
Bennetto, Robert; van Vuuren, Jan

Article

Multi-objective evolutionary search strategies in constraint
programming

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Bennetto, Robert; van Vuuren, Jan (2021) : Multi-objective evolutionary search
strategies in constraint programming, Operations Research Perspectives, ISSN 2214-7160, Elsevier,
Amsterdam, Vol. 8, pp. 1-15,
https://doi.org/10.1016/j.orp.2020.100177

This Version is available at:
https://hdl.handle.net/10419/246437

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2020.100177%0A
https://hdl.handle.net/10419/246437
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Operations Research Perspectives 8 (2021) 100177

Available online 24 December 2020
2214-7160/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Multi-objective evolutionary search strategies in constraint programming

Robert Bennetto *, Jan H van Vuuren
Stellenbosch Unit for Operations Research, Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa

A R T I C L E I N F O

Keywords:
Combinatorial optimization
Multi-objective optimization
Genetic algorithms
Constraint programming

A B S T R A C T

It has been shown that evolutionary algorithms are able to construct suitable search strategies for classes of
Constraint Satisfaction Problems (CSPs) in Constraint Programming. This paper is an explanation of the use of
multi-objective optimisation in contrast to simple additive weighting techniques with a view to develop search
strategies to classes of CSPs. A hierarchical scheme is employed to select a candidate strategy from the Pareto
frontier for final evaluation. The results demonstrate that multi-objective optimisation significantly outperforms
the single objective scheme in the same number of objective evaluations. In situations where strategies developed
for a class of problems fail to extend to unseen problem instances of the same class, it is found that the structure
of the underlying CSPs do not resemble those employed in the training process.

1. Introduction

Constraint Programming (CP) is a declarative paradigm for defining
discrete optimisation or satisfiability problems. A problem instance
(satisfiability or optimisation) is referred to as a Constraint Satisfaction
Problem (CSP). Larger, or more complex CSPs often require state-of-the-
art heuristic strategies to improve search performance. While a heuristic
strategy may be employed, the overall CP search remains a complete
search, in that, given sufficient time, the search will terminate with
either an optimality, feasibility or infeasibility proof.

It has been shown by several authors such as Minton [13], Epstein
et al. [7] and Bain et al. [2] that heuristic approaches or metaheuristics
can be used to develop search algorithms for solving classes of CSPs
effectively. These approaches employ a single objective in the mea-
surement of the quality of solutions found, even though multiple mea-
surements as to the quality of an incomplete search may, in fact, be
taken. As an example, the metrics presented by Schuurmans and Southey
[16] are not necessarily directly comparable to one another as the units
of measurement for the metrics vary (mobility, coverage, depth, flips). If
such metrics were used in a single objective scheme, a weighting for
each of the metrics would be required in order to define an explicit
trade-off between objective function components for use in single
objective metaheuristics.

While the approach of finding good branching strategies is heuristic,
the underlying CP solver remains exact, which allows for the calibration
of the solver for a class of problems that may result in significant per-
formance improvements carried forward to unseen problem instances.

In real-world applications, the methodology presented in this paper al-
lows operations researchers to create heuristics well-suited to classes of
problems in order to reduce future computational burden.

The aim of this paper is to address a weakness of the simple additive
weighting (SAW) metaheuristic scheme employed by Bennetto and Van
Vuuren [3] and proposes a multi-objective formulation of the meta-
heuristic search for a suitable CP branching strategy to solve a class of
CSPs. The multi-objective approach demonstrates a statistically signifi-
cant improvement over a SAW scheme across the same objective di-
mensions for an equivalent number of objective function evaluations.
The concepts of CSPs, Genetic Programming (GP) and multi-objective
optimisation are formally introduced in Section 2, while the method-
ology employed by the GP to find high-quality branching strategies is
described in Section 3. Section 4 details the empirical results of the GP
and includes an explanation of the success achieved by the
multi-objective methodology. Conclusions are finally provided in Sec-
tion 5.

2. Background

2.1. Constraint programming

A constraint within CP may be defined formally as follows [4].

Definition 1. (Constraint) A constraint c is a relation defined on a
sequence of variables X(c) = (xi1 ,…, xi|X(c)|), called the scheme of c. Here
c is the subset of Z|X(c)| which contains the combinations of values (or

* Corresponding author.
E-mail addresses: robert.bennetto.za@gmail.com (R. Bennetto), vuuren@sun.ac.za (J.H. Vuuren).

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

https://doi.org/10.1016/j.orp.2020.100177
Received 17 January 2020; Received in revised form 22 December 2020; Accepted 22 December 2020

mailto:robert.bennetto.za@gmail.com
mailto:vuuren@sun.ac.za
www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2020.100177
https://doi.org/10.1016/j.orp.2020.100177
https://doi.org/10.1016/j.orp.2020.100177
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2020.100177&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Operations Research Perspectives 8 (2021) 100177

2

tuples) τ ∈ Z|X(c)| that satisfy c. |X(c)| is the arity of c. Testing whether a
tuple τ satisfies a constraint c is called a constraint check.

A constraint network within CP is defined as follows [4].

Definition 2. (Constraint Network) A constraint network is composed
of:

• a finite sequence of integer variables X = (x1,⋯,xn),

• a domain for X, that is, a set D = D(xi) × … × D(xn), where D(xi)⊂Z is
the finite set of values that can be assumed by variable xi, and

• a set of constraints C = {c1,…, ce}, where variables in X(cj) are in X.

A network N is referred to in terms of its components pertaining to
the variables, domains and constraints; that is, N = (X,D,C). The process
of searching requires that values are assigned to the variables of the
network in some manner — typically a backtracking algorithm which
ensures constraint adherence during the search process. The process of
assigning a value to a variable is referred to as an instantiation of that
variable [4].

Definition 3. (Instantiation) Given a network N = (X,D,C),

• An instantiation V on Y = (x1,…, xk)⊂X is an assignment of values v1,

…, vk to the variables x1,…, xk, that is, V is a tuple on Y. V is denoted
by ((x1, v1),…, (xk, vk)), where (xi, vi) denotes the value vi for xi.

• An instantiation V on Y is valid if, for all xi ∈ Y,V[xi] ∈ D(xi).
• An instantiation V on Y is locally consistent if and only if it is valid for

all c ∈ C with X(c)⊂Y and V[X(c)] satisfies c. If V is not locally
consistent, it is locally inconsistent.

• A solution to a network N is an instantiation V on X which is locally
consistent. The set of solutions of N is denoted by sol(N).

• An instantiation V on Y is globally consistent (or consistent) if it can be
extended to a solution (i.e. there exists an s ∈ sol(N) with V = s[Y]).

A solution to a CSP is one where a valid instantiation is found for a
given network N, for all variables XN on domains DN that satisfy all
constraints CN. A CSP specified as an optimisation problem will pro-
gressively add constraints, if a feasible solution is found, which restrict
the next solution to have an objective function value superior to that of
the previously found solution. In the case where the CP search completes
an optimisation CSP with a feasible solution, an optimality proof is
obtained. The flexibility of CSPs allows for a large range of discrete
optimisation and satisfaction problems to be modelled.

CP employs backtracking search in order to find a valid instantiation
for a CSP, or to demonstrate that no such instantiation exists, resulting in
an unsatisfiable or infeasible network N. The words instantiation and
solution may be used interchangeably in this context.

The branching strategy in CP can be described as a two stage process:
Selecting which unassigned variable xi in a network N should be
assigned a value, followed by selecting a value from the domain D(xi) to
assign to that variable. If all constraints are feasible with respect to the
proposed assignment, the next unassigned variable is selected and the
search continues by assigning a value or else backtracks if the assign-
ment is infeasible. Popular techniques employed by commercial CP
solvers include impact-based search (IBS) [15] and failure-directed search
(FDS) [22] which both use statistics gathered during the search for each
variable xi to determine the ranking of a variable and value selection in
the CP search tree. The performance of a particular branching strategy is
not necessarily known a priori and as a result, portfolios of branching
strategies are often used in practice.

