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A B S T R A C T

This study presents an improvement to the mean-variance portfolio optimization model, by considering both the
integer transaction lots and a robust estimator of the covariance matrices. Four robust estimators were tested,
namely the Minimum Covariance Determinant, the S, the MM, and the Orthogonalized Gnanadesikan–Kettenring
estimator. These integer optimization problems were solved using genetic algorithms. We introduce the lot
turnover measure, a modified portfolio turnover, and the Robust Sharpe Ratio as the measure of portfolio
performance. Based on the simulation studies and the empirical results, this study shows that the robust esti-
mators outperform the classical MLE when data contain outliers and when the lots have moderate sizes, e.g. 500
shares or less per lot.

1. Introduction

For several decades, trading activities in several stock exchanges
have increased, since more investors buy assets and sell them again or
keep them until the dividend is shared. However, the investors are al-
ways facing the risk that the asset price will move downward. To reduce
this type of risk, the investor can diversify by buying different assets.
Therefore, a loss in an asset can be covered by profits of other assets.

To determine the capital allocation in a portfolio of stocks,
Markowitz [24] introduced the mean-variance model. In this model, the
variance was used as a risk measure, and the goal was to minimize the
variance of the portfolio. As has been noted, e.g. in Britten-Jones [5],
the Markowitz model became important, popular, and widely used in
practice.

In the Markowitz model, the classical mean and covariance matrix
estimators are used. These estimators rely on the assumption of mul-
tivariate normal distributed returns, which is rarely fulfilled in real
applications. Lauprete et al. [19] showed that many empirical portfolio
returns have the sample skewness and the sample kurtosis which ex-
hibit fat tails, follow a non-symmetric distribution and have multi-
variate tail dependence.

Robust estimators can be applied to handle data that contain out-
liers and deviate from the assumption of multivariate normality. Huber
and Ronchetti [14] characterized the robustness of estimators in terms

of their sensitivity to small deviations from the assumptions of the
underlying distribution of the data. The properties of robust estimators
have been studied extensively and described in the literature, for ex-
ample, see Hampel et al. [12], Huber and Ronchetti [14], and Marrona
et al. [25].

The usage of robust estimators in the portfolio optimization problem
dates back to Lauprete et al. [19], who examined how the Gaussian
assumption in the Markowitz mean-variance model is influenced by
marginal heavy tail. Lauprete et al. [19] also prove that robust alter-
natives to the classical variance estimator have lower risk of loss than
the non-robust ones. Perret-Gentil and Victoria-Feser [27] use robust S-
estimators to estimate the mean and variance in Markowitz’s portfolio
optimization model. Welsch and Zhou [37] consider several robust
covariance estimators in the mean-variance portfolio optimization,
such as FAST-MCD, Iterated Bivariate Winsorization, and Fast 2D-
Winsorization. DeMiguel and Nogales [9] prove that certain robust
estimators produce more stable and less sensitive portfolios than the
traditional portfolio. Kaszuba [18] compares several robust estimators
that are used in the mean-variance portfolio optimization model and
the traditional mean-variance portfolio. He finds that the risk of M-
Portfolios and LAD-Portfolios is significantly different from the risk of a
classical portfolio. Recently, Supandi et al. [34] show that portfolios
that use constrained M-estimators are better than the classical portfolio.
It must be noted that the term ’Robust Portfolio Optimization’ does not
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only refer to the usage of robust estimators in portfolio optimization.
The usage of robust optimization techniques for solving the portfolio
optimization problem (see e.g. Goldfarb and Iyengar [11] is also known
as robust portfolio optimization.

