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A study of robust portfolio optimization with European options using 
polyhedral uncertainty sets 

Hedieh Ashrafi , Aurélie C. Thiele * 

Engineering Management Information and Systems, Southern Methodist University, Dallas TX, USA   

A R T I C L E  I N F O   

Keywords: 
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Portfolio management 
European options 

A B S T R A C T   

We consider the problem of maximizing the worst-case return of a portfolio when the manager can invest in 
stocks as well as European options on those stocks, and the stock returns are modeled using an uncertainty set 
approach. Specifically, the manager knows a range forecast for each factor driving the returns and a budget of 
uncertainty limiting the scaled deviations of these factors from their nominal values. Our goal is to understand 
the impact of options on the optimal portfolio allocation. We present theoretical results regarding the structure of 
that optimal allocation, in particular with respect to portfolio diversification. Specifically, we show that the 
presence of options only leads to limited diversification across the financial instruments available. We compare 
our robust portfolio to several benchmarks in numerical experiments and analyze how the optimal allocation 
varies with the budget of uncertainty. Our results indicate that our approach performs very well in practice.   

1. Introduction 

Markowitz [1] ushered in a new era in portfolio optimization when 
he articulated the investor’s trade-off between risk and return in his 
landmark paper, where risk was measured by the portfolio variance and 
return by the portfolio’s expected return. For a recent overview of 
quantitative methods in finance, the reader is referred to [2], which 
provides a comprehensive overview of financial engineering problems in 
terms of objectives, risk models and solution methods, and discusses the 
interplay between uncertainty representations and solution methods. In 
practice, managers have shown great interest in taking remedial action 
after uncertainty is revealed. This has led to the emergence of options as 
a risk management technique (see [3] and the references therein). 
Specifically, European call options (respectively, European put options) 
give its holder the right but not the obligation to purchase (respectively, 
sell) a share of stock at a pre-arranged price, called the strike price, at the 
option’s expiration. The manager’s recourse is to decide whether to 
exercise the option and thus buy or sell shares at a price more advan
tageous than the market price. When chosen appropriately, the avail
ability of options helps mitigate risk. 

In parallel, robust optimization has emerged as an effective tool to 
model uncertainty in environments where probabilistic descriptions of 
random variables are not available precisely [4,5]. Recent studies have 
shown the benefits of using robust optimization techniques in a wide 

range of fields such as healthcare [6], power systems [7] and supply 
chain [8]. We follow here the approach to robust optimization presented 
in Bertsimas and Sim [5], which uses polyhedral sets centered at the 
nominal values of the uncertain parameters and the size of which is 
determined by a single parameter called the budget of uncertainty, 
limiting the number of uncertain parameters that can deviate from their 
nominal value. The bigger the budget of uncertainty, the larger the set of 
uncertain outcomes the manager is protecting himself against. Hence, in 
the [5] robust optimization setting, risk aversion is captured solely 
through the budget of uncertainty parameter. The main advantages of 
robust optimization over stochastic programming are that (i) it does not 
require the precise knowledge of the underlying probability distribu
tions, and (ii) it is more computationally tractable. The reader is referred 
to [9] for a review of recent advances in robust optimization, including 
frameworks that combine robust optimization and stochastic program
ming in distributionally robust optimization. 

A sizable literature exists on robust optimization in finance, espe
cially without options. Goldfarb and Iyengar [10] and Tütüncü and 
Koenig [11] wrote landmark papers where they developed tractable 
robust optimization counterparts to famous frameworks in the finance 
literature. Garlappi et al. [12] provide a multi-prior approach to port
folio selection with parameter and model uncertainty when the multiple 
priors are characterized by confidence intervals around the estimated 
expected returns. They argue empirically that the resulting portfolios 
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deliver a higher out-of-sample Sharpe ratio than classical portfolios. 
Cornuejols and Tütüncü [13], Pachamanova [14] and Kim et al. [15] 
describe several models for portfolio optimization under uncertainty 
that include robust optimization. Research on robust portfolio man
agement focuses on the derivation of robust tractable reformulations for 
appropriate uncertainty sets, e.g., [16–22]. 

Among the scant robust optimization literature that considers op
tions, Lutgens et al. [23] included European-style options as well as 
stocks in the Mean-Variance model. Subsequently, Zymler et al. [24] 
obtained strong guarantees on the worst-case portfolio return with the 
same model even when the actual stock returns fell outside of the un
certainty set and studied the trade-off between strong and weak gua
rantees (depending on stock price behavior) which leads to convex 
second-order cone programming problems. Zymler et al. [25] develop 
tractable approximations based on semidefinite programming for dis
tributionally robust single and joint chance constraints, assuming that 
the first- and second-order moments as well as the support of the un
certain parameters are known. Then, Zymler et al. [26] addressed 
related computational difficulties by developing two tractable approxi
mations to the problem of computing the VaR of a portfolio with de
rivatives when the first two moments of the underlying asset prices are 
known. 

Matmoura and Penev [27] considers a dynamic risk optimization 
problem using stochastic programming and proposes an algorithmic 
procedure to optimize an option portfolio based on the minimization of 
higher-order coherent risk measures. Also, Davari-Ardakani et al. [28] 
utilizes options for mitigating market risk in a dynamic setting where the 
uncertainty return is modeled using a stochastic framework. Zhao and 
Palomar [29] applies the Markowitz mean-variance framework to op
tion portfolio design by exploiting both first- and second-order statistics 
of option returns using stochastic differential equations and the 
delta-gamma approximation focused on the expected return of options. 
They provide two heuristic algorithms to solve the problem. A current 
sub-strand of the literature considers multistage portfolio optimization 
with stocks and options. 

Goldfarb and Iyengar [10] and Chopra and Ziemba [30] examine the 
effect of errors in means, variances, and covariances on the optimal 
portfolio obtained by a robust approach. They conclude that the primary 
emphasis should be on gaining superior estimates of the mean, followed 
by good estimates of covariances because covariances are the least 
important in terms of their influence on the optimal allocation. Leung 
et al. [31] consider procedures to improve the estimation of the optimal 
portfolio return in the Markowitz framework. 

The multistage adaptive approach holds particular appeal when 
affine policies are implemented, as documented in Bertsimas et al. [32]. 
Other papers such as [33] investigate the price of options and formulate 
the option pricing problem with the help of ϵ-arbitrage and probability 
theory, e.g., the central limit theorem, by minimizing the worst-case 
replication error. Frey and Sin [34], DeMarzo et al. [35] also provide 
bounds for the price of options. 

Subsequent streams of research have considered multi-stage models 
for portfolio selection under uncertainty. For instance, Shen and Zhang 
[36] provides robust portfolio selection based on a multi-stage scenario 
tree. Marzban et al. [37] extend the multi-period approach of [17] to 
consider options as well as stocks. Ling et al. [38] investigates robust 
multi-period portfolio selection based on downside risk with asymmet
rically distributed uncertainty. Yin and Han [39] use a multi-stage sto
chastic program to allocate international assets with risk management 
via multi-stage stochastic programming. 

Contributions In this paper, we investigate the combination of options 
and robust optimization to mitigate uncertainty in portfolio manage
ment, considering two models of uncertainty: (i) a very conservative 
setting where we optimize the worst-case portfolio return over all non- 
negative returns, also called the strong-guarantee setting because the 
portfolio return is guaranteed to be at least the value of the optimal 
objective, and (ii) a robust optimization setting where we optimize the 

worst-case portfolio return over all non-negative returns belonging to a 
polyhedral set as in Bertsimas and Sim [5], centered at their nominal 
value and parametrized by a budget of uncertainty, also called the 
weak-guarantee setting, because the portfolio return is only guaranteed to 
be at least the value of the optimal objective if the actual stock returns do 
fall in the uncertainty set. While case (i) alone is likely too conservative 
to be of interest to the practical investor, the combination of (i) with (ii) 
to provide both a weak guarantee and a strong guarantee specifically for 
polyhedral uncertainty sets in a tractable, linear formulation is partic
ularly appealing for investors facing large-scale portfolio problems in 
presence of high uncertainty. We are particularly interested in studying 
the impact of options on the structure of the optimal solution and 
comparing in numerical experiments the solutions obtained using 
polyhedral uncertainty sets with those obtained using ellipsoidal un
certainty sets in Zymler et al. [24]. 

Our results suggest, both through theoretical insights and numerical 
experiments showing detailed allocations and portfolio return profiles, 
that the use of options leads to limited diversification. Specifically, we 
prove that in the extremely conservative strong-guarantee setting, we 
invest in only one underlying asset at optimality, and in at most one call 
or stock and one put of that asset. Further, we prove that in the robust- 
optimization-based weak-guarantee setting, we invest in at most one call 
or stock and one put of each underlying asset that is included in the 
portfolio at optimality. Intuitively, diversification in robust portfolio 
optimization with polyhedral uncertainty sets occurs because the range 
forecasts of various stock returns overlap so that no stock returns out
performs all of the others. The availability of the options improves the 
effective range of some of the returns and makes some returns clearer 
“winners.” We also present an extension to multiple time periods using 
an open-loop approach. 

The remainder of this paper is structured as follows. We present the 
problem setup and its tractable reformulation involving both the strong 
and weak guarantees in Section 2. We provide a detailed numerical 
study comparing our model with [24] in Section 3. Section 4 contains 
concluding remarks. 