2.2. Genetic programming

Given that the CP runtime may be large, it may be onerous to conduct
a complete search. Many practitioners therefore use metaheuristics to
find high-quality solutions if the problem domain is difficult to express
as a CSP (such as in simulation environments) or if a good enough

solution is sufficient. Numerous metaheuristics are available to practi-
tioners for this purpose. The emphasis in this paper is on GP [11] which
is a derivative of the Genetic Algorithm (GA) proposed by Goldberg [8].
The mechanics of the GP are similar to those of the GA in that they both
employ a population-based approach and apply operators such as
crossover, mutation and selection. An important difference between GAs
and GPs is that the representation of the underlying chromosome in a GP
takes the form of a tree-based structure as opposed to the vector-based
structure commonly used in classic GAs. In the same way that a popu-
lation member in a GA may contain multiple vector-based chromo-
somes, a GP member may also contain multiple tree structures, with tree
constraints imposed to determine which nodes are permitted in a given
tree. GP tree constraints are analogous to domain constraints on integer
or real-based vector encodings employed in GAs. The operators used for
crossover in GPs are designed to function on tree-based structures and
bear little resemblance to their GA counterparts due to low indepen-
dence between components of a tree should a modification be affected
by crossover or mutation.

2.3. Multi-objective optimisation

Many real-world problems require measuring more than a single
criterion when identifying the quality of a solution. One approach to-
wards resolving this problem is to use a SAW of each of the objective
terms and summarise this in a single, new, objective which can then be
optimised in a classic single-objective paradigm. The technique of SAW
has, however, received strong criticism [18] for several good reasons.
SAW implies a known explicit trade-off between potentially conflicting
objectives (i.e. being willing to forgo a units of dimension x for b units of
dimension y). This requires knowledge of the domains of the dimensions
being optimised and the user preferences between such dimensions
(which may both be unknown). Secondly, there is an implied assump-
tion of convexity when adopting SAW [5], which may not hold in
practice and thus important portions of the search space may be inac-
cessible to a metaheuristic. This is not to say that SAW is not an
appropriate method or that it is not useful in general — just that care
should be taken in the treatment of the objective function components,
understanding the utility function for each objective before a SAW is
applied.

A question that naturally arises when working with multiple objec-
tives is how one should compare one solution in terms of M objectives
with another in terms of same objectives. The Pareto method is typically
adopted to compare two candidate solutions, which results in multiple
solutions being considered optimal. Many optimal solutions can be an
uncomfortable proposition for an operations research practitioner,
although Deb [5] suggests that a reasonable approach is to treat the
problem of generating the Pareto frontier as a separate problem from
selecting an optimal solution from the frontier. According to this
two-step methodology in hand, one does not unnecessarily restrict the
search space or bias the search process towards potentially poor-quality
solutions.

In order to introduce the concept of Pareto-optimality, a definition of
dominance with respect to a set of m objectives is adopted [5].

Definition 4. (Multi-objective optimisation) For set W, containing m
objectives and a feasible set S of decision vectors, a multi-objective
optimisation problem involves

minimising fm(x),m ∈ W
subject to x ∈ S (1)

A dominance relation between two solutions x(1) and x(2) may be
defined as follows:

Definition 5. (Dominance) A solution x(1) dominates a solution x(2) if
both of the following conditions are met:

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

3

1. The solution x(1) is no worse than x(2) in all objectives, and
2. The solution x(1) is strictly better than x(2) in at least one objective.

The notation x(1)⪯x(2) is adopted to indicate that solution x(2) is
dominated by solution x(1) when both of these conditions are met. A
situation may arise in which, given two solutions to (1), neither domi-
nates the other, but both dominate other solutions. Solutions which are
non-dominated can hence be separated from those which are
dominated.

Definition 6. (Non-dominated set) Among a set of solutions P, the
non-dominated set of solutions P′ are those that are not dominated by
any member of the the set P.

Definition 5 is referred to as the weak-domination criterion. Strong
dominance can be defined follows:

Definition 7. (Strong Dominance) A solution x(1) strongly dominates a
solution x(2) if x(1) is strictly better than x(2) in all m objectives.

The shorthand notation for strong dominance is x(1) ≺ x(2).
The principal change required to modify the widely used GA to cater

for multiple objectives is in the selection of population members. The
selection procedure in GAs requires comparing individuals in the pop-
ulation in order to determine which population members of high quality
should be selected for breeding.

A highly successful approach was proposed by Deb et al. [6], called
NSGA-II (Non-dominated Sorting Genetic Algorithm II). The algorithm
not only addresses the computational complexity of other
multi-objective GAs, such as that in [17] by the same authors, but is also
capable of retaining diversity on the frontier without explicit para-
metrisation, ensuring that the Pareto frontier is adequately explored.

In order to ensure diversity in the selected population, Deb et al. [6]
proposed a crowding distance calculation to bias selecting solutions
which occur in lower density around the estimated Pareto Frontier.
More formally, if two solutions have the equivalent rank as a result of
non-dominated sorting algorithm, the solution with the lower crowding
distance is selected. Deb et al. demonstrated that this algorithm signif-
icantly outperforms previous methods, such as SPEA [21] (strength--
Pareto EA) and PAES [10] (Pareto-archived evolution strategy), when
estimating the true Pareto frontier.

The next section contains a discussion on the methodology employed
to use a multi-objective GP to determine suitable branching strategies
for classes of CSPs, thereby extending the SAW approach adopted by
Bennetto and Van Vuuren [3] to a multi-objective approach.

3. Methodology

The methodology proposed in this paper entails evolving a branching
strategy obtained by GP which is evaluated in terms of several CSPs
belonging to same problem class. A CSP instance i belonging to class m is
denoted by p(m)

i , i ∈ {1,…, n} where n is the number of instances in the
problem class. The set of problem classes is denoted by M. The shorthand
P(m) is used to denote the collection of n CSP instances in class m.
Branching strategy instance j developed for problem class m is denoted
S(m)

j . A description of the chromosomal representation for the branching
strategy is provided in Section 3.1.

The GP is tasked with developing S(m)

j , given a collection of training

examples P(m) and a time budget of ten seconds to solve each p(m)

i ∈ P(m).
It is unlikely for CP to complete the solution for a non-trivial instance
p(m)

i |S(m)

j within this time budget and, as such, specific measures of the

search performance are used to describe the efficacy of a candidate S(m)

j .

Aggregate measures of the search performance for P(m)|S(m)

j are used to
define the multi-objective function, described in Section 3.2.

The configuration parameters of the GP for each training run per-

Algorithm 1
Core procedure definitions.

Algorithm 2
Methodology pseudo code.

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

4

taining to class m is described in Section 3.3. A description of the test
data suite and default search strategy is provided in Section 3.4. Once
the GP has reached the termination criterion, a “best” strategy S(m)

B is
selected from the approximate Pareto frontier. This is done using a hi-
erarchical selection scheme described in Section 3.5. S(m)

B is then eval-
uated on the training samples P(m), given a full 20 min to complete the
search. This complete evaluation on the training data allows for a
comparison between the performance of S(m)

B and the default search
strategy employed by the solver, denoted by SD. Note that the default
search strategy does not differentiate by problem class.

As a final step, S(m)

B is evaluated on unseen CSP data belonging to the

same problem class, denoted by P(m). The evaluation of P(m)
|S(m)

B is
compared to SD in Section 4. A summary of the key procedures outlined
in the methodology is provided in Algorithm 1 and the pseudo code
outlining the process-flow of the complete train and test methodology is
provided in Algorithm 2.

3.1. GP representation

A strategy S(m)

j comprises four components. A variable selector tree
and a value selector tree are employed, as well as two single terminal
node decisions encapsulating the parameters for whether nogoods should
be used by the search and the log restart size. This enables the GP so
explore not only the explicit branching strategy, but also the interaction
with higher level parameters which may also be useful to determine an
effective search strategy. The variable and value selector tree compo-
nents are described in Tables 1 and 2, respectively. The nogoods
parameter is a binary variable and the log restart size an integer variable
on the range [0,17]. These four components implicitly define the
resulting strategy search space for the GP.