On the other hand, all stock markets around the world have de-
termined a minimum number of shares or assets that can be traded
regularly, known as transaction lot. For example, in the Indonesia Stock
Exchange, one lot of stocks consists of 100 shares, so the investor can
trade 100, 200, etc. shares regularly. Since the portfolio weights ob-
tained by the Markowitz model were presented as fractions or percen-
tages to the total capital, they could not be applied directly by invest-
ment managers. The portfolio optimization problem by the Markowitz
model with the transaction lot constraint has been discussed in the
literature, for example, by [20,23], and Buchheim et al. [6], Mencarelli
and D. Ambrosio [26], Soleimani et al. [32], including the review paper
in Mansini et al. [22]. Other studies with the transaction lot constraint,
but using different risk measures are available, for instance, Setiawan
and Rosadi [30] which uses the Value at Risk; Barati et al. [4] which
uses the semi variance, etc. However, all of these studies only used the
classical variance estimator with additional integer lots constraint and
did not consider the robustness of their estimator.

In this paper, we present an improvement to the mean-variance
portfolio optimization model with the integer transaction lots con-
straint, by considering robust estimators of the covariance matrices to
deal with the presence of outliers in the data. Four robust estimators are
tested, namely the Minimum Covariance Determinant (MCD) estimator,
the Tukey’s Biweight S-estimator, the Orthogonalized Gnanadesikan-
Kettenring (OGK) estimator, and the MM-estimator. To obtain the in-
teger solution to the portfolio optimization problem, we use a genetic
algorithm (GA), see, e.g., Arnone et al. [1], Soleimani et al. [32] and
Chang et al. [8]. Several nature-inspired metaheuristics alternatives or
the (mixed) integer programming methods can also be considered to
solve this problem (which is a subject of future research), see, e.g.,
Bacanin and Tuba [2], 3], Lubis et al. [21], Sitopul et al. [31], Strum-
berger et al. [33], Tuba and Bacanin [36] and the references therein.
Therefore, this study can be viewed as a mixture of robust statistics
based and transaction lots based portfolio optimization. We also in-
troduce the lot turnover measure, a modified portfolio turnover, and
the Robust Sharpe Ratio as the measure of portfolio performance. Based
on the simulation studies and the empirical results, this study shows
that the robust estimators outperform the classical MLE when data
contain outliers and when the lots have moderate sizes.

This paper is organized as follows. In Section 2, we discuss the
theoretical formulation of the mean-variance portfolio optimization
and present various robust estimators. In Section 3, we present the
mean-variance portfolio optimization problem with transaction lots
constraint and the robust GA approach solving the problem. In the next
section, Section 4, we present simulation studies whereas in Section 5
we provide the empirical results using stocks from Indonesia Stocks
Exchange (IDX). The last section is devoted to the conclusion and some
remarks on directions of future research.

2. Robust statistics in the portfolio optimization model

In recent decades, robust statistical methods have been used in the
portfolio optimization model, i.e.

• Robust risk measures have been used to substitute the variance in
portfolio optimization. Instead of the variance, the portfolio’s risk is
measured by the Least Absolute Deviation (LAD) or by other types of
M-estimators, as presented e.g. in Kaszuba [18] and Fabozzi et al.
[10]. According to Kaszuba [17], this method is known as a one-step
approach.

• Robust methods have been used to estimate the covariance matrix in
the Markowitz mean-variance portfolio optimization model. This
model has been discussed in several papers, for example, Kaszuba

[18], Welsch and Zhou [37], and Supandi et al. [34]. There are
many robust estimators of the covariance matrix, for example, the
Minimum Covariance Determinant (MCD) estimator, the Con-
strained M-estimator, etc. According to Kaszuba [17], this method is
also known as a two-steps approach.

In the following subsection, we discuss the Markowitz portfolio
optimization model and some robust statistics that can be used to es-
timate the covariance matrix in our modified Markowitz model.

2.1. Markowitz’s portfolio optimization model

Suppose that there are n risky assets traded in the stock market.
Define = = …w i nw [ ], 1, 2, ,i as a column vector representing the
portfolio weights, and = = …μ μ i n[ ], 1, 2, , ,i a column vector re-
presenting the expected returns of each asset. The expected returns for
this portfolio are Fabozzi et al. [10]

∑= =
=

μ w μμ wp
T

i

n

i i
1

To calculate the portfolio’s variance, one should calculate the var-
iance-covariance matrix
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The portfolio’s variance is defined as

∑ ∑= =
= =

σ w w σw Σwp
T

i
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j
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i j ij
2

1 1 (2)

By assuming that short-selling is prohibited, the Markowitz portfolio
optimization problem can be stated as

=σ w Σwmin
w

p
T2

subject to

1. =μ μwT
0

2. =w 1 1T
p

3. wi ≥ 0, for = …i n1, 2, , .