2. Portfolio model with European options using polyhedral 
uncertainty sets 

We consider the following problem. The decision maker can invest in 
shares of stocks and European call and put options on these stocks with 
various strike prices. We consider a static setting throughout the paper, 
i.e., portfolio rebalancing is not allowed during the time window 
considered. The investor has one of the following objectives, which are 
increasingly difficult to formulate in a tractable manner and thus will be 
presented in sequence for greater readability of the paper:  

Strong-guarantee model In the most pessimistic 
situation, the investor 
seeks to protect his 
portfolio against the 
most adverse realization 
of the uncertainty, when 
gross returns can take 
any non-negative value. 
(While this setting is 
very conservative, it is 
explored for instance in 
Cornuejols et al. [40] to 
determine when there 
exists arbitrage, i.e., the 
possibility to make 
infinite amounts of 
money, due to options 
mispricing. It is also 
useful in combination 
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with the 
weak-guarantee setting 
below.)  

Weak-guarantee model The investor seeks to 
protect his portfolio 
against the most adverse 
realization of the uncer
tainty, when gross 
returns fall within an 
uncertainty set defined, 
as in Bertsimas and Sim 
[5], by range forecasts 
centered at the returns’ 
nominal value and the 
cumulative scaled devi
ation is bounded above 
by a budget of 
uncertainty.  

Combined weak-and-strong guarantees model In this setting, the 
investor considers the 
weak-guarantee model, 
optimizing the worst- 
case return over a poly
hedral uncertainty set, 
and adds an insurance- 
type constraint where 
the absolute worst-case 
return (from the strong- 
guarantee model) must 
be at least a predefined 
fraction of the weak- 
guarantee objective. 
This model is also called 
Modified Insured Robust 
Optimization in Zymler 
et al. [24]. 

2.1. Strong-guarantee model 

Here, the uncertainty set is the set of non-negative gross returns. the 
manager seeks to maximize his worst-case portfolio return measured 
over all possible non-negative gross returns, subject to fractions allo
cated in the various stocks and options summing to one and fractions 
being non-negative. Below, we formulate this problem in mathematical 
terms. 

We will use the following notations:  

Parameters  
T:  the time horizon, 
n:  the number of underlying assets considered, 
n+

i :  the number of call options considered for asset i, i = 1,…,n,
n−

i :  the number of put options considered for asset i, i = 1,…,n,
Si(0):  price of stock i at time 0 for asset i, i = 1,…,n,
Ri:  return of stock i for all i, i = 1,…,n,
Si(T):  price of stock i at time T, equal to RiSi(0) for all i, i = 1,…,n,
K+

ij : strike price of stock i for call option j for all i = 1,…, n and j = 1,…,n+
i ,

K−
ik : strike price of stock i for put option k for all i = 1,…, n and k = 1,…,

n−
i ,

P+
ij : price of call option j for stock i for all i = 1,…, n and j = 1,…,n+

i ,

P−
ik : price of put option k for stock i for all i = 1,…, n and k = 1,…,n−

i ,

The (gross) return of stock i is defined as: Ri = Si(T)/Si(0) for all i. 

The options’ returns are given by: max

(

0,
Si(T)− K+

ij
P+

ij

)

for call option j and 

max

(

0, K−
ik − Si(T)

P−
ij

)

for put option k with Si(T) = RiSi(0) for all i, j, k. In 

particular, they are piecewise linear functions in the stock returns, with 

break points at 
K+

ij
Si(0) and K−

ik
Si(0), respectively.  

Decision 
variables  

xi : the fraction of the portfolio invested in shares of stock i, i = 1,…,

n,
x+

ij : the fraction of the portfolio invested in call option j for stock i, i =
1,…, n and j = 1,…,n+

i ,

x−
ik : the fraction of the portfolio invested in buying put option k for 

stock i, i = 1,…, n and k = 1,…,n−
i .   

Mathematical model The manager’s problem of maximizing the worst 
case portfolio return at time T over all non-negative returns is given by: 

max
x

min
R≥0

∑n

i=1

[

Rixi+
∑n

+
i

j=1
max

(

0,
RiSi(0)− K+

ij

P+
ij

)

x+ij +
∑n

−
i

k=1
max

(

0,
K −

ik − RiS(0)
P−

ik

)

x−ik

]

s.t.
∑n

i=1

[

xi+
∑n

+
i

j=1
x+ij +

∑n
−
i

k=1
x−ik

]

=1

xi,x+ij ,x
−
ik≥0∀i,∀j,∀k.

(1) 

This problem admits a closed-form solution, as shown below. 

Theorem 1. (Worst-case problem) The worst-case portfolio return is 
equal to: 

Z∗ = max
i

max

{

max
j,k

K −
ik − K+

ij

P+
ij + P−

ik
, max

k

K −
ik

P−
ik + Si(0)

}

(2)  

Proof: We first consider the single-asset subproblem, where the 
manager only invests in one asset either through stocks, calls or puts. We 
observe that the manager will not invest in an option he does not ex
ercise at optimality, because the objective would be strictly improved by 
allocating that money to a stock or an option that is exercised at opti
mality. (In our worst-case setting, we always know which options are 
exercised at optimality because there is no stochasticity.) Hence, the 
single-asset version of Problem (1) can be rewritten as: 

max minR≥0

[

Rx +
∑n+

j=1

RS(0) − K+
j

P+
j

x+j +
∑n−

k=1

K −
k − RS(0)

P−
K

x−k

]

s.t. x +
∑n+

j=1
x+j +

∑n−

k=1
x−k = 1

x, x+j , x
−
k ≥ 0, ∀j, k,

(3)  

The slope of the inner function in R is: x +
∑n+

j=1
S(0)
P+

j
x+

j −
∑n−

k=1
S(0)
P−

K
x−

k ,

which is non-decreasing in R. Therefore, the minimum over R is ach
ieved either when this slope is equal to 0 or (if the slope is positive for all 
R ≥ 0) at R = 0. In both cases, this yields an objective of 

∑n−

k=1
K−

k x−
k

P−
k

−

∑n+

j=1
K+

j x+
j

P+
j

. But if x +
∑n+

j=1
S(0)
P+

j
x+

j −
∑n−

k=1
S(0)
P−

K
x−

k > 0, there exists ϵ > 0 

and indices j and k such that one can increase x−
k by ϵ, decrease x+

j by ϵ 
and still have a feasible solution, and the objective will be strictly 

improved by 

(
∑n−

k=1
K−

k
P−

k
+
∑n+

j=1
K+

j
P+

j

)

ϵ. Hence, this yields the following 

problem to solve: 
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max
∑n−

k=1

K −
k x−k
P−

k
−
∑n+

j=1

K+
j x+j
P+

j

s.t. x +
∑n+

j=1

S(0)
P+

j
x+j −

∑n−

k=1

S(0)
P−

K
x−k = 0,

x +
∑n+

j=1
x+j +

∑n−

k=1
x−k = 1,

x, x+j , x−k ≥ 0 ∀j, k.

(4)  

This is a linear programming problem with two equality constraints and 
a non-empty feasible set, so there exists an optimal solution with only 
two non-zero components. Because we must have x +

∑n+

j=1
S(0)
P+

j
x+

j −

∑n−

k=1
S(0)
P−

k
x−

k = 0, the two non-zero components have to be one put and 

either one call or the stock and a put. 
Hence, we know the optimal portfolio will consist of either calls and 

puts or stock shares and puts. When the optimal sub-portfolio consists of 
one put (denoted put k for some k) and one call option (denoted call j for 
some j) for a given stock, then the optimal worst-case return is: 

Z∗ = max
j,k

K −
k − K+

j

P+
j + P−

k
, (5)  

and the optimal allocations within the sub-portfolio are: 

x∗+ =
P+

j

P+
j + P−

k
, x∗− =

P−
k

P+
j + P−

k
.

where j and k are those that achieve the maximum in Eq. (5). 
This is because, when the two equality constraints in Problem (4) 

become (dropping the indices j and k): 

x+

P+ =
x−

P− ,

x+ + x− = 1,

leading to Eq. (2.1). We find the optimal j and k by reinjecting the al
locations into the objective and picking the j and k that achieve the 
highest objective value, yielding Eq. (5). 

In a similar manner left to the reader, we can prove that, when the 
optimal sub-portfolio for a given asset consists of one put (denoted put k 
for some k) on the stock and that stock itself, then the optimal worst-case 
return is: 

Z∗ = max
k

K −
k

P−
k + S(0)

, (6)  

and the optimal sub-portfolio allocations in the stock and the put on that 
stock are, with k the index that achieves the optimum in Eq. (6): 

x∗ =
S(0)

P−
k + S(0)

, x∗−k =
P−

k

P−
k + S(0)

Because Z∗ in Eq. (6) is always positive, it is suboptimal to only invest 
in the stock itself, for which the worst-case return is 0 in this framework. 

