
Pagnozzi, Federico; Stützle, Thomas G.

Article

Automatic design of hybrid stochastic local search
algorithms for permutation flowshop problems with
additional constraints

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Pagnozzi, Federico; Stützle, Thomas G. (2021) : Automatic design of
hybrid stochastic local search algorithms for permutation flowshop problems with additional
constraints, Operations Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 8,
pp. 1-17,
https://doi.org/10.1016/j.orp.2021.100180

This Version is available at:
https://hdl.handle.net/10419/246440

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2021.100180%0A
https://hdl.handle.net/10419/246440
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Operations Research Perspectives 8 (2021) 100180

Available online 30 January 2021
2214-7160/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Automatic design of hybrid stochastic local search algorithms for
permutation flowshop problems with additional constraints

Federico Pagnozzi *, Thomas Stützle
IRIDIA, Université Libre de Bruxelles (ULB), 50, Av. F. Roosevelt, CP 194/6, Brussels B-1050, Belgium

A R T I C L E I N F O

Keywords:
Combinatorial optimization
Stochastic local search algorithms
Automatic algorithm design
Permutation flowshop problem
No-idle
Sequence dependent setup times

A B S T R A C T

Automatic design of stochastic local search algorithms has been shown to be very effective in generating algo-
rithms for the permutation flowshop problem for the most studied objectives including makespan, flowtime and
total tardiness. The automatic design system uses a configuration tool to combine algorithmic components
following a set of rules defined as a context-free grammar. In this paper we use the same system to tackle two of
the most studied additional constraints for these objectives: sequence dependent setup times and no-idle
constraint. Additional components have been added to adapt the system to the new problems while keeping
intact the grammar structure and the experimental setup. The experiments show that the generated algorithms
outperform the state of the art in each case.

1. Introduction

Automatic algorithm design (AAD) has shown to be able to produce
state-of-the-art algorithms for the permutation flowshop problem [43].
The method proposed by Pagnozzi and Stützle [43] is based on using an
automatic configuration tool to assemble algorithmic components
following rules defined as a context-free grammar. The algorithmic
components were implemented in the EMILI framework, a flexible
framework that allows the generation of stochastic local search (SLS)
algorithms. In particular, the EMILI framework allows the definition of
both high specialized problem-specific components as well as general
problem-agnostic components. In order to use an automatic configura-
tion tool to design an SLS algorithm, such as irace, the grammar is
converted to a set of parameters. In this paper, AAD is used to tackle the
permutation flowshop problem with the sequence dependent setup
times and the no-idle constraints.

The permutation flowshop problem (PFSP) is a very well known
problem [14]. It has been shown to be NP -hard for different objectives
with the exception of the two machine case for the makespan objective
[23]. The problem models a flowshop where a set of jobs have to be
processed on a group of machines. Several additional constraints have
been proposed in the literature to take into account different scenarios.
Often, machines have to be set up before being able to process a job. For
instance, a machine may need to be cleaned or calibrated before pro-
cessing another job. The setup time may depend not only on the job that

has to be processed, but also on the changes made to the setup of the
machine before processing the previous job. The permutation flowshop
problem with sequence dependent setup times, PFSPsdst , has been
introduced to model this scenario. This problem has been shown to be
NP -hard, considering the makespan objective, even when there is only
one machine [18]. Considering the complexity hierarchies for sched-
uling problems, this result can be extended to the total completion time
and total tardiness objectives [46]. Several SLS algorithms such as
iterated local search [65], iterated greedy [51] and population-based
algorithms [30,50,58] have been proposed to solve the permutation
flowshop problem with such constraint.

No-idle permutation flowshop (PFSPni) is another such variant.
PFSPni models a scenario where machines cannot have idle times. This
constraint is necessary in some contexts such as the steel industry,
ceramic production or in photolithography methods used in the pro-
duction of integrated circuits [45]. PFSPni with the makespan objective
is also an NP -hard problem [1]. Following the same reasoning about
complexity hierarchies for scheduling problems [46], the no-idle per-
mutation flowshop problem can be assumed to be NP -hard also when
considering the total completion time and total tardiness objectives.
Among the SLS algorithms proposed for this problem there are iterated
greedy [40], memetic algorithms [55] and variable neighborhood
search [61].

In this paper we extend the work carried out on automatic algorithm
design for the permutation flowshop problem by considering the

* Corresponding author.
E-mail addresses: federico.pagnozzi@ulb.ac.be (F. Pagnozzi), stuetzle@ulb.ac.be (T. Stützle).

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

https://doi.org/10.1016/j.orp.2021.100180
Received 19 November 2020; Received in revised form 27 January 2021; Accepted 27 January 2021

mailto:federico.pagnozzi@ulb.ac.be
mailto:stuetzle@ulb.ac.be
www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2021.100180
https://doi.org/10.1016/j.orp.2021.100180
https://doi.org/10.1016/j.orp.2021.100180
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2021.100180&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Operations Research Perspectives 8 (2021) 100180

2

permutation flowshop problem with the sequence dependent setup
times and the no-idle constraints. For each constraint we consider the
minimization of the makespan, the total completion time and the total
tardiness. For each objective and constraint, the algorithms generated by
our AAD system are compared with the best performing algorithm from
the literature. The results show that the generated algorithms outper-
form the state of the art.

The paper is structured as follows. In Section 2 there is a definition of
PFSP, PFSPni and PFSPsdst . In Section 3, there is a description of how the
automatic design works and how the system was updated for these
problems. The experimental setup is reported in Section 4. We report the
experimental results for the sequence setup times problem and the no-
idle problem, respectively, in Section 5 and Section 6. Finally, the con-
clusions are in Section 7.

2. Permutation flowshop with additional constraints

In its standard formulation, the PFSP models a flowshop in which a
series of n jobs {J1,…, Jn} have to be processed one at a time, in order,
on a set of m machines {M1,…,Mm}. The jobs are released at time 0 and
the jobs are executed in order with no preemption allowed. A solution is
represented by a permutation π = {π(1),…, π(k),…, π(n)} that specifies
the processing order of the jobs. The processing time needed for a job j
on a machine i is indicated as pi,j. The completion time of a job π(j) on a
machine i is given by Eq. (1), where Ci,j− 1 is the completion time of the
last job processed on machine i while Ci− 1,j is the completion of job π(j)
on the previous machine, that is

Ci,j = max
(
Ci,j− 1,Ci− 1,j

)
+ pi,π(j). (1)

In PFSPsdst , each machine has to undergo a setup operation before
being able to process the following job. A matrix S of dimension n ×n ×m
is defined, where Si,l,k is the setup time that machine i needs when
passing from working on job l to job k. The setup time has to be
considered when computing the completion times for each job. Conse-
quently, Eq. (1) is modified as follows:

Csdst
i,j = max

(
Ci,j− 1,Ci− 1,j + Si,π(j− 1),π(j)

)
+ pi,π(j) (2)

The time required to setup the machine depends on the job that has to be
processed and on the last job processed.

In PFSPni, machines cannot have idle times, that is, as soon as a job is
completed, the next one should be ready to start processing. The
completion time is calculated as in Eq. (3)

Cni
i,j = max

(
Ci,j− 1 + ai,π(j− 1),π(j),Ci− 1,j

)
+ pi,π(j), (3)

where ai,π(j− 1),π(j) is calculated as in Eq. (4) and it is used to ensure that
there is no idle time between the starting of job π(j) and the ending of the
previous job π(j − 1), that is

ai,π(j− 1),π(j) =
∑k=i

k=2
max

(
Ck− 1,j − Ck,j− 1, 0

)
. (4)

The most common objective considered for the flowshop problem is
minimizing the makespan, Cmax, that is the time needed to complete all
jobs. The makespan is defined as Cmax = Cm,n. Another common objective
considers minimizing the sum of the completion times which minimizes
the occupation time of the machines. The sum of completion times is
defined as

TCT =
∑n

i=1
Cm,i.

This objective is also known as total completion time and it is equal to
the minimization of the flowtime when the release times for all jobs are
equal to zero. Finally, we consider also the minimization of the total
tardiness, which tries to minimize the tardiness of all jobs. Assigning a

due date to each job so that di is the due date of job Ji, the tardiness of Ji
is defined as max(0,Cm,i − dπ(i)) and the total tardiness is

TT =
∑n

i=1
max

(
0,Cm,i − dπ(i))

)
.

Summarizing, in this paper we are considering the makespan, sum of
completion times and total tardiness objectives for both sequence
dependent setup times constraint and the no-idle constraint. An analysis
of the state of the art for these problems is given in Sections 5 and 6.

3. Automatic algorithm design

Historically, implementing an SLS algorithm for some problem has
always been a manual engineering process. A designer would implement
an SLS algorithm of his choice, usually the one he knows the most, as
well as one or more alternative behaviors for each aspect of the algo-
rithm [20]. Moreover, SLS algorithms have often many parameters that
need to be set in order to better adapt the algorithm to the problem it has
to solve. The designer would choose among the alternative behaviors
and set the parameters of the algorithm in a manual trial-and-error
process or, more recently, using automatic algorithm configuration
(AAC). Given an application scenario, AAC tools apply different tech-
niques in order to find the best parameter setting, known as configura-
tion, for a target application [21,22,34]. Automatic algorithm design
stems from the work carried out on automatic algorithm configuration
and is based on combining AAC tools with configurable algorithmic
frameworks [59]. A configurable algorithmic framework implements
one or more SLS algorithms as templates in such a way that for every
design choice of the algorithm one can choose among different alter-
natives. The framework exposes all these choices as parameters so that
an AAC tool can be used to find the best configuration, that is, a new
algorithm adapted to solve a specific problem.

This idea has been considered both in a top-down and bottom-up
approach. The top-down approach focuses on one algorithm template
and expresses all the design choices as parameters, e.g. implementing a
simulated annealing algorithm where all the components are parame-
ters. Notable examples of this approach can be found in SAT solvers
[27], frameworks for ant colony optimization algorithms [32] and for
multi-objective evolutionary algorithms [2–4]. Recently, this approach
has been applied to generate iterated local search algorithms for the
standard PFSP [6,7], the unconstrained quadratic problem [11], the
test-assignment problem [12] and the simulated annealing algorithm
[15].

