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Multi-objective evolutionary search strategies in constraint programming 

Robert Bennetto *, Jan H van Vuuren 
Stellenbosch Unit for Operations Research, Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa   

A R T I C L E  I N F O   
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A B S T R A C T   

It has been shown that evolutionary algorithms are able to construct suitable search strategies for classes of 
Constraint Satisfaction Problems (CSPs) in Constraint Programming. This paper is an explanation of the use of 
multi-objective optimisation in contrast to simple additive weighting techniques with a view to develop search 
strategies to classes of CSPs. A hierarchical scheme is employed to select a candidate strategy from the Pareto 
frontier for final evaluation. The results demonstrate that multi-objective optimisation significantly outperforms 
the single objective scheme in the same number of objective evaluations. In situations where strategies developed 
for a class of problems fail to extend to unseen problem instances of the same class, it is found that the structure 
of the underlying CSPs do not resemble those employed in the training process.   

1. Introduction 

Constraint Programming (CP) is a declarative paradigm for defining 
discrete optimisation or satisfiability problems. A problem instance 
(satisfiability or optimisation) is referred to as a Constraint Satisfaction 
Problem (CSP). Larger, or more complex CSPs often require state-of-the- 
art heuristic strategies to improve search performance. While a heuristic 
strategy may be employed, the overall CP search remains a complete 
search, in that, given sufficient time, the search will terminate with 
either an optimality, feasibility or infeasibility proof. 

It has been shown by several authors such as Minton [13], Epstein 
et al. [7] and Bain et al. [2] that heuristic approaches or metaheuristics 
can be used to develop search algorithms for solving classes of CSPs 
effectively. These approaches employ a single objective in the mea-
surement of the quality of solutions found, even though multiple mea-
surements as to the quality of an incomplete search may, in fact, be 
taken. As an example, the metrics presented by Schuurmans and Southey 
[16] are not necessarily directly comparable to one another as the units 
of measurement for the metrics vary (mobility, coverage, depth, flips). If 
such metrics were used in a single objective scheme, a weighting for 
each of the metrics would be required in order to define an explicit 
trade-off between objective function components for use in single 
objective metaheuristics. 

While the approach of finding good branching strategies is heuristic, 
the underlying CP solver remains exact, which allows for the calibration 
of the solver for a class of problems that may result in significant per-
formance improvements carried forward to unseen problem instances. 

In real-world applications, the methodology presented in this paper al-
lows operations researchers to create heuristics well-suited to classes of 
problems in order to reduce future computational burden. 

The aim of this paper is to address a weakness of the simple additive 
weighting (SAW) metaheuristic scheme employed by Bennetto and Van 
Vuuren [3] and proposes a multi-objective formulation of the meta-
heuristic search for a suitable CP branching strategy to solve a class of 
CSPs. The multi-objective approach demonstrates a statistically signifi-
cant improvement over a SAW scheme across the same objective di-
mensions for an equivalent number of objective function evaluations. 
The concepts of CSPs, Genetic Programming (GP) and multi-objective 
optimisation are formally introduced in Section 2, while the method-
ology employed by the GP to find high-quality branching strategies is 
described in Section 3. Section 4 details the empirical results of the GP 
and includes an explanation of the success achieved by the 
multi-objective methodology. Conclusions are finally provided in Sec-
tion 5. 

2. Background 

2.1. Constraint programming 

A constraint within CP may be defined formally as follows [4]. 

Definition 1. (Constraint) A constraint c is a relation defined on a 
sequence of variables X(c) = (xi1 ,…, xi|X(c)| ), called the scheme of c. Here 
c is the subset of Z|X(c)| which contains the combinations of values (or 
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tuples) τ ∈ Z|X(c)| that satisfy c. |X(c)| is the arity of c. Testing whether a 
tuple τ satisfies a constraint c is called a constraint check. 

A constraint network within CP is defined as follows [4]. 

Definition 2. (Constraint Network) A constraint network is composed 
of:  

• a finite sequence of integer variables X = (x1,⋯,xn),

• a domain for X, that is, a set D = D(xi) × … × D(xn), where D(xi)⊂Z is 
the finite set of values that can be assumed by variable xi, and  

• a set of constraints C = {c1,…, ce}, where variables in X(cj) are in X. 

A network N is referred to in terms of its components pertaining to 
the variables, domains and constraints; that is, N = (X,D,C). The process 
of searching requires that values are assigned to the variables of the 
network in some manner — typically a backtracking algorithm which 
ensures constraint adherence during the search process. The process of 
assigning a value to a variable is referred to as an instantiation of that 
variable [4]. 

Definition 3. (Instantiation) Given a network N = (X,D,C),

• An instantiation V on Y = (x1,…, xk)⊂X is an assignment of values v1,

…, vk to the variables x1,…, xk, that is, V is a tuple on Y. V is denoted 
by ((x1, v1),…, (xk, vk)), where (xi, vi) denotes the value vi for xi.  

• An instantiation V on Y is valid if, for all xi ∈ Y,V[xi] ∈ D(xi).  
• An instantiation V on Y is locally consistent if and only if it is valid for 

all c ∈ C with X(c)⊂Y and V[X(c)] satisfies c. If V is not locally 
consistent, it is locally inconsistent.  

• A solution to a network N is an instantiation V on X which is locally 
consistent. The set of solutions of N is denoted by sol(N).  

• An instantiation V on Y is globally consistent (or consistent) if it can be 
extended to a solution (i.e. there exists an s ∈ sol(N) with V = s[Y]). 

A solution to a CSP is one where a valid instantiation is found for a 
given network N, for all variables XN on domains DN that satisfy all 
constraints CN. A CSP specified as an optimisation problem will pro-
gressively add constraints, if a feasible solution is found, which restrict 
the next solution to have an objective function value superior to that of 
the previously found solution. In the case where the CP search completes 
an optimisation CSP with a feasible solution, an optimality proof is 
obtained. The flexibility of CSPs allows for a large range of discrete 
optimisation and satisfaction problems to be modelled. 

CP employs backtracking search in order to find a valid instantiation 
for a CSP, or to demonstrate that no such instantiation exists, resulting in 
an unsatisfiable or infeasible network N. The words instantiation and 
solution may be used interchangeably in this context. 

The branching strategy in CP can be described as a two stage process: 
Selecting which unassigned variable xi in a network N should be 
assigned a value, followed by selecting a value from the domain D(xi) to 
assign to that variable. If all constraints are feasible with respect to the 
proposed assignment, the next unassigned variable is selected and the 
search continues by assigning a value or else backtracks if the assign-
ment is infeasible. Popular techniques employed by commercial CP 
solvers include impact-based search (IBS) [15] and failure-directed search 
(FDS) [22] which both use statistics gathered during the search for each 
variable xi to determine the ranking of a variable and value selection in 
the CP search tree. The performance of a particular branching strategy is 
not necessarily known a priori and as a result, portfolios of branching 
strategies are often used in practice. 