It follows immediately by combining the results above that the 
optimal worst-case return for the single-asset subproblem is given by: 

Z∗ = max

{

max
j,k

K −
k − K+

j

P+
j + P−

k
, max

k

K −
k

P−
k + S(0)

}

. (7) 

We now return to the original worst-case problem where we have 
multiple underlying assets. Using Eq. (7) and introducing new decision 
variables αi as the fraction of the portfolio invested in asset i either by 
buying shares of the stock itself or by buying call options on that stock or 
by buying put options on that stock, we rewrite Problem (1) as: 

max
∑n

i=1
max

{

max
j,k

K −
ik − K+

ij

P+
ij + P−

ik
, max

k

K −
ik

P−
ik + Si(0)

}

αi

s.t.
∑n

i=1
αi = 1,

αi ≥ 0, ∀i.

This is a linear problem over a simplex, whose optimal solution is ach
ieved at a corner point, yielding a non-diversified optimal portfolio and 
Eq. (2) as the optimal objective. 

Hence, at optimality, the manager who seeks to protect his portfolio 
against the most adverse realization of the uncertainty invests in only 
one asset, and for that asset invests in at most one call option and one put 
option, or at most one put option and the stock itself. Although imple
menting this approach will guarantee to the investor that his portfolio 
return will not fall below the optimal value in Eq. (2), it is extremely 
conservative because it assumes that the stock prices at the next time 
period can take any possible non-negative value, so that the gross 
returns can take any non-negative value as well. It is therefore natural to 
ask how the optimal strategy will change if we consider a more realistic 
description of uncertainty that uses our knowledge of the stock prices at 
the present time period and limits the possible outcomes at the next time 
period to a more realistic set of values. This is the purpose of the next 
section. 

2.2. Weak guarantee model 

2.2.1. Formulation 
Here, we consider a more realistic modeling of uncertainty inspired 

by Bertsimas and Sim [5]. Specifically, we assume that the stock returns 
belong to a polyhedral set centered at the nominal values of the returns, 
the size of which is parametrized by a budget of uncertainty, and model 
correlation between stock returns using a factor model. The decision 
variables are the fractions of the portfolio invested in each financial 
instrument. The investor seeks to maximize the worst-case portfolio 
return over that polyhedral uncertainty set, subject to fractions summing 
to one and being non-negative. The difference with the strong-guarantee 
setting is that the previous uncertainty set consisted of all non-negative 
stock returns. In the current setting, we assume that option prices also 
are non-negative; however, this assumption is relaxed in Section 2.5. 

We use the following notation, in addition to the one described in the 
previous section.  

Additional 
parameters:  

L  the number of factors considered, 
Ri  nominal value of stock return i for i = 1,…,n,

R̂il  maximum deviation of stock return i from its nominal value 
due to factor l   
for i = 1,…, n and l = 1,…,L,

Γ  budget of uncertainty (in [0,L]).    

Additional decision 
variables:  

zl  scaled deviation of factor l from its nominal value for 
l = 1,…,L.   

Let denote R the uncertainty set for the stock returns. We will define 
R in terms of the scaled deviations of the stock returns from their 
nominal values, the sum of which cannot exceed the budget of uncer
tainty. In mathematical terms, R is defined as: 

R =

{

R

⃒
⃒
⃒
⃒
⃒
∃z,

∑L

l=1

⃒
⃒
⃒
⃒
⃒
zl

⃒
⃒
⃒
⃒
⃒
≤ Γ,

⃒
⃒
⃒
⃒
⃒
zl

⃒
⃒
⃒
⃒
⃒
≤ 1, ∀l, Ri = Ri +

∑L

l=1
R̂ilzl ∀i,

}
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The robust optimization problem is then formulated as: 

max
x

min
R∈R

∑n

i=1

[

Rixi+
∑n

+
i

j=1
max

(

0,
RiSi(0)− K+

ij

P+
ij

)

x+ij +
∑n

−
i

k=1
max

(

0,
K −

ik − RiS(0)
P−

ik

)

x−ik

]

s.t.
∑n

i=1

[

xi+
∑n

+
i

j=1
x+ij +

∑n
−
i

k=1
x−ik

]

=1

xi,x+ij ,x
−
ik≥0∀i,j,k.

(8)  

This formulation is not yet tractable because both the outer maximiza
tion and the inner minimization are over continuous sets. To make the 
formulation efficiently solvable, we seek to obtain a single master 
maximization problem that would be linear or convex, to preserve 
tractability. While [5] has shown how to do this for problems linear in 
the decision variables and the uncertain parameters, the piecewise 
linear terms in options make the problem investigated here challenging. 
Theorem 2 shows how we can still obtain a tractable reformulation. 

Theorem 2. (Tractable reformulation of the weak-guarantee problem) 
Problem (8) can be reformulated as the following linear problem: 

max
∑n

i=1

[

Ri xi +
∑n

−
i

k=1
x−ik

(
K −

ik − RiSi(0)
P−

ik

)

+
∑n

+
i

j=1
x+ij

(
RiSi(0) − K+

ij

P+
ij

)]

−

(

pΓ +
∑L

l=1
ql

)

s.t.
∑n

i=1

[

xi +
∑n

−
i

k=1
x−ik +

∑n
+
i

j=1
x+ij

]

= 1, p + ql ≥
∑n

i=1
R̂il

(

xi +
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l, p + ql

≥
∑n

i=1
R̂il

(

− xi −
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
+
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l, p, ql, xi, x−ik , x
+
ij

≥ 0, ∀i, j, k, l, (9)  

Proof: The decision maker will not invest in options that have a zero 
payoff at optimality, because allocating that money from zero-payoff 
options to the stock or to options that have a positive payoff strictly 
improves the objective. (Since the setting is not stochastic, we know 
which options will have a positive payoff at optimality.) In other words, 

when max
(

0, K−
ik − RiSi(0)

P−
ik

)

or max
(

0, K−
ik − RiSi(0)

P−
ik

)

is equal to zero for the 

worst-case Ri’s, the manager will not invest in call j or put k of stock i 
because he will prefer investing in the stock, which has non-negative 
gross return. Therefore, we can separate the nominal part of the port
folio return from the part subject to uncertainty in the objective as fol
lows, with Z = {z

⃒
⃒
∑L

l=1
⃒
⃒zl
⃒
⃒ ≤ Γ,

⃒
⃒zl
⃒
⃒ ≤ 1, ∀l}: 

max
∑n

i=1

[

Ri xi +
∑n

−
i

k=1
x−ik

(
K −

ik − RiSi(0)
P−

ik

)

+
∑n

+
i

j=1
x+ij

(
RiSi(0) − K+

ij

P+
ij

)]

− max
z∈Z

∑L

l=1

⃒
⃒
⃒
⃒
⃒

∑n

i=1
R̂il

(

xi +
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)⃒
⃒
⃒
⃒
⃒
.|zl|

We then invoke strong duality (see [41]) for the inner minimization 
problem in z to conclude. □ 

2.2.2. Optimal allocation 
Theorem 3 provides structural insights into the optimal allocation. 

Theorem 3. (Optimal allocation) The manager invests in at most one call 
and at most one put of the same underlying asset for each asset. 

Proof: Consider the dual of Problem (9). 

min α

s.t. α +
∑L

l=1
R̂il
(
γ+l − γ−l

)
≥ Ri, ∀i,

α +
∑L

l=1
R̂il

Si(0)
P+

ij

(
γ+l − γ−l

)
≥

RiSi(0) − K+
ij

P+
ij

, ∀i, j,

α −
∑L

l=1
R̂il

Si(0)
P−

ik

(
γ+l − γ−l

)
≥

K −
ik − RiSi(0)

P−
ik

, ∀i, k,

∑L

l=1

(
γ+l + γ−l

)
≤ Γ

γ+l + γ−l ≤ 1, ∀l,

γ+l , γ−l ≥ 0, ∀l.

(10)  

We will prove that the manager invests in at most one call by contra
diction. The proof for puts is similar and left to the reader. Assume that 
we have xij > 0 and xij′ > 0 for some i,j,j′ . By complementarity slackness: 

α +
∑L

l=1
R̂il

Si(0)
P+

ij

(
γ+l − γ−l

)
=

RiSi(0) − K+
ij

P+
ij  

and 

α +
∑L

l=1
R̂il

Si(0)
P+

ij′

(
γ+l − γ−l

)
=

RiSi(0) − K+

ij′

P+

ij′

Rearranging terms, this leads to: αP+
ij + K+

ij = αP+

ij′ + K+

ij′ so that the 
optimal objective α is given by: 

α =
K+

ij′ − K+
ij

P+
ij − P+

ij′
.

Since the optimal objective is known as soon as the decision maker in
vests in two calls of the same stock, there exists an optimal primal so
lution for (9) where the manager only invests in those two call options 
(the dual constraints are not binding so the corresponding primal vari
ables are zero). Writing Problem (9) in that case with x and x′ the 
fractions invested in the two call options and dropping the subscript i,
we obtain: 
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maxx
(

rS(0) − K+

P+

)

+ x′

(
rS(0) − K

′
+

P
′
+

)

−

(
S(0)
P+ x +

S(0)

P
′
+

x′

)

⋅max
∑L

l=1

⃒
⃒
⃒R̂il

⃒
⃒
⃒zl 

s.t.
∑L

l=1
zl ≤ Γ 0 ≤ zl ≤ 1, ∀l, s.t.x + x′

= 1 x, x′

≥ 0.

