the IGrs algorithm presented in [51] for PFSPsdst to 
solve the makespan and total tardiness objectives. Furthermore, this 
algorithm has shown to have generally good performances when tack-
ling PFSP in general. 

The algorithm generated for total completion time, IRsttct , is quite 
different from IRstms as it is composed of three nested ILS. The algorithm 
outline is shown in Algorithms 4, 5, and 6, while the parameters are 
listed in Table 5. The innermost ILS, IRsttct3, uses a VND as local search 
and stops either when it cannot improve anymore or after n iterations; 
additionally, it uses the IGlsps perturbation while always accepting the 
perturbed solution. The second level ILS instead, use the simple IG 
perturbation with a Metropolis like acceptance criterion. Finally the 
outer layer ILS also use the IG perturbation but with a lower value for the 
d parameter. Considering the acceptance criteria of the different layers, 
such complicated structure may be explained as a way to vary the 
strength and type of perturbation during the execution. The comparison 
with IGrs is shown in Table 4 and Fig. 3. Overall, IRsttct outperforms IGrs 
with results that are always statistically significant. 

5.3. Total tardiness 

The algorithm generated for this problem, IRsttt shown in Algorithms 
7 and 8, is a two layers ILS that uses the NEH heuristic to generate the 
initial solution. The most interesting feature of this algorithm is that the 
inner layer employs, alternatively, two local searches. One explores the 
finsert neighborhood and the other the twinsert neighborhood. The inner 
ILS also uses the IG perturbation as well as the rsacc acceptance criterion 
that makes it very similar to IGrs. The outer layer uses one random step in 
the binsert neighborhood as a perturbation and, similarly to the inner 
ILS, the rsacc acceptance. Comparing the temperature of the acceptance 
criteria, the parameter settings of IRsttt are shown in Table 7. It seems 
that the two ILS have two well defined roles. In fact, the inner ILS has a 
higher probability of accepting non improving solutions while the outer 
layer, with a low temperature, is more focused on intensification. The 
results of the comparison with IGrs are shown in Table 6 and in Fig. 4. 
Similarly to the results obtained for PFSPsdst

TCT , IRsttt clearly outperforms 
IGrs and it is always statistically significantly better. 

Table 9 
Parameter settings for IRnims .   

Component Parameter Value  Component Parameter Value 

IRnims     IRnims2      

IGlsps  d  5      
psa Ts  3.5859  maxsteps maxi  150   

Te  0.0764  IG d  8   
β  0.076  psa Ts  3.8648   
it  336   Te  0.6922       

β  0.014       
it  137  

Fig. 5. Average RDI and 95% confidence intervals of MANEH, GVNS and IRnims for t = 60 (left), T = 120 (center) and T = 240 (right).  
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Table 8 
Average RPD results of MANEH, GVNS and IRnims. If an algorithm is statistically significantly better according to the Wilcoxon signed-rank test with a 95% confidence with Bonferroni correction, the result is shown in bold 
face.   

t = 60    t = 120    t = 240     t = 60    t = 120    t = 240    
Instances MANEH  GVNS  IRnims  MANEH  GVNS  IRnims  MANEH  GVNS  IRnims   MANEH  GVNS  IRnims  MANEH  GVNS  IRnims     

50 × 10  0.173 0.232 0.071 0.137 0.177 0.026 0.102 0.123 -0.0004 300× 20  0.285 0.115 0.058 0.114 0.085 0.031 0.059 0.062 0.019 
50 × 20  0.289 0.318 0.177 0.262 0.262 0.126 0.231 0.218 0.093 300× 30  0.293 0.165 0.147 0.171 0.124 0.100 0.112 0.082 0.065 
50 × 30  0.531 0.519 0.244 0.446 0.467 0.156 0.388 0.374 0.090 300× 40  0.516 0.493 0.407 0.358 0.410 0.281 0.257 0.336 0.156 
50 × 40  1.004 0.937 0.443 0.897 0.847 0.261 0.784 0.730 0.138 300× 50  0.722 0.742 0.666 0.533 0.607 0.412 0.408 0.496 0.239 
50 × 50  2.089 2.103 1.263 1.914 1.954 1.109 1.788 1.835 0.973 350× 10  0.220 0.013 0.013 0.209 0.010 0.009 0.157 0.008 0.008 
100 ×

10  
0.126 0.121 0.073 0.093 0.096 0.053 0.071 0.069 0.032 350× 20  0.377 0.054 0.062 0.184 0.038 0.041 0.113 0.030 0.025 