2.2. Genetic programming 

Given that the CP runtime may be large, it may be onerous to conduct 
a complete search. Many practitioners therefore use metaheuristics to 
find high-quality solutions if the problem domain is difficult to express 
as a CSP (such as in simulation environments) or if a good enough 

solution is sufficient. Numerous metaheuristics are available to practi-
tioners for this purpose. The emphasis in this paper is on GP [11] which 
is a derivative of the Genetic Algorithm (GA) proposed by Goldberg [8]. 
The mechanics of the GP are similar to those of the GA in that they both 
employ a population-based approach and apply operators such as 
crossover, mutation and selection. An important difference between GAs 
and GPs is that the representation of the underlying chromosome in a GP 
takes the form of a tree-based structure as opposed to the vector-based 
structure commonly used in classic GAs. In the same way that a popu-
lation member in a GA may contain multiple vector-based chromo-
somes, a GP member may also contain multiple tree structures, with tree 
constraints imposed to determine which nodes are permitted in a given 
tree. GP tree constraints are analogous to domain constraints on integer 
or real-based vector encodings employed in GAs. The operators used for 
crossover in GPs are designed to function on tree-based structures and 
bear little resemblance to their GA counterparts due to low indepen-
dence between components of a tree should a modification be affected 
by crossover or mutation. 

2.3. Multi-objective optimisation 

Many real-world problems require measuring more than a single 
criterion when identifying the quality of a solution. One approach to-
wards resolving this problem is to use a SAW of each of the objective 
terms and summarise this in a single, new, objective which can then be 
optimised in a classic single-objective paradigm. The technique of SAW 
has, however, received strong criticism [18] for several good reasons. 
SAW implies a known explicit trade-off between potentially conflicting 
objectives (i.e. being willing to forgo a units of dimension x for b units of 
dimension y). This requires knowledge of the domains of the dimensions 
being optimised and the user preferences between such dimensions 
(which may both be unknown). Secondly, there is an implied assump-
tion of convexity when adopting SAW [5], which may not hold in 
practice and thus important portions of the search space may be inac-
cessible to a metaheuristic. This is not to say that SAW is not an 
appropriate method or that it is not useful in general — just that care 
should be taken in the treatment of the objective function components, 
understanding the utility function for each objective before a SAW is 
applied. 

A question that naturally arises when working with multiple objec-
tives is how one should compare one solution in terms of M objectives 
with another in terms of same objectives. The Pareto method is typically 
adopted to compare two candidate solutions, which results in multiple 
solutions being considered optimal. Many optimal solutions can be an 
uncomfortable proposition for an operations research practitioner, 
although Deb [5] suggests that a reasonable approach is to treat the 
problem of generating the Pareto frontier as a separate problem from 
selecting an optimal solution from the frontier. According to this 
two-step methodology in hand, one does not unnecessarily restrict the 
search space or bias the search process towards potentially poor-quality 
solutions. 

In order to introduce the concept of Pareto-optimality, a definition of 
dominance with respect to a set of m objectives is adopted [5]. 

Definition 4. (Multi-objective optimisation) For set W, containing m 
objectives and a feasible set S of decision vectors, a multi-objective 
optimisation problem involves 

minimising fm(x),m ∈ W
subject to x ∈ S (1)  

A dominance relation between two solutions x(1) and x(2) may be 
defined as follows: 

Definition 5. (Dominance) A solution x(1) dominates a solution x(2) if 
both of the following conditions are met: 

R. Bennetto and J.H. Vuuren                                                                                                                                                                                                                 
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1. The solution x(1) is no worse than x(2) in all objectives, and  
2. The solution x(1) is strictly better than x(2) in at least one objective. 

The notation x(1)⪯x(2) is adopted to indicate that solution x(2) is 
dominated by solution x(1) when both of these conditions are met. A 
situation may arise in which, given two solutions to (1), neither domi-
nates the other, but both dominate other solutions. Solutions which are 
non-dominated can hence be separated from those which are 
dominated. 

Definition 6. (Non-dominated set) Among a set of solutions P, the 
non-dominated set of solutions P′ are those that are not dominated by 
any member of the the set P. 

Definition 5 is referred to as the weak-domination criterion. Strong 
dominance can be defined follows: 

Definition 7. (Strong Dominance) A solution x(1) strongly dominates a 
solution x(2) if x(1) is strictly better than x(2) in all m objectives. 

The shorthand notation for strong dominance is x(1) ≺ x(2). 
The principal change required to modify the widely used GA to cater 

for multiple objectives is in the selection of population members. The 
selection procedure in GAs requires comparing individuals in the pop-
ulation in order to determine which population members of high quality 
should be selected for breeding. 

A highly successful approach was proposed by Deb et al. [6], called 
NSGA-II (Non-dominated Sorting Genetic Algorithm II). The algorithm 
not only addresses the computational complexity of other 
multi-objective GAs, such as that in [17] by the same authors, but is also 
capable of retaining diversity on the frontier without explicit para-
metrisation, ensuring that the Pareto frontier is adequately explored. 

In order to ensure diversity in the selected population, Deb et al. [6] 
proposed a crowding distance calculation to bias selecting solutions 
which occur in lower density around the estimated Pareto Frontier. 
More formally, if two solutions have the equivalent rank as a result of 
non-dominated sorting algorithm, the solution with the lower crowding 
distance is selected. Deb et al. demonstrated that this algorithm signif-
icantly outperforms previous methods, such as SPEA [21] (strength--
Pareto EA) and PAES [10] (Pareto-archived evolution strategy), when 
estimating the true Pareto frontier. 

The next section contains a discussion on the methodology employed 
to use a multi-objective GP to determine suitable branching strategies 
for classes of CSPs, thereby extending the SAW approach adopted by 
Bennetto and Van Vuuren [3] to a multi-objective approach. 

3. Methodology 

The methodology proposed in this paper entails evolving a branching 
strategy obtained by GP which is evaluated in terms of several CSPs 
belonging to same problem class. A CSP instance i belonging to class m is 
denoted by p(m)

i , i ∈ {1,…, n} where n is the number of instances in the 
problem class. The set of problem classes is denoted by M. The shorthand 
P(m) is used to denote the collection of n CSP instances in class m. 
Branching strategy instance j developed for problem class m is denoted 
S(m)

j . A description of the chromosomal representation for the branching 
strategy is provided in Section 3.1. 

The GP is tasked with developing S(m)

j , given a collection of training 

examples P(m) and a time budget of ten seconds to solve each p(m)

i ∈ P(m). 
It is unlikely for CP to complete the solution for a non-trivial instance 
p(m)

i |S(m)

j within this time budget and, as such, specific measures of the 

search performance are used to describe the efficacy of a candidate S(m)

j . 

Aggregate measures of the search performance for P(m)|S(m)

j are used to 
define the multi-objective function, described in Section 3.2. 

The configuration parameters of the GP for each training run per-

Algorithm 1 
Core procedure definitions.  

Algorithm 2 
Methodology pseudo code.  
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taining to class m is described in Section 3.3. A description of the test 
data suite and default search strategy is provided in Section 3.4. Once 
the GP has reached the termination criterion, a “best” strategy S(m)

B is 
selected from the approximate Pareto frontier. This is done using a hi-
erarchical selection scheme described in Section 3.5. S(m)

B is then eval-
uated on the training samples P(m), given a full 20 min to complete the 
search. This complete evaluation on the training data allows for a 
comparison between the performance of S(m)

B and the default search 
strategy employed by the solver, denoted by SD. Note that the default 
search strategy does not differentiate by problem class. 