Hence the inner maximization in z is independent of x and x′ and the 
outer maximization problem is linear in x and x′ over a simplex. The 
optimal solution is thus attained when the manager only invests in the 
call option with the higher return. □ 

Intuitively, the investor does not invest in multiple calls or multiple 
puts of the same asset in the robust optimization framework because the 
worst-case portfolio return over the uncertainty set is strictly improved 
by combining the allocations into calls (respectively puts) of the same 
underlying asset into one well-chosen call (respectively put). This is 
because there is no stochasticity in the robust optimization framework, 
where the worst case is optimized over the uncertainty set, so the 
manager knows at optimality which options will be exercised. Once one 
call is in the money, i.e., the stock price is higher than the strike price, all 
calls with smaller strike price are in the money too. Similarly, once one 
put is in the money, i.e., the stock price is lower than the strike price, all 
puts with higher strike price are in the money too. So there is no 
advantage in having multiple calls or multiple puts on the same un
derlying asset in the robust optimization representation of uncertainty. 
Further, in robust optimization without options, the part of the objective 
function related to a specific asset always increases with that asset’s 
return, so that the worst case is for a low return. Diversification then 
makes sense when the range forecasts of the returns overlap. In the case 
with options, the presence of puts means that the part of the objective 
function related to the underlying asset can be decreasing in the stock 
returns and the worst case is achieved where the slope of that part of the 
objective function change signs; also, the presence of options allows the 
decision maker to have a bigger impact on shaping the return of the 
portfolio so that the parts of the objective about various underlying 
assets may no longer overlap; that is why we have less diversification. 

2.3. Combined weak-and-strong-guarantees model 

Here we add the strong-guarantee constraint that we first considered 
in Section 2.1 and is inspired by [24], to the weak-guarantee model 
developed in Section 2.2. In this model, the investor seeks to maximize 
his worst-case return when the worst case is measured over a polyhedral 
uncertainty set for the stock returns (“reasonable worst case” for short), 
while ensuring that the absolute worst case (worst case measured over 
all non-negative stock returns) is at least a fraction θ ∈ [0,1] of the 
“reasonable worst case.” Fractions (representing the fraction of the 
portfolio in a financial instrument) have to sum to one and be 
non-negative. That is, the investor seeks to solve:  

Problem (11) has an infinite number of constraints; however, Theorem 4 
shows that it can be solved in a tractable manner as a linear program
ming problem with a finite number of constraints. 

Theorem 4. (Tractable reformulation) Problem (11) can be reformu
lated as a linear problem: 

max z

s.t. z ≤
∑n

i=1

[

Ri

xi +
∑n

−
i

k=1
x−ik

(
K −

ik − RiSi(0)
P−

ik

)

+
∑n

+
i

j=1
x+ij

(
RiSi(0) − K+

ij

P+
ij

)]

−

(

pΓ +
∑L

l=1
ql

)

θz

≤
∑n

i=1

(

−
∑n

+
i

j=1
x+ij

K+
ij

P+
ij
+
∑n

−
i

k=1
x−ik

K −
ik

P−
ik

)

xi +
∑n

+
i

j=1

Si(0)
P+

ij
x+ij −

∑n
−
i

k=1

Si(0)
P−

ik
x−ik

= 0 ∀i, p + ql ≥
∑n

i=1
R̂il

(

xi +
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l, p + ql

≥
∑n

i=1
R̂il

(

− xi −
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
+
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l,
∑n

i=1

[

xi +
∑n

−
i

k=1
x−ik

+
∑n

+
i

j=1
x+ij

]

= 1, p, ql, xi, x−ik , x+ij ≥ 0, ∀i, j, k, l,
(12)  

Proof: Using Theorem 2, Problem (11) can be formulated as: 

max z

s.t θz ≤
∑n

i=1

[

Ri xi +
∑n

+
i

j=1
max

(

0,
RiSi(0) − K+

ij

P+
ij

)

x+ij +
∑n

−
i

k=1
max

(

0,
K −

ik − RiS(0)
P−

ik

)

x−ik

]

, ∀R ≥ 0

∑n

i=1

[

xi +
∑n

+
i

j=1
x+ij +

∑n
−
i

k=1
x−ik

]

= 1

xi, x+ij , x−ik ≥ 0 ∀i, j, k.

(11)   
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max z

s.t. z ≤
∑n

i=1

[

Ri

xi +
∑n

−
i

k=1
x−ik

(
K −

ik − RiSi(0)
P−

ik

)

+
∑n

+
i

j=1
x+ij

(
RiSi(0) − K+

ij

P+
ij

)]

−

(

pΓ +
∑L

l=1
ql

)

θz

≤
∑n

i=1

[

Ri xi +
∑n

+
i

j=1
max

(

0,
RiSi(0) − K+

ij

P+
ij

)

x+ij

+
∑n

−
i

k=1
max

(

0,
K −

ik − RiS(0)
P−

ik

)

x−ik

]

, ∀R ≥ 0p + ql

≥
∑n

i=1
R̂il

(

xi +
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l, p + ql

≥
∑n

i=1
R̂il

(

− xi −
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
+
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l,
∑n

i=1

[

xi +
∑n

−
i

k=1
x−ik

+
∑n

+
i

j=1
x+ij

]

= 1, p, ql, xi, x−ik , x
+
ij ≥ 0, ∀i, j, k, l,

(13)  

We then reformulate the right-hand side of the second constraint using 
Eq. (4) for multiple assets, leading to Problem (12). 

□ 

2.4. Extension to multi-period robust optimization 

In this section, we incorporate multiple time periods to the weak- 
guarantee robust optimization formulation. The investor approaches 
the portfolio optimization problem as an open-loop problem, i.e., he acts 
upon the information available and re-solves the problem at each time 
period, incorporating the new information he has received. This means 
that at each time period, the investor takes only the first step of the 
optimal allocation strategy computed with the information up to that 
time period. In other words, he solves consecutive multi-period portfolio 
optimization problems with decreasing time horizons. The open-loop 
approach in robust optimization was first described in Bertsimas and 
Thiele [42] and has the advantage of being linear and computationally 
efficient. The linearity of the formulation is a significant advantage for 
large-scale problems. Closed-loop approaches such as adaptive or 
adjustable robust optimization as well as stochastic programming 
benchmarks are beyond the scope of this paper but represent a valuable 
direction for future work. 

The multi-period portfolio optimization problem can be formulated 
as follows. There are n assets and T trading times. The investor’s goal is 
to manage his portfolio of assets in a manner that maximizes his final 
wealth. The initial budget is $1. After portfolio rebalancing, the decision 
variables about each stock, call and put are monetary values rather than 
fractions (because the budget after the initial time period may not be 
$1). We consider a family of uncertainty budgets, Γt for t = 1,…,T,
based on the manager’s attitude toward risk and uncertainty. As in 
Bertsimas and Thiele [42], these budgets can be linear or concave in 
time to capture the canceling-out of uncertainty when many indepen
dent random variables are summed, in the spirit of the law of large 
numbers. 

The problem can be formulated stylistically as follows:  

Maximize robust worst-case return over 
the polyhedral uncertainty set at 
time T,

Subject to Initial Monetary Budget: Initial portfolio allocations sum 
to 1, 

Subject to Dynamics Equations: Amount allocated at the begin
ning of time t is at most the 
robust worst-case return over 
the polyhedral uncertainty set at 
time t − 1,

Subject to Auxiliary Constraints: this group of constraints con
nects the auxiliary variables 
generated from writing the dual 
problem and using strong 
duality to the amount of uncer
tainty and the allocation at time 
t,

Subject to Non-negativity Constraints: all decision variables are non- 
negative. 

We have seen in the previous section that the worst-case portfolio 
return for a generic time period is given by: 

∑n

i=1

[

Rixi +
∑n

−
i

k=1
x−ik

(
K −

ik − RiSi(0)
P−

ik

)

+
∑n

+
i

j=1
x+ij

(
RiSi(0) − K+

ij

P+
ij

)]

−

(

pΓ+
∑L

l=1
ql

)

with the auxiliary constraints: 

p + ql ≥
∑n

i=1
R̂il

(

xi +
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l,

p + ql ≥
∑n

i=1
R̂il

(

− xi −
∑n

+
i

j=1
x+ij

Si(0)
P+

ij
+
∑n

−
i

k=1
x−ik

Si(0)
P−

ik

)

∀l,

It is straightforward to add indices t for t = 1,…,T and obtain the 
following formulation, which we state without proof: 

Multi-stage weak-guarantee formulation 

max
∑n

i=1

⎡

⎣RiT xiT+
∑n

−
i

k=1
x−ikT

⎛

⎝K −
ik − RiT Si(0)

P−
ik

⎞

⎠+
∑n

+
i

j=1
x+ijT

⎛

⎝
RiT Si(0)− K+

ij

P+
ij

⎞

⎠

⎤

⎦

−

(

pT ΓT+
∑L

l=1
qlT

)

s.t.
∑n

i=1

[

xi1+
∑n

−
i

k=1
x−ik1+

∑n
+
i

j=1
x+ij1

]

=1

∑n

i=1

[

xit+
∑n

−
i

k=1
x−ikt+

∑n
+
i

j=1
x+ijt

]

≤

∑n

i=1

⎡

⎣Ri,t− 1xi,t− 1+
∑n

−
i

k=1
x−ik,t− 1

⎛

⎝K −
ik − Ri,t− 1Si(0)

P−
ik

⎞

⎠+
∑n

+
i

j=1
x+ij,t− 1

⎛

⎝
Ri,t− 1Si(0)− K+

ij

P+
ij

⎞

⎠

⎤

⎦

−

(

pt− 1Γt− 1+
∑L

l=1
ql,t− 1

)

,∀t,

pt+qlt≥
∑n

i=1
R̂ilt

(

xit+
∑n

+
i

j=1
x+ijt

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ikt

Si(0)
P−

ik

)

∀l,t,

pt+qlt≥
∑n

i=1
R̂ilt

(

− xit −
∑n

+
i

j=1
x+ijt

Si(0)
P+

ij
+
∑n

−
i

k=1
x−ikt

Si(0)
P−

ik

)

∀l,t,

pt,qlt,xit,x−ikt,x
+
ijt≥0,∀i,j,k,l,t.