In the bottom-up approach instead, the template structure is not
fixed, that is, different types of SLS algorithms can be instantiated.
Moreover, some degree of hybridization between different algorithms is
allowed, enabling the system to generate new combinations. Such
flexibility requires the use of an algorithmic framework to define the
components and handle their integration into an algorithm. Further-
more, since the template is not fixed, defining the set of parameters that
the parameter tuner has to optimize is not a trivial task. For this reason,
context-free grammars have been used to specify how the algorithms
should be composed [8,36,42]. Grammars have the advantage of
limiting all the possible combinations of components to only those that
generate a valid algorithm.

The bottom-up approach has been applied to several problems such
as PFSP with the weighted tardiness objectives, unconstrained binary
quadratic problem and traveling salesman problem with time windows
[35]. The proposed system uses the ParadisEO framework [10] as
algorithmic framework, irace as parameter tuner and the grammar is
converted to a set of finite parameters following the approach proposed
by Mascia et al. [37]. In a most recent publication [43], a system based
on the same principles, but with a new algorithmic framework, the
EMILI framework, has been used to generate new state-of-the-art algo-
rithms for the PFSP problem with the makespan, sum of completion

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

3

times, total tardiness objectives. This system, with some additions to the
framework, is the same used in this study.

A line of research related to automatic algorithm design can be
considered the one on hyperheuristics [9]. These methods propose
techniques to generate heuristics that can be seen as specific compo-
nents in automatic algorithm design [59]. Hyperheuristics based on
genetic programming [29], where evolutionary algorithms are used to
generate computer programs, have been used to generate heuristics and
heuristic components for problems such as SAT problems [16,17],
scheduling problems [5,19], bin packing [33,57] and traveling salesman
problem [25,26]. Grammars have been also used together with genetic
programming in methods called grammatical evolution [8,42]. Gram-
matical evolution has been applied to generate local search heuristics
and ant colony optimization algorithms [8,54,63].

3.1. Grammar based AAD with the EMILI framework

An idea of how the grammar works can be given by making a small
example. Let us consider a rule deriving an iterated local search (ILS)
algorithm as shown in Eq. (5)

The rule states that to instantiate an ILS algorithm one needs to
instantiate first the components <LocalSearch>, <Termination>,

<Perturbation> and <Acceptance>. For example, an ILS algorithm for
the PFSP could be described by

ilspfsp ::= ‘ils′ lspfsp‘time20′

‘random moveexchange2′

‘better′

. (6)

The algorithm described in Eq. (6) is an ILS that uses lspfsp as local
search, it is executed for 20 s, performs two random steps in the ex-
change neighborhood as perturbation and accepts only improving

solutions. Fig. 1 shows a snapshot of the grammar used for this study.
The different components available for each component type are listed
in Section 3.2.

When converting the grammar to parameters, a distinction has to be
made between simple and complex rules. Simple rules can be directly
translated to parameters. For instance, a rule that sets all possible al-
ternatives for a neighborhood can be directly translated into a cate-
gorical parameter. Complex rules, that is recursive rules or groups of
rules that can form a loop, need to be explicitly expanded. This means
that the rule, or the group of rules in case of loops, generate a new set of
parameters each time it is expanded. Consequently, a limit needs to be
set to the total number of expansions. A more detailed explanation of
how the grammar is defined and converted in parameters can be found
in [37]. In this work we fix the maximum number of expansions to three.

The EMILI framework is based on a generalized version of a hybrid
SLS algorithm. Hybrid SLS algorithms are defined in [20] as those that
manipulate at each search step a single solution combining two or more
search types. The framework supports also “simple” SLS algorithms that
are identified in [20] as SLS algorithms that use only one type of search
step. An outline of an iterated local search algorithm, which represents a
hybrid SLS template as implemented in the framework, is shown in Al-
gorithm 1.

The algorithm works as follows. An initial candidate solution is
generated using a heuristic (Line 2). Then an SLS is applied to the
candidate solution (Line 3). The algorithm executes the main loop until
the termination criterion is met (Line 4). In the main loop, the candidate
solution is perturbed (Line 5), the SLS is applied to the perturbed solu-
tion (Line 6), and an acceptance criterion is used to decide whether to
keep the current candidate solution or to accept the perturbed solution
(Line 7).

As explained in [37], this structure can describe many different SLS
algorithms. For instance, simulated annealing can be instantiated by
choosing an initial solution component that returns a random candidate
solution, a perturbation that generates random neighboring solutions of

the candidate solution, an acceptance criterion based on the Metropolis
condition and not applying any SLS to the perturbed solution.

The EMILI framework classifies algorithmic components in problem
dependent and problem independent components. The first are com-
ponents that have to access and modify the data structures representing
the problem and the solution. Typically, initial solution heuristics,
neighborhoods and perturbations belong to this category. Problem in-
dependent components, instead, only need to compare solutions or ac-
cess information about the search process (e.g. number of iterations).
These components can be defined once and then used with any problem

Fig. 1. Context-free grammar that contains the rules used to build algorithm templates for this study. Note that rules ILS together with LocalSearch define a recursion
that can be exploited to generate hybrids combining various algorithms.

1: Output The best solution found π∗
2: π := Init()
3: π := SLS(π)
4: while ! termination criterion do
5: π′ := Perturbation(π)
6: π′ := SLS(π′)
7: π := AcceptanceCriterion(π, π′)
8: end while
9: Return the best solution found in the search process

Algorithm 1. ILS.

< ILS> :: = ‘ils’ <LocalSearch> <Termination> < Perturbation> <Acceptance> . (5)

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

4

and solution definition. Termination criteria and acceptance criteria
usually can be implemented as problem independent.

In the next section, we will give a brief description of the algorithmic
components used for this study.

3.2. Algorithmic components

All the components used in this work are listed in Table 1. Most of
these components were implemented for the previous work on PFSP as
general components and, therefore, can be used in this work without any
change. The components added to the framework for this work are

reported in the table in bold. In the following, we give a description of
the components implemented for this study and a brief presentation of
the components already present in the framework. A more detailed
description of these components can be found in our previous publica-
tion [43].

3.2.1. Neighborhood
A neighborhood of a solution consists of all the solutions that can be

generated by applying a modification rule. The framework provides
several base neighborhood definitions for PFSP: exchange, insert, trans-
pose, binsert, finsert and twinsert. The first two are based on exchanging
the position of two jobs (exchange) and removing one job and inserting it
in another position (insert). The others, with the exception of twinsert,
represent a subset of the first two. The transpose neighborhood ex-
changes only adjacent jobs. In binsert a removed job can be inserted only
before its original position, while in finsert the insertion point has to be
after the original position. Instead, twinsert considers all the permuta-
tions that can be created by removing and inserting groups of two
adjacent jobs. The two jobs are reinserted in the same order in which
they are removed. Additionally, Taillard’s technique to speedup the
exploration of the insert neighborhood has been adapted to PFSPni and
PFSPsdst .

3.2.2. Construction heuristics
SLS algorithms use construction heuristics to generate the initial

solution from which they start to explore the solution space. In our
previous study several construction heuristics for the PFSP have been
implemented in the EMILI framework as general components and,
therefore, were also used in this study. Typically, construction heuristics
build a solution by adding solution components in a step-by-step process
until a complete solution is constructed. A construction heuristic can be
defined by the way the solution component is selected, the selection
rule, and how it is added to the partial solution, the construction rule.
Solution components can be added in two ways by either appending the
solution component at the end of the partial solution or inserting it in the
position that gives the best solution value. Heuristics that use insertion
as construction rule are also called insertion heuristics. In some cases, a
local search may be applied to the partial solution. 1: Output The best solution found π∗,

2: π := Init()
3: π := ls (π)
4: k := 0
5: while ! termination criterion do
6: π′ := Shake(π, k)
7: π′ := ls (π′)
8: π := NeighborhoodChange(π, π′, k)
9: end while
10: Return the best solution found in the search process

Algorithm 2. VNS.

1: Output The best solution found π∗,
2: π := NRZ()
3: π := FirstImprovement(π, local minima, sttinsert)
4: π∗ := π
5: while ! time is over do
6: π′ := IGst(π)
7: π′ := FirstImprovement(π′, local minima, sttinsert)
8: π := psa(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 3. IRstms .

Table 2
Parameter settings for IRstms .

Component Parameter Value

IRstms

IGst d 6
psa Ts 4.2073

Te 0.0441
β 0.0042
it 206

Table 1
Algorithmic components implemented in the EMILI framework that were used in
this work.

Type Component Parameters

Construction
Heuristics

NEH [41], NEHtb [13], NEHedd [28],
LR [31], NLR

-

FRB5 [47], RZ [48], NRZ, NRZ2,

SLACK,
-

NAG [40] 〈x,y〉
NEHrs -

Iterative
improvements

First Improvement 〈In,T,N〉

Best improvement 〈In,T,N〉

VND 〈P, In,T,{N1,…,

Nk}〉

iRZ 〈In〉
STH 〈b〉
als 〈l1, l2〉

Neighborhoods transpose, exchange, insert, binsert -
finsert, sttinsert, nitinsert, twinsert

Termination criteria local minimum -
maxsteps 〈maxi〉
maxstepsorlocmin 〈maxi〉
nstepsorlocmin -
non_imp_it 〈maxi〉

Perturbation criteria random_move 〈N,num〉

vr_move 〈{d,num, (N1,…,

Nk)}〉

IGlsps 〈d〉
IG,IGst , IGni 〈d〉
IGio 〈d〉
MRSILSp 〈p〉
shake 〈{P1,…,Pn}〉

Acceptance criteria better 〈∅〉

improveif 〈st , sn〉

ft 〈T〉
psa 〈Ts,Te,β, it〉
sa 〈Ts,Te,β,α, it〉
rsacc 〈Tp〉

karacc 〈Tp〉

neighchange 〈A〉

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

5

The NEH heuristic [41] is rated as one of the most effective heuristics
for PFSP. This insertion heuristic selects the jobs in descending order of
the sum of processing times. NEH has been so influential that several
improvements and variations have been proposed. The ones imple-
mented in EMILI are NEHtb [13], NEHedd [28], FRB5 [47] and NEHrs.
NEHtb introduces a different rule to break ties when a job can be inserted
in more than one position resulting in the same objective function value.
NEHedd selects the job in descending order of due dates and is feasible
only for the total tardiness objective. FRB5 executes a local search on the
partial solution after each step of the heuristic. Finally, the NEHrs heu-
ristic modifies the initial step of the NEH by choosing randomly the first
job of the permutation.