100 ×
20  

0.196 0.239 0.097 0.142 0.178 0.050 0.101 0.115 0.024 350× 30  0.542 0.268 0.163 0.295 0.198 0.116 0.187 0.160 0.079 

100 ×
30  

0.613 0.676 0.331 0.545 0.573 0.197 0.444 0.468 0.084 350× 40  0.629 0.439 0.300 0.401 0.349 0.205 0.275 0.264 0.136 

100 ×
40  

1.187 1.317 0.668 1.004 1.152 0.391 0.885 1.051 0.157 350× 50  0.664 0.657 0.423 0.481 0.503 0.234 0.334 0.367 0.095 

100 ×
50  

1.057 0.954 0.536 0.928 0.824 0.352 0.819 0.735 0.196 400× 10  0.178 0.004 0.001 0.138 0.003 0.000 0.076 0.002 0.000 

150 ×
10  

0.170 0.014 0.010 0.119 0.013 0.009 0.090 0.013 0.007 400× 20  0.580 0.166 0.095 0.396 0.134 0.062 0.232 0.104 0.041 

150 ×
20  

0.317 0.331 0.149 0.271 0.266 0.083 0.210 0.220 0.037 400× 30  0.892 0.237 0.254 0.469 0.194 0.188 0.227 0.153 0.125 

150 ×
30  

0.350 0.404 0.219 0.278 0.326 0.151 0.219 0.247 0.091 400× 40  0.742 0.303 0.243 0.328 0.233 0.172 0.194 0.185 0.113 

150 ×
40  

0.831 0.886 0.475 0.663 0.722 0.297 0.560 0.598 0.165 400× 50  0.837 0.657 0.462 0.487 0.546 0.285 0.365 0.431 0.167 

150 ×
50  

0.904 0.806 0.613 0.761 0.699 0.394 0.663 0.588 0.203 450× 10  0.293 0.007 0.002 0.239 0.004 0.001 0.179 0.002 0.000 

200 ×
10  

0.251 0.004 0.000 0.099 0.003 0.000 0.034 0.002 0.000 450× 20  0.951 0.098 0.069 0.609 0.076 0.045 0.256 0.056 0.027 

200 ×
20  

0.385 0.205 0.106 0.257 0.175 0.076 0.154 0.146 0.059 450× 30  0.760 0.348 0.268 0.400 0.275 0.190 0.263 0.212 0.128 

200 ×
30  

0.446 0.397 0.281 0.324 0.324 0.170 0.246 0.261 0.112 450× 40  0.803 0.373 0.283 0.393 0.281 0.206 0.196 0.211 0.118 

200 ×
40  

0.767 0.879 0.626 0.645 0.726 0.406 0.532 0.618 0.211 450× 50  0.971 0.559 0.506 0.492 0.441 0.311 0.324 0.343 0.170 

200 ×
50  

0.798 0.777 0.591 0.617 0.657 0.407 0.493 0.557 0.280 500× 10  0.232 0.011 0.002 0.198 0.008 0.000 0.164 0.006 0.000 

250 ×
10  

0.212 0.009 0.004 0.165 0.007 0.002 0.125 0.005 0.001 500× 20  0.538 0.071 0.023 0.369 0.054 0.017 0.166 0.045 0.011 

250 ×
20  

0.568 0.204 0.157 0.267 0.170 0.113 0.135 0.145 0.078 500× 30  0.700 0.158 0.151 0.505 0.129 0.104 0.284 0.109 0.070 

250 ×
30  

0.602 0.353 0.293 0.329 0.284 0.223 0.249 0.228 0.162 500× 40  1.041 0.299 0.370 0.708 0.222 0.254 0.362 0.169 0.160 

250 ×
40  

0.518 0.563 0.390 0.378 0.460 0.282 0.284 0.370 0.166 500× 50  0.797 0.324 0.338 0.321 0.250 0.203 0.191 0.187 0.116 

250 ×
50  

1.161 1.149 1.025 0.865 0.939 0.737 0.711 0.775 0.521           

300 ×
10  

0.195 0.003 0.003 0.171 0.002 0.003 0.142 0.001 0.002 Average 0.606 0.419 0.283 0.428 0.350 0.191 0.317 0.290 0.119  
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6. Results for no-idle PFSP 

6.1. Makespan 

Among the different algorithms proposed for this problem, GVNS 
[61] has been the state of the art for a long time. Recently, a memetic 
algorithm, MANEH [55] has shown to outperform GVNS. Since MANEH 
uses a modified version of GVNS to improve the best individual of the 
population, both algorithms are used in the comparison with IRnims, the 
generated algorithm. 