(14) 
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It is possible to add strong-guarantee constraints to the formulation as in 
the single-period case, which is left to the reader. Further, the theorem 
below shows that the same structural insights we derived in Theorem 3 
for the single-stage case holds for multiple stages. 

Theorem 5. (Optimal allocation for multi-stage problem) At each time 
period, it is optimal to invest in at most one call and at most one put of the 
same underlying asset. 

Proof: We prove it is true at time T and proceed backward to prove 
that it is true for all time periods 1 ≤ t ≤ T. 

To analyze the optimal allocation at time T we assume that the 
problem has been solved to optimality and so we set the decision vari
ables at times t < T to their optimal values, denoted by star superscripts. 
Let AT the allocation budget available at time T, defined by: 

AT =
∑n

i=1

⎡

⎣Ri,T − 1x∗i,T − 1 +
∑n

−
i

k=1
x∗−ik,T− 1

⎛

⎝K −
ik − Ri,T − 1Si(0)

P−
ik

⎞

⎠

+
∑n

+
i

j=1
x∗+ij,T − 1

⎛

⎝
Ri,T − 1Si(0) − K+

ij

P+
ij

⎞

⎠

⎤

⎦

−

(

p∗
T − 1ΓT− 1 +

∑L

l=1
q∗

l,T − 1

)

The problem at time T can then be formulated as: 

max
∑n

i=1

⎡

⎣RiT xiT +
∑n

−
i

k=1
x−ikT

⎛

⎝K −
ik − RiT Si(0)

P−
ik

⎞

⎠+
∑n

+
i

j=1
x+ijT

⎛

⎝
RiT Si(0) − K+

ij

P+
ij

⎞

⎠

⎤

⎦

−

(

pT ΓT +
∑L

l=1
qlT

)

s.t.
∑n

i=1

[

xiT +
∑n

−
i

k=1
x−ikT +

∑n
+
i

j=1
x+ijT

]

≤ AT ,

pT + qlT ≥
∑n

i=1
R̂ilT

(

xiT +
∑n

+
i

j=1
x+ijT

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ikT

Si(0)
P−

ik

)

∀l,

pT + qlT ≥
∑n

i=1
R̂ilT

(

− xiT −
∑n

+
i

j=1
x+ijT

Si(0)
P+

ij
+
∑n

−
i

k=1
x−ikT

Si(0)
P−

ik

)

∀l,

pT , qlT , xiT , x−ikT , x+ijT ≥ 0, ∀i, j, k, l.

We then use the result in Theorem 3 where the last time period here is 
the single period of the single-stage case and the structural results we 
had previously derived (about investing in at most one call and at most 
one put) still hold. It is easy to see that the optimal objective of Problem 
() increases with AT, since the feasible set of the maximization problem 
increases when AT increases, which we need in subsequent parts of the 
proof. 

Moving on to time t, t ≤ T − 1, we want At+1 to be as large as possible 
so that the investor’s terminal wealth will be in turn as large as possible. 
Again, we set the decision variables for times before t to their optimality 
and define: 

At =
∑n

i=1

⎡

⎣Ri,t− 1xi,t− 1 +
∑n

−
i

k=1
x−ik,t− 1

⎛

⎝K −
ik − Ri,t− 1Si(0)

P−
ik

⎞

⎠

+
∑n

+
i

j=1
x+ij,t− 1

⎛

⎝
Ri,t− 1Si(0) − K+

ij

P+
ij

⎞

⎠

⎤

⎦

−

(

pt− 1Γt− 1 +
∑L

l=1
ql,t− 1

)

So we solve: 

max At+1 =
∑n

i=1

⎡

⎣Ritxit +
∑n

−
i

k=1
x−ikt

⎛

⎝K −
ik − RitSi(0)

P−
ik

⎞

⎠+
∑n

+
i

j=1
x+ijt

⎛

⎝
RitSi(0) − K+

ij

P+
ij

⎞

⎠

⎤

⎦

−

(

ptΓt +
∑L

l=1
qlt

)

s.t.
∑n

i=1

[

xit +
∑n

−
i

k=1
x−ikt +

∑n
+
i

j=1
x+ijt

]

≤At,

pt +qlt ≥
∑n

i=1
R̂ilt

(

xit +
∑n

+
i

j=1
x+ijt

Si(0)
P+

ij
−
∑n

−
i

k=1
x−ikt

Si(0)
P−

ik

)

∀l,

pt +qlt ≥
∑n

i=1
R̂ilt

(

− xit −
∑n

+
i

j=1
x+ijt

Si(0)
P+

ij
+
∑n

−
i

k=1
x−ikt

Si(0)
P−

ik

)

∀l,

pt,qlt,xit,x−ikt,x
+
ijt ≥ 0, ∀i, j,k, l.

We then use the result in Theorem 3 to prove that we still invest in at 
most one call and at most one put of the underlying asset at optimality. 
The objective function of the problem increases in At so we can move on 
to time t − 1 where we will seek to maximize At and repeat until we 
reach t = 1. 

2.5. Extension to negative option prices 

The economic situation in 2020 has made it apparent that there is a 
need for the operations research literature to also include the case when 
option prices become negative. A negative call price indicates that the 
option writer pays the option purchaser to take the option. This is not a 
normal occurrence in well-functioning financial markets but can happen 
in periods of great crisis or uncertainty. Longstaff [43] observed that 
market prices for callable Treasury bonds often imply negative values 
for the implicit call option. They considered a variety of possible ex
planations for these negative values including the Treasury’s track re
cord in calling bonds optimally, tax-related effects, tax-timing options, 
and bond liquidity. 

In order to capture this abnormal market condition as well as the 
situation of well-functioning financial markets, we rewrite the formu
lation as Problem (15) below, where the decision variables are the 
number of shares in each financial instrument. In this model, the option 
prices can take negative as well as positive (or zero) values and the 
objective function maximizes the total wealth instead of total return. 
Then, the constraint regarding the summation of decision variables is a 
budget constraint with the initial budget of B dollars. 
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max z

s.t. z≤
∑n

i=1

[

RiSi(0)xi+
∑n

+
i

j=1

(
RiSi(0)− K+

ij

)
x+ij +

∑n
−
i

k=1

(
K −

ik − RiSi(0)
)
x−ik

]

,∀R∈R

θz≤
∑n

i=1

[

RiSi(0)xi+
∑n

+
i

j=1

(
RiSi(0)− K+

ij

)
x+ij +

∑n
−
i

k=1

(
K −

ik − RiSi(0)
)
x−ik

]

,∀R≥0

∑n

i=1

[

Si(0)xi+
∑n

+
i

j=1
p+

ij x+ij +
∑n

−
i

k=1
p−

ikx−ik

]

≤B

xi,x+ij ,x
−
ik ≥0 ∀i,j,k.

(15)  

Once we have redefined the problem as above and made the change in 
defining the decision variables, it is easy to reformulate Problem (15) in 
a tractable manner using the techniques outlined above, leading to 
Theorem 6. 

Theorem 6. (Tractable reformulation) Problem (15) can be 

reformulated as a linear problem: 

max z

s.t. z ≤
∑n

i=1

[

Ri
Si(0)xi +

∑n
−
i

k=1
x−ik
(

K −
ik − RiSi(0)

)
+
∑n

+
i

j=1
x+ij
(

RiSi(0) − K+
ij

)
]

−

(

pΓ +
∑L

l=1
ql

)

θz

≤
∑n

i=1

(

−
∑n

+
i

j=1
x+ij K+

ij +
∑n

−
i

k=1
x−ikK −

ik

)

xi +
∑n

+
i

j=1
x+ij −

∑n
−
i

k=1
x−ik = 0 ∀i, p + ql

≥
∑n

i=1
R̂ilSi(0)

(

xi +
∑n

+
i

j=1
x+ij −

∑n
−
i

k=1
x−ik

)

∀l, p + ql

≥
∑n

i=1
R̂ilSi(0)

(

− xi −
∑n

+
i

j=1
x+ij +

∑n
−
i

k=1
x−ik

)

∀l,
∑n

i=1

[

Si(0)xi +
∑n

+
i

j=1
p+

ij x+ij

+
∑n

−
i

k=1
p−

ikx−ik

]

≤ Bp, ql, xi, x−ik , x
+
ij ≥ 0, ∀i, j, k, l,

(16)  

The proof is similar to the proof of Theorem 4 and therefore is left to 
the reader. 

3. Numerical experiments 

In this section we investigate the practical performance of the pro
posed approach, compared to the following benchmarks.  