Considering the other heuristics implemented, the LR heuristic [31]
uses for the selection an index function that considers the idle times and
an approximation of the sum of completion times. At each step the index
function is calculated and the job with the smaller value is appended at
the end of the partial solution. NLR is an insertion heuristic that uses the
index function of the LR heuristics to select the next job. The RZ heuristic
appends first to the partial solution the jobs that minimize a function
based on the weighted sum of processing times [48]. The generated
solution is improved by means of a local search. NRZ and NRZ2 are
insertion heuristics that are based on the RZ heuristic. NRZ uses the
solution generated by RZ before applying the local search as selection
rule of an insertion heuristic. The generated solution is still improved as
in RZ with a local search. In NRZ2 the local search is not applied,

generating a typically worse solution but in little time. SLACK is a
construction heuristic for the total tardiness objective that appends jobs
to the partial solution by selecting at each step the job with the minimal
tardiness.

For this work, the NAG insertion heuristic [40] proposed for PFSPni
TCT

was implemented in EMILI. This heuristic uses the index function of the
LR heuristic and after each insertion another index function is used to
select y jobs to remove and reinsert in the partial solution. A number x of
initial sequences is generated by choosing for each sequence a different
first job to append to the partial solution. The parameters y and x can

Table 3
Average RPD results of EMBO, MRSILS, IGrs and IRstms. If the result of one of the algorithms is in bold face it means that it is statistically significantly better then the
others according to the Wilcoxon signed-rank test with a 95% confidence using the Bonferroni correction to take into account multiple comparisons.

t = 60 t = 120 t = 240
Instances EMBO MRSILS IGrs IRstms EMBO MRSILS IGrs IRstms EMBO MRSILS IGrs IRstms

20 × 5 0.77 0.08 0.17 0.06 0.53 0.05 0.12 0.02 0.35 0.04 0.09 0.01
20 × 10 0.75 0.10 0.20 0.09 0.54 0.07 0.16 0.05 0.37 0.05 0.12 0.03
20 × 20 0.50 0.07 0.12 0.05 0.36 0.04 0.09 0.02 0.25 0.03 0.07 0.01
50 × 5 3.88 1.39 1.25 1.04 3.62 1.19 1.06 0.86 3.41 1.02 0.90 0.74
50 × 10 4.08 1.53 1.33 1.01 3.84 1.31 1.15 0.84 3.61 1.14 0.98 0.71
50 × 20 3.52 1.39 1.23 0.88 3.32 1.19 1.06 0.71 3.13 1.05 0.90 0.60
100 × 5 4.49 2.02 1.45 1.31 3.98 1.68 1.20 1.01 3.66 1.40 0.96 0.75
100 ×

10
4.49 1.92 1.33 1.23 4.05 1.58 1.08 0.94 3.79 1.31 0.88 0.68

100 ×
20

4.41 1.91 1.36 1.20 4.02 1.60 1.10 0.93 3.78 1.34 0.89 0.66

200 ×
10

5.52 2.17 1.30 1.37 4.67 1.80 0.98 1.00 3.98 1.45 0.69 0.64

200 ×
20

5.32 2.02 1.29 1.28 4.59 1.70 0.99 0.93 3.92 1.40 0.73 0.59

500 ×
20

5.35 1.71 1.05 1.31 5.00 1.42 0.69 0.83 4.41 1.12 0.34 0.42

Average 3.59 1.36 1.00 0.90 3.21 1.14 0.81 0.68 2.89 0.95 0.63 0.49

Fig. 2. Average RPD and 95% confidence intervals of EMBO, MRSILS, IGrs and IRstms for t = 60 (left), T = 120 (center) and T = 240 (right).

1: Output The best solution found π∗,
2: π := NEH()
3: π := IRsttct 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := IG(π)
7: π′ := IRsttct 2(π′)
8: if f (π′) < f (π∗) then
9: π∗ := π′
10: end if
11: end while
12: Return π∗

Algorithm 4. IRsttct .

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

6

assume values in the interval [1,n].

3.2.3. Iterative improvement
Iterative improvement algorithms are local search algorithms that

explore the solution space in an iterative fashion by going from one
solution to an improving neighboring solution. This process typically
stops when no improving neighbor can be found or, in some cases, after
a certain number of steps. These algorithms take as input the starting
solution, the neighborhood relation and the way to choose which
candidate neighbor is selected for the next iteration, known as pivotal
rule. The algorithm can consider also multiple neighborhood relations as
in the variable neighborhood descent (VND).

The algorithms already implemented in the EMILI framework and
that were used in this study comprehend the most widely used pivotal
rules FirstImprovement and BestImprovement as well as the iRZ local
search and VND. In FirstImprovement the exploration of the neighbor-
hood of the current solution is stopped as soon as an improving solution
is found. In BestImprovement instead, the whole neighborhood is
explored and the best neighbor is returned. The iRZ algorithm iterates
the local search phase defined in the RZ heuristic until it cannot find any
improving solutions. The VND explores, in order, a set of neighborhoods
passing from one neighborhood to the next when no improvement is
found. Each time an improving solution is found the algorithm starts
again from the first neighborhood. The algorithm stops when it scanned
all the neighborhoods with no improvement. Additionally, two other
algorithms have been implemented for this study, STH [58] imple-
mented for PFSPsdst

MS and als that has been implemented as a problem
independent component. STH selects a block of jobs of size [1,3] and
evaluates b insertion points, choosing the best. The process is iterated b
times, where b is a parameter of the algorithm. The als local search takes
as parameters two iterative improvements algorithms (l1 and l2) and, at
each iteration, applies them alternatively.

3.2.4. Perturbation
The perturbation in an SLS has the role of letting the search process

escape local minima by changing the current solution in a way that
cannot be undone by the local search. The most simple way of imple-
menting a perturbation is by taking a random neighbor of the current
solution. random_move will perturb the current solution by executing
num random steps in the N neighborhood. Instead, vr_move expands the
concept of random_move by allowing to specify multiple neighborhoods
N. The number of random steps to execute per neighborhood is specified
by the parameter num. The neighborhood is changed to the next one
after it iterations.

A widely used perturbation scheme for the PFSP is the iterated
greedy (IG) perturbation. This scheme is composed of a destruction
phase and a construction phase. In the destruction phase a number d of
jobs are removed from the solution. In the construction phase, the jobs
are inserted in the partial solution, one by one, in the position that
minimizes the objective function value. This perturbation is imple-
mented in IG, IGni and IGst where the last two use Taillard’s acceleration
for, respectively, PFSPni

MS and PFSPsdst
MS to find the best insertion point in

the construction phase. In IGio the jobs to be reinserted are considered in
the descending order of sum of processing times. With IGlsps, a local
search is used to further improve the partial solution after each rein-
sertion. The MRSILSp perturbation keeps a pool of size solutions con-
taining the best size solutions. If the pool is full, the worst solution of the
pool is discarded; when the pool is not yet full, the current solution is
perturbed by executing t random steps in the transpose neighborhood
and returned. When the pool is full, a random solution is selected from
the pool and perturbed using the IG perturbation.

3.2.5. Termination condition
Termination conditions are components that trigger the stop of an

SLS algorithm when a certain condition is verified. Several termination
conditions have been considered. local minima will stop the execution
when there is no more improvement. maxsteps instead stops the execu-
tion when maxi iterations have been completed. maxstepsorlocmin
combines the first two: the algorithm will be stopped either when there
is no more improvement or after maxi iterations. non_imp_it stops the
algorithm if no improvement is achieved in maxi iterations. Finally,
nstepsorlocmin works in the same way as maxstepsorlocmin, but the maxi
parameter is always set to the number of jobs.

3.2.6. Acceptance criterion
In an SLS algorithm, the acceptance criterion influences the balance

1: Output The best solution found π∗,
2: Input current solution π.
3: π := IRsttct 3(π)
4: π∗ := π
5: while maxsteps() do
6: π′ := IG(π)
7: π′ := IRsttct 3(π)
8: π := sa(π′, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 5. IRsttct2.

1: Output The best solution found π∗,
2: Input current solution π.
3: π := VND(π, nstepsorlocmin, binsert, exchange, twinsert)
4: π∗ := π
5: while nstepsorlocmin() do
6: π′ := IGlsps(π,FirstImprovement(local minima, exchange))
7: π′ := VND(π′, local minima, binsert, exchange, twinsert)
8: π := π′
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 6. IRsttct3.

Table 4
Average RPD results of IGrs and IRsttct . If an algorithm is statistically significantly
better according to the Wilcoxon signed-rank test with a 95% confidence, the
result is shown in bold face.

t = 60 t = 120 t = 240
Instances IGrs IRsttct IGrs IRsttct IGrs IRsttct

20× 5 0.35 0.01 0.30 0.001 0.24 0
20× 10 0.18 0.01 0.15 0.003 0.12 0.002
20× 20 0.13 0.003 0.11 0.001 0.09 0.001
50× 5 2.40 1.16 2.08 0.89 1.86 0.70
50× 10 1.94 1.00 1.74 0.78 1.55 0.63
50× 20 1.49 0.78 1.31 0.63 1.18 0.52
100× 5 3.89 2.22 3.22 1.57 2.68 1.01
100× 10 2.79 1.80 2.33 1.28 1.95 0.84
100× 20 2.12 1.37 1.76 0.97 1.45 0.63
200× 10 3.24 1.99 2.59 1.39 1.95 0.78
200× 20 2.27 1.55 1.79 1.10 1.34 0.59
500× 20 3.25 0.68 1.79 0.44 1.13 0.19
Average 2.00 1.05 1.60 0.76 1.29 0.49

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

7

between intensification and diversification. The most simple of such
criteria, improve, accepts only improving solutions. With improveif, a
certain degree of diversification is introduced by allowing the criterion
to accept worsening solutions if no improving solution has been met for
a certain number of iterations. The framework also provides several
variants of acceptance criteria based on the Metropolis condition [38].
This probabilistic criterion, commonly used in simulated annealing,
accepts incumbent solutions with a probability Pa defined as in Eq. (7)

Pa =

⎧
⎨

⎩

1 if f (π
′

) ≤ f (π)

exp
(

f (π) − f (π
′

)

T

)

otherwise.
(7)

Commonly in simulated annealing the temperature T is updated
during the algorithm execution. The temperature would start at a certain
value Ts and then decrease, according to a schedule, until it reaches a
final value Te. The schedule we used updates the temperature every it
iterations following the rule Tn+1 = α⋅Tn − β where α and β are real
values between 0 and 1. The criteria sa and psa update the temperature
using this rule, with psa setting α always equal to 1. Instead, ft, rsacc and
karacc do not update the temperature. In the rsacc [52] acceptance
criterion, the temperature Trs is linked to the average processing time of
the instance to be solved and it is calculated as

Trs = Tp⋅
∑n

i=1
∑m

j=1pi,j

n⋅m⋅10
, (8)

where Tp is a parameter. The karacc [24] acceptance criterion adapts the
rsacc criterion to the total tardiness by calculating the temperature Tkar
as

Tkar = Tp⋅
∑n

j=1LBCmax − dj

n⋅10
, (9)

where LBCmax is the lower bound for the makespan calculated using the
method defined by Taillard [60]. Additionally, an SLS algorithm can be
set to always accept the perturbed solution regardless of its solution
quality.