The GVNS algorithm [61] is a variable neighborhood search where 
the neighborhood structures used in the VND are an IG algorithm and an 
ILS. Both SLS algorithms use as local search the iRZ algorithm. The 
initial solution is generated using the NEH heuristic and the algorithm 
uses a random move in the insert and in the exchange neighborhood. 
Finally a solution is accepted only if it improves on the current solution. 

MANEH is a memetic algorithm in which the population is initialized 
using the NEHRS heuristic [55]. At each iteration, the parents are 
selected using tournament selection. The random sample crossover 
(RSC) is used to generate two new solutions that are first mutated using a 
random insert move and then improved using the iRZ local search. If this 
results in a better solution, the child replaces the worst individual in the 
population. After a number of steps equal to a quarter of the population 
size, the best individual is improved using a modified version of the 
GVNS algorithm, SAGVNS. In SAGVNS, the strictly improve acceptance 
criterion of GVNS is replaced by a fixed temperature Metropolis accep-
tance criterion similar to the one used in IGrs. 

Algorithms 9 and 10 show the outline of IRnims, the automatically 
generated algorithm for PFSPni

MS. The parameter settings are shown in 
Table 9. Contrary to IRstms, this algorithm is composed of two ILS. As is 
often the case for the makespan objective, the local search used by the 
innermost ILS is a FirstImprovement local search exploring the acceler-
ated insert neighborhood. Regarding the perturbation, the innermost 

uses the IG perturbation while the outermost uses the IGlsps with the 
same local search used in the innermost ILS. The comparison of IRnims 
with MANEH and GVNS is shown in Fig. 5 while in Table 8 the results are 
grouped by instance size. IRnims clearly stands out as the best algorithm, 
outperforming both MANEH and GVNS with GVNS being better than 
MANEH. Overall IRnims is statistically significantly better than MANEH 
and GVNS. However, the results grouped by instance size GVNS shows 
better results when t = 60 for instances of size {300 × 20}, {400 × 30},
{500 × 40}, {500× 50}. The results are not statistically significant and, 
for longer running times, IRnims has better performances. 

6.2. Total completion time 

The current state-of-the-art algorithm for PFSPni
TCT is VigDE [62] that 

implements a differential evolution algorithm combined with an IG al-
gorithm. Each individual of the population in the DE algorithm has two 
chromosomes. One represents the solution and the other represents two 
parameters of the IG algorithm, that is, the probability p of applying the 
local search and d, the number of jobs destroyed in the 
destruction-construction perturbation. The algorithm uses the NEHrs 
heuristic to generate the initial population. At each iteration, all in-
dividuals undergo a mutation and each mutated individual is refined 
using the IG algorithm with probability p. The mutated individual 
replace the parent, if it has a better objective function value. In the ex-
periments, we used the version of VigDE presented in [40], where the 
algorithm has been improved by using the NAG heuristic to generate the 
first individual of the population. 

The best algorithm selected by irace, IRnitct , is a VNS that uses the 
NAG heuristic to build the initial solution and a VND to improve the 
current solution. The algorithm is shown in Algorithm 11 and the pa-
rameters are shown in Table 11. Interestingly, the VND uses two times 
the transpose neighborhood. The shake employs two vr_move perturba-
tions, the first executes seven random steps in the finsert neighborhood 

1: Output The best solution found π∗,
2: k := 1
3: π := NAG()
4: π := VND(π, local minima, exchange, transpose, transpose)
5: π∗ := π
6: while ! time is over do
7: π′ := shake(π, k, vr_move(finsert, transpose), vr_move(binsert, finsert))
8: π′ := VND(π′, local minima, exchange, transpose, transpose)
9: π := neighchange(karacc(π, π′), k)
10: if f (π′) < f (π∗) then
11: π∗ := π′
12: end if
13: end while
14: Return π∗

Algorithm 11. IRnitct .  

Fig. 6. Average RPD and 95% confidence intervals of VigDE and IRnitct for t = 60 (left), T = 120 (center) and T = 240 (right).  
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and, after five iterations, it passes it to the transpose neighborhood. The 
second vr_move keeps the same number of iterations but reduces the 
random steps to one and uses a different set of neighborhoods, binsert 
and finsert. As neighborhood change, the karacc acceptance criterion has 
been chosen. 