1. MVO: Classical Markowitz portfolio optimization without options,  
2. [24]’s RPO, IRPO: robust portfolio optimization (weak guarantee) 

and insured robust portfolio optimization (combined weak and 
strong guarantees) as described in Zymler et al. [24]  

3. Diversified max: Invest in the highest expected return instrument of 

all underlying assets in the same proportion 1/n: maxi

(

Ri,

maxj
RiSi(0)− K+

ij
P+

ij
,maxk

K−
ik − RiSi(0)

P−
ik

)

, which means that for each asset i,

among its all available call options, all put options, and the stock 
itself, we pick the instrument with the highest return.  

4. The worst-case approach (maxmin problem where R ≥ 0),  
5. RPOW: the robust optimization approach without options (for the 

same Γ as the approach with options). 

Further, Table 1 shows the different parameters for the two types of 
uncertainty sets we consider to describe the random returns: ellipsoidal 
and polyhedral uncertainty sets. p, q refer to the parametrization of the 
ellipsoidal uncertainty set and Γ to the parametrization of the polyhedral 
uncertainty set. 

We consider the following metrics to compare the portfolio return R 
obtained from the various models presented in Table 1:  

1. Sharpe Ratio with a riskless rate of 0%: mean(R)− 1
std(R)

2. VaRα = min{r|Pr(R ≤ r) ≥ α},α = 0.1  
3. ES (Expected Shortfall, a.k.a CVaR) =E[R|R ≥ VaRα]

4. CE (Certainty Equivalent) =U− 1(E(U(R)) where U(a) = log(a + 1),
U− 1(a) = ea − 1 

These metrics are explained in further detail in Zhao and Palomar 
[29]. 

Table 2 
Results for our proposed approach and benchmarks.  

Model Optimal solution 

1 26 stocks: around 3% each 
2 call3 BA: 1 
3 call1 AXP: 0.0286, call1 V: 0.169, call3 BA: 0.149, call5 UNH: 0.134, 

put1 GS: 0.015 put3 IBM: 0.168, put3 MRK: 0.022, put3 WBA: 0.314 
4 call1 AXP : 0.107, call1 V : 0.0272, call2 HD: 0.0483 

call3 BA: 0.078, call3 PG : 0.024, call5 UNH: 0.139  
put2 CAT : 0.024, put2 MMM: 0.116, put3 IBM: 0.062  
put3 MRK: 0.0614, put3 WBA: 0.192, put4 TUX : 0.117 

5 call1 AXP: 0.0841, call2 CVX : 0.051, call2 HD: 0.0597,put2 CAT: 0.023, 
call3 BA: 0.053, call3 MSFT: 0.05, call3 PG : 0.019 call5 UNH : 0.098, 
put2 MMM: 0.0358 put3 IBM: 0.03, put3 KO: 0.0353, put3 MRK: 0.0458  
put3 WBA: 0.145, put4 TUX: 0.0914, put4 XOM: 0.176, put5 WMT: 0.0004 

6 put3 WBA: 0.2419, call 3 WBA:0.4348,call3 AXP: 0.333 
7 call5 UNH: 0.027,call1 V: 0.0594, call2 CAT: 0.0158, 

call3 MSFT: 0.0649, call3 JPM: 0.0315,call1 VZ: 0.013, 
call2 HD: 0.046,put3 AXP:0.06, put3 WBA: 0.29, call1 AXP: 0.0177 

8 call3 WBA: 0.637, put3 WBA : 0.363 
9 call1 V: 0.13, call3 MSFT: 0.083, call3 BA: 0.21, call5 UNH: 0.103, 

put2 MMM: 0.11, put3 IBM: 0.079, put3 WBA: 0.165 
10 call5 UNH: 0.156, call1 V: 0.1552,call1 AXP: 0.058, 

call3 WBA: 0.072, call3 BA: 0.334,put3 IBM: 0.08, put3 WBA: 0.1431 
11 call3 WBA: 0.637, put3 WBA : 0.363 
12 call in all stocks: 0.033 each 
13 UNH:0.0926, V: 0.125, AXP: 0.029, WMT: 0.109, MSFT: 0.095 JPM: 

0.0962, 
HD: 0.105, AAPL: 0.08,, BA:0.078, NKE: 0.072, CSCO: 0.07 

14 UNH: 0.056, PFE: 0.049, V: 0.084, CAT: 0.0158, JNJ: 0.08, AXP: 0.0318, 
WMT: 0.068, MCD: 0.08, MSFT: 0.063, JPM: 0.054, VZ: 0.051, HD: 0.053,  
APPL: 0.06, BA: 0.062, NKE: 0.062, COSCO: 0.038  

Table 1 
Benchmarks.  

Model Type Γ  θ  p  q  

1 MVO – – – – 
2 Deterministic 0 0 0 0 
3 Proposed RPO 1 0 – – 
4 Proposed RPO 2 0 – – 
5 Proposed RPO 3 0 – – 
6 Deterministic IRPO 0 0.5 0 0 
7 Proposed IRPO 1 0.5 – – 
8 Proposed IRPO 2 0.5 – – 
9 [24]’s RPO – 0 0.5 0.7 
10 [24]’s IRPO – 0.5 0.5 0.7 
11 Worst case ≥ 4  1 1 1 
12 Max diversified 0 0 0 0 
13 RPO without options 1 – – – 
14 RPO without options 2 – – –  
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Fig. 1. The comparison of return distribution of methods with different un
certainty budget parameters on the portfolio return (0 ≤ Γ ≤ 4) for the first 
data set. 
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3.1. Model evaluation using Data Set 1 

In this section, we consider two years of bi-weekly stock price data 
from Yahoo! Finance for 30 different components of the Dow Jones 
Index downloaded on September 13, 2018. Stock prices and expected 
returns are shown in Table 13. For each asset we include 5 calls and 5 
puts. The strike prices are provided in Appendix Table 12. Because 
Yahoo! Finance does not provide the prices of European options, the 
options’ prices are computed using the Black–Scholes formula [3]. The 
R̂il parameters are obtained from the Cholesky decomposition of the 
correlation matrix of the returns. We do note that the assumptions for 
Black–Scholes option pricing may not be satisfied and that it may un
derestimate extreme market moves and therefore option prices. An 
interesting future research direction would be to develop an option 
pricing theory that would be aligned with robust optimization and 
would help hedge against extreme market moves, which is outside the 
scope of this paper. 

Two years of bi-weekly stock prices are used as historical data to 
simulate 50,000 return scenarios using the Gaussian Copula distribution 
as the joint distribution of the correlated stocks’ returns and assume an 
initial budget of $1. The simulated return values which are the uncertain 
parameters in our model have the same mean and covariance as the 
historical data we used. 

3.1.1. Portfolio allocation 
Table 2 below shows the optimal solutions for all benchmarks using 

Data Set 1. From a portfolio allocation perspective, varying the budget 
parameter Γ leads to 5 different solutions(models 2,3,4,5,11) and the 
most diversified solution corresponds to model 5(Γ = 3), when 7 calls 
and 9 puts are invested in, involving 16 different underlying assets. We 
also observe that some stocks only appear in a single model at opti
mality, through a call option (JPM, PG, VZ, CVX) or a put (XOM, GS), 
some stocks appear in several models and always through the same 
option (UNH, MRK, MMM, MSFT, TUX, HD, BA), some stocks appear in 
several models through two options (V, CAT, AXP, IBM), and one stock 
(WBA) appears in several models through three options. In the case 
where a stock appears through two or three options, one of the options 
appears only once. The spectrum of solutions is much more manageable 
to analyze than a naive approach where the investor has all possible 
puts, calls and stocks available for investment, as the overwhelming and 
paralyzing effect of too much choice has been documented in Iyengar 
and Lepper [44]. Hence, these numerical experiments suggest that the 
use of (European) options in conjunction with a modeling of the un
certainty using uncertainty sets present significant benefits for portfolio 
managers by limiting downside risk while allowing upside risk potential 
and also by keeping the amount of diversification easier to grasp by 

managers. 
For greater clarity, we also present in Table 3 a summary table 

showing which calls and puts are invested in (positive allocation) for 
each model and each underlying asset, without providing the exact 
allocation amounts. This table shows not only the diversification 
reduction in our proposed RPO but also shows this diversification 
reduction in Zymler et al. [24]’s IRPO. This suggests that diversification 
reduction may follow from applying robust optimization along with 
options, independently of the specific type of the uncertainty set. Some 
stocks, such as PFD, JNJ, WMT, AAPL, NKE, and CSCO, are only chosen 
in the robust optimization models without options. 

3.1.2. Portfolio performance 
Fig. 1 shows that the robust approach with different values of the 

uncertainty budget Γ outperforms other methods in the sense that it 
allows for far more upside risk with only a small increase in downside 
risk(the right tail of our models are lower than the benchmarks). In 
contrast, the diversified max approach has comparable upside risk but 
higher downside risk. Also, in Fig. 1, we observe that the optimal 
portfolio in the worst-case approach exhibits little volatility, as it is 
represented by a mostly vertical line on the graph. This is because when 
the portfolio consists of a call and a put and both are in the money with 
slight differences in options’ prices and allocations, then the portfolio 
value is (dropping the index i for convenience as we know that in this 
case it is optimal to invest only in one asset): 

R S(0)
(x+

P+
−

x−

P−

)
+

x− K −

P−
−

x+K+

P+

where 
(

x+

P+ −
x−

P−

)
is close to zero. Hence, the portfolio value depends little 

on R in this case. 
As Γ increases, the right tail of the portfolio value diminishes as the 

Table 4 
Performance evaluation for Data Set 1 (bolded: all models with Sharpe ratio 
higher than 1, those underlined are our proposed models, not underlined are 
[24]’s).  