The function set in Table 1 allows for the creation of two popular
search methods through the use of SUCCESSRATE and IMPACTX, namely FDS

and IBS. Other search heuristics commonly used in CP, such as DOM, can
be generated through the use of SIZE(X). It would thus also be possible to
create the inverse strategies for IBS and FDS by combining the INV

operator with the associated operator.
The GP tree functions presented in Tables 1 and 2 would typically be

described as an arithmetic set and are used during the CP search to
create a ranking value for each variable and value assignment tuple. The
unassigned variable with the lowest rank is selected as the branching
variable, after which the value for the selected variable with the lowest
rank is selected as the next value assignment attempt during the CP
search.

3.2. GP objective function

The GP objective function is created by aggregating three CP-search
performance measures. The first is the maximum search depth achieved
for p(m)

i |S(m)

j where the total number of variables and the maximum

search depth are denoted by Vi and di, respectively, for p(m)

i . The
maximum search depth is stated as a percentage of the total number of
CSP variable and is given by

f1(P(m)) =
∑

i∈P(m)

Vi − di

Vi
, (2)

which is thus normalised to the interval [0,1], where a zero value in-
dicates that a feasible solution has been found by the search procedure.

When an optimisation objective is defined, the quality of the best
objective value oi obtained for p(m)

i is measured by the function

f2(P(m)) =
∑

i∈P(m)

f (oi)

omax
i − omin

i
, (3)

where

f (oi) =

{
omax

i − oi, if the sense is maximisation

oi − omin
i , otherwise.

(4)

The domain of the variable oi is given by [omin
i , omax

i], where the values of
omin

i and omax
i are determined after initial propagation (a deterministic

procedure) has been performed. This ensures that the range [omin
i , omax

i] is
reasonably well bounded. The objective sense is given by the direction of
the CSP objective function, which is either minimisation or max-
imisation. If a CP search results in no feasible incumbent being found,
the value of (3) is set to one. The value of (3) is set to zero for CSPs which
do not define an objective function.

The third objective function component

f3(P(m)) =
∑

i∈P(m)

ti

T
. (5)

measures as a function of the time taken to solve p(m)

i , where the
maximum time is denoted by T and the time expended by the search is
given by ti.

Table 2
Description of the node and terminal set used in Tree 2, the value selector.

Function Name Type Arity Description Abbreviation

Add Node 2 Simple addition +

Mul Node 2 Simple multiplication *
Inv Node 1 Protected inversion Inv
Neg Node 1 Negation -
Rand Terminal 0 Random number (uniform) rand
LocalImpactValueX Terminal 0 The local impact of the assignment of value v to variable xi Limpt(x,v)
NumberOfFailsValueX Terminal 0 The number of fails of the assignment of value v to variable xi Fails(x, v)
NumberOfInstantiationsValX Terminal 0 The number of instantiations of value v to variable xi Inst(x,v)

Table 1
Description of the node and terminal set used in Tree 1, the variable selector.

Function
Name

Type Arity Description Abbreviation

Add Node 2 Simple addition +

Mul Node 2 Simple multiplication *
Inv Node 1 Protected inversion Inv
Neg Node 1 Negation -
Rand Terminal 0 Random uniform number rand
MinX Terminal 0 The minimum feasible

value in D(xi)

Min(x)

MaxX Terminal 0 The maximum feasible
value in D(xi)

Max(x)

SizeX Terminal 0 The cardinality of feasible
domain D(xi)

Size(x)

SuccessRateX Terminal 0 The success rate of value
assignments to variable xi

SuccRate(x)

ImpactX Terminal 0 The (sum of) impact of
variable xi

Impt(x)

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

5

The definition of f3 in (5) normalises the values obtained to the same
domain as the functions in (2) and (3). A SAW objective function is
written as

fsaw = f1 + f2 + f3. (6)

It would be reasonable to question the usage of a unit weight for each
of the terms used in the formation of a SAW objective (6). Due to the
correlation structure between these individual objectives, however, it
would seem unnecessary to specify a more complex weighting scheme.
Domains are orientated in functions (2), (3) and (5) such that good so-
lutions are close to zero and poor solutions near one. In a SAW scheme,
the sum of these objective components also correlate to the extremes of
the resulting aggregate domain. A problem arises in the consideration of
the algorithmic progress between these domain extremes, where subtle
trade-offs between objectives may be required.

A SAW scheme weights the importance of feasibility (2) and the
expended time (5) equally. One may consider an example of a satisfi-
ability CSP where some subset of instances in P(m) are feasible for
strategy S(m)

i (completing with small values for the expressions in (2) and
(5)) while others are infeasible (with poor values for the term in (2)).
S(m)

i may be compared with a alternate strategy S(m)

j , which produces no
feasible solutions in P(m) but is generally close to achieving a feasible
outcome over instances evaluated in P(m)|S(m)

j such that fsaw may be

greater then the evaluation of fsaw for P(m)|S(m)

i . This means that S(m)

i

would be preferred over S(m)

j , which may not be the desired outcome. It

may be found that, with a sufficient time budget, the strategy of S(m)

j

produces a smaller value for fsaw. The argument here can me made in
either direction simply by altering the degree of feasibility achieved for
the term (2) in fsaw. This example illustrates the potential bias towards
different search strategies based on a SAW scheme.

It would be possible to mimic a tiered hierarchical objective function
by applying weights and offsets in the construction of a SAW objective
such that the point at which a trade-off between objectives becomes
negligible, with the emphasis being placed on first minimising (2), then
(3) and so forth. One may argue that this may decrease population di-
versity in the evolutionary algorithm as it creates a myopic objective
function in which a large emphasis is then placed on each successive
objective function term. There is a risk that some strategies which may
be exploring features of the local search space are disregarded during
earlier selection iterations as they are aggressively dominated (in cost)
by a single strategy that performs well during initial generations of the
GP. There are several works which highlight the importance of having
population diversity in initial populations that are similar in cost so as to
avoid pre-mature convergence in GAs.

It is prudent to note that there are no assurances as to the convexity
of the objective components (2), (3) and (5) in a SAW scheme, which
implies that no linear combination of these terms is capable of
expressing the true Pareto frontier, resulting in portions of the optimal
frontier being disregarded as being inferior. It is a natural extension
rather to consider a multi-objective approach which can lead to more
favourable transitions of candidate solutions to an optimal policy. The
multi-objective version of the problem is thus to

minimise fk(P(m)), k ∈ {1, 2, 3}. (7)

3.3. GP configuration

The multi-objective variation of the GP employs the same parameters
for crossover and mutation as those used by Bennetto and Van Vuuren
[3], but adopts the NSGA-II selection algorithm to maintain the Pareto
frontier of best solutions found. The ability of the NSGA-II algorithm to
maintain a frontier of best solutions requires that the population size be
adjusted. Frontier solutions are carried forward to the next generation in
the GP and it is desirable to have a similar number of individual

evaluations when performing comparisons with the SAW GP. During
experimentation, it was found that a population size of 150 individuals
produced a close match to the target number of individual evaluations in
the SAW GP run. A summary of the parameters of the GP run for
multi-objective optimisation is provided in Table 3.

The Java-based evolutionary framework ECJ [12] implementation is
used to implement the grammar presented in Tables 1 and 2 as well as
the configurations specified in Table 3.

3.4. Test data and CP solver

The 2015 MiniZinc challenge problems [19] were previously used by
Bennetto and Van Vuuren [3] to benchmark the performance of the GP
to develop branching strategies. The same nineteen problem instances
are used here to test the multi-objective variant of the GP search.

The result of a particular CSP search is assigned a status code in the
MiniZinc challenge. A summary of the status codes are shown in Table 4.
An ideal status code for optimisation problems is ‘SC’ (completed with
optimality proof) and either ‘S’ or ‘C’ for pure satisfiability problems,
where the codes correspond to a feasibility proof and an infeasibility

Table 3
GP parameters for multi-objective optimisation.