As a final step, S(m)

B is evaluated on unseen CSP data belonging to the 

same problem class, denoted by P(m). The evaluation of P(m)
|S(m)

B is 
compared to SD in Section 4. A summary of the key procedures outlined 
in the methodology is provided in Algorithm 1 and the pseudo code 
outlining the process-flow of the complete train and test methodology is 
provided in Algorithm 2. 

3.1. GP representation 

A strategy S(m)

j comprises four components. A variable selector tree 
and a value selector tree are employed, as well as two single terminal 
node decisions encapsulating the parameters for whether nogoods should 
be used by the search and the log restart size. This enables the GP so 
explore not only the explicit branching strategy, but also the interaction 
with higher level parameters which may also be useful to determine an 
effective search strategy. The variable and value selector tree compo-
nents are described in Tables 1 and 2, respectively. The nogoods 
parameter is a binary variable and the log restart size an integer variable 
on the range [0,17]. These four components implicitly define the 
resulting strategy search space for the GP. 

The function set in Table 1 allows for the creation of two popular 
search methods through the use of SUCCESSRATE and IMPACTX, namely FDS 

and IBS. Other search heuristics commonly used in CP, such as DOM, can 
be generated through the use of SIZE(X). It would thus also be possible to 
create the inverse strategies for IBS and FDS by combining the INV 

operator with the associated operator. 
The GP tree functions presented in Tables 1 and 2 would typically be 

described as an arithmetic set and are used during the CP search to 
create a ranking value for each variable and value assignment tuple. The 
unassigned variable with the lowest rank is selected as the branching 
variable, after which the value for the selected variable with the lowest 
rank is selected as the next value assignment attempt during the CP 
search. 

3.2. GP objective function 

The GP objective function is created by aggregating three CP-search 
performance measures. The first is the maximum search depth achieved 
for p(m)

i |S(m)

j where the total number of variables and the maximum 

search depth are denoted by Vi and di, respectively, for p(m)

i . The 
maximum search depth is stated as a percentage of the total number of 
CSP variable and is given by 

f1(P(m)) =
∑

i∈P(m)

Vi − di

Vi
, (2)  

which is thus normalised to the interval [0,1], where a zero value in-
dicates that a feasible solution has been found by the search procedure. 

When an optimisation objective is defined, the quality of the best 
objective value oi obtained for p(m)

i is measured by the function 

f2(P(m)) =
∑

i∈P(m)

f (oi)

omax
i − omin

i
, (3)  

where 

f (oi) =

{
omax

i − oi, if the sense is maximisation

oi − omin
i , otherwise.

(4)  

The domain of the variable oi is given by [omin
i , omax

i ], where the values of 
omin

i and omax
i are determined after initial propagation (a deterministic 

procedure) has been performed. This ensures that the range [omin
i , omax

i ] is 
reasonably well bounded. The objective sense is given by the direction of 
the CSP objective function, which is either minimisation or max-
imisation. If a CP search results in no feasible incumbent being found, 
the value of (3) is set to one. The value of (3) is set to zero for CSPs which 
do not define an objective function. 

The third objective function component 

f3(P(m)) =
∑

i∈P(m)

ti

T
. (5)  

measures as a function of the time taken to solve p(m)

i , where the 
maximum time is denoted by T and the time expended by the search is 
given by ti. 

Table 2 
Description of the node and terminal set used in Tree 2, the value selector.  

Function Name Type Arity Description Abbreviation 

Add Node 2 Simple addition +

Mul Node 2 Simple multiplication *  
Inv Node 1 Protected inversion Inv 
Neg Node 1 Negation - 
Rand Terminal 0 Random number (uniform) rand 
LocalImpactValueX Terminal 0 The local impact of the assignment of value v to variable xi  Limpt(x,v)  
NumberOfFailsValueX Terminal 0 The number of fails of the assignment of value v to variable xi  Fails(x, v)  
NumberOfInstantiationsValX Terminal 0 The number of instantiations of value v to variable xi  Inst(x,v)   

Table 1 
Description of the node and terminal set used in Tree 1, the variable selector.  

Function 
Name 

Type Arity Description Abbreviation 

Add Node 2 Simple addition +

Mul Node 2 Simple multiplication *  
Inv Node 1 Protected inversion Inv 
Neg Node 1 Negation - 
Rand Terminal 0 Random uniform number rand 
MinX Terminal 0 The minimum feasible 

value in D(xi)

Min(x)  

MaxX Terminal 0 The maximum feasible 
value in D(xi)

Max(x)  

SizeX Terminal 0 The cardinality of feasible 
domain D(xi)

Size(x)  

SuccessRateX Terminal 0 The success rate of value 
assignments to variable xi  

SuccRate(x)  

ImpactX Terminal 0 The (sum of) impact of 
variable xi  

Impt(x)   
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The definition of f3 in (5) normalises the values obtained to the same 
domain as the functions in (2) and (3). A SAW objective function is 
written as 

fsaw = f1 + f2 + f3. (6) 

It would be reasonable to question the usage of a unit weight for each 
of the terms used in the formation of a SAW objective (6). Due to the 
correlation structure between these individual objectives, however, it 
would seem unnecessary to specify a more complex weighting scheme. 
Domains are orientated in functions (2), (3) and (5) such that good so-
lutions are close to zero and poor solutions near one. In a SAW scheme, 
the sum of these objective components also correlate to the extremes of 
the resulting aggregate domain. A problem arises in the consideration of 
the algorithmic progress between these domain extremes, where subtle 
trade-offs between objectives may be required. 

A SAW scheme weights the importance of feasibility (2) and the 
expended time (5) equally. One may consider an example of a satisfi-
ability CSP where some subset of instances in P(m) are feasible for 
strategy S(m)

i (completing with small values for the expressions in (2) and 
(5)) while others are infeasible (with poor values for the term in (2)). 
S(m)

i may be compared with a alternate strategy S(m)

j , which produces no 
feasible solutions in P(m) but is generally close to achieving a feasible 
outcome over instances evaluated in P(m)|S(m)

j such that fsaw may be 

greater then the evaluation of fsaw for P(m)|S(m)

i . This means that S(m)

i 

would be preferred over S(m)

j , which may not be the desired outcome. It 

may be found that, with a sufficient time budget, the strategy of S(m)

j 

produces a smaller value for fsaw. The argument here can me made in 
either direction simply by altering the degree of feasibility achieved for 
the term (2) in fsaw. This example illustrates the potential bias towards 
different search strategies based on a SAW scheme. 

It would be possible to mimic a tiered hierarchical objective function 
by applying weights and offsets in the construction of a SAW objective 
such that the point at which a trade-off between objectives becomes 
negligible, with the emphasis being placed on first minimising (2), then 
(3) and so forth. One may argue that this may decrease population di-
versity in the evolutionary algorithm as it creates a myopic objective 
function in which a large emphasis is then placed on each successive 
objective function term. There is a risk that some strategies which may 
be exploring features of the local search space are disregarded during 
earlier selection iterations as they are aggressively dominated (in cost) 
by a single strategy that performs well during initial generations of the 
GP. There are several works which highlight the importance of having 
population diversity in initial populations that are similar in cost so as to 
avoid pre-mature convergence in GAs. 