Model mean (R 
− 1)

std Sharpe 
ratio 

VaR(α =

0.1)
CVaRα  U− 1(E(U(R))

1 0.003 0.014 0.246 0.913 1.003 1.003 
2 1.474 2.484 0.594 0.903 3.617 1.719 
3 0.952 0.816 1.166 0.901 2.053 1.843 
4 0.942 0.713 1.322 0.901 2.027 1.910 
5 0.801 0.563 1.422 0.909 1.818 1.749 
6 1.115 2.139 0.521 0.915 2.661 1.734 
7 0.632 0.488 1.296 0.904 1.649 1.590 
8 0.297 0.393 0.755 0.911 1.297 1.269 
9 0.981 0.891 1.101 0.910 2.019 1.945 
10 0.942 0.810 1.162 0.911 2.016 1.841 
11 0.297 0.393 0.755 0.911 1.297 1.269 
12 0.955 1.117 0.855 0.906 2.234 1.761 
13 0.006 0.017 0.370 0.947 1.007 1.006 
14 0.005 0.014 0.361 0.940 1.005 1.005  

Table 5 
Optimal solution for Data Set 2.  

Model Result 

1 NDXP: 0.118, SPX: 0.402, RUT: 0.201, AAPL: 0.152 
2 call 4 of NDXP 
3 put15 of RUT:0.434, call1 of NDXP:0.566 
4 put15 of RUT:0.383, call1 of NDXP:0.613,call15 of AAPL:0.0042 
5 RUT:0.97, put3 of RUT: 0.0273 
6 stock3: 0.57,put15 of stock3: 0.0161,call4 of stock1: 0.41 
7 stock3: 0.487, put15 of RUT:0.221, call1 of NDXP:0.2695 
8 put15 of RUT:0.204, call1 of NDXP:0.306,put15 of AAPL:0.0021 
9 put15 of RUT:0.4132, call1 of NDXP:0.5868 
10 put15 of RUT:0.2169, call1 of NDXP:0.2886,stock3:0.4945 
11 RUT:0.97, put3 of RUT: 0.03 
12 call 4 of NDXP: 0.2, stock2,3,4,5: 0.2 each 
13 NDXP: 0.145, SPX: 0.483, RUT: 0.22, AAPL: 0.1505 
14 NDXP: 0.118, SPX: 0.402, RUT: 0.1257, AAPL: 0.152, IBM: 0.15  

Table 6 
Allocation table for Data Set 2.  

Model NDXP SPX RUT AAPL IBM 

1 s s s s s 
2 c4 – – – – 
3 c1 – p15 – – 
4 c1 – p15 c15 – 
5 – – s, p3 – – 
6 c4 – s, p15 p15 – 
7 c1 – s p15 – 
8 c1 – p15 p15 – 
9 c1 – s, p15 – – 
10 c1 – s, p15 – – 
11 – – s, p3 – – 
12 c4 s s s s 
13 s s s s – 
14 s s s s s  
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manager becomes more conservative. In this example, Γ = 1 or 2 ach
ieves good performance by having an upside tail similar to that in the 
diversified max case and much lower downside risk. Hence, we believe 
the methodology holds much promise for investors. 

The various performance metrics are computed for all models in 
Table 4. Based on the results in Table 4, we observe that our robust 
models 4, 5 and 7 have the highest Sharpe ratio, i.e., we achieve a better 
risk-to-reward tradeoff. Also, these models have large ES and CE values, 
although a slightly larger potential loss in vaR in comparison with other 
benchmarks. 

3.2. Model evaluation using data set 2 

In this section we evaluate our model using real data including stock 
and option data from the Bloomberg Terminal. The trading date is Jan. 
3, 2020 and we choose 5 equities as the underlying stocks: NASDAQ 100 
index (NDX), S&P 500 index (SPX), Russell 2000 index (RUT), Apple Inc 
(AAPL), and International Business Machines Corporation (IBM). We 
also choose 150 options whose expiration date is 35 days after the 
trading date. 

3.2.1. Portfolio allocation 
Table 5 shows the optimal solution for different models. 
In Table 6, we observe fundamental differences in the optimal allo

cations obtained by the robust optimization with and without options. 
The robust optimization models without options (Model 13 with Γ = 1 
and Model 14 with Γ = 2) lead to diversified solutions with 4 and 5 
stocks, respectively. The robust optimization models with options 

(Models 3 to 11) invest in at most 3 assets, whether through stocks, puts 
or calls. Among those 9 models, 6 invest directly in a stock and that is 
always RUT. The remaining models only invest in calls and puts: always 
c1 of NDXP and p15 of RUT and, for one model, p15 of AAPL. This 
suggests that, when the decision maker seeks to protect himself from the 
worst-case return, well-chosen options make it less necessary to diver
sify the portfolio for protection against risk. 

We also observe that in Data Set 1 where option prices were 
computed using Black–Scholes option pricing, we never invested in the 
underlying stock, but do so in Data Set 2 where we use real option prices 
from the Bloomberg terminal. This suggests that options were attrac
tively priced and perhaps underpriced in Data Set 1. 

3.2.2. Portfolio evaluation 
Fig. 2 shows that the proposed robust approach has the highest up

side risk and lowest downside risk in comparison with other approaches 
since the cumulative distribution of the returns in our approach is more 
pushed to the right (towards higher returns) than others. Table 7 also 
documents this fact. 

In Table 7, we observe that Models 3 and 7 outperform the bench
mark portfolios; specifically, they exhibit the highest Sharpe ratio. 

3.3. Additional experiments 

Below we perform additional experiments. For ease of comparison 
we present the results for Data Sets 1 and 2 next to each other. 

3.3.1. Connection with utility theory 
Because Γ is often interpreted in the robust optimization literature as 

a measure of the investor’s risk aversion, it is natural to investigate how 
the proposed framework fits with the classical utility theory of [45]. 
Specifically, we study which uncertainty budget Γ leads to the robust 
solution with the highest expected utility on simulated returns, when we 
vary the parameters defining the utility function. We consider two types 
of utility functions: 

Constant Absolute Risk Aversion: U1(w) = 1 − exp(1 − αw)

Hyperbolic Absolute Risk Aversion: U2(w) =
1 − α

α

(
aW

1 − α + b
)α  

(The coefficient of absolute risk aversion of a utility function U is defined 
as − U′′

(w)/U′

(w).) 
Fig. 3 presents the models with budgets Γ = 0,1,2,3,4. (a) and (b) are 

for Data Set 1 and (c) and (d) are for Data Set 2. (b) and (d) show the 
optimal Γ for various parameter ranges while (a) and (c) provide a more 
comprehensive picture of how the allocations obtained with various 
budgets of uncertainty compare to each other. Each symbol (circle, tri
angle, etc) is shown five times on Subfigures (a) and (c), once for each 

Fig. 2. The comparison of different methods with the robust optimization approach with different uncertainty budget parameter on the portfolio return (0 ≤ Γ ≤ 4).  

Table 7 
Performance evaluation for Data Set 2 (bolded: all models with Sharpe ratio 
higher than 1, those underlined are our proposed models, not underlined are 
[24]’s.  

Model mean (R 
− 1)

std Sharpe 
ratio 

VaR(α =

0.1)
CVaRα  U− 1(E(U(R))

1 0.002 0.022 0.098 0.908 1.002 1.002 
2 0.510 0.831 0.614 0.902 1.861 1.350 
3 0.260 0.202 1.284 0.917 1.284 1.256 
4 0.280 0.226 1.240 0.914 1.313 1.275 
5 0.001 0.004 0.246 0.900 1.001 1.001 
6 0.209 0.340 0.613 0.905 1.335 1.350 
7 0.127 0.098 1.287 0.914 1.131 1.256 
8 0.144 0.115 1.252 0.900 1.150 1.275 
9 0.271 0.212 1.276 0.912 1.121 1.115 
10 0.134 0.105 1.272 0.909 1.141 1.133 
11 0.001 0.004 0.246 0.900 1.001 1.001 
12 0.104 0.185 0.560 0.906 1.001 1.096 
13 0.003 0.022 0.125 0.903 1.003 1.003 
14 0.002 0.022 0.098 0.920 1.002 1.002  
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Fig. 3. Results for constant absolute risk aversion: U1(w) = 1 − exp(1 − αw).  
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Fig. 4. Results for hyperbolic absolute risk aversion: U2(w) = 1− α
α

(
aW
1− α + b

)α 
where α = 0.1.  
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value of Γ. The value of Γ decreases as the mean of wealth increases, i.e., 
the leftmost symbol is for Γ = 4 and the rightmost one is Γ = 0. Different 
α values lead to different models with the highest expected utility. As an 
example, for the blue circles corresponding to the utility function with α 
= 0.5, the model with Γ = 0 (the rightest point) has the highest expected 
utility. For the green diamonds corresponding to the utility function 
with α = 10, the model with Γ ≥ 4 (leftmost point) has the highest 
utility value. As the coefficient of Constant Absolute Risk Aversion α 
increases, the value of Γ achieving the highest expected utility increases. 