Table 5
Parameter settings for IRsttct .

Component Parameter Value Component Parameter Value

IRsttct IRsttct2

IG d 2 maxsteps maxi 32
IG d 9

IRsttct3 sa ts 2.0027
IGlsps d 5 te 0.7216

β 0.0313
α 0.4397
it 308

Fig. 3. Average RPD and 95% confidence intervals of IGrs and IRsttct for t = 60 (left), T = 120 (center) and T = 240 (right).

1: Output The best solution found π∗,
2: π := NEH()
3: π := IRsttt 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := random_move(π, binsert)
7: π′ := IRsttt 2(π′)
8: π := rsacc(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 7. IRsttt .

1: Output The best solution found π∗,
2: Input current solution π.
3: π := als(π,FirstImprovement(local minima, finsert),
4: FirstImprovement(maxstepsorlocmin, twinsert))
5: π∗ := π
6: while maxstepsorlocmin() do
7: π′ := IG(π)
8: π′ := als(π′,FirstImprovement(local minima, finsert),
9: FirstImprovement(maxstepsorlocmin, twinsert))
10: π := rsacc(π, π′)
11: if f (π′) < f (π∗) then
12: π∗ := π′
13: end if
14: end while
15: Return π∗

Algorithm 8. IRsttt2.

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

8

3.2.7. Adding VNS to the EMILI framework
The VNS algorithm is considered as a special case of the ILS algo-

rithm. The similarity is evident if we consider the outline of both algo-
rithms, shown in Algorithm 2 for the VNS and in Algorithm 1 for the ILS.
Both use a heuristic to generate an initial solution and use a local search
for intensification. A VNS algorithm is characterized by the shake and
the neighborhood change as shown in Algorithm 2. The shake works as a
perturbation applying random changes to the current solution according
to one neighborhood. The shake keeps a set of neighborhoods and selects
the one to apply according to the parameter k. The neighborhood change
component acts as an acceptance criterion and controls the parameter k.
When the current solution is accepted, k is set to zero otherwise it is
incremented by one.

4. Experimental settings

In this section we report the setup used for the automatic design and
for the comparisons with the current state-of-the-art algorithms. In order
to apply the automated design approach presented in this paper, the
grammar presented in Section 3 needs to be adapted to each objective
and PFSP variant. The resulting six grammars maintain the same general
structure shown in Fig. 1, but have different variant-specific and
objective-specific components. For example, the speedup for the insert
neighborhood for PFSPsdst

MS is not present in the grammars for PFSPsdst
TCT

and PFSPsdst
T and the same applies for no-idle. Considering these differ-

ences, the number of parameters to tune were 627 for the three objec-
tives of PFSPni, 535 for PFSPsdst

MS and 507 for PFSPsdst
TCT and PFSPsdst

T .
The configuration space generated from the grammar needs to be

explored by an automatic configuration tool. For this task we chose
irace, a publicly available AAC tool [34]. For each objective and PFSP
variant, irace was run twice with a budget of 105 experiments per run for
a total of 2⋅105 experiments. The best configurations at the end of the
first run were given as initial configurations for the second run. The
training set used for the automatic configuration is the same one used in
[43]. This set is composed of 40 randomly generated instances following
the procedure described in [39]. The instances are divided in groups of
five with jobs size n ∈ {50,60, 70,80,90,100} with 20 machines plus
five instances of size 250 × 30 and five of size 250× 50.

The automatically generated algorithms are compared with the
current state of the art using the most commonly used benchmark in-

stances for each PFSP variant and objective. The state-of-the-art algo-
rithms have been implemented to the best of our ability following the
respective papers using, for the experiments, the parameter settings
reported by the authors. Regarding PFSPsdst , the experiments for the
three objectives were made using the benchmark presented in Ruiz and
Maroto [49]. This benchmark is composed of four sets of instances. Each
set is based on the original 120 instances of the Taillard’s benchmark
[60] comprising 12 groups of 10 instances with jobs n ∈ {20,50, 100,
200,500} and machines m ∈ {5, 10, 20}. The four sets of instances,
called SDST10, SDST50, SDST100 and SDST125, have the setup times
sampled uniformly in the range [1,9], [1,49], [1,99] and [1,124].

In the case of PFSPni, for makespan and sum of completion times we
used the benchmark presented in Ruiz et al. [53] that is composed of 250
instances in groups of 5 with number of jobs n ∈ {50,100,150,200,250,
300,350, 400,450,500} and machines m ∈ {10,20,30,40,50}. The in-
stances generated for this benchmark do not consider due dates. Hence
for PFSPni

T we used the benchmark presented in Vallada et al. [64] that
was proposed for the standard PFSP. This benchmark is composed of 540
instances divided in groups of 45 with number of jobs n ∈ {50,150,250,
350} and machines m ∈ {10,30,50}. In all cases, with the only exception
of PFSPni

T , the performances have been evaluated computing the relative
percentage variation (RPD) that can be calculated as follows:

RPD =
Ra − R*

R*

where Ra is the solution reported by algorithm a and R* is the best
known solution. In the case of PFSPni

T , since the benchmark set has in-
stances where the total tardiness of the best solution is equal to zero, the
relative deviation index (RDI) was used. The RDI is calculated as

RDI =
Ra − R*

Rw − R*

where Rw is the worst solution generated considering all the tested al-
gorithms.

The tuning was executed on a Xeon 5410 CPU at 2.33 Ghz while the
experiments were conducted on an Opteron 6410 CPU running at 2.1
Ghz. All machines use CentOS 6.2. All the algorithms in the comparisons
have been implemented in the EMILI framework and each execution was
single threaded. All the parameter settings as well as the best solutions

Table 6
Average RPD results of IGrs and IRsttt . If an algorithm is statistically significantly better according to the Wilcoxon signed-rank test with a 95% confidence, the result is
shown in bold face.

t = 60 t = 120 t = 240
Instances IGrs IRsttt IGrs IRsttt IGrs IRsttt

20 × 5 0.28 0.03 0.22 0.01 0.18 0.01
20 × 10 0.11 0.01 0.09 0.00 0.08 0.00
20 × 20 0.08 0.00 0.06 0.00 0.05 0.00
50 × 5 2.20 1.17 1.92 0.85 1.72 0.59
50 × 10 1.82 1.02 1.61 0.76 1.44 0.53
50 × 20 1.34 0.75 1.18 0.54 1.06 0.38
100 × 5 3.71 2.27 3.05 1.61 2.47 1.00
100 ×

10
2.62 1.67 2.15 1.17 1.73 0.75

100 ×
20

2.02 1.33 1.66 0.94 1.34 0.60

200 ×
10

3.12 2.11 2.50 1.46 1.87 0.78

200 ×
20

2.24 1.60 1.77 1.09 1.29 0.58

500 ×
20

1.86 0.88 1.47 0.61 1.13 0.35

Average 1.78 1.07 1.47 0.75 1.20 0.46

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

9

found for each benchmark are reported in the supplementary pages
[44]. In the following, we report the algorithms generated by our AAD
system, as well as the results of the comparison with state-of-the-art
algorithms for each of the constraints and objectives tackled. Finally,
all the algorithms tested are executed with a maximum running time
that is calculated as Tmax = n⋅(m /2)⋅t ms, where n is the number of jobs,
m is the number of machines and t is a parameter. In our tests we used for

the parameter t the values {60,120,240}.

5. Results for sequence dependent setup times PFSP

5.1. Makespan

Many different metaheuristics have been proposed for this problem
like GRASP, genetic and memetic algorithms [49] before the introduc-
tion of the IGrs algorithm [51]. The IGrs algorithm is a very simple and
powerful metaheuristic based on the NEH heuristic, a FirstImprovement
local search that explores the iRZ neighborhood, the IG perturbation and
a fixed temperature Metropolis like acceptance criterion. This algo-
rithm, similarly to when it was proposed for the minimization of the
makespan in the standard PFSP [43], has remained the best performing
algorithm for quite sometime before new algorithms were proposed.

In 2014, MRSILSst [65] showed to outperform IGrs. MRSILSst is an ILS
algorithm that uses the NEH heuristic to generate the initial solution, an
insertion based local search, a strictly improve acceptance criterion and
the MRSILSp perturbation presented in Section 3. Recently, a migrating
birds optimization, EMBO was proposed as new state of the art [58]. The
EMBO algorithm divides the population in a leader solution and two
groups of followers. At each iteration, the leader solution is updated by
applying the STH algorithm. Afterwards, k solutions are selected among
the swap and insert neighborhood of the leader solution. Each follower
is considered going from the closest to the leader to the furthest. The
solution produced applying the STH algorithm is compared with k − x
best neighbors from the previous follower solution and x neighbors
selected among the swap and insert neighborhood of the current fol-
lower. Additionally, a tabu list is used to improve the neighbors selec-
tion. All the solutions are characterized by an age variable that is
incremented at each iteration if the solution is not updated. If the age
variable reaches maxage the solution is substituted by a random one.

The automatically generated algorithm, IRstms, is shown in Algorithm
3 with the parameters in Table 2. This algorithm is a rather simple IG
algorithm. It uses the NRZ heuristic to generate the initial solution and a
FirstImprovement local search exploring the insert neighborhood. The
perturbation is the same as IGrs with a stronger destruction phase while
the acceptance is closer to a classical SA acceptance.

The IRstms was compared with EMBO, MRSILSst as well as IGrs over the
benchmark presented in [49]. The results are presented in Table 3 and in
Fig. 2. IRstms outperforms all the other tested algorithms, being

Table 7
Parameter settings for IRsttt .