Parameter Value Description

Generations 15 The number of population iterations
performed by the GP.

Population size 150 The size of the population at each iteration
(including the Pareto frontier).

Elitism No Elitism is indirectly maintained through the
frontier being persisted from one iteration
to another and the idea of an explicit “best”
individual in multi-objective optimisation is
not possible.

Tournament size None Selection is managed through the non-
dominated sorting algorithm.

Crossover rate 0.9 The probability that a node in the tree is
selected for a crossover operation.
Crossover exchanges the two resulting
subtrees between two individuals at
compatible nodes.

Maximum crossover
depth

17 The limit on the selection of nodes for
crossover.

Mutation rate 0.1 The rate at which subtree mutation is
applied to tree nodes.

Mutation type Subtree Subtree mutation invokes a call to the Grow
method which randomly creates a new
subtree of depth 5.

Non-terminal
Selection
Probability

0.9 When generating new trees, the probability
that a node with non-zero arity is selected at
random.

Terminal Selection
Rate

0.1 When generating new trees, the probability
that a terminal is selected at random.

Seeding mechanism 50/50
Grow/Full

Also referred to as the half-builder. Half the
population is seeded using the Grow method
and the other half through the Full method.

Full depth range [2,6] The target range of minimum and maximum
depths for a tree created using the Full
method.

Grow depth range [5,5] The target range of minimum and maximum
depths for a tree created using the Grow
method.

Table 4
Constraint satisfaction problem status codes.

Code Description

S A feasible Solution was found.
C The search was Completed.
SC A Solution was found and the search was Completed.
UNK No solution was found within time limit, invalid solution or out-of-memory

error.

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

6

proof, respectively.
The Google Or-Tools (ORT) solver [14] is employed as a reference

point from which to measure high-quality search strategies found as the
ORT solver was the top performing open-source solver in the free-search
category of the 2015 MiniZinc Challenge. The ORT default strategy
employed is a follows a series of heuristic dives and IBS. The maximum
numbers of heuristic dives are limited and consist of common heuristics
in CP, such as selecting the smallest or largest variable domain in
conjunction with the smallest or largest feasible value. A single heuristic
dive is limited by the number of branches that may be explored. Heu-
ristic variable domain splits are used in addition to the dives and IBS
which are isolated to variables with larger domains. IBS is the default
search mechanism once heuristics have completed in ORT.

The training data consists of five problem instances per problem
class. The performance of a candidate branching strategy is evaluated
over all five instances, with 10 s of search time permitted per problem
instance p(m)

i . The objective function evaluation time for an individual in
the GP population is typically less than 60 s, as a small amount of
additional time is required to compile the strategies which are
embedded in the CP search procedure. The ORT solver is given 20 min of
search time employing the default search algorithm, serving as a
benchmark with which to compare the performance of the final evolved
GP solutions, per problem class, which are also then given 20 min of
search time. The best solutions previously found by a SAW scheme [3]
are included and labelled GP SAW. Multi-objective GP results are
denoted by the shorthand ‘GP MO’ in the tables of results.

The total computational budget of the GP is considerably larger than
the total time expended by the ORT default search algorithm. One may,
however, consider this as an offline training procedure whose purpose is
to evolve a search strategy which may yield improved performance on
unseen problem instances of the same class.

The empirical results were performed using the same hardware
specification as in the SAW experiments previously conducted by Ben-
netto and Van Vuuren [3] in order to support a valid comparison be-
tween the results obtained.

3.5. Strategy selection

As mentioned, Deb [5] suggested that the processes of producing a
Pareto frontier and selecting a solution from the frontier be treated as
independent steps. This section contains a description of the method-
ology adopted to evaluate different schemes in order to determine a
single S(m)

B from the generated Pareto frontier.
The goal of the GP training runs is to produce S(m)

B for a problem class
upon expending a small amount of search time. In a classic single-
objective GP, S(m)

B is simply the strategy with the lowest cost for fsaw

(6). The multi-objective GP, on the other hand, returns the Pareto
frontier of best strategies found. It is therefore required to determine the
criteria by which a single individual may be selected from the Pareto
frontier to use as the candidate search strategy for a full evaluation. S(m)

B

may be selected from the frontier based on fsaw value, some other
weighting scheme, or even hierarchically.

Each S(m)

j on the Pareto frontier which would qualify as a candidate

S(m)

B according to either a hierarchical selection scheme or fsaw, are
evaluated by executing a 20 min search (as opposed to a 10 s search
permitted during training). The evaluation of the selection schemes for
the Pareto frontier are carried out strictly on measurements available to
the GP search based on the limited search time for a candidate S(m)

j . By
restricting the selection criteria to measurements available at the end of
the GP search, a single strategy is selected from each frontier without
having to evaluate the final quality of all individuals on the frontier in
future experiments. Six hierarchical selection schemes are provided in
Table 5 which rank the objective components in their order of
importance.

The difference in overall outcomes in Table 5 is determined by a
subset of problems for which multiple solutions are available on the
Pareto frontier (the set of blue points in Fig. 1). It is interesting to note
that recomputing the results of a multi-objective search strategy using
fsaw in (6) as a selection criterion produces a relatively average overall
result in the context of other selection schemes.

The scheme {2,1, 3} is considered the preferred scheme for
comparing results as not only does it achieve a large number of feasi-
bility proofs, but also the least number of unknown status codes. The
overall sum of normalised objective function values for this selection
scheme is also the smallest among the set of comparisons. This scheme
selects a point from the Pareto frontier hierarchically, first according to
the smallest normalised objective sum (3), then according to the nor-
malised remaining minimum infeasibility (2) and finally according to
the normalised solution time (5).

4. Results

A subset of the multi-objective GP runs is provided in Fig. 1. The plots
are provided in three dimensions where all strategies are able to produce
variation in all components of the objective function (7). The latter plots
are provided in two dimensions as there was no variation in the omitted
component values. Lastly, problem classes p1f and triangular were
omitted from the plots as no strategies were able to produce variation in
more than a single objective function component within the sampling
limit1. Evaluated solutions which are concluded to lie on the Pareto
frontier are coloured in blue in Fig. 1. Solutions not on this frontier are
coloured based on a heat scale indicating at which generation during the
GP search the individuals were created, red and yellow being used for
individuals created near the start and the end of the GP run, respectively.

The mapping problem class in Fig. 1 illustrates the correlation
structure between the objective function components in that small
values of remaining infeasibility are associated with small objective
instance values. The strength of this correlation varies between problem
instances, which is most prevalent in the zephyrus problem class. The
tdtsp problem class clearly illustrates the convergence progression of the
GP as the majority of solutions are of poor quality at the start of the GP
run with high-quality solutions being formed at the end of the run (light
yellow). The Pareto frontiers vary in size from a single dominant solu-
tion (is) to several optimal solutions (freepizza).

The complete set of all runs comparing the results between the
default ORT search, the single-objective GP using a SAW scheme and the
multi-objective GP using the {2,1,3} scheme to select the preferred
strategy from the Pareto frontier is provided in Table 6. The difference in

Table 5
Summary of Pareto frontier selection scheme results for multi-objective GP
across all training set problems.

Full Evaluation Results Sampling limit terms

Selection Scheme # S # SC # C # UNK
∑

f1
∑

f2
∑

f3

{1,2,3} 56 29 0 10 1.35 35.03 60.51
{1,3,2} 58 27 0 10 1.35 36.10 60.40
{2,1,3} 57 29 0 9 1.35 33.66 60.41
{2,3,1} 56 29 0 10 1.62 34.66 61.10
{3,1,2} 56 27 0 12 1.92 38.10 61.97
{3,2,1} 57 27 0 11 1.90 36.73 61.97
fsaw 56 29 0 10 1.62 35.16 61.11

1 In the case of p1f this raises the question as to whether the sampling limit
should be increased for larger problems in order to evolve meaningful strate-
gies. The triangular problem class has a tendency always to admit a feasible
solution, and utilise the full time limit, leaving only the instance objective
function as a facet.