It is prudent to note that there are no assurances as to the convexity 
of the objective components (2), (3) and (5) in a SAW scheme, which 
implies that no linear combination of these terms is capable of 
expressing the true Pareto frontier, resulting in portions of the optimal 
frontier being disregarded as being inferior. It is a natural extension 
rather to consider a multi-objective approach which can lead to more 
favourable transitions of candidate solutions to an optimal policy. The 
multi-objective version of the problem is thus to 

minimise fk(P(m)), k ∈ {1, 2, 3}. (7)  

3.3. GP configuration 

The multi-objective variation of the GP employs the same parameters 
for crossover and mutation as those used by Bennetto and Van Vuuren 
[3], but adopts the NSGA-II selection algorithm to maintain the Pareto 
frontier of best solutions found. The ability of the NSGA-II algorithm to 
maintain a frontier of best solutions requires that the population size be 
adjusted. Frontier solutions are carried forward to the next generation in 
the GP and it is desirable to have a similar number of individual 

evaluations when performing comparisons with the SAW GP. During 
experimentation, it was found that a population size of 150 individuals 
produced a close match to the target number of individual evaluations in 
the SAW GP run. A summary of the parameters of the GP run for 
multi-objective optimisation is provided in Table 3. 

The Java-based evolutionary framework ECJ [12] implementation is 
used to implement the grammar presented in Tables 1 and 2 as well as 
the configurations specified in Table 3. 

3.4. Test data and CP solver 

The 2015 MiniZinc challenge problems [19] were previously used by 
Bennetto and Van Vuuren [3] to benchmark the performance of the GP 
to develop branching strategies. The same nineteen problem instances 
are used here to test the multi-objective variant of the GP search. 

The result of a particular CSP search is assigned a status code in the 
MiniZinc challenge. A summary of the status codes are shown in Table 4. 
An ideal status code for optimisation problems is ‘SC’ (completed with 
optimality proof) and either ‘S’ or ‘C’ for pure satisfiability problems, 
where the codes correspond to a feasibility proof and an infeasibility 

Table 3 
GP parameters for multi-objective optimisation.  

Parameter Value Description 

Generations 15 The number of population iterations 
performed by the GP. 

Population size 150 The size of the population at each iteration 
(including the Pareto frontier). 

Elitism No Elitism is indirectly maintained through the 
frontier being persisted from one iteration 
to another and the idea of an explicit “best” 
individual in multi-objective optimisation is 
not possible. 

Tournament size None Selection is managed through the non- 
dominated sorting algorithm. 

Crossover rate 0.9 The probability that a node in the tree is 
selected for a crossover operation. 
Crossover exchanges the two resulting 
subtrees between two individuals at 
compatible nodes. 

Maximum crossover 
depth 

17 The limit on the selection of nodes for 
crossover. 

Mutation rate 0.1 The rate at which subtree mutation is 
applied to tree nodes. 

Mutation type Subtree Subtree mutation invokes a call to the Grow 
method which randomly creates a new 
subtree of depth 5. 

Non-terminal 
Selection 
Probability 

0.9 When generating new trees, the probability 
that a node with non-zero arity is selected at 
random. 

Terminal Selection 
Rate 

0.1 When generating new trees, the probability 
that a terminal is selected at random. 

Seeding mechanism 50/50 
Grow/Full 

Also referred to as the half-builder. Half the 
population is seeded using the Grow method 
and the other half through the Full method. 

Full depth range [2,6] The target range of minimum and maximum 
depths for a tree created using the Full 
method. 

Grow depth range [5,5] The target range of minimum and maximum 
depths for a tree created using the Grow 
method.  

Table 4 
Constraint satisfaction problem status codes.  

Code Description 

S A feasible Solution was found. 
C The search was Completed. 
SC A Solution was found and the search was Completed. 
UNK No solution was found within time limit, invalid solution or out-of-memory 

error.  

R. Bennetto and J.H. Vuuren                                                                                                                                                                                                                 



Operations Research Perspectives 8 (2021) 100177

6

proof, respectively. 
The Google Or-Tools (ORT) solver [14] is employed as a reference 

point from which to measure high-quality search strategies found as the 
ORT solver was the top performing open-source solver in the free-search 
category of the 2015 MiniZinc Challenge. The ORT default strategy 
employed is a follows a series of heuristic dives and IBS. The maximum 
numbers of heuristic dives are limited and consist of common heuristics 
in CP, such as selecting the smallest or largest variable domain in 
conjunction with the smallest or largest feasible value. A single heuristic 
dive is limited by the number of branches that may be explored. Heu-
ristic variable domain splits are used in addition to the dives and IBS 
which are isolated to variables with larger domains. IBS is the default 
search mechanism once heuristics have completed in ORT. 

The training data consists of five problem instances per problem 
class. The performance of a candidate branching strategy is evaluated 
over all five instances, with 10 s of search time permitted per problem 
instance p(m)

i . The objective function evaluation time for an individual in 
the GP population is typically less than 60 s, as a small amount of 
additional time is required to compile the strategies which are 
embedded in the CP search procedure. The ORT solver is given 20 min of 
search time employing the default search algorithm, serving as a 
benchmark with which to compare the performance of the final evolved 
GP solutions, per problem class, which are also then given 20 min of 
search time. The best solutions previously found by a SAW scheme [3] 
are included and labelled GP SAW. Multi-objective GP results are 
denoted by the shorthand ‘GP MO’ in the tables of results. 

The total computational budget of the GP is considerably larger than 
the total time expended by the ORT default search algorithm. One may, 
however, consider this as an offline training procedure whose purpose is 
to evolve a search strategy which may yield improved performance on 
unseen problem instances of the same class. 

The empirical results were performed using the same hardware 
specification as in the SAW experiments previously conducted by Ben-
netto and Van Vuuren [3] in order to support a valid comparison be-
tween the results obtained. 

3.5. Strategy selection 

As mentioned, Deb [5] suggested that the processes of producing a 
Pareto frontier and selecting a solution from the frontier be treated as 
independent steps. This section contains a description of the method-
ology adopted to evaluate different schemes in order to determine a 
single S(m)

B from the generated Pareto frontier. 
The goal of the GP training runs is to produce S(m)

B for a problem class 
upon expending a small amount of search time. In a classic single- 
objective GP, S(m)

B is simply the strategy with the lowest cost for fsaw 

(6). The multi-objective GP, on the other hand, returns the Pareto 
frontier of best strategies found. It is therefore required to determine the 
criteria by which a single individual may be selected from the Pareto 
frontier to use as the candidate search strategy for a full evaluation. S(m)

B 

may be selected from the frontier based on fsaw value, some other 
weighting scheme, or even hierarchically. 

Each S(m)

j on the Pareto frontier which would qualify as a candidate 

S(m)

B according to either a hierarchical selection scheme or fsaw, are 
evaluated by executing a 20 min search (as opposed to a 10 s search 
permitted during training). The evaluation of the selection schemes for 
the Pareto frontier are carried out strictly on measurements available to 
the GP search based on the limited search time for a candidate S(m)

j . By 
restricting the selection criteria to measurements available at the end of 
the GP search, a single strategy is selected from each frontier without 
having to evaluate the final quality of all individuals on the frontier in 
future experiments. Six hierarchical selection schemes are provided in 
Table 5 which rank the objective components in their order of 
importance. 