Component Parameter Value Component Parameter Value

IRsttt IRsttt2

random_move num 1
rsacc Tp 0.2631 IG d 3

rsacc Tp 3.3614

Fig. 4. Average RPD and 95% confidence intervals IGrs and IRsttt for t = 60 (left), T = 120 (center) and T = 240 (right).

1: Output The best solution found π∗,
2: π := NRZ2()
3: π := IRnims 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := IGlsps(π,FirstImprovement(local minima, nitinsert))
7: π′ := IRnims 2(π′)
8: π := psa(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 9. IRnims.

1: Input current solution π.
2: Output The best solution found π∗,
3: π := FirstImprovement(π, local minima, nitinsert)
4: π∗ := π
5: while maxsteps() do
6: π′ := IGni(π)
7: π′ := FirstImprovement(π′, local minima, nitinsert)
8: π := psa(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 10. IRnims2.

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

10

statistically significantly better for almost all the instance sizes with IGrs
being the second best followed by MRSILS and EMBO. Considering the
smallest running time, IGrs shows better results than IRstms when
considering instances with 200 or more jobs. Although the difference
between the two algorithms gets smaller, this result does not change for
instances with 500 jobs even when considering longer running times. In
this case, IRstms may be less efficient due to the lack of instances with this
size in the training set. Another interesting finding about IGrs perfor-
mance is that, differently from the results presented in the papers
introducing EMBO and MRSILSst [58,65], IGrs is always able to outper-
form MRSILS and EMBO. One possible explanation is that this result is
due to our implementation. This can be excluded in the case of EMBO,

where a comparison with the best solutions found by the original
implementation, as reported by the authors, shows that our imple-
mentation has better results. A similar comparison cannot be done with
MRSILS, but we are confident that the algorithm was implemented as
described by the authors. Since we could not find in the papers any
reference about the use of Taillard’s acceleration, another possible
explanation is that EMBO and MRSILS were compared with a IGrs al-
gorithm that was not using this acceleration greatly reducing its
performance.

Finally, the performance of IGrs in our experiments and the similarity
of IRstms to this algorithm further confirms that the IG algorithm is quite
effective when solving the PFSP with the makespan objective even when
we take into account the sequence dependent setup times constraint.

5.2. Total completion time

Although the makespan objective for PFSPsdst has been extensively
studied, the total completion time and total tardiness for the PFSPsdst

have not received the same attention by the research community. To the
best of our efforts, we were unable to find algorithms proposed for
PFSPsdst

TCT and PFSPsdst
T . The algorithms generated for these problems will

be compared with the IGrs algorithm presented in [51] for PFSPsdst to
solve the makespan and total tardiness objectives. Furthermore, this
algorithm has shown to have generally good performances when tack-
ling PFSP in general.

The algorithm generated for total completion time, IRsttct , is quite
different from IRstms as it is composed of three nested ILS. The algorithm
outline is shown in Algorithms 4, 5, and 6, while the parameters are
listed in Table 5. The innermost ILS, IRsttct3, uses a VND as local search
and stops either when it cannot improve anymore or after n iterations;
additionally, it uses the IGlsps perturbation while always accepting the
perturbed solution. The second level ILS instead, use the simple IG
perturbation with a Metropolis like acceptance criterion. Finally the
outer layer ILS also use the IG perturbation but with a lower value for the
d parameter. Considering the acceptance criteria of the different layers,
such complicated structure may be explained as a way to vary the
strength and type of perturbation during the execution. The comparison
with IGrs is shown in Table 4 and Fig. 3. Overall, IRsttct outperforms IGrs
with results that are always statistically significant.

5.3. Total tardiness

The algorithm generated for this problem, IRsttt shown in Algorithms
7 and 8, is a two layers ILS that uses the NEH heuristic to generate the
initial solution. The most interesting feature of this algorithm is that the
inner layer employs, alternatively, two local searches. One explores the
finsert neighborhood and the other the twinsert neighborhood. The inner
ILS also uses the IG perturbation as well as the rsacc acceptance criterion
that makes it very similar to IGrs. The outer layer uses one random step in
the binsert neighborhood as a perturbation and, similarly to the inner
ILS, the rsacc acceptance. Comparing the temperature of the acceptance
criteria, the parameter settings of IRsttt are shown in Table 7. It seems
that the two ILS have two well defined roles. In fact, the inner ILS has a
higher probability of accepting non improving solutions while the outer
layer, with a low temperature, is more focused on intensification. The
results of the comparison with IGrs are shown in Table 6 and in Fig. 4.
Similarly to the results obtained for PFSPsdst

TCT , IRsttt clearly outperforms
IGrs and it is always statistically significantly better.

Table 9
Parameter settings for IRnims .

Component Parameter Value Component Parameter Value

IRnims IRnims2

IGlsps d 5
psa Ts 3.5859 maxsteps maxi 150

Te 0.0764 IG d 8
β 0.076 psa Ts 3.8648
it 336 Te 0.6922

β 0.014
it 137

Fig. 5. Average RDI and 95% confidence intervals of MANEH, GVNS and IRnims for t = 60 (left), T = 120 (center) and T = 240 (right).

F. Pagnozzi and T. Stützle

OperationsResearchPerspectives8(2021)100180

11

Table 8
Average RPD results of MANEH, GVNS and IRnims. If an algorithm is statistically significantly better according to the Wilcoxon signed-rank test with a 95% confidence with Bonferroni correction, the result is shown in bold
face.

t = 60 t = 120 t = 240 t = 60 t = 120 t = 240
Instances MANEH GVNS IRnims MANEH GVNS IRnims MANEH GVNS IRnims MANEH GVNS IRnims MANEH GVNS IRnims

50 × 10 0.173 0.232 0.071 0.137 0.177 0.026 0.102 0.123 -0.0004 300× 20 0.285 0.115 0.058 0.114 0.085 0.031 0.059 0.062 0.019
50 × 20 0.289 0.318 0.177 0.262 0.262 0.126 0.231 0.218 0.093 300× 30 0.293 0.165 0.147 0.171 0.124 0.100 0.112 0.082 0.065
50 × 30 0.531 0.519 0.244 0.446 0.467 0.156 0.388 0.374 0.090 300× 40 0.516 0.493 0.407 0.358 0.410 0.281 0.257 0.336 0.156
50 × 40 1.004 0.937 0.443 0.897 0.847 0.261 0.784 0.730 0.138 300× 50 0.722 0.742 0.666 0.533 0.607 0.412 0.408 0.496 0.239
50 × 50 2.089 2.103 1.263 1.914 1.954 1.109 1.788 1.835 0.973 350× 10 0.220 0.013 0.013 0.209 0.010 0.009 0.157 0.008 0.008
100 ×

10
0.126 0.121 0.073 0.093 0.096 0.053 0.071 0.069 0.032 350× 20 0.377 0.054 0.062 0.184 0.038 0.041 0.113 0.030 0.025

100 ×
20

0.196 0.239 0.097 0.142 0.178 0.050 0.101 0.115 0.024 350× 30 0.542 0.268 0.163 0.295 0.198 0.116 0.187 0.160 0.079

100 ×
30

0.613 0.676 0.331 0.545 0.573 0.197 0.444 0.468 0.084 350× 40 0.629 0.439 0.300 0.401 0.349 0.205 0.275 0.264 0.136

100 ×
40

1.187 1.317 0.668 1.004 1.152 0.391 0.885 1.051 0.157 350× 50 0.664 0.657 0.423 0.481 0.503 0.234 0.334 0.367 0.095

100 ×
50

1.057 0.954 0.536 0.928 0.824 0.352 0.819 0.735 0.196 400× 10 0.178 0.004 0.001 0.138 0.003 0.000 0.076 0.002 0.000

150 ×
10

0.170 0.014 0.010 0.119 0.013 0.009 0.090 0.013 0.007 400× 20 0.580 0.166 0.095 0.396 0.134 0.062 0.232 0.104 0.041

150 ×
20

0.317 0.331 0.149 0.271 0.266 0.083 0.210 0.220 0.037 400× 30 0.892 0.237 0.254 0.469 0.194 0.188 0.227 0.153 0.125

150 ×
30

0.350 0.404 0.219 0.278 0.326 0.151 0.219 0.247 0.091 400× 40 0.742 0.303 0.243 0.328 0.233 0.172 0.194 0.185 0.113

150 ×
40

0.831 0.886 0.475 0.663 0.722 0.297 0.560 0.598 0.165 400× 50 0.837 0.657 0.462 0.487 0.546 0.285 0.365 0.431 0.167

150 ×
50

0.904 0.806 0.613 0.761 0.699 0.394 0.663 0.588 0.203 450× 10 0.293 0.007 0.002 0.239 0.004 0.001 0.179 0.002 0.000

200 ×
10

0.251 0.004 0.000 0.099 0.003 0.000 0.034 0.002 0.000 450× 20 0.951 0.098 0.069 0.609 0.076 0.045 0.256 0.056 0.027

200 ×
20

0.385 0.205 0.106 0.257 0.175 0.076 0.154 0.146 0.059 450× 30 0.760 0.348 0.268 0.400 0.275 0.190 0.263 0.212 0.128

200 ×
30

0.446 0.397 0.281 0.324 0.324 0.170 0.246 0.261 0.112 450× 40 0.803 0.373 0.283 0.393 0.281 0.206 0.196 0.211 0.118

200 ×
40

0.767 0.879 0.626 0.645 0.726 0.406 0.532 0.618 0.211 450× 50 0.971 0.559 0.506 0.492 0.441 0.311 0.324 0.343 0.170

200 ×
50

0.798 0.777 0.591 0.617 0.657 0.407 0.493 0.557 0.280 500× 10 0.232 0.011 0.002 0.198 0.008 0.000 0.164 0.006 0.000

250 ×
10

0.212 0.009 0.004 0.165 0.007 0.002 0.125 0.005 0.001 500× 20 0.538 0.071 0.023 0.369 0.054 0.017 0.166 0.045 0.011

250 ×
20

0.568 0.204 0.157 0.267 0.170 0.113 0.135 0.145 0.078 500× 30 0.700 0.158 0.151 0.505 0.129 0.104 0.284 0.109 0.070

250 ×
30

0.602 0.353 0.293 0.329 0.284 0.223 0.249 0.228 0.162 500× 40 1.041 0.299 0.370 0.708 0.222 0.254 0.362 0.169 0.160

250 ×
40

0.518 0.563 0.390 0.378 0.460 0.282 0.284 0.370 0.166 500× 50 0.797 0.324 0.338 0.321 0.250 0.203 0.191 0.187 0.116

250 ×
50

1.161 1.149 1.025 0.865 0.939 0.737 0.711 0.775 0.521

300 ×
10

0.195 0.003 0.003 0.171 0.002 0.003 0.142 0.001 0.002 Average 0.606 0.419 0.283 0.428 0.350 0.191 0.317 0.290 0.119

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

12

6. Results for no-idle PFSP

6.1. Makespan

Among the different algorithms proposed for this problem, GVNS
[61] has been the state of the art for a long time. Recently, a memetic
algorithm, MANEH [55] has shown to outperform GVNS. Since MANEH
uses a modified version of GVNS to improve the best individual of the
population, both algorithms are used in the comparison with IRnims, the
generated algorithm.