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

7

search performance is shown in the columns marked Δ, with differences
being indicated as either improvements (+) or deteriorations (-) in the
respective measurements for the single-objective and multi-objective
searches relative to the default ORT search algorithm. In addition, the
differences in performance between the SAW and MO GP schemes are
provided in the last three columns.

Scoring the differences in objective function values obtained by the
CP search for optimisation problems in Table 6 is only performed when
both objective values are present. The reason for this is that a penalty
has already been accounted for in the difference between status codes, i.

e. if one strategy produces S and another UNK, there will only be one
objective function value (corresponding to the S code). Thus the impact
of a superior or inferior search has already been encapsulated in the
status code or search time in such instances. Differences between search
times of less than one second are not considered sufficiently significant
to contribute to the scoring employed.

The summary of results in Table 7 provides an overview of where
significant improvements could be made in the instance objective and
time to solve. It was previously established [3] that the GP SAW scheme
significantly outperforms the default ORT strategy at the 5% level of

Fig. 1. GP run results using NSGA-II for a subset of problem classes (continued).

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

8

significance. Table 8 summarises the p-values obtained for the
multi-objective results which also significantly outperform the default
ORT search at the 5% level of significance. The significance test
employed is the non-parametric signed Wilcoxon rank test [20] which
tests for significant differences in matched samples. The Wilcoxon test
makes no distributional assumptions about the mean and is a strong
indicator of significant differences if the null hypothesis is rejected.

The Wilcoxon rank test also produces a significant p-value (0.02435)
at the 5% significance level when testing for a difference in performance

between the SAW and MO GP schemes at an aggregate level. The ma-
jority of the positive contributions to performance are as a result of
strategies found which result in an improved best objective function
value found for the target CSP, namely project-planning (+ 5), freepizza
(+ 4) and is (+ 3).

The multi-objective scheme was able to find some interesting stra-
tegies which outperformed the SAW scheme. The selected costas-array
search strategy performed slightly worse on the first two problem in-
stances (by a total of 11 s) but was able to provide a solution to problem

Fig. 1. (continued).

R. Bennetto and J.H. Vuuren

OperationsResearchPerspectives8(2021)100177

9

Table 6
ORT, single-objective and multi-objective GP full search comparison (training set).

ORT GP SAW (Δ ORT) GP MO (Δ ORT) GP MO (Δ GP SAW)

Problem Class Instance Sense Variables Constraints Code Time Best Code Δ Time Δ Best Δ Code Δ Time Δ Best Δ Code Time Best
16 16 802 S 19 S 1 + S 6 + −

17 17 954 S 240 S 1 + S 7 + −

costas-array 18 None 18 1 124 S 17 S 364 - S 8 + +

19 19 1 313 UNK 1 200 UNK 1 200 S + 105 + + +

20 20 1 522 UNK 1 200 UNK 1 200 UNK 1 200
A-n37-k5.vrp 610 23 002 S 1 200 1 642 S 1 200 1 832 − S 1 200 2 122 − −

A-n64-k9.vrp 1 069 69 172 S 1 200 3 486 S 1 200 3 545 − S 1 200 4 046 − −

cvrp B-n45-k5.vrp Min 746 34 098 S 1 200 2 728 S 1 200 2 628 + S 1 200 2 467 + +

P-n16-k8.vrp 253 4 228 S 1 200 502 S 1 200 502 S 1 200 450 + +

simple2 117 1 020 SC 377 34 SC 30 + 34 SC 19 + 34 +

pizza27 180 32 600 S 1 200 882
425

S 1 200 822
299

+ S 1 200 761
294

+ +

pizza39 190 36 890 S 1 200 939
352

S 1 200 987
968

− S 1 200 837
068

+ +

freepizza pizza45 Min 140 19 759 S 1 200 656
489

S 1 200 641
397

+ S 1 200 571
934

+ +

pizza6 10 159 SC 610 210 SC 5 + 210 SC 113 + 210 −

pizza78 200 40 229 S 1 200 901
717

S 1 200 896
600

+ S 1 200 714
755

+ +

n120f5d50m50k20 7 816 19 629 S 1 200 19 463 SC + 1 + 1 + SC + 3 + 1 + −

gfd-schedule n180f7d50m30k18 Min 17 186 45 699 SC 1 1 UNK − 1 200 − UNK − 1 200 −

n30f3d30m7k4 616 1 374 UNK 1 200 SC + 1 + 1 SC + 1 + 1
n50f7d40m10k4 1 540 3 660 UNK 1 200 SC + 1 + 1 SC + 2 + 1
n75f5d30m20k20 3 129 6 782 UNK 1 200 SC + 1 + 1 UNK 1 200 − −

10_5 51 376 SC 31 3 SC 1 + 3 SC 1 + 3
13_11 144 1 717 S 1 200 7 S 1 200 5 + S 1 200 4 + +

grid-colouring 19_17 Min 324 5 815 S 1 200 12 S 1 200 7 + S 1 200 5 + +

4_11 45 331 S 1 200 4 SC + 1 + 3 + SC + 1 + 3 +

4_8 33 193 SC 2 3 SC 1 3 SC 1 3
1YHXeG1xYs 913 1 921 S 1 200 194

048
S 1 200 145

440
+ S 1 200 99 328 + +

A3PZaPjnUz 507 926 S 1 200 144
896

SC + 1 + 103
936

+ SC + 1 + 103
936

+

is HgSWGJHxY5 Min 835 1 680 S 1 200 251
200

S 1 200 276
000

− SC + 1 117 + 102
176

+ + + +

jZ9pQqRxJ2 508 799 SC 82 210
944

SC 2 + 210
944

SC 1 + 210
944

y21PnVA2Hj 860 1 840 S 1 200 236
544

S 1 200 165
776

+ S 1 200 127
088

+ +

full2x2 172 235 S 1 200 1 103 S 1 200 801 + S 1 200 795 + +

mesh2x2_mpeg 522 803 S 1 200 726 S 1 200 1 436 − S 1 200 1 116 − +

mapping mesh3x3_2 Min 348 497 UNK 1 200 S + 1 200 1 631 S + 1 200 1 623 +

mesh3x3_mpeg_2 1 302 1 709 S 1 200 2 197 S 1 200 1 188 + S 1 200 1 211 + −

ring_2 300 473 S 1 200 2 090 S 1 200 1 940 + S 1 200 1 940 +

mknap1-6 50 8 UNK 1 200 SC + 7 + 16 537 SC + 7 + 16 537
mknap2-1 60 33 SC 158 7 772 SC 1 + 7 772 SC 2 + 7 772

(continued on next page)

R. Bennetto and J.H
. Vuuren

OperationsResearchPerspectives8(2021)100177

10

Table 6 (continued)

ORT GP SAW (Δ ORT) GP MO (Δ ORT) GP MO (Δ GP SAW)

multi-knapsack mknap2-2 Max 60 33 S 1 200 8 722 SC + 8 + 8 722 SC + 8 + 8 722
mknap2-20 50 8 SC 3 6 339 SC 1 + 6 339 SC 1 + 6 339
mknap2-32 80 8 UNK 1 200 S + 1 200 8 947 SC + 547 + 8 947 + +

176 177 530 S 6 S 1 + S 1 +

207 208 623 S 7 S 1 + S 1 +

nmseq 269 None 270 809 S 45 S 2 + S 2 +

393 394 1 181 S 244 S 2 + S 4 + −

83 84 251 S 1 S 1 S 1
flener_et_al_10_350_100 15 349 28 405 S 1 200 65 UNK − 1 200 UNK − 1 200
medium_10_100_30 4 349 8 155 S 1 200 13 S 1 200 21 − S 1 200 10 + +

opd small_bibd_10_30_09 Min 1 269 2 485 SC 1 107 2 S − 1 200 − 3 − S − 1 200 − 3 −

small_bibd_11_22_10 1 021 2 161 S 1 200 5 S 1 200 5 S 1 200 5
small_bibd_13_26_06 1 465 3 385 SC 1 078 1 S − 1 200 − 2 − S − 1 200 − 2 −