Here, μ0 ∈ R denotes a constant.
To solve this optimization problem in practice, one needs to know

the covariance matrix Σ and the mean vector μ, which are usually es-
timated from the historical data of the asset returns.

Let yt · represent an n-dimensional column vector containing the
data of the sample returns of all n assets at time t, namely = …t T1, 2, , .
Suppose the historical data follow a multivariate normal distribution,
then the maximum likelihood estimation for each parameter is

∑=
=

μ
T

y^ 1

t

T

t
1

·
(3)

and

∑= − −
=

μ μ
T

Σ y y^ 1 ( ^)( ^) .
t

T

t t
T

1
· ·

(4)

As noted by Perret-Gentil and Victoria-Feser [27], both equations
above are the most efficient estimators, under the assumption of mul-
tivariate normality of the data.

2.2. Robust covariance estimators

Statistical procedures often depend on one or several assumptions
about the (probability) distribution of the data. Fabozzi et al. [10] state
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that robust statistics addresses the problem of making estimates that are
insensitive to small deviations from the basic assumption of the statis-
tical models employed. In this section, we review some well-known
robust estimators of the mean and the covariance matrix. We describe
several robust estimators that can withstand a high fraction (up to 50%)
of outliers, such as the Minimum Covariance Determinant (MCD) esti-
mator, S-estimators and MM-estimators. We also discuss a method
suitable for high-dimensional data, namely the Orthogonalized Gna-
nadesikan-Kettenring (OGK) estimator.

2.2.1. Orthogonalized Gnanadesikan-Kettenring estimator
The OGK estimator is a robust estimator of covariance that is sym-

metric but not necessarily positive definite, nor affine equivariant.
According to Marrona et al. [25], the computation of the OGK estimator
is as follows. As in the previous sub-section, let = yY [ ]ti be a T × n data
matrix, where the rows yt · denote the returns of each stock at time t,

= …t T1, 2, , . Hence, the columns y· i denote the changes of the returns
for each stock, = …i n1, 2, , .

1. Compute a normalized data matrix X with columns

=
σ

x
y
y^ ( )

,i
i

i
·

·

·

where σ̂ is a univariate robust estimator of variance. Consequently,
the rows will be:

= = …− t Tx A y , 1, 2, , ,t t·
1

·

where

= …σ σA y ydiag(^ ( ), , ^ ( )).n·1 ·

2. Compute a robust correlation matrix U, with elements =U 1ii and

= + − −U σ σx x x x1
4

[^ ( ) ^ ( ) ],ij i j i j· ·
2

· ·
2

for i ≠ j.
3. Compute the eigenvalues of U and the corresponding eigenvectors.

Let E be the matrix where the columns are the eigenvectors of U.
Then, compute the matrix Z with the rows

= = = …− t Tz E x E A y , 1, 2, , .t
T

t
T

t· ·
1

·

4. For each = …i n1, 2, , , compute μ z^ ( )i· and σ z^ ( ),i· where μ̂ is a robust
univariate location estimator. Then, set

= …σ σΓ z zdiag(^ ( ) , , ^ ( ) )n·1
2

·
2

and

= …ν μ μz z(^ ( ), , ^ ( ))n
T

·1 ·

5. We obtain the Orthogonalized Gnanadesikan-Kettenring estimator
for the (multivariate) mean as

=μ νY AE^ ( ) ( )

and for the covariance matrix as,

=Σ Y AE Γ AE^ ( ) ( ) ( ) .T

2.2.2. Minimum covariance determinant estimator
The Minimum Covariance Determinant (MCD) estimator is a robust

estimator of location and covariance, introduced by [28]. This esti-
mator uses both mean and covariance matrix of h data points, for