The difference in overall outcomes in Table 5 is determined by a 
subset of problems for which multiple solutions are available on the 
Pareto frontier (the set of blue points in Fig. 1). It is interesting to note 
that recomputing the results of a multi-objective search strategy using 
fsaw in (6) as a selection criterion produces a relatively average overall 
result in the context of other selection schemes. 

The scheme {2,1, 3} is considered the preferred scheme for 
comparing results as not only does it achieve a large number of feasi-
bility proofs, but also the least number of unknown status codes. The 
overall sum of normalised objective function values for this selection 
scheme is also the smallest among the set of comparisons. This scheme 
selects a point from the Pareto frontier hierarchically, first according to 
the smallest normalised objective sum (3), then according to the nor-
malised remaining minimum infeasibility (2) and finally according to 
the normalised solution time (5). 

4. Results 

A subset of the multi-objective GP runs is provided in Fig. 1. The plots 
are provided in three dimensions where all strategies are able to produce 
variation in all components of the objective function (7). The latter plots 
are provided in two dimensions as there was no variation in the omitted 
component values. Lastly, problem classes p1f and triangular were 
omitted from the plots as no strategies were able to produce variation in 
more than a single objective function component within the sampling 
limit1. Evaluated solutions which are concluded to lie on the Pareto 
frontier are coloured in blue in Fig. 1. Solutions not on this frontier are 
coloured based on a heat scale indicating at which generation during the 
GP search the individuals were created, red and yellow being used for 
individuals created near the start and the end of the GP run, respectively. 

The mapping problem class in Fig. 1 illustrates the correlation 
structure between the objective function components in that small 
values of remaining infeasibility are associated with small objective 
instance values. The strength of this correlation varies between problem 
instances, which is most prevalent in the zephyrus problem class. The 
tdtsp problem class clearly illustrates the convergence progression of the 
GP as the majority of solutions are of poor quality at the start of the GP 
run with high-quality solutions being formed at the end of the run (light 
yellow). The Pareto frontiers vary in size from a single dominant solu-
tion (is) to several optimal solutions (freepizza). 

The complete set of all runs comparing the results between the 
default ORT search, the single-objective GP using a SAW scheme and the 
multi-objective GP using the {2,1,3} scheme to select the preferred 
strategy from the Pareto frontier is provided in Table 6. The difference in 

Table 5 
Summary of Pareto frontier selection scheme results for multi-objective GP 
across all training set problems.   

Full Evaluation Results Sampling limit terms 

Selection Scheme # S # SC # C # UNK 
∑

f1  
∑

f2  
∑

f3  

{1,2,3} 56 29 0 10 1.35 35.03 60.51 
{1,3,2} 58 27 0 10 1.35 36.10 60.40 
{2,1,3} 57 29 0 9 1.35 33.66 60.41 
{2,3,1} 56 29 0 10 1.62 34.66 61.10 
{3,1,2} 56 27 0 12 1.92 38.10 61.97 
{3,2,1} 57 27 0 11 1.90 36.73 61.97 
fsaw  56 29 0 10 1.62 35.16 61.11  

1 In the case of p1f this raises the question as to whether the sampling limit 
should be increased for larger problems in order to evolve meaningful strate-
gies. The triangular problem class has a tendency always to admit a feasible 
solution, and utilise the full time limit, leaving only the instance objective 
function as a facet. 
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search performance is shown in the columns marked Δ, with differences 
being indicated as either improvements ( + ) or deteriorations ( - ) in the 
respective measurements for the single-objective and multi-objective 
searches relative to the default ORT search algorithm. In addition, the 
differences in performance between the SAW and MO GP schemes are 
provided in the last three columns. 

Scoring the differences in objective function values obtained by the 
CP search for optimisation problems in Table 6 is only performed when 
both objective values are present. The reason for this is that a penalty 
has already been accounted for in the difference between status codes, i. 

e. if one strategy produces S and another UNK, there will only be one 
objective function value (corresponding to the S code). Thus the impact 
of a superior or inferior search has already been encapsulated in the 
status code or search time in such instances. Differences between search 
times of less than one second are not considered sufficiently significant 
to contribute to the scoring employed. 

The summary of results in Table 7 provides an overview of where 
significant improvements could be made in the instance objective and 
time to solve. It was previously established [3] that the GP SAW scheme 
significantly outperforms the default ORT strategy at the 5% level of 

Fig. 1. GP run results using NSGA-II for a subset of problem classes (continued).  
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significance. Table 8 summarises the p-values obtained for the 
multi-objective results which also significantly outperform the default 
ORT search at the 5% level of significance. The significance test 
employed is the non-parametric signed Wilcoxon rank test [20] which 
tests for significant differences in matched samples. The Wilcoxon test 
makes no distributional assumptions about the mean and is a strong 
indicator of significant differences if the null hypothesis is rejected. 

The Wilcoxon rank test also produces a significant p-value (0.02435) 
at the 5% significance level when testing for a difference in performance 

between the SAW and MO GP schemes at an aggregate level. The ma-
jority of the positive contributions to performance are as a result of 
strategies found which result in an improved best objective function 
value found for the target CSP, namely project-planning (+ 5), freepizza 
(+ 4) and is (+ 3). 

The multi-objective scheme was able to find some interesting stra-
tegies which outperformed the SAW scheme. The selected costas-array 
search strategy performed slightly worse on the first two problem in-
stances (by a total of 11 s) but was able to provide a solution to problem 

Fig. 1. (continued). 
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Table 6 
ORT, single-objective and multi-objective GP full search comparison (training set).       

ORT GP SAW (Δ ORT)  GP MO (Δ ORT)  GP MO (Δ GP SAW)  

Problem Class Instance Sense Variables Constraints Code Time Best Code Δ  Time Δ  Best Δ  Code Δ  Time Δ  Best Δ  Code Time Best  
16  16 802 S 19  S  1 + S  6 + −

17  17 954 S 240  S  1 + S  7 + −

costas-array 18 None 18 1 124 S 17  S  364 -   S  8 + +

19  19 1 313 UNK 1 200  UNK  1 200    S + 105 + + +

20  20 1 522 UNK 1 200  UNK  1 200    UNK  1 200        
A-n37-k5.vrp  610 23 002 S 1 200 1 642 S  1 200  1 832 − S  1 200  2 122 − −

A-n64-k9.vrp  1 069 69 172 S 1 200 3 486 S  1 200  3 545 − S  1 200  4 046 − −

cvrp B-n45-k5.vrp Min 746 34 098 S 1 200 2 728 S  1 200  2 628 + S  1 200  2 467 + +