The results of the comparison between VigDE and IRnitct are shown in 
Fig. 6 and Table 10. IRnitct clearly outperforms VigDE in all instances sizes 
and the results are always statistically significant. 

6.3. Total tardiness 

The current state-of-the-art algorithm for PFSPsdst
T is DTLM [56]. 

DTLM is a discrete teaching learning algorithm. This population based 
algorithm divides the population in three groups. The best solution is 
considered the teacher while the best λ × PS individuals are elite 

learners, where PS is the population size and λ is a parameter of the 
algorithm. At each iteration, each individual undergoes two updating 
phases in which the produced solution substitutes the individual if it was 
better. In the first phase a new solution is built by applying the PMX 
crossover to each solution with a consensus permutation built from the 
elite learners. In the second phase the three groups are updated differ-
ently. An ILS algorithm is applied to the first elite learner while the other 
elite learners undergo a crossover with the first. A path-relinking pro-
cedure is applied to each non elite individual in which all the solutions 
from the individual to a random elite individual are considered and the 
best one is selected. If no new solutions are produced, a 
destruct-construct perturbation is applied. 

The algorithm automatically generated for the total tardiness 
objective, IRnitt , is shown in Algorithm 12 and 13 with the parameters 
shown in Table 13. The algorithm is again a two layers ILS that uses the 

Table 10 
Average RPD results of VigDE and IRnitct . If an algorithm is statistically significantly better according to the Wilcoxon signed-rank test with a 95% confidence, the result 
is shown in bold face.   

t = 60   t = 120   t = 240          
Instances VigDE  IRnitct  VigDE  IRnitct  VigDE  IRnitct         

50 × 10  3.78 1.36 3.29 1.04 2.78 0.76 300× 20  6.88 1.54 4.86 1.16 4.39 0.87 
50 × 20  3.57 1.24 2.96 0.94 2.36 0.69 300× 30  6.09 1.61 4.21 1.18 3.75 0.92 
50 × 30  3.75 1.74 3.11 1.42 2.47 1.09 300× 40  8.26 1.86 5.11 1.35 4.54 0.95 
50 × 40  3.51 1.54 2.74 1.31 2.14 1.03 300× 50  9.85 2.20 5.50 1.56 4.99 1.01 
50 × 50  3.51 1.78 2.79 1.52 2.05 1.23 350× 10  6.45 0.95 4.52 0.73 4.03 0.51 
100 ×