≤ <h T,T
2 with the smallest determinant of the population covariance
matrix. The mean is estimated by

∑=
=

μ
h

y^ 1
MCD

t

h

t
1

·

and the estimated covariance is

∑= − −
=

μ μ
h

Σ y y^ 1 ( ^ )( ^ )MCD
t

h

t MCD t MCD
T

1
· ·

It is known that the breakdown value of this estimator equals −T h
T

.
The exact MCD estimator is very hard to compute, as it requires the

evaluation of all ⎜ ⎟
⎛
⎝

⎞
⎠

n
h subsets of size h. To simplify and to speed up the

computation, one can implement the FAST-MCD algorithm, as proposed
by [29]. The FAST-MCD algorithm is as follows:

1. Randomly draw h observations from T available data, where
≤ <h TT

2 . With this subset, compute the empirical mean and cov-

ariance matrix, namely μ̂0 and Σ̂0. Note that if =Σdet(^ ) 0,0 add one

or more observation until ≠Σdet(^ ) 00 .
2. For each observation = …t T1, 2, , , compute the distance as

= − −
−

μ μd t y Σ y( ) ( ) ^ ( )t
T

t0
2

· 0 0
1

· 0

and set =Σ Σ^ : ^
old 0.

3. Sort the distances from the smallest to the largest one, i.e.

≤ ≤ …≤d π d π d π T( (1)) ( (2)) ( ( )),0 0 0

where π(t) indicates the permutation to obtain the ordering.
4. Get the new subset of size h as the observations corresponding to the

smallest h distances, namely the index set = …H π π π h{ (1), (2). , ( )}1 .
5. In the new subset, compute the new mean and covariance matrix: μ̂0

and Σ̂0.
6. Since ≤Σ Σdet(^ ) det(^ ),old0 repeat steps 2–5 until =Σ Σdet(^ ) det(^ )old0 .
7. Repeat the step 1–6 for several initializations.
8. The last μ̂0 and Σ̂0 are the MCD estimates.

In step 7, the algorithm will stop and obtain an approximate MCD
solution by taking several initial choices of h, applying steps 1–7 to each
random choice of h observation, and keeping the solution with the
lowest determinant. Since there is only a finite number of h subsets, the
sequence of determinants calculated by this algorithm must converge
within a finite number of steps. Note that there is no guarantee that the
final iteration will give the global minimum of the covariance de-
terminant. Another algorithm to calculate the MCD estimator for the
mean and the covariance matrix has been suggested by Hubert et al.
[16], known as the deterministic MCD algorithm.

2.2.3. S-estimator
The S-estimator could be recognized as a generalization of the

Minimum Volume Ellipsoid (MVE) estimator, to increase the efficiency
of the MVE multivariate location and scatter estimator. According to
Marrona et al. [25], the S-estimators of location μ̂S and covariance Σ̂S

are defined such that the determinant of the matrix Σ̂S is minimized
under the constraint

∑ ⎜ ⎟
⎛
⎝

− − ⎞
⎠

=
=

−
μ μ

T
ρ by Σ y1 ( ^ ) ^ ( ^ ) ,

t

T

t S
T

S t S
1

·
1

·

where b is a constant, ∈μ̂ R ,S
n and Σ̂S is a positive definite symmetric

matrix. Here, the loss function ρ(.) must be carefully selected from the
continuously differentiable function class, such that the S-estimator will
have a high breakdown and is asymptotically normal. A popular choice
of continuously differentiable loss functions (which is also used in this
paper) is Tukey’s biweight function [15], given by
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2

The breakdown value of Tukey’s biweight S-estimator depends on the
constant m, i.e. =ϵ* b

m
6 . Other ρ functions could be used as well, for ex-

ample, Hampel’s function or Huber’s function Hubert and Rousseeuw
[15].