P-n16-k8.vrp  253 4 228 S 1 200 502 S  1 200  502  S  1 200  450 + +

simple2  117 1 020 SC 377 34 SC  30 + 34  SC  19 + 34   +

pizza27  180 32 600 S 1 200 882 
425 

S  1 200  822 
299 

+ S  1 200  761 
294 

+ +

pizza39  190 36 890 S 1 200 939 
352 

S  1 200  987 
968 

− S  1 200  837 
068 

+ +

freepizza pizza45 Min 140 19 759 S 1 200 656 
489 

S  1 200  641 
397 

+ S  1 200  571 
934 

+ +

pizza6  10 159 SC 610 210 SC  5 + 210  SC  113 + 210   −

pizza78  200 40 229 S 1 200 901 
717 

S  1 200  896 
600 

+ S  1 200  714 
755 

+ +

n120f5d50m50k20  7 816 19 629 S 1 200 19 463 SC + 1 + 1 + SC + 3 + 1 + −

gfd-schedule n180f7d50m30k18 Min 17 186 45 699 SC 1 1 UNK − 1 200 − UNK − 1 200 −

n30f3d30m7k4  616 1 374 UNK 1 200  SC + 1 + 1  SC + 1 + 1      
n50f7d40m10k4  1 540 3 660 UNK 1 200  SC + 1 + 1  SC + 2 + 1      
n75f5d30m20k20  3 129 6 782 UNK 1 200  SC + 1 + 1  UNK  1 200    − −

10_5  51 376 SC 31 3 SC  1 + 3  SC  1 + 3      
13_11  144 1 717 S 1 200 7 S  1 200  5 + S  1 200  4 + +

grid-colouring 19_17 Min 324 5 815 S 1 200 12 S  1 200  7 + S  1 200  5 + +

4_11  45 331 S 1 200 4 SC + 1 + 3 + SC + 1 + 3 +

4_8  33 193 SC 2 3 SC  1  3  SC  1  3      
1YHXeG1xYs  913 1 921 S 1 200 194 

048 
S  1 200  145 

440 
+ S  1 200  99 328 + +

A3PZaPjnUz  507 926 S 1 200 144 
896 

SC + 1 + 103 
936 

+ SC + 1 + 103 
936 

+

is HgSWGJHxY5 Min 835 1 680 S 1 200 251 
200 

S  1 200  276 
000 

− SC + 1 117 + 102 
176 

+ + + +

jZ9pQqRxJ2  508 799 SC 82 210 
944 

SC  2 + 210 
944  

SC  1 + 210 
944      

y21PnVA2Hj  860 1 840 S 1 200 236 
544 

S  1 200  165 
776 

+ S  1 200  127 
088 

+ +

full2x2  172 235 S 1 200 1 103 S  1 200  801 + S  1 200  795 + +

mesh2x2_mpeg  522 803 S 1 200 726 S  1 200  1 436 − S  1 200  1 116 − +

mapping mesh3x3_2 Min 348 497 UNK 1 200  S + 1 200  1 631  S + 1 200  1 623    +

mesh3x3_mpeg_2  1 302 1 709 S 1 200 2 197 S  1 200  1 188 + S  1 200  1 211 + −

ring_2  300 473 S 1 200 2 090 S  1 200  1 940 + S  1 200  1 940 +

mknap1-6  50 8 UNK 1 200  SC + 7 + 16 537  SC + 7 + 16 537      
mknap2-1  60 33 SC 158 7 772 SC  1 + 7 772  SC  2 + 7 772     

(continued on next page) 
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Table 6 (continued )      

ORT GP SAW (Δ ORT)  GP MO (Δ ORT)  GP MO (Δ GP SAW)  

multi-knapsack mknap2-2 Max 60 33 S 1 200 8 722 SC + 8 + 8 722  SC + 8 + 8 722      
mknap2-20  50 8 SC 3 6 339 SC  1 + 6 339  SC  1 + 6 339      
mknap2-32  80 8 UNK 1 200  S + 1 200  8 947  SC + 547 + 8 947  + +

176  177 530 S 6  S  1 + S  1 +

207  208 623 S 7  S  1 + S  1 +

nmseq 269 None 270 809 S 45  S  2 + S  2 +

393  394 1 181 S 244  S  2 + S  4 + −

83  84 251 S 1  S  1    S  1        
flener_et_al_10_350_100  15 349 28 405 S 1 200 65 UNK − 1 200    UNK − 1 200        
medium_10_100_30  4 349 8 155 S 1 200 13 S  1 200  21 − S  1 200  10 + +

opd small_bibd_10_30_09 Min 1 269 2 485 SC 1 107 2 S − 1 200 − 3 − S − 1 200 − 3 −

small_bibd_11_22_10  1 021 2 161 S 1 200 5 S  1 200  5  S  1 200  5      
small_bibd_13_26_06  1 465 3 385 SC 1 078 1 S − 1 200 − 2 − S − 1 200 − 2 −

ORT GP SAW (Δ ORT)  GP MO (Δ ORT)  GP MO (Δ GP SAW)  
Problem Class Instance Sense Variables Constraints Code Time Best Code Δ  Time Δ  Best Δ  Code Δ  Time Δ  Best Δ  Code Time Best  

problem_20_20_1  744 1 668 S 1 200 11 S  1 200  11  S  1 200  11      
problem_30_15_1  783 1 689 SC 15 14 S − 1 200 − 14  S − 1 200 − 14     

open_stacks wbo_10_20_1 Min 379 949 SC 303 5 S − 1 200 − 5  S − 1 200 − 5      
wbop_15_30_1  899 2 205 S 1 200 7 S  1 200  7  S  1 200  6 + +

wbp_20_20_1  739 1 606 S 1 200 4 S  1 200  4  S  1 200  4      
12  1 617 12 309 S 1 200 602 UNK − 1 200    UNK − 1 200        
13  2 070 16 812 C 20  UNK − 1 200 − UNK − 1 200 −

p1f 14 Min 2 600 22 438 S 1 200 1 008 UNK − 1 200    UNK − 1 200        
15  3 213 29 358 C 68  UNK − 1 200 − UNK − 1 200 −

17  4 712 47 824 UNK 1 200  UNK  1 200    UNK  1 200        
ProjectPlannertest_12_7  3 463 693 S 1 200 63 S  1 200  19 + SC + 1 + 17 + + + +

ProjectPlannertest_14_7  12 801 920 S 1 200 78 S  1 200  32 + SC + 347 + 27 + + + +

project- 
planning 

ProjectPlannertest_15_6 Min 25 156 1 050 S 1 200 66 S  1 200  37 + SC + 994 + 31 + + + +

ProjectPlannertest_16_6  49 803 1 178 S 1 200 39 S  1 200  35 + S  1 200  31 + +

ProjectPlannertest_16_8  49 803 1 180 S 1 200 39 S  1 200  35 + S  1 200  31 + +

i14-9  2 467 2 051 SC 252 6 513 S − 1 200 − 6 720 − S − 1 200 − 6 526 − +

i6-11  544 495 SC 207 895 SC  9 + 895  S − 1 200 − 896 − − − −

radiation i6-21 Min 1 036 919 SC 143 1 413 S − 1 200 − 1 718 − S − 1 200 − 1 417 − +

i7-9  619 548 SC 7 1 007 SC  6  1 007  S − 1 200 − 1 009 − − − −

i9-11  1 265 1 066 SC 427 2 141 SC  123 + 2 141  S − 1 200 − 2 151 − − − −

chicroster_dataset_11  559 564 SC 1 17 SC  1  17  SC  1  17      
chicroster_dataset_17  671 676 SC 1 17 SC  1  17  SC  1  17     

roster chicroster_dataset_2 Min 189 248 SC 0 0 SC  1  0  SC  1  0      
chicroster_dataset_5  279 294 SC 1 6 SC  1  6  SC  1  6      
chicroster_dataset_7  323 363 SC 1 0 SC  1  0  SC  1  0      
1401  10 964 24 078 S 1 200 521 