The GVNS algorithm [61] is a variable neighborhood search where
the neighborhood structures used in the VND are an IG algorithm and an
ILS. Both SLS algorithms use as local search the iRZ algorithm. The
initial solution is generated using the NEH heuristic and the algorithm
uses a random move in the insert and in the exchange neighborhood.
Finally a solution is accepted only if it improves on the current solution.

MANEH is a memetic algorithm in which the population is initialized
using the NEHRS heuristic [55]. At each iteration, the parents are
selected using tournament selection. The random sample crossover
(RSC) is used to generate two new solutions that are first mutated using a
random insert move and then improved using the iRZ local search. If this
results in a better solution, the child replaces the worst individual in the
population. After a number of steps equal to a quarter of the population
size, the best individual is improved using a modified version of the
GVNS algorithm, SAGVNS. In SAGVNS, the strictly improve acceptance
criterion of GVNS is replaced by a fixed temperature Metropolis accep-
tance criterion similar to the one used in IGrs.

Algorithms 9 and 10 show the outline of IRnims, the automatically
generated algorithm for PFSPni

MS. The parameter settings are shown in
Table 9. Contrary to IRstms, this algorithm is composed of two ILS. As is
often the case for the makespan objective, the local search used by the
innermost ILS is a FirstImprovement local search exploring the acceler-
ated insert neighborhood. Regarding the perturbation, the innermost

uses the IG perturbation while the outermost uses the IGlsps with the
same local search used in the innermost ILS. The comparison of IRnims
with MANEH and GVNS is shown in Fig. 5 while in Table 8 the results are
grouped by instance size. IRnims clearly stands out as the best algorithm,
outperforming both MANEH and GVNS with GVNS being better than
MANEH. Overall IRnims is statistically significantly better than MANEH
and GVNS. However, the results grouped by instance size GVNS shows
better results when t = 60 for instances of size {300 × 20}, {400 × 30},
{500 × 40}, {500× 50}. The results are not statistically significant and,
for longer running times, IRnims has better performances.

6.2. Total completion time

The current state-of-the-art algorithm for PFSPni
TCT is VigDE [62] that

implements a differential evolution algorithm combined with an IG al-
gorithm. Each individual of the population in the DE algorithm has two
chromosomes. One represents the solution and the other represents two
parameters of the IG algorithm, that is, the probability p of applying the
local search and d, the number of jobs destroyed in the
destruction-construction perturbation. The algorithm uses the NEHrs
heuristic to generate the initial population. At each iteration, all in-
dividuals undergo a mutation and each mutated individual is refined
using the IG algorithm with probability p. The mutated individual
replace the parent, if it has a better objective function value. In the ex-
periments, we used the version of VigDE presented in [40], where the
algorithm has been improved by using the NAG heuristic to generate the
first individual of the population.

The best algorithm selected by irace, IRnitct , is a VNS that uses the
NAG heuristic to build the initial solution and a VND to improve the
current solution. The algorithm is shown in Algorithm 11 and the pa-
rameters are shown in Table 11. Interestingly, the VND uses two times
the transpose neighborhood. The shake employs two vr_move perturba-
tions, the first executes seven random steps in the finsert neighborhood

1: Output The best solution found π∗,
2: k := 1
3: π := NAG()
4: π := VND(π, local minima, exchange, transpose, transpose)
5: π∗ := π
6: while ! time is over do
7: π′ := shake(π, k, vr_move(finsert, transpose), vr_move(binsert, finsert))
8: π′ := VND(π′, local minima, exchange, transpose, transpose)
9: π := neighchange(karacc(π, π′), k)
10: if f (π′) < f (π∗) then
11: π∗ := π′
12: end if
13: end while
14: Return π∗

Algorithm 11. IRnitct .

Fig. 6. Average RPD and 95% confidence intervals of VigDE and IRnitct for t = 60 (left), T = 120 (center) and T = 240 (right).

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

13

and, after five iterations, it passes it to the transpose neighborhood. The
second vr_move keeps the same number of iterations but reduces the
random steps to one and uses a different set of neighborhoods, binsert
and finsert. As neighborhood change, the karacc acceptance criterion has
been chosen.

The results of the comparison between VigDE and IRnitct are shown in
Fig. 6 and Table 10. IRnitct clearly outperforms VigDE in all instances sizes
and the results are always statistically significant.

6.3. Total tardiness

The current state-of-the-art algorithm for PFSPsdst
T is DTLM [56].

DTLM is a discrete teaching learning algorithm. This population based
algorithm divides the population in three groups. The best solution is
considered the teacher while the best λ × PS individuals are elite

learners, where PS is the population size and λ is a parameter of the
algorithm. At each iteration, each individual undergoes two updating
phases in which the produced solution substitutes the individual if it was
better. In the first phase a new solution is built by applying the PMX
crossover to each solution with a consensus permutation built from the
elite learners. In the second phase the three groups are updated differ-
ently. An ILS algorithm is applied to the first elite learner while the other
elite learners undergo a crossover with the first. A path-relinking pro-
cedure is applied to each non elite individual in which all the solutions
from the individual to a random elite individual are considered and the
best one is selected. If no new solutions are produced, a
destruct-construct perturbation is applied.

The algorithm automatically generated for the total tardiness
objective, IRnitt , is shown in Algorithm 12 and 13 with the parameters
shown in Table 13. The algorithm is again a two layers ILS that uses the

Table 10
Average RPD results of VigDE and IRnitct . If an algorithm is statistically significantly better according to the Wilcoxon signed-rank test with a 95% confidence, the result
is shown in bold face.

t = 60 t = 120 t = 240
Instances VigDE IRnitct VigDE IRnitct VigDE IRnitct

50 × 10 3.78 1.36 3.29 1.04 2.78 0.76 300× 20 6.88 1.54 4.86 1.16 4.39 0.87
50 × 20 3.57 1.24 2.96 0.94 2.36 0.69 300× 30 6.09 1.61 4.21 1.18 3.75 0.92
50 × 30 3.75 1.74 3.11 1.42 2.47 1.09 300× 40 8.26 1.86 5.11 1.35 4.54 0.95
50 × 40 3.51 1.54 2.74 1.31 2.14 1.03 300× 50 9.85 2.20 5.50 1.56 4.99 1.01
50 × 50 3.51 1.78 2.79 1.52 2.05 1.23 350× 10 6.45 0.95 4.52 0.73 4.03 0.51
100 ×

10
4.44 1.55 4.03 1.12 3.70 0.75 350× 20 7.75 1.23 4.44 0.97 3.97 0.70

100 ×
20

4.29 1.42 3.83 0.98 3.45 0.64 350× 30 8.40 1.48 4.54 1.12 3.93 0.78

100 ×
30

5.73 2.04 5.16 1.51 4.70 1.10 350× 40 9.30 1.75 5.25 1.33 4.54 0.89

100 ×
40

6.61 2.54 6.08 2.02 5.47 1.52 350× 50 9.85 2.04 5.43 1.51 4.46 1.02

100 ×
50

5.71 2.00 5.21 1.56 4.71 1.20 400× 10 6.94 0.85 5.60 0.65 4.26 0.41

150 ×
10

4.04 1.21 3.74 0.95 3.47 0.73 400× 20 8.22 1.31 6.02 0.99 4.41 0.68

150 ×
20

5.21 1.89 4.83 1.41 4.41 1.00 400× 30 8.75 1.38 5.57 0.98 4.39 0.63

150 ×
30

5.14 1.92 4.77 1.50 4.42 1.10 400× 40 8.24 1.58 6.92 1.13 4.09 0.78

150 ×
40

6.15 1.96 5.63 1.49 5.08 1.02 400× 50 9.89 1.74 8.77 1.22 4.70 0.81

150 ×
50

6.39 2.50 5.93 1.90 5.49 1.42 450× 10 7.20 0.85 6.89 0.70 4.85 0.54

200 ×
10

4.45 1.18 4.10 0.96 3.85 0.72 450× 20 8.71 1.35 8.33 1.06 4.77 0.75

200 ×
20

5.18 1.43 4.74 1.10 4.42 0.81 450× 30 10.07 1.78 9.56 1.17 5.21 0.78

200 ×
30

5.27 1.64 4.82 1.28 4.48 0.86 450× 40 9.44 1.77 9.17 1.27 5.03 0.84

200 ×
40

6.04 2.18 5.45 1.71 5.08 1.23 450× 50 9.70 1.97 9.34 1.39 4.93 0.95

200 ×
50

5.68 2.02 5.24 1.53 4.88 0.98 500× 10 7.51 0.77 7.19 0.62 5.00 0.45

250 ×
10

4.93 0.86 4.44 0.66 4.16 0.49 500× 20 7.87 1.05 7.51 0.76 4.54 0.49

250 ×
20

5.11 1.38 4.48 1.03 4.08 0.78 500× 30 8.34 1.55 7.97 1.07 4.82 0.73

250 ×
30

5.25 1.72 4.62 1.31 4.23 0.97 500× 40 9.27 1.90 8.83 1.38 5.57 0.90

250 ×
40

6.24 1.89 5.59 1.39 5.15 1.02 500× 50 9.90 1.85 9.37 1.31 5.61 0.84

250 ×
50

7.11 2.32 6.38 1.53 5.76 1.06

300 ×
10

6.66 1.19 4.53 0.90 4.21 0.65 Average 6.73 1.62 5.59 1.21 4.36 0.86

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

14

SLACK heuristic to generate the initial solution. The innermost ILS uses a
FirstImprovement local search that explores the exchange neighborhood.
The perturbation consists of random steps in the binsert and finsert
neighborhoods while the acceptance criterion is based on a fixed tem-
perature Metropolis condition. The external ILS instead, uses a IG
perturbation and an acceptance criterion that accepts only improving
solutions. The results of the experiments are shown in Table 12 and in
Fig. 7. IRnitt greatly outperforms DTLM.