2.2.4. MM-estimator
The MM-estimator Tatsuoka and Tyler [35] is a type of high

breakdown value estimator, an extension of the S-estimator, that has
high efficiency under multivariate normality. The computation of the
MM-estimator for the returns data = …t Ty , 1, 2, , ,t· consists the fol-
lowing four steps:

1. First, choose a loss function ρ to compute the S-estimators of loca-
tion and covariance, namely μ Σ( ˜ , ˜ ).

2. Compute =σ Σ^ ˜ n
1

2 .
3. Find the MM-estimator of the location and the shape parameter,

μ Γ( ^ , ^),MM that minimize

∑ ⎛

⎝
⎜

− − ⎞

⎠
⎟

=

−μ μ
T

ρ
σ

y Γ y1 [( ) ( )]
^

t

T
t

T
t

1
1

·
1

·
1
2

for all μ ∈ Rn and = ∈ PDS nΓ Γ1, ( ), the class of positive definite
symmetric matrices. Here ρ1 does not need to be the same as ρ.

4. Compute the MM-estimator of covariance matrix, =Σ σ Γ^ ^ ^
MM

2 .

The breakdown point of the MM-estimator is inherited by that of the
S-estimator used for its computation Hubert and Rousseeuw [15].

3. Minimum transaction lots in the Markowitz model

Most of the financial asset transactions take place at the stocks
market, where companies offer their stocks, bonds, or derivative shares.
A minimum number of shares that can be regularly traded in the stock
markets is called a transaction lot. As an example, for regular transac-
tions at the Indonesia Stocks Exchange (IDX), one transaction lot for
stocks and options contract is 100 units and 1 unit, respectively. The
number of asset lots that can be traded by an investor is represented as
an integer.

3.1. Optimal portfolio with transaction lots and robust covariance estimator

Suppose that b is the amount of capital that will be invested into n
available shares at time t. Suppose that the price per share of the ith
shares is ci, and the number of shares per lot is k. If Σ denotes the
variance-covariance matrix (estimated using previous data), we can
determine the weight of the ith asset, wi as well as the number of lots of
the ith asset, xi, by solving the following optimization problem (as-
suming that short sale is prohibited):

w Σwmin T

subject to

1. ∑ ≤= kx c bi
n

i i1

2. = = …
∑ =

w j n, 1, 2, , .j
c x

c x
j j

i
n

i i1
3. xj is an integer.

It must be noted that the sample mean would contribute a high
estimation error to the out-of-sample performance DeMiguel and
Nogales [9], Kaszuba [18]. Therefore, following Kaszuba [18], our
model only considers the minimum-variance portfolios, which are ob-
tained by removing the constraint of the sample mean. Hence, the

optimal portfolio weights only depend on the covariance matrix. The
first constraint in the optimization above ensures that the total money
spent to buy the stocks does not exceed the available capital (b), while
the last constraint confirms that the lot numbers are integers.

In the practical computation, the covariance matrix is replaced by
its estimates. Besides the classical maximum likelihood estimation
(MLE), in this study, we apply four different robust estimators to esti-
mate the Σ, namely the MCD estimator, the OGK estimator, the S-es-
timator, and the MM-estimator.

On the other hand, the above mentioned portfolio minimum var-
iance selection with transaction lots is a multi-objective decision pro-
blem with integer feasible regions. This problem can be solved using the
genetic algorithm method. Other alternatives are available, such as the
(mixed) integer programming method or other heuristic methods, see
e.g, Bacanin and Tuba [2], Lubis et al. [21] and the references therein.

3.2. Solving the optimization using the genetic algorithm

One of the most popular heuristic technique that is widely used in
portfolio optimization is the genetic algorithm (GA). Proposed by
Holland [13], the GA had been developed from the concept of natural
selection and genetic theory. In the GA, each solution candidate must be
represented as chromosomes. To initialize the algorithm, an initial
population that consists of several chromosomes is generated. After-
wards, several pairs of chromosomes as ’parents’ are selected from the
population, which produce new chromosomes (as the next generation)
by crossover and/or mutation operator with predefined probability. A
fitness function, which is defined based on the objective function of the
problem, is used to evaluate the performance of each solution re-
presented by each chromosome. These processes have to be repeated for
several generations until the final (termination) condition has been
reached. As explained in Chang et al. [7], the basic steps of the genetic
algorithm are as follows.