10  
4.44 1.55 4.03 1.12 3.70 0.75 350× 20  7.75 1.23 4.44 0.97 3.97 0.70 

100 ×
20  

4.29 1.42 3.83 0.98 3.45 0.64 350× 30  8.40 1.48 4.54 1.12 3.93 0.78 

100 ×
30  

5.73 2.04 5.16 1.51 4.70 1.10 350× 40  9.30 1.75 5.25 1.33 4.54 0.89 

100 ×
40  

6.61 2.54 6.08 2.02 5.47 1.52 350× 50  9.85 2.04 5.43 1.51 4.46 1.02 

100 ×
50  

5.71 2.00 5.21 1.56 4.71 1.20 400× 10  6.94 0.85 5.60 0.65 4.26 0.41 

150 ×
10  

4.04 1.21 3.74 0.95 3.47 0.73 400× 20  8.22 1.31 6.02 0.99 4.41 0.68 

150 ×
20  

5.21 1.89 4.83 1.41 4.41 1.00 400× 30  8.75 1.38 5.57 0.98 4.39 0.63 

150 ×
30  

5.14 1.92 4.77 1.50 4.42 1.10 400× 40  8.24 1.58 6.92 1.13 4.09 0.78 

150 ×
40  

6.15 1.96 5.63 1.49 5.08 1.02 400× 50  9.89 1.74 8.77 1.22 4.70 0.81 

150 ×
50  

6.39 2.50 5.93 1.90 5.49 1.42 450× 10  7.20 0.85 6.89 0.70 4.85 0.54 

200 ×
10  

4.45 1.18 4.10 0.96 3.85 0.72 450× 20  8.71 1.35 8.33 1.06 4.77 0.75 

200 ×
20  

5.18 1.43 4.74 1.10 4.42 0.81 450× 30  10.07 1.78 9.56 1.17 5.21 0.78 

200 ×
30  

5.27 1.64 4.82 1.28 4.48 0.86 450× 40  9.44 1.77 9.17 1.27 5.03 0.84 

200 ×
40  

6.04 2.18 5.45 1.71 5.08 1.23 450× 50  9.70 1.97 9.34 1.39 4.93 0.95 

200 ×
50  

5.68 2.02 5.24 1.53 4.88 0.98 500× 10  7.51 0.77 7.19 0.62 5.00 0.45 

250 ×
10  

4.93 0.86 4.44 0.66 4.16 0.49 500× 20  7.87 1.05 7.51 0.76 4.54 0.49 

250 ×
20  

5.11 1.38 4.48 1.03 4.08 0.78 500× 30  8.34 1.55 7.97 1.07 4.82 0.73 

250 ×
30  

5.25 1.72 4.62 1.31 4.23 0.97 500× 40  9.27 1.90 8.83 1.38 5.57 0.90 

250 ×
40  

6.24 1.89 5.59 1.39 5.15 1.02 500× 50  9.90 1.85 9.37 1.31 5.61 0.84 

250 ×
50  

7.11 2.32 6.38 1.53 5.76 1.06        

300 ×
10  

6.66 1.19 4.53 0.90 4.21 0.65 Average 6.73 1.62 5.59 1.21 4.36 0.86  
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SLACK heuristic to generate the initial solution. The innermost ILS uses a 
FirstImprovement local search that explores the exchange neighborhood. 
The perturbation consists of random steps in the binsert and finsert 
neighborhoods while the acceptance criterion is based on a fixed tem-
perature Metropolis condition. The external ILS instead, uses a IG 
perturbation and an acceptance criterion that accepts only improving 
solutions. The results of the experiments are shown in Table 12 and in 
Fig. 7. IRnitt greatly outperforms DTLM. 

7. Discussion and conclusions 

In this paper, a AAD system has been applied to generate SLS algo-
rithms to solve PFSPni and PFSPsdst with the objectives of minimizing 
makespan, sum of completion time and total tardiness. The generated 
algorithms outperformed the state-of-the-art algorithms. The fact that 
these problems were less studied compared with standard PFSP may 
explain the huge performance difference registered between the algo-
rithms generated trough our system and the competing human gener-
ated ones. In any case, the observed results together with the ones 

Table 11 
Parameter settings for IRnitct .   

Component Parameter Value 

IRnitct      

NAG  x  10   
y  20  

vr_move num  7   
it  5  

vr_move num  1   
it  5  

psa Ts  3.5859   
Te  0.0764   
β  0.076   
it  336  

1: Output The best solution found π∗,
2: π := SLACK ()
3: π := IRnitt 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := IG(π)
7: π′ := IRnitt 2(π′)
8: π := improve(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 12. IRnitt .  

1: Input current solution π.
2: Output The best solution found π∗,
3: π := FirstImprovement(π, local minima, exchange)
4: π∗ := π
5: while maxsteps() do
6: π′ := vr_move(π, binsert, finsert))
7: π′ := FirstImprovement(π′, local minima, exchange)
8: π := karacc(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 13. IRnitt2.  

Table 13 
Parameter settings for IRnitt .   

Component Parameter Value  Component Parameter Value 

IRnitt     IRnitt2      

IG d  10          
maxsteps maxi  134      
vr_move num  1       

it  9      
karacc Tp  3.3172  
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obtained for the standard PFSP [43] give further confirmation to AAD 
and this method in particular. Looking at the generated algorithms, as 
already observed with standard PFSP, it is interesting to note that a two 
levels structure is preferred in the majority of cases, being present in 
IRsttt , IRsttct , IRnims and IRnitt. This result is in accordance with our pre-
vious study on standard PFSP where two out of three algorithms 
possessed the same structure. 

Interestingly, the result of DTLM in PFSPni
T , the result of MANEH in 

PFSPni
MS and EMBO in PFSPsdst

MS show that population based algorithms 
seem not to be well suited to tackle the PFSP. Further confirmation of 
this trend can be found by considering the state-of-the-art algorithms for 
the standard PFSP [43,52]. 

Several directions can be taken to further progress this research. 
First, it would be of great interest to investigate whether the level of 
structural complexity found in generated algorithms, like IRsttct , is really 
needed. A second direction is to use the system to generate algorithms 
for other problems as well as to further expand EMILI to better support 
other types of SLS methods such as population based algorithms. Finally, 
the components implemented in the EMILI framework are the result of 
the advance knowledge present in the literature regarding the specific 
problems tackled. A fourth direction to investigate would be to add to 

this system the ability of automatically generate new components. In 
particular, construction heuristics may be generated following a AAD 
process where AAC tools are used to generate new heuristics by 
combining different components. 
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