ORT GP SAW (Δ ORT) GP MO (Δ ORT) GP MO (Δ GP SAW)
Problem Class Instance Sense Variables Constraints Code Time Best Code Δ Time Δ Best Δ Code Δ Time Δ Best Δ Code Time Best

problem_20_20_1 744 1 668 S 1 200 11 S 1 200 11 S 1 200 11
problem_30_15_1 783 1 689 SC 15 14 S − 1 200 − 14 S − 1 200 − 14

open_stacks wbo_10_20_1 Min 379 949 SC 303 5 S − 1 200 − 5 S − 1 200 − 5
wbop_15_30_1 899 2 205 S 1 200 7 S 1 200 7 S 1 200 6 + +

wbp_20_20_1 739 1 606 S 1 200 4 S 1 200 4 S 1 200 4
12 1 617 12 309 S 1 200 602 UNK − 1 200 UNK − 1 200
13 2 070 16 812 C 20 UNK − 1 200 − UNK − 1 200 −

p1f 14 Min 2 600 22 438 S 1 200 1 008 UNK − 1 200 UNK − 1 200
15 3 213 29 358 C 68 UNK − 1 200 − UNK − 1 200 −

17 4 712 47 824 UNK 1 200 UNK 1 200 UNK 1 200
ProjectPlannertest_12_7 3 463 693 S 1 200 63 S 1 200 19 + SC + 1 + 17 + + + +

ProjectPlannertest_14_7 12 801 920 S 1 200 78 S 1 200 32 + SC + 347 + 27 + + + +

project-
planning

ProjectPlannertest_15_6 Min 25 156 1 050 S 1 200 66 S 1 200 37 + SC + 994 + 31 + + + +

ProjectPlannertest_16_6 49 803 1 178 S 1 200 39 S 1 200 35 + S 1 200 31 + +

ProjectPlannertest_16_8 49 803 1 180 S 1 200 39 S 1 200 35 + S 1 200 31 + +

i14-9 2 467 2 051 SC 252 6 513 S − 1 200 − 6 720 − S − 1 200 − 6 526 − +

i6-11 544 495 SC 207 895 SC 9 + 895 S − 1 200 − 896 − − − −

radiation i6-21 Min 1 036 919 SC 143 1 413 S − 1 200 − 1 718 − S − 1 200 − 1 417 − +

i7-9 619 548 SC 7 1 007 SC 6 1 007 S − 1 200 − 1 009 − − − −

i9-11 1 265 1 066 SC 427 2 141 SC 123 + 2 141 S − 1 200 − 2 151 − − − −

chicroster_dataset_11 559 564 SC 1 17 SC 1 17 SC 1 17
chicroster_dataset_17 671 676 SC 1 17 SC 1 17 SC 1 17

roster chicroster_dataset_2 Min 189 248 SC 0 0 SC 1 0 SC 1 0
chicroster_dataset_5 279 294 SC 1 6 SC 1 6 SC 1 6
chicroster_dataset_7 323 363 SC 1 0 SC 1 0 SC 1 0
1401 10 964 24 078 S 1 200 521

097
S 1 200 496

114
+ S 1 200 500

112
+ −

spot5 28 Min 5 227 10 642 S 1 200 284
158

S 1 200 276
105

+ S 1 200 277
105

+ −

414 10 109 24 373 S 1 200 42 564 S 1 200 44 501 − S 1 200 49 510 − −

503 636 1 130 S 1 200 15 177 S 1 200 11 125 + S 1 200 11 134 + −

54 272 462 S 1 200 81 S 1 200 37 S 1 200 37

(continued on next page)

R. Bennetto and J.H
. Vuuren

Operations Research Perspectives 8 (2021) 100177

11

instance 19 as well as a solution in less time for problem instance 18. The
strategies selected for the freepizza, is and project-planning problem
classes all provided improvements in the objective function values ob-
tained within the time limit. The strategy for the project-planning
problem class also obtained optimality proofs for three of the problem
instances.

As all parameters (where possible) were held constant between the
SAW and multi-objective GA, the improvements obtained by applying
multi-objective search over the SAW scheme are attributed to the NSGA-
II selection algorithm employed. The non-dominated sorting algorithm
replaces the tournament selection procedure previously employed — the
result of which is that multiple solutions may be considered of highest
quality during a given iteration in the GA. Since the multi-objective GA
always carries forward the current Pareto frontier of solutions, it is
possible that additional genetic diversity is maintained in the population
for longer which may have been lost earlier on as a result of the tour-
nament selection operator. The other possibility is that high-quality
solutions (on the Pareto frontier) are more likely to be combined in a
crossover operator resulting in solutions which measurably address
different objective function components in an effective manner.

4.1. Extendibility to unseen problem instances

The search strategies selected during the training process were
evaluated on unseen problem instances that are labelled as being from
the same class of problem. New problem instances were drawn from the
CSPlib [9] for testing consistent with the test set used by [3]. The
detailed results are provided in Table 9.

A summary of the results are provided in Table 10. It is noteworthy
that neither the SAW scheme nor multi-objective GP scheme was able to
construct search strategies for the opd, open_stacks, p1f and radiation
problem classes which are competitive with the ORT default search
strategy and were thus not reported in the test set results. The expec-
tation that poorly performing strategies on the training data are carried
forward to the test set was found to be true — while this does suggest
that it is non-trivial to perform well, it can also be seen in the evaluation
results of the GP in Fig. 1. The zephyrus problem instances were added to
the test set as the multi-objective GP was able to construct a strategy for
this problem class which outperformed the ORT search strategy and the
single-objective GP on the training data. Test data for costas-array were
also included, but it is clear that the smaller instances are largely trivial
to solve.

Table 7
GP SAW and multi-objective results summary by problem class (training set).

GP SAW (Δ ORT) GP MO (Δ ORT) GP MO (Δ GP SAW)

Problem Class − + Δ − + Δ − + Δ

costas-array 1 2 1 0 5 5 2 3 1
cvrp 2 2 0 2 3 1 2 3 1
freepizza 1 4 3 0 5 5 1 4 3
gfd-schedule 2 9 7 2 7 5 3 0 − 3
grid-colouring 0 6 6 0 6 6 0 2 2
is 1 6 5 0 9 9 0 5 5
mapping 1 4 3 1 4 3 1 3 2
multi-knapsack 0 7 7 0 8 8 0 2 2
nmseq 0 4 4 0 4 4 1 0 − 1
opd 8 0 − 8 7 1 − 6 0 1 1
open_stacks 4 0 − 4 4 1 − 3 0 1 1
p1f 6 0 − 6 6 0 − 6 0 0 0
project-planning 0 5 5 0 11 11 0 11 11
radiation 6 2 − 4 15 0 − 15 9 2 − 7
spot5 1 4 3 1 4 3 4 0 − 4
tdtsp 0 11 11 0 11 11 1 3 2
triangular 2 3 1 3 3 0 2 2 0
zephyrus 2 2 0 2 4 2 0 3 3
Total 37 71 34 43 86 43 26 45 19

Ta
bl

e
6

(c
on

tin
ue

d)

O
RT

G

P
SA

W
 (

Δ
 O

RT
)

G
P

M
O

 (
Δ

 O
RT

)
G

P
M

O
 (

Δ
 G

P
SA

W
)