From Fig. 4, we see that lower values of a and higher values of b make 
the optimal value of Γ increases. 

3.3.2. Effect of insurance constraints 
Fig. 5 depicts the effects of the insurance constraint on the optimal 

objective value (worst-case return over the uncertainty set) as a function 
of Γ ∈ [0, 4] and θ ∈ [0,1]. For any fixed Γ, the optimal worst-case return 
monotonically decreases with θ. When the uncertainty set is small (small 
Γ value), the optimal worst-case return over the uncertainty set is rela
tively high. Therefore, the inclusion of the insurance guarantee has a 
significant impact due to the high insurance costs that are introduced. 
When the budget of uncertainty Γ increases, which increases the size of 
the uncertainty set, the value of the optimal worst-case return over the 
uncertainty set drops when θ remains constant, and θ needs to decrease 
for the optimal objective value to remain constant. 

3.3.3. Effect of stock-factor dependency 
While studying the impact of correlation between pairs of assets 

would be cumbersome due to the number of pairs involved, we study the 
dependency between stock and factor by changing the value of the off- 
diagonal elements in R̂ as follows: R̂new = (1 − ρ) ∗ diag(R̂) + ρ ∗ R̂ 
where ρ ∈ [0, 1]. (In our model, there are as many factors as there are 
stocks.) When ρ = 0 the R̂ matrix is diagonal and the asset returns are 
independent, with each factor affecting only one stock return. When ρ =

1, we have the original R̂ matrix. In both Data Sets 1 and 2, we observe 
that, when the group of options invested in (non-zero allocation) stays 
the same, the allocation exhibits little change ( Fig. 6.) The main change 
comes from having new calls or puts options or stocks enter the port
folio, which leads to significant change in the allocation (Tables 8 and 
9). 

3.4. Extension to multiple periods 

Tables 10 and 11 show the optimal solutions of the multi-period 
model where the uncertainty budget function is chosen to be (1,2,3,4) 
(e.g., Γ3 = 3). For both data sets, the portfolio is the most diversified at 
time 1 as the allocation for Data Set 1 uses 9 underling assets and the 
allocation for Data Set 2 uses 3. In subsequent time periods, the allo
cation for Data Set 1 uses only 1 underlying asset and the allocation for 
Data Set 2 uses 2. Recall that the decision variables are monetary values 
and not fractions for t ≥ 2. 

Multi-period (open-loop) robust portfolio optimization with options 
therefore seems a promising area of research that we hope to combine 
with other types of options, such as American or Asian options, in future 
work. Of particular interest would be to study the impact of various 
families of uncertainty budgets on the optimal allocation. Further, 
because of the increasing difficulty in estimating parameters such as 
nominal stock returns and the stock-factor dependence matrix, it would 

Fig. 5. Tradeoff of weak and strong guarantee.  

Fig. 6. Diversification reduction when we change the ρ parameter.  
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be valuable to investigate uncertainty budget functions that are convex 
with time for this application. This is, however, beyond the scope of the 
present paper. 

3.5. Summary of results 

We summarize the insights gained in the numerical results and in
vestment insights as follows. First, a key focus of our paper was to 
compare the robust portfolios obtained with polyhedral uncertainty sets 
with those obtained with ellipsoidal uncertainty sets in Zymler et al. 
[24]. We observe that both types of uncertainty sets lead to portfolios 
that perform very well in practice, as measured by the Sharpe ratio. Our 
models behave slightly better than the benchmarks on the two data sets 
considered. Further, in practice, the allocations for both types of un
certainty sets show similar diversification properties; in particular, we 
invest in at most one call and at most one put with the same underlying 
asset. However, we are only able to prove this property for polyhedral 
uncertainty sets. 

The corresponding investment insight is that it is suboptimal to 
invest in more than one call or more than one put of the same underlying 
asset when uncertainty is modeled using a polyhedral uncertainty set 
and the investor maximizes his worst-case return over the uncertainty 
set, as in Bertsimas and Sim [5]. While the investor may find diversifi
cation across multiple calls and multiples puts on the same underling 
asset reassuring, this is actually counterproductive because the options 

are on the same asset. The investor would be better served selecting the 
“best” call and/or the “best” put as determined by the optimization 
problem as having the best combination of price and payoff. Another 
investment insight is that the use of options reduces the need for 
diversification across multiple assets, which we explain intuitively by 
the fact that exercising the option in essence improves the price of the 
stock and so improves its return enough that the investor does not need 
to hedge his bets as much by investing in multiple assets. 

4. Conclusions 

In this work, we have explored the impact of options to mitigate risk 
in static robust portfolio allocation, when the uncertain returns are 
described using polyhedral uncertainty sets parametrized by a budget of 
uncertainty. We have derived tractable reformulations for settings 
involving strong guarantees, weak guarantees and a combination of 
both, and explored theoretical properties of those models. In numerical 
experiments, the optimal portfolio with options exhibits less diversifi
cation but superior performance to the robust portfolio without options. 
We have also compared the performance of our proposed portfolios with 
those presented in Zymler et al. [24] for ellipsoidal sets, and identified 
values of the budget of uncertainty for which our models outperform the 
models obtained with ellipsoidal sets, as measured by the Sharpe ratio. 
We have also evaluated how the optimal choice of the budget of un
certainty varies with parameters defining the investor’s utility functions, 
considered the trade-off between weak and strong guarantees and 

Table 8 
Impact on allocation of changing ρ for Data Set 1.  

ρ\stock  call UNH call V call CAT call3 AXP call1 AXP call2 MSFT call3 MSFT call JPM call VZ call HD call BA put IBM put WBA 

0 0.087 0.198 0.071 0.040 0 0.158 0 0.132 0.031 0.158 0.125 0 0 
0.1 0.088 0.201 0.069 0.041 0 0.157 0 0.131 0.032 0.159 0.123 0 0 
0.2 0.088 0.204 0.067 0.042 0 0.156 0 0.131 0.033 0.159 0.121 0 0 
0.3 0.089 0.207 0.065 0.042 0 0.154 0 0.130 0.035 0.160 0.118 0 0 
0.4 0.089 0.211 0.063 0.043 0 0.153 0 0.129 0.036 0.160 0.116 0 0 
0.5 0.087 0.207 0.059 0 0.075 0.146 0 0.124 0.036 0.156 0.110 0 0 
0.6 0.087 0.211 0.057 0 0.076 0.144 0 0.124 0.037 0.156 0.108 0 0 
0.7 0.087 0.214 0.055 0 0.077 0.142 0 0.123 0.038 0.156 0.106 0 0 
0.8 0.088 0.218 0.053 0 0.079 0.139 0 0.123 0.040 0.156 0.104 0 0 
0.9 0.088 0.223 0.052 0 0.080 0.136 0 0.123 0.041 0.156 0.102 0 0 
1 0.058 0.125 0.033 0 0.037 0.000 0.137 0.067 0.028 0.099 0.069 0.130 0.216  

Table 9 
Impact on allocation of changing ρ for Data Set 2.  

ρ\stock  call NDXP put RUT stock SPX stock APPL 

0 0.019 0 0.713 0.268 
0.1 0.069 0 0 0.931 
0.2 0.070 0.055 0 0.875 
0.3 0.075 0.060 0 0.866 
0.4 0.080 0.065 0 0.855 
0.5 0.572 0.428 0 0 
0.6 0.571 0.429 0 0 
0.7 0.5694 0.431 0 0 
0.8 0.568 0.432 0 0 
0.9 0.567 0.433 0 0 
1 0.566 0.434 0 0  

Table 10 
Optimal allocation for Data Set 1.  

t  Solution 

1 call1 V: 0.125, call2 CAT: 0.033, call1 JNJ: 0.037, 
call3 MSFT, call3 JPM:0.067, call1 VZ: 0,028,  
call3 BA: 0.069, put3 IBM: 0.13, put3 WBA: 0.216 

2 put3 WBA: 0.428, call3 WBA: 0.751 
3 put3 WBA: 0.451, call3 WBA: 0.791 
4 put3 WBA: 0.482, call3 WBA: 0.840  

Table 11 
Optimal allocation for Data Set 2.  

t  Solution 

1 c1 NDXP: 0.565, p15 RUT: 0.434, p15 AAPL: 0.001 
2 c1 NDXP: 0.091, p15 RUT: 0.093, p15 AAPL: 0.001, s RUT: 0.880 
3 c1 NDXP: 0.092, p15 RUT: 0.093, p15 AAPL: 0.001, s RUT: 0.906 
4 c1 NDXP: 0.11, p15 RUT: 0.094, p15 AAPL: 0.001, s RUT: 0.920  
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investigated the stock-factor dependency as a proxy for portfolio-wide 
correlation. Finally, we have considered an extension to a 
multi-period robust setting. Our numerical experiments suggest that our 
robust portfolio performs very well in practice. 

CRediT authorship contribution statement 

Hedieh Ashrafi: Data curation, Investigation, Methodology, Formal 
analysis, Software, Visualization, Writing - original draft. Aurélie C. 
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