097 
S  1 200  496 

114 
+ S  1 200  500 

112 
+ −

spot5 28 Min 5 227 10 642 S 1 200 284 
158 

S  1 200  276 
105 

+ S  1 200  277 
105 

+ −

414  10 109 24 373 S 1 200 42 564 S  1 200  44 501 − S  1 200  49 510 − −

503  636 1 130 S 1 200 15 177 S  1 200  11 125 + S  1 200  11 134 + −

54  272 462 S 1 200 81 S  1 200  37 S  1 200  37    

(continued on next page) 
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instance 19 as well as a solution in less time for problem instance 18. The 
strategies selected for the freepizza, is and project-planning problem 
classes all provided improvements in the objective function values ob-
tained within the time limit. The strategy for the project-planning 
problem class also obtained optimality proofs for three of the problem 
instances. 

As all parameters (where possible) were held constant between the 
SAW and multi-objective GA, the improvements obtained by applying 
multi-objective search over the SAW scheme are attributed to the NSGA- 
II selection algorithm employed. The non-dominated sorting algorithm 
replaces the tournament selection procedure previously employed — the 
result of which is that multiple solutions may be considered of highest 
quality during a given iteration in the GA. Since the multi-objective GA 
always carries forward the current Pareto frontier of solutions, it is 
possible that additional genetic diversity is maintained in the population 
for longer which may have been lost earlier on as a result of the tour-
nament selection operator. The other possibility is that high-quality 
solutions (on the Pareto frontier) are more likely to be combined in a 
crossover operator resulting in solutions which measurably address 
different objective function components in an effective manner. 

4.1. Extendibility to unseen problem instances 

The search strategies selected during the training process were 
evaluated on unseen problem instances that are labelled as being from 
the same class of problem. New problem instances were drawn from the 
CSPlib [9] for testing consistent with the test set used by [3]. The 
detailed results are provided in Table 9. 

A summary of the results are provided in Table 10. It is noteworthy 
that neither the SAW scheme nor multi-objective GP scheme was able to 
construct search strategies for the opd, open_stacks, p1f and radiation 
problem classes which are competitive with the ORT default search 
strategy and were thus not reported in the test set results. The expec-
tation that poorly performing strategies on the training data are carried 
forward to the test set was found to be true — while this does suggest 
that it is non-trivial to perform well, it can also be seen in the evaluation 
results of the GP in Fig. 1. The zephyrus problem instances were added to 
the test set as the multi-objective GP was able to construct a strategy for 
this problem class which outperformed the ORT search strategy and the 
single-objective GP on the training data. Test data for costas-array were 
also included, but it is clear that the smaller instances are largely trivial 
to solve. 

Table 7 
GP SAW and multi-objective results summary by problem class (training set).   

GP SAW (Δ ORT)  GP MO (Δ ORT)  GP MO (Δ GP SAW)  

Problem Class − + Δ  − + Δ  − + Δ  

costas-array 1 2 1 0 5 5 2 3 1 
cvrp 2 2 0 2 3 1 2 3 1 
freepizza 1 4 3 0 5 5 1 4 3 
gfd-schedule 2 9 7 2 7 5 3 0 − 3  
grid-colouring 0 6 6 0 6 6 0 2 2 
is 1 6 5 0 9 9 0 5 5 
mapping 1 4 3 1 4 3 1 3 2 
multi-knapsack 0 7 7 0 8 8 0 2 2 
nmseq 0 4 4 0 4 4 1 0 − 1  
opd 8 0 − 8  7 1 − 6  0 1 1 
open_stacks 4 0 − 4  4 1 − 3  0 1 1 
p1f 6 0 − 6  6 0 − 6  0 0 0 
project-planning 0 5 5 0 11 11 0 11 11 
radiation 6 2 − 4  15 0 − 15  9 2 − 7  
spot5 1 4 3 1 4 3 4 0 − 4  
tdtsp 0 11 11 0 11 11 1 3 2 
triangular 2 3 1 3 3 0 2 2 0 
zephyrus 2 2 0 2 4 2 0 3 3 
Total 37 71 34 43 86 43 26 45 19  
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Table 8 
Wilcoxon rank test results for signficiant differences to a mean of zero in improvements and deteriorations by measurement category and overall changes. An asterisk 
indicates significant p-values at the 5% level.   

Δ Code  Δ Objective  Δ Time  Δ Total  

Type μ  p-value  μ  p-value  μ  p-value  μ  p-value  

GP SAW 0.0105 0.8582 0.2000 0.0038★  0.1474 0.0236★  0.1193 0.0011★  

GP MO 0.0211 0.7457 0.2526 0.0005★  0.1789 0.0115★  0.1509 0.0002★   

Table 9 
ORT, GP SAW and GP MO full search results (test set).    

ORT GP SAW GP MO 

Problem Class Instance Code Time Best Code Δ  Time Δ  Best Δ  Code Δ  Time Δ  Best Δ  

costas-array 10 S 1  S  1    S  1     
11 S 1  S  0    S  1     
12 S 1  S  1    S  1     
13 S 1  S  1    S  1     
14 S 1  S  1    S  1     
15 S 9  S  1 + S  2 +

gfd-schedule n10f2d10m10k3 SC 1 3 SC  1  3  SC  1  3   
n25f5d20m10k3 S 1 200 803 S  1 200  205 + S  1 200  422 +

n35f5d20m10k3 UNK 1 200  S + 1 200  1 107  S + 1 200  822   
n55f2d50m30k3 S 1 200 2 704 S  1 200  12 507 − S  1 200  7 155 −

n60f7d50m30k10 S 1 200 2 215 S  1 200  19 115 − S  1 200  9 658 −

grid-colouring 10_10 S 1 200 6 S  1 200  4 + S  1 200  4 +

12_13 S 1 200 7 S  1 200  6 + S  1 200  4 +

15_16 S 1 200 11 S  1 200  5 + S  1 200  5 +

5_6 SC 1 3 SC  1  3  SC  1  3   
7_8 S 1 200 4 SC + 1 + 3 + SC + 3 + 3 +

mapping mesh2x2_1 S 1 200 1 060 SC + 66 + 1 000 + SC + 5 + 1 000 +

mesh2x2_mp3 S 1 200 1 254 SC + 26 + 1 102 + SC + 175 + 1 102 +

mesh3x3_mp3 S 1 200 1 314 S  1 200  1 436 − S  1 200  1 262 +

mesh4x4_1 UNK 1 200  S + 1 200  2 564  S + 1 200  2 354   
ring_1 UNK 1 200  S + 1 200  1 702  S + 1 200  1 733  

multi-knapsack mknap2-10 UNK 1 200  UNK  1 200    SC + 644 + 624 319   
mknap2-31 UNK 1 200  SC + 25 + 9 074  SC + 37 + 9 074  

nmseq 099 S 1  S  1    S  1     
100 S 2  S  1    S  1     
143 S 4  S  1 + S  1 +