7. Discussion and conclusions

In this paper, a AAD system has been applied to generate SLS algo-
rithms to solve PFSPni and PFSPsdst with the objectives of minimizing
makespan, sum of completion time and total tardiness. The generated
algorithms outperformed the state-of-the-art algorithms. The fact that
these problems were less studied compared with standard PFSP may
explain the huge performance difference registered between the algo-
rithms generated trough our system and the competing human gener-
ated ones. In any case, the observed results together with the ones

Table 11
Parameter settings for IRnitct .

Component Parameter Value

IRnitct

NAG x 10
y 20

vr_move num 7
it 5

vr_move num 1
it 5

psa Ts 3.5859
Te 0.0764
β 0.076
it 336

1: Output The best solution found π∗,
2: π := SLACK ()
3: π := IRnitt 2(π)
4: π∗ := π
5: while ! time is over do
6: π′ := IG(π)
7: π′ := IRnitt 2(π′)
8: π := improve(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 12. IRnitt .

1: Input current solution π.
2: Output The best solution found π∗,
3: π := FirstImprovement(π, local minima, exchange)
4: π∗ := π
5: while maxsteps() do
6: π′ := vr_move(π, binsert, finsert))
7: π′ := FirstImprovement(π′, local minima, exchange)
8: π := karacc(π, π′)
9: if f (π′) < f (π∗) then
10: π∗ := π′
11: end if
12: end while
13: Return π∗

Algorithm 13. IRnitt2.

Table 13
Parameter settings for IRnitt .

Component Parameter Value Component Parameter Value

IRnitt IRnitt2

IG d 10
maxsteps maxi 134
vr_move num 1

it 9
karacc Tp 3.3172

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

15

obtained for the standard PFSP [43] give further confirmation to AAD
and this method in particular. Looking at the generated algorithms, as
already observed with standard PFSP, it is interesting to note that a two
levels structure is preferred in the majority of cases, being present in
IRsttt , IRsttct , IRnims and IRnitt. This result is in accordance with our pre-
vious study on standard PFSP where two out of three algorithms
possessed the same structure.

Interestingly, the result of DTLM in PFSPni
T , the result of MANEH in

PFSPni
MS and EMBO in PFSPsdst

MS show that population based algorithms
seem not to be well suited to tackle the PFSP. Further confirmation of
this trend can be found by considering the state-of-the-art algorithms for
the standard PFSP [43,52].

Several directions can be taken to further progress this research.
First, it would be of great interest to investigate whether the level of
structural complexity found in generated algorithms, like IRsttct , is really
needed. A second direction is to use the system to generate algorithms
for other problems as well as to further expand EMILI to better support
other types of SLS methods such as population based algorithms. Finally,
the components implemented in the EMILI framework are the result of
the advance knowledge present in the literature regarding the specific
problems tackled. A fourth direction to investigate would be to add to

this system the ability of automatically generate new components. In
particular, construction heuristics may be generated following a AAD
process where AAC tools are used to generate new heuristics by
combining different components.

CRediT authorship contribution statement

Federico Pagnozzi: Methodology, Investigation, Formal analysis,
Software, Writing - original draft. Thomas Stützle: Supervision,
Conceptualization, Methodology, Validation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and

Fig. 7. Average RDI and 95% confidence intervals of DTLM and IRnitt for t = 60 (left), T = 120 (center) and T = 240 (right).

Table 12
Average RDI results of DTLM and IRnitt . If an algorithm is statistically significantly better according to the Wilcoxon signed-rank test with a 95% confidence, the result is
shown in bold face.

t = 60 t = 120 t = 240
Instances DTLM IRnitt DTLM IRnitt DTLM IRnitt

50 × 10 0.42 0.15 0.37 0.11 0.32 0.07
50 × 30 0.39 0.18 0.36 0.13 0.31 0.09
50 × 50 0.40 0.16 0.34 0.12 0.29 0.08
150 ×

10
0.36 0.15 0.32 0.11 0.27 0.07

150 ×
30

0.43 0.18 0.40 0.13 0.35 0.08

150 ×
50

0.41 0.19 0.39 0.14 0.33 0.09

250 ×
10

0.47 0.18 0.40 0.13 0.34 0.09

250 ×
30

0.45 0.16 0.37 0.12 0.32 0.08

250 ×
50

0.41 0.19 0.39 0.13 0.33 0.08

350 ×
10

0.43 0.20 0.40 0.15 0.35 0.10

350 ×
30

0.48 0.19 0.42 0.14 0.36 0.09

350 ×
50

0.46 0.19 0.40 0.14 0.35 0.10

Average 0.42 0.18 0.38 0.13 0.33 0.08

F. Pagnozzi and T. Stützle

Operations Research Perspectives 8 (2021) 100180

16

innovation programme (grant agreement No. 681872). Thomas Stützle
acknowledges support from the Belgian F.R.S.-FNRS, of which he is a
Research Director.

References

[1] Baptiste P, Hguny L. A branch and bound algorithm for the f/no_idle/cmax.
Proceedings of the international conference on industrial engineering and
production management. IEPM’97, Lyon. 1997. p. 429–38.

[2] Bezerra LCT, López-Ibáñez M, Stützle T. Automatic component-wise design of
multi-objective evolutionary algorithms. IEEE Trans Evol Comput 2016;20(3):
403–17.

[3] Bezerra LCT, López-Ibáñez M, Stützle T. A large-scale experimental evaluation of
high-performing multi- and many-objective evolutionary algorithms. Evol Comput
2018;26(4):621–56.

[4] Bezerra LCT, López-Ibáñez M, Stützle T. Automatic configuration of multi-objective
optimizers and multi-objective configuration. High-performance simulation-based
optimization. Cham, Switzerland: Springer International Publishing; 2020.
p. 69–92.

[5] Branke J, Nguyen S, Pickardt CW, Zhang M. Automated design of production
scheduling heuristics: a review. IEEE Trans Evol Comput 2016;20(1):110–24.

[6] Brum A, Ritt M. Automatic design of heuristics for minimizing the makespan in
permutation flow shops. 2018 IEEE congress on evolutionary computation (CEC).
Piscataway, NJ: IEEE Press; 2018. p. 1–8.

[7] Brum A, Ritt M, López-Ibáñez M. Automatic algorithm configuration for the
permutation flow shop scheduling problem minimizing total completion time. In:
Liefooghe A, editor. Proceedings of EvoCOP 2018 –European conference on
evolutionary computation in combinatorial optimization, vol. 10782 of lecture
notes in computer science. Heidelberg, Germany: Springer; 2018. p. 85–100.

[8] Burke EK, Hyde MR, Kendall G. Grammatical evolution of local search heuristics.
IEEE Trans Evol Comput 2012;16(7):406–17.

[9] Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR. A classification
of hyper-heuristic approaches: Revisited. In: Gendreau M, Potvin JY, editors.
Handbook of metaheuristics, vol. 272 of international series in operations research
& management science. Springer; 2019. p. 453–77.Ch. 14

[10] Cahon S, Melab N, Talbi EG. ParadisEO: a framework for the reusable design of
parallel and distributed metaheuristics. J Heuristics 2004;10(3):357–80.

[11] De Souza M, Ritt M. Automatic grammar-based design of heuristic algorithms for
unconstrained binary quadratic programming. In: Liefooghe A, López-Ibáñez M,
editors. Proceedings of evoCOP 2018 – 18th European conference on evolutionary
computation in combinatorial optimization, vol. 10782 of lecture notes in
computer science. Heidelberg, Germany: Springer; 2018. p. 67–84.

[12] De Souza M, Ritt M. An automatically designed recombination heuristic for the
test-assignment problem. 2018 IEEE congress on evolutionary computation (CEC).
Piscataway, NJ: IEEE Press; 2018. p. 1–8.

[13] Fernandez-Viagas V, Framiñán JM. On insertion tie-breaking rules in heuristics for
the permutation flowshop scheduling problem. Comput Oper Res 2014;45:60–7.

[14] Framiñán JM, Leisten R, Ruiz R. Manufacturing scheduling systems: an integrated
view on models, methods, and tools. New York, NY: Springer; 2014.

[15] Franzin A, Stützle T. Revisiting simulated annealing: a component-based analysis.
Comput Oper Res 2019;104:191–206.

[16] Fukunaga AS. Evolving local search heuristics for SAT using genetic programming.
In: Deb K, editor. Proceedings of the genetic and evolutionary computation
conference, GECCO 2004, Part II, vol. 3103 of lecture notes in computer science.
Heidelberg, Germany: Springer; 2004. p. 483–94.

[17] Fukunaga AS. Automated discovery of local search heuristics for satisfiability
testing. Evol Comput 2008;16(1):31–61.

[18] Gupta JND. Flowshop schedules with sequence dependent setup times. J Oper Res
SocJpn 1986;29:206–19.

[19] Hart E, Sim K. A hyper-heuristic ensemble method for static job-shop scheduling.
Evol Comput 2016;24(4):609–35.

[20] Hoos HH, Stützle T. Stochastic local search—foundations and applications. San
Francisco, CA: Morgan Kaufmann Publishers; 2005.

[21] Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimization for
general algorithm configuration. In: Coello Coello CA, editor. Learning and
intelligent optimization, 5th international conference, LION 5, vol. 6683 of lecture
notes in computer science. Heidelberg, Germany: Springer; 2011. p. 507–23.

[22] Hutter F, Hoos HH, Stützle T. Automatic algorithm configuration based on local
search. In: Holte RC, Howe A, editors. Proc. of the twenty-second conference on
artifical intelligence (AAAI ’07), AAAI press/MIT press, Menlo Park, CA; 2007.
p. 1152–7.

[23] Johnson DS. Optimal two- and three-stage production scheduling with setup times
included. Nav Res Logist Q 1954;1:61–8.

[24] Karabulut K. A hybrid iterated greedy algorithm for total tardiness minimization in
permutation flowshops. Comput Ind Eng 2016;98(Supplement C):300–7.

[25] Keller RE, Poli R. Linear genetic programming of parsimonious metaheuristics.
2007 IEEE Congress on evolutionary computation. 2007. p. 4508–15.