+
+

in
st

_1
0_

24
_1

0
M

in

67

35
8

S
1

20
0

13
 9

17

SC

+
5

+
9

19
2

+
SC

+

3
+

9
19

2
+

+

in
st

_1
0_

34
_0

0

67

35
8

S
1

20
0

8
35

3
SC

+

3
+

6
66

2
+

SC

+
2

+
6

66
2

+

td
ts

p
in

st
_1

0_
42

_1
0

M
in

67

35

8
S

1
20

0
15

 3
29

SC

+

4
+

8
48

6
+

SC

+
2

+
8

48
6

+
+

in
st

_2
0_

14
_1

0

13
7

1
11

8
S

1
20

0
17

 4
49

S

1

20
0

14

 8
89

+

S

1
20

0

15
 8

01

+
−

in
st

_2
0_

25
_0

0

13
7

1
11

8
S

1
20

0
19

 8
98

S

1

20
0

16

 6
55

+

S

1
20

0

15
 9

45

+
+

n1
0

55

2

SC

89

20

SC

15
9

−
20

S

−
1

20
0

−
20

−

−

n1
6

13

6
2

S
1

20
0

35

S

1
20

0

34

−
S

1

20
0

34

−

tr
ia

ng
ul

ar

n2
2

M
ax

25

3
2

S
1

20
0

48

S

1
20

0

50

+
S

1

20
0

50

+

n2
8

40

6
2

S
1

20
0

61

S

1
20

0

64

+
S

1

20
0

65

+

+

n3
7

70

3
2

S
1

20
0

80

S

1
20

0

87

+
S

1

20
0

88

+

+

ze
ph

yr
us

_1
5_

10

46
2

99
5

S
1

20
0

36

S

1
20

0

36

S

1
20

0

36

ze

ph
yr

us
_2

0_
20

61

2
1

32
0

S
1

20
0

66

S

1
20

0

66

S

1
20

0

66

ze

ph
yr

us

ze
ph

yr
us

_5
_2

0
M

in

16
2

34
5

S
1

20
0

66

SC

+
83

0
+

66

SC

+
41

6
+

66

+

ze
ph

yr
us

_5
_4

16

2
34

5
S

1
20

0
18

S

1

20
0

18

SC

+

39
0

+
18

+

+

ze
ph

yr
us

-F
H

-2
-1

5

46
1

99
5

SC

23
7

12

S
−

1
20

0
−

12

S
−

1
20

0
−

12

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

12

Table 8
Wilcoxon rank test results for signficiant differences to a mean of zero in improvements and deteriorations by measurement category and overall changes. An asterisk
indicates significant p-values at the 5% level.

Δ Code Δ Objective Δ Time Δ Total

Type μ p-value μ p-value μ p-value μ p-value

GP SAW 0.0105 0.8582 0.2000 0.0038★ 0.1474 0.0236★ 0.1193 0.0011★

GP MO 0.0211 0.7457 0.2526 0.0005★ 0.1789 0.0115★ 0.1509 0.0002★

Table 9
ORT, GP SAW and GP MO full search results (test set).

ORT GP SAW GP MO

Problem Class Instance Code Time Best Code Δ Time Δ Best Δ Code Δ Time Δ Best Δ

costas-array 10 S 1 S 1 S 1
11 S 1 S 0 S 1
12 S 1 S 1 S 1
13 S 1 S 1 S 1
14 S 1 S 1 S 1
15 S 9 S 1 + S 2 +

gfd-schedule n10f2d10m10k3 SC 1 3 SC 1 3 SC 1 3
n25f5d20m10k3 S 1 200 803 S 1 200 205 + S 1 200 422 +

n35f5d20m10k3 UNK 1 200 S + 1 200 1 107 S + 1 200 822
n55f2d50m30k3 S 1 200 2 704 S 1 200 12 507 − S 1 200 7 155 −

n60f7d50m30k10 S 1 200 2 215 S 1 200 19 115 − S 1 200 9 658 −

grid-colouring 10_10 S 1 200 6 S 1 200 4 + S 1 200 4 +

12_13 S 1 200 7 S 1 200 6 + S 1 200 4 +

15_16 S 1 200 11 S 1 200 5 + S 1 200 5 +

5_6 SC 1 3 SC 1 3 SC 1 3
7_8 S 1 200 4 SC + 1 + 3 + SC + 3 + 3 +

mapping mesh2x2_1 S 1 200 1 060 SC + 66 + 1 000 + SC + 5 + 1 000 +

mesh2x2_mp3 S 1 200 1 254 SC + 26 + 1 102 + SC + 175 + 1 102 +

mesh3x3_mp3 S 1 200 1 314 S 1 200 1 436 − S 1 200 1 262 +

mesh4x4_1 UNK 1 200 S + 1 200 2 564 S + 1 200 2 354
ring_1 UNK 1 200 S + 1 200 1 702 S + 1 200 1 733

multi-knapsack mknap2-10 UNK 1 200 UNK 1 200 SC + 644 + 624 319
mknap2-31 UNK 1 200 SC + 25 + 9 074 SC + 37 + 9 074

nmseq 099 S 1 S 1 S 1
100 S 2 S 1 S 1
143 S 4 S 1 + S 1 +

150 S 4 S 1 + S 1 +

200 S 6 S 1 + S 1 +

project-planning ProjectPlannertest_12_6 S 1 200 68 S 1 200 19 + SC + 2 + 17 +

ProjectPlannertest_14_6 S 1 200 73 S 1 200 32 + S 1 200 27 +

ProjectPlannertest_15_8 S 1 200 66 S 1 200 42 + SC + 682 + 31 +

ProjectPlannertest_16_9 S 1 200 39 S 1 200 35 + S 1 200 35 +

ProjectPlannertest_17_6 S 1 200 95 S 1 200 46 + S 1 200 48 +

spot5 1502 S 1 200 64 056 S 1 200 28 043 + S 1 200 32 050 +

29 S 1 200 14 069 S 1 200 8 059 + S 1 200 8 059 +

412 S 1 200 34 457 S 1 200 34 397 + S 1 200 39 407 −

42 S 1 200 191 117 S 1 200 164 064 + S 1 200 168 054 +

5 S 1 200 331 S 1 200 275 + S 1 200 283 +

tdtsp inst_10_35_20 SC 638 9 055 SC 12 + 9 055 SC 9 + 9 055
inst_10_42_00 SC 318 8 421 SC 3 + 8 421 SC 2 + 8 421
inst_10_45_00 SC 1 6 819 SC 3 − 6 819 SC 2 6 819
inst_10_58_20 S 1 200 13 799 SC + 11 + 10 306 + SC + 12 + 10 306 +

inst_20_26_00 S 1 200 18 180 S 1 200 14 626 + S 1 200 14 942 +

triangular n18 S 1 200 40 S 1 200 40 S 1 200 40
n26 S 1 200 56 S 1 200 61 + S 1 200 59 +

n34 S 1 200 74 S 1 200 81 + S 1 200 79 +

n40 S 1 200 86 S 1 200 97 + S 1 200 95 +

n46 S 1 200 98 S 1 200 110 + S 1 200 112 +

zephyrus 12__6__8__3 SC 948 1 300 S − 1 200 − 1 300 S − 1 200 − 3 055 −

12__8__6__3 SC 294 1 300 S − 1 200 − 1 300 S − 1 200 − 6 305 −

14__10__8__3 UNK 1 200 S + 1 200 9 100 S + 1 200 10 920
14__6__8__3 SC 247 1 170 S − 1 200 − 8 710 − S − 1 200 − 5 850 −

14__8__6__3 SC 87 1 170 S − 1 200 − 9 230 − S − 1 200 − 6 760 −

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

13

The results of the search developed on problem instances of the same
class are provided in Table 9. As a general observation, the improved
performance over the default ORT search on problem classes is carried
forward to the test set, as summarised in Table 10. The performance of
the search strategies found on the test set was largely anticipated as the
methodology adopted follows that of Bennetto and Van Vuuren [3]. One
problem class stands out as an exception — the zephyrus class. The
zephyrus problem class warrants further discussion as strategies devel-
oped by the single-objective GP and multi-objective schemes both failed
on the test set.

The CSPs in Figs. 2 and 3 are plotted according to a gravity layout
model2. Each node in the plot represents either a variable or constraint.
An example of a constraint node is simply a condition to be met between
a pair of variables, such as xi ∕= xj, which would result in three nodes,
two of which are variable nodes (xi, xj) and one constraint node (C∕=),
with two edges, (xi,C∕=) and (C∕=,xj). All nodes represent either variable-
value assignments performed by the solver, or required constraint
checks between such assigned values.