150 S 4  S  1 + S  1 +

200 S 6  S  1 + S  1 +

project-planning ProjectPlannertest_12_6 S 1 200 68 S  1 200  19 + SC + 2 + 17 +

ProjectPlannertest_14_6 S 1 200 73 S  1 200  32 + S  1 200  27 +

ProjectPlannertest_15_8 S 1 200 66 S  1 200  42 + SC + 682 + 31 +

ProjectPlannertest_16_9 S 1 200 39 S  1 200  35 + S  1 200  35 +

ProjectPlannertest_17_6 S 1 200 95 S  1 200  46 + S  1 200  48 +

spot5 1502 S 1 200 64 056 S  1 200  28 043 + S  1 200  32 050 +

29 S 1 200 14 069 S  1 200  8 059 + S  1 200  8 059 +

412 S 1 200 34 457 S  1 200  34 397 + S  1 200  39 407 −

42 S 1 200 191 117 S  1 200  164 064 + S  1 200  168 054 +

5 S 1 200 331 S  1 200  275 + S  1 200  283 +

tdtsp inst_10_35_20 SC 638 9 055 SC  12 + 9 055  SC  9 + 9 055   
inst_10_42_00 SC 318 8 421 SC  3 + 8 421  SC  2 + 8 421   
inst_10_45_00 SC 1 6 819 SC  3 − 6 819  SC  2  6 819   
inst_10_58_20 S 1 200 13 799 SC + 11 + 10 306 + SC + 12 + 10 306 +

inst_20_26_00 S 1 200 18 180 S  1 200  14 626 + S  1 200  14 942 +

triangular n18 S 1 200 40 S  1 200  40  S  1 200  40   
n26 S 1 200 56 S  1 200  61 + S  1 200  59 +

n34 S 1 200 74 S  1 200  81 + S  1 200  79 +

n40 S 1 200 86 S  1 200  97 + S  1 200  95 +

n46 S 1 200 98 S  1 200  110 + S  1 200  112 +

zephyrus 12__6__8__3 SC 948 1 300 S − 1 200 − 1 300  S − 1 200 − 3 055 −

12__8__6__3 SC 294 1 300 S − 1 200 − 1 300  S − 1 200 − 6 305 −

14__10__8__3 UNK 1 200  S + 1 200  9 100  S + 1 200  10 920   
14__6__8__3 SC 247 1 170 S − 1 200 − 8 710 − S − 1 200 − 5 850 −

14__8__6__3 SC 87 1 170 S − 1 200 − 9 230 − S − 1 200 − 6 760 −
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The results of the search developed on problem instances of the same 
class are provided in Table 9. As a general observation, the improved 
performance over the default ORT search on problem classes is carried 
forward to the test set, as summarised in Table 10. The performance of 
the search strategies found on the test set was largely anticipated as the 
methodology adopted follows that of Bennetto and Van Vuuren [3]. One 
problem class stands out as an exception — the zephyrus class. The 
zephyrus problem class warrants further discussion as strategies devel-
oped by the single-objective GP and multi-objective schemes both failed 
on the test set. 

The CSPs in Figs. 2 and 3 are plotted according to a gravity layout 
model2. Each node in the plot represents either a variable or constraint. 
An example of a constraint node is simply a condition to be met between 
a pair of variables, such as xi ∕= xj, which would result in three nodes, 
two of which are variable nodes (xi, xj) and one constraint node (C∕=), 
with two edges, (xi,C∕=) and (C∕=,xj). All nodes represent either variable- 
value assignments performed by the solver, or required constraint 
checks between such assigned values. 

Two instances from the project-planning class (Fig. 2) are provided 
as well as two instances from the training and test data sets for the 
zephyrus problem class (Fig. 3) in order to illustrate the change in 
structure between the training and test data sets. The project-planning 
problem class instances shown in Fig. 2 are representative of the 

instances in both the training and test set. The project-planning problem 
class search strategies found on the training set were among the top 
performing strategies on the test set when compared with the default 
ORT search strategy. 

The GP is tasked to design search strategies which preferably exploit 
a structural feature of the underlying graph that is expected to be present 
in variations of instances within the problem class. If such a structure is 
modified, it would not necessarily follow that the search strategy would 
retain its ability to perform well on a problem that no longer contains the 
anticipated structural exploits. Fig. 3 illustrates that the training data 
exhibits two connected components with a (mostly) symmetric structure 
emanating from a core set of variables. The graphical representation of 
the test set examples exhibit a single connected component with addi-
tional complexities and sub-structures within each primary region — it 
also appears that there are additional side constraints (clusters of con-
straints in the top-left portions of Figs. 3(c) and 3(d)) which were not 
present in the original problem definition. In addition, the para-
metrisation of the test data appears to have changed from a two- 
parameter model to a four-parameter model — which would explain 
the additional structural complexity observed in the test samples. This 
exposes a weakness in the approach employed whereby if a problem 
class is incorrectly classified, an unsuitable strategy may be used to solve 
such an instance which may perform worse than a default search with 
fewer structural exploitations. 

Table 10 
GP SAW and MO results summary by problem class (test set).   

GP SAW (Δ ORT)  GP MO (Δ ORT)  

Problem Class − + Δ  − + Δ  

costas-array 0 1 1 0 1 1 
gfd-schedule 2 2 0 2 2 0 
grid-colouring 0 6 6 0 6 6 
mapping 1 8 7 0 9 9 
multi-knapsack 0 2 2 0 4 4 
nmseq 0 3 3 0 3 3 
project-planning 0 5 5 0 9 9 
spot5 0 5 5 1 4 3 
tdtsp 1 6 5 0 6 6 
triangular 0 4 4 0 4 4 
zephyrus 10 1 − 9  12 1 − 11  
Total 14 43 29 15 49 34  

Fig. 2. An illustration of CSP structural similarity between training and test instances.  

2 Using the default settings in the visNetwork R package. 
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5. Conclusions 

The methodology presented in this paper extends the work of Minton 
[13], Epstein et al. [1,7] and Bennetto and Van Vuuren [3] in which a 
multi-objective metaheuristic approach is employed to develop 
branching strategies for solving classes of CSPs. To the best of the au-
thors’ knowledge, this is the first time that a multi-objective approach 
has been adopted to solve this particular problem. 

The methodology employed reduces the specification of the strategy 
to an arithmetic function and adopts a classic ‘Koza’ style genetic pro-
gramming modelling approach in conjunction with the NSGA-II to 
search for candidate strategies. A data set of open problem instances was 
employed to train the GP where problem instances were grouped by 
class and collectively solved. Not only does the approach demonstrate 
that high-quality search strategies can be found which outperform other 
high-ranking search strategies, including the ORT default search and 
single-objective GP — but that the search strategies found continue to 
extend to unseen problem instances of the same class. 

It was found that, in one example, the structure of the test data for a 
particular problem class was sufficiently different to erode the perfor-
mance gain observed on the training set. This finding supports the case 
that the GP had developed structural exploits for the class of CSPs in the 
training process which were rendered ineffective through a change in 

problem structure. 
Future work may include considering a more sophisticated set of GP 

operators and comparing the results performance with that of the 
arithmetic operators in this context. A more comprehensive set of test 
data may also be explored. 
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