[26] Keller RE, Poli R. Cost-benefit investigation of a genetic-programming
hyperheuristic. In: Monmarché N, Talbi E-G, Collet P, Schoenauer M, Lutton E,

editors. Artificial evolution. Berlin/Heidelberg, Berlin, Heidelberg: Springer; 2008.
p. 13–24.

[27] KhudaBukhsh AR, Xu L, Hoos HH, Leyton-Brown K. SATenstein: automatically
building local search SAT solvers from components. Artif Intell 2016;232:20–42.

[28] Kim YD. Heuristics for flowshop scheduling problems minimizing mean tardiness.
J Oper Res Soc 1993;44(1):19–28.

[29] Koza J. Genetic programming: on the programming of computers by the means of
natural selection. Cambridge, MA: MIT Press; 1992.

[30] Li X, Zhang Y. Adaptive hybrid algorithms for the sequence-dependent setup time
permutation flow shop scheduling problem. IEEE Trans Autom SciEng 2012;9(3):
578–95.

[31] Liu J, Reeves CR. Constructive and composite heuristic solutions to the P//ΣCi
scheduling problem. Eur J Oper Res 2001;132(2):439–52.

[32] López-Ibáñez M, Stützle T. The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans Evol Comput 2012;16(6):861–75.

[33] López-Camacho E, Terashima-Marin H, Ross P, Ochoa G. A unified hyper-heuristic
framework for solving bin packing problems. Expert Syst Appl 2014;41(15):
6876–89.

[34] López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Stützle T, Birattari M. The irace
package: iterated racing for automatic algorithm configuration. Oper Res Perspect
2016;3:43–58.

[35] López-Ibáñez, M., Kessaci, M.-E., & Stützle, T.. Automatic design of hybrid
metaheuristics from algorithmic components, submitted.

[36] Marmion M-E, Mascia F, López-Ibáñez M, Stützle T. Automatic design of hybrid
stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A,
Sampels M, editors. Hybrid metaheuristics, vol. 7919 of lecture notes in computer
science. Heidelberg, Germany: Springer; 2013. p. 144–58.

[37] Mascia F, López-Ibáñez M, Dubois-Lacoste J, Stützle T. Grammar-based generation
of stochastic local search heuristics through automatic algorithm configuration
tools. Comput Oper Res 2014;51:190–9.

[38] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller A, Teller E. Equation of state
calculations by fast computing machines. J Chem Phys 1953;21:1087–92.

[39] Minella G, Ruiz R, Ciavotta M. A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS J Comput 2008;20(3):
451–71.

[40] Nagano MS, Rossi FL, Martarelli NJ. High-performing heuristics to minimize
flowtime in no-idle permutation flowshop. Eng Optim 2019;51(2):185–98.

[41] Nawaz M, Enscore Jr E, Ham I. A heuristic algorithm for the m-machine, n-job flow-
shop sequencing problem. Omega 1983;11(1):91–5.

[42] O’Neill M, Ryan C. Grammatical evolution. IEEE Trans Evol Comput 2001;5(4):
349–58.

[43] Pagnozzi F, Stützle T. Automatic design of hybrid stochastic local search
algorithms for permutation flowshop problems. Eur J Oper Res 2019;276:409–21.

[44] Pagnozzi, F., & Stützle, T. (2019b). Automatic design of hybrid stochastic local
search algorithms for permutation flowshop problems with additional constraints:
Supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2019-007/.

[45] Pan Q-K, Ruiz R. An effective iterated greedy algorithm for the mixed no-idle
permutation flowshop scheduling problem. Omega 2014;44:41–50.

[46] Pinedo ML. Scheduling: theory, algorithms, and systems, 4th edition. New York,
NY: Springer; 2012.

[47] Rad SF, Ruiz R, Boroojerdian N. New high performing heuristics for minimizing
makespan in permutation flowshops. Omega 2009;37(2):331–45.

[48] Rajendran C, Ziegler H. An efficient heuristic for scheduling in a flowshop to
minimize total weighted flowtime of jobs. Eur J Oper Res 1997;103(1):129–38.

[49] Ruiz R, Maroto C. A comprehensive review and evaluation of permutation
flowshop heuristics. Eur J Oper Res 2005;165(2):479–94.

[50] Ruiz R, Maroto C. A genetic algorithm for hybrid flowshops with sequence
dependent setup times and machine eligibility. Eur J Oper Res 2006;169(3):
781–800.

[51] Ruiz R, Stützle T. An Iterated Greedy heuristic for the sequence dependent setup
times flowshop problem with makespan and weighted tardiness objectives. Eur J
Oper Res 2008;187(3):1143–59.

[52] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. Eur J Oper Res 2007;177(3):2033–49.

[53] Ruiz R, Vallada E, Fernández-Martínez C. Scheduling in flowshops with no-idle
machines. Computational intelligence in flow shop and job shop scheduling.
Springer; 2009. p. 21–51.

[54] Sabar NR, Ayob M, Kendall G, Qu R. Grammatical evolution hyper-heuristic for
combinatorial optimization problems. IEEE Trans Evol Comput 2013;17(6):
840–61.

[55] Shao W, Pi D, Shao Z. Memetic algorithm with node and edge histogram for no-idle
flow shop scheduling problem to minimize the makespan criterion. Appl Soft
Comput 2017;54:164–82.

[56] Shao W, Pi D, Shao Z. A hybrid discrete teaching-learning based meta-heuristic for
solving no-idle flow shop scheduling problem with total tardiness criterion.
Comput Oper Res 2018;94:89–105.

[57] Sim K, Hart E, Paechter B. A lifelong learning hyper-heuristic method for bin
packing. Evol Comput 2015;23(1):37–67.

F. Pagnozzi and T. Stützle

http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0001
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0001
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0001
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0002
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0002
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0002
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0003
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0003
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0003
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0004
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0004
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0004
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0004
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0005
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0005
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0006
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0006
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0006
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0007
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0007
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0007
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0007
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0007
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0008
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0008
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0009
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0009
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0009
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0009
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0010
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0010
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0011
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0011
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0011
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0011
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0011
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0012
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0012
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0012
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0013
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0013
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0014
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0014
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0015
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0015
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0016
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0016
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0016
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0016
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0017
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0017
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0018
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0018
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0019
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0019
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0020
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0020
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0021
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0021
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0021
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0021
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0022
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0022
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0022
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0022
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0023
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0023
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0024
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0024
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0025
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0025
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0026
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0026
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0026
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0026
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0027
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0027
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0028
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0028
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0029
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0029
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0030
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0030
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0030
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0031
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0031
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0032
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0032
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0033
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0033
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0033
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0034
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0034
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0034
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0036
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0036
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0036
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0036
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0037
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0037
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0037
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0038
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0038
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0039
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0039
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0039
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0040
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0040
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0041
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0041
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0042
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0042
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0043
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0043
http://iridia.ulb.ac.be/supp/IridiaSupp2019-007/
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0045
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0045
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0046
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0046
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0047
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0047
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0048
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0048
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0049
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0049
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0050
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0050
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0050
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0051
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0051
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0051
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0052
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0052
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0053
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0053
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0053
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0054
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0054
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0054
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0055
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0055
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0055
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0056
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0056
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0056
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0057
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0057

Operations Research Perspectives 8 (2021) 100180

17

[58] Sioud A, Gagné C. Enhanced migrating birds optimization algorithm for the
permutation flow shop problem with sequence dependent setup times. Eur J Oper
Res 2018;264(1):66–73.

[59] Stützle T, López-Ibáñez M. Automated design of metaheuristic algorithms. In:
Gendreau M, Potvin JY, editors. Handbook of metaheuristics, Vol. 272 of
international series in operations research & management science. Springer; 2019.
p. 541–79.

[60] Taillard ED. Benchmarks for basic scheduling problems. Eur J Oper Res 1993;64
(2):278–85.

[61] Tasgetiren MF, Buyukdagli O, Pan Q-K, Suganthan PN. A general variable
neighborhood search algorithm for the no-idle permutation flowshop scheduling
problem. In: Panigrahi BK, Suganthan PN, Das S, Dash SS, editors. Swarm,
evolutionary, and memetic computing, vol. 8298 of theoretical computer science
and general issues, springer international publishing; 2013. p. 24–34.

[62] Tasgetiren MF, Pan Q-K, Suganthan PN, Buyukdagli O. A variable iterated greedy
algorithm with differential evolution for the no-idle permutation flowshop
scheduling problem. Comput Oper Res 2013;40(7):1729–43.

[63] Tavares J, Pereira FB. Automatic design of ant algorithms with grammatical
evolution. In: Moraglio A, Silva S, Krawiec K, Machado P, Cotta C, editors.
Proceedings of the 15th European conference on genetic programming, euroGP
2012, vol. 7244 of lecture notes in computer science. Heidelberg, Germany:
Springer; 2012. p. 206–17.

[64] Vallada E, Ruiz R, Minella G. Minimising total tardiness in the m-machine flowshop
problem: a review and evaluation of heuristics and metaheuristics. Comput Oper
Res 2008;35(4):1350–73.

[65] Wang Y, Dong X, Chen P, Lin Y. Iterated local search algorithms for the sequence-
dependent setup times flow shop scheduling problem minimizing makespan.
Foundations of intelligent systems. Springer; 2014. p. 329–38.

F. Pagnozzi and T. Stützle

http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0058
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0058
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0058
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0059
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0059
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0059
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0059
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0060
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0060
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0061
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0061
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0061
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0061
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0061
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0062
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0062
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0062
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0063
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0063
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0063
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0063
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0063
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0064
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0064
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0064
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0065
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0065
http://refhub.elsevier.com/S2214-7160(21)00003-8/sbref0065

	Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints
	1 Introduction
	2 Permutation flowshop with additional constraints
	3 Automatic algorithm design
	3.1 Grammar based AAD with the EMILI framework
	3.2 Algorithmic components
	3.2.1 Neighborhood
	3.2.2 Construction heuristics
	3.2.3 Iterative improvement
	3.2.4 Perturbation
	3.2.5 Termination condition
	3.2.6 Acceptance criterion
	3.2.7 Adding VNS to the EMILI framework

	4 Experimental settings
	5 Results for sequence dependent setup times PFSP
	5.1 Makespan
	5.2 Total completion time
	5.3 Total tardiness

	6 Results for no-idle PFSP
	6.1 Makespan
	6.2 Total completion time
	6.3 Total tardiness

	7 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