Two instances from the project-planning class (Fig. 2) are provided
as well as two instances from the training and test data sets for the
zephyrus problem class (Fig. 3) in order to illustrate the change in
structure between the training and test data sets. The project-planning
problem class instances shown in Fig. 2 are representative of the

instances in both the training and test set. The project-planning problem
class search strategies found on the training set were among the top
performing strategies on the test set when compared with the default
ORT search strategy.

The GP is tasked to design search strategies which preferably exploit
a structural feature of the underlying graph that is expected to be present
in variations of instances within the problem class. If such a structure is
modified, it would not necessarily follow that the search strategy would
retain its ability to perform well on a problem that no longer contains the
anticipated structural exploits. Fig. 3 illustrates that the training data
exhibits two connected components with a (mostly) symmetric structure
emanating from a core set of variables. The graphical representation of
the test set examples exhibit a single connected component with addi-
tional complexities and sub-structures within each primary region — it
also appears that there are additional side constraints (clusters of con-
straints in the top-left portions of Figs. 3(c) and 3(d)) which were not
present in the original problem definition. In addition, the para-
metrisation of the test data appears to have changed from a two-
parameter model to a four-parameter model — which would explain
the additional structural complexity observed in the test samples. This
exposes a weakness in the approach employed whereby if a problem
class is incorrectly classified, an unsuitable strategy may be used to solve
such an instance which may perform worse than a default search with
fewer structural exploitations.

Table 10
GP SAW and MO results summary by problem class (test set).

GP SAW (Δ ORT) GP MO (Δ ORT)

Problem Class − + Δ − + Δ

costas-array 0 1 1 0 1 1
gfd-schedule 2 2 0 2 2 0
grid-colouring 0 6 6 0 6 6
mapping 1 8 7 0 9 9
multi-knapsack 0 2 2 0 4 4
nmseq 0 3 3 0 3 3
project-planning 0 5 5 0 9 9
spot5 0 5 5 1 4 3
tdtsp 1 6 5 0 6 6
triangular 0 4 4 0 4 4
zephyrus 10 1 − 9 12 1 − 11
Total 14 43 29 15 49 34

Fig. 2. An illustration of CSP structural similarity between training and test instances.

2 Using the default settings in the visNetwork R package.

R. Bennetto and J.H. Vuuren

Operations Research Perspectives 8 (2021) 100177

14

5. Conclusions

The methodology presented in this paper extends the work of Minton
[13], Epstein et al. [1,7] and Bennetto and Van Vuuren [3] in which a
multi-objective metaheuristic approach is employed to develop
branching strategies for solving classes of CSPs. To the best of the au-
thors’ knowledge, this is the first time that a multi-objective approach
has been adopted to solve this particular problem.

The methodology employed reduces the specification of the strategy
to an arithmetic function and adopts a classic ‘Koza’ style genetic pro-
gramming modelling approach in conjunction with the NSGA-II to
search for candidate strategies. A data set of open problem instances was
employed to train the GP where problem instances were grouped by
class and collectively solved. Not only does the approach demonstrate
that high-quality search strategies can be found which outperform other
high-ranking search strategies, including the ORT default search and
single-objective GP — but that the search strategies found continue to
extend to unseen problem instances of the same class.

It was found that, in one example, the structure of the test data for a
particular problem class was sufficiently different to erode the perfor-
mance gain observed on the training set. This finding supports the case
that the GP had developed structural exploits for the class of CSPs in the
training process which were rendered ineffective through a change in

problem structure.
Future work may include considering a more sophisticated set of GP

operators and comparing the results performance with that of the
arithmetic operators in this context. A more comprehensive set of test
data may also be explored.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] Bain S, Thornton J, Sattar A. Methods of automatic algorithm generation. PRICAI
2004: trends in artificial intelligence, Auckland, New Zealand. 2004. p. 144–53.

[2] Bain S, Thornton J, Sattar A. Evolving variable-ordering heuristics for constrained
optimisation. Principles and practice of constraint programming-CP 2005. 2005.
p. 732-736.

[3] Bennetto R., Van Vuuren J.H. Evolutionary search strategies in constraint
programming. Eur J Oper Res In review.

[4] Bessière C. Constraint propagation. Handb Constraint Program 2006;2:29–83.
[5] Deb K. Multi-objective optimization using evolutionary algorithmsvol. 16. New

York (NY): John Wiley & Sons; 2001.
[6] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97.

Fig. 3. Structural differences between (a)–(b) training and (c)–(d) test sets for the zephyrus problem class.

R. Bennetto and J.H. Vuuren

http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0001
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0001
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0004
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0005
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0005
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0006
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0006

Operations Research Perspectives 8 (2021) 100177

15

[7] Epstein SL, Freuder EC, Wallace R, Morozov A, Samuels B. The adaptive constraint
engine. International conference on principles and practice of constraint
programming. Ithaca (NY): Springer; 2002. p. 525–40.

[8] Goldberg DE. Genetic algorithms in search, optimization, and machine learning.
Artificial intelligence. Boston (MA): Addison-Wesley Publishing Company; 1989.
ISBN 9780201157673

[9] Jefferson C., Miguel I., Hnich B., Walsh T., Gent I.P. CSPLib: a problem library for
constraints. 1999. URL http://www.csplib.org.

[10] Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline
algorithm for Pareto multiobjective optimisation. Congress on evolutionary
computation, Washington (DC). vol. 1; 1999. p. 98–105.

[11] Koza JR. Genetic programming: on the programming of computers by means of
natural selectionvol. 1. Cambridge (MA): MIT Press; 1992.

[12] Luke S., Panait L., Balan G., Paus S., Skolicki Z., Bassett J., et al. ECJ: a java-based
evolutionary computation research system. 2006. URL https://cs.gmu.edu
/~eclab/projects/ecj/.

[13] Minton S. Automatically configuring constraint satisfaction programs: a case study.
Constraints 1996;1(1-2):7–43.

[14] Perron L., Furnon V. Or-tools. 2019. URL https://developers.google.com/optimi
zation/.

[15] Refalo P. Impact-based search strategies for constraint programming. International
conference on principles and practice of constraint programming. Toronto (ON):
Springer; 2004. p. 557–71.

[16] Schuurmans D, Southey F. Local search characteristics of incomplete sat
procedures. Artif Intell 2001;132(2):121–50.

[17] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evol Comput 1994;2(3):221–48.

[18] Stewart TJ. A critical survey on the status of multiple criteria decision making
theory and practice. Omega 1992;20(5-6):569–86.

[19] Stuckey PJ, Feydy T, Schutt A, Tack G, Fischer J. The minizinc challenge
2008–2013. AI Mag 2014;35(2):55–60.

[20] Wilcoxon F. Individual comparisons by ranking methods. Breakthroughs in
statistics. Springer; 1992. p. 196–202.

[21] Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and
applicationsvol. 63. Shaker, Ithaca (NY); 1999.

[22] Zivan R, Meisels A. Conflict directed backjumping for max-csps. International joint
conferences on artificial intelligence, Hyderabad. 2007. p. 198–204.

R. Bennetto and J.H. Vuuren

http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0008
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0008
http://www.csplib.org
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0010
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0010
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0010
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0011
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0011
https://cs.gmu.edu/~eclab/projects/ecj/
https://cs.gmu.edu/~eclab/projects/ecj/
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0013
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0013
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0018
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0018
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0019
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0019
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0020
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0020
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0021
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0021
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0022
http://refhub.elsevier.com/S2214-7160(20)30067-1/sbref0022

	Multi-objective evolutionary search strategies in constraint programming
	1 Introduction
	2 Background
	2.1 Constraint programming
	2.2 Genetic programming
	2.3 Multi-objective optimisation

	3 Methodology
	3.1 GP representation
	3.2 GP objective function
	3.3 GP configuration
	3.4 Test data and CP solver
	3.5 Strategy selection

	4 Results
	4.1 Extendibility to unseen problem instances

	5 Conclusions
	Declaration of Competing Interest
	References