1. Generate an initial population consisting of several chromosomes.
2. Evaluate the fitness of each chromosome in the population.
3. Select ’parents’ from the population.
4. Recombine parents to produce the next generation, using crossover

and mutation.
5. Evaluate the fitness of the next generation.
6. Replace some or all populations by the next generation.
7. Repeat steps 3–6 until a satisfactory solution has been found.

The application of the genetic algorithm to solve the portfolio op-
timization problem was introduced by Arnone et al. [1]. Several stu-
dies, for example Chang et al. [7], Soleimani et al. [32], and Chang
et al. [8], showed that the genetic algorithm could efficiently find a
near optimal or even the optimal solution of a portfolio optimization
problem.

Following Lin and Liu [20], in this paper chromosomes with n ele-
ments or genes were used, where n is equal to the number of stocks in
the portfolio. Each gene is a real number between 0 and 1. Let

= …u j n, 1, 2, ,j be the jth genes in a chromosome. Since the genes
should represent the portfolio weights, we must divide each number by
the total sum of genes in the chromosome,

=
∑

= …
=

v
u

u
j n, 1, 2, , .j

j

j
n

j1

Suppose that the price of the jth asset is cj and the total investment
capital is b, while the number of lots for each asset could be calculated
as

=
⎢

⎣
⎢

⎥

⎦
⎥ = …x b

v
c

j n, 1, 2, ,j
j

j

The calculation of the lots of each asset would cause the change of
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the portfolio weight. Hence we define the modified weight after lot
calculation, that is,

=
∑

= …
=

w
x c

x c
j n, 1, 2, , .j

j j

j
n

j j1

The modified weight, as part of the weight vector w, is used in the
fitness function:

∑= − −
=

F b x cw Σw ϵT

j

n

j j
1

In this function, the second term is a penalty to ensure that the
amount of money is not far from the total available capital b. By ad-
justing the ϵ value, the algorithm can find the portfolio with total price
as near as possible to b. In other words, the investor may spend most of
all available capital.

3.3. Measuring the portfolio performance: rolling horizon and the lot
turnover measure

Following DeMiguel and Nogales [9] and Supandi et al. [34], to
evaluate the performance of a robust estimation method in portfolio
optimization, we use the rolling horizon method. This method consists
of the following steps:

1. Obtain the data of n stock for the period T. Determine the length of
the estimation window η, where η < T.

2. Compute the portfolio assets weights w and/or the number of asset
lots x based on the data in the estimation window. To implement
this step, estimate the new covariance matrix for each estimation
window using both the classical and the robust estimation method.

3. Hold the portfolio (obtained in the second step) and determine the
out-of-sample returns data +rt 1.

4. Change the estimation window by including one more recent data
point, and discard one the earliest data point.

5. Repeat steps 2, 3, and 4 until the end of the data set is reached.

The out-of-sample returns data +r̂t 1 obtained in the third step could
be used to evaluate the portfolio performance, that is, by calculating the
out-of-sample mean returns
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We also consider the Sharpe Ratio (SR) or excess returns to risk
ratio, that is,

=
−

SR
μ r

σs
s f

s

where rf represents the risk-free investment returns. Since the μs and σs
used in the above formula are not robust, we introduce a new robust
ratio measure, called Robustified Sharpe Ratio (RSR), as

=
−

RSR
μ r

σs
α s f

α s

,

,

while μα,s and σα,s denote the trimmed mean and the trimmed standard
deviation, respectively. For these ratios, a higher Sharpe Ratio or
Robust Sharpe Ratio indicates better portfolios, since it means that
more returns are obtained with the same risk, or, the portfolio has a
smaller risk for the same returns.

In addition, to measure the portfolio’s stability, DeMiguel and
Nogales [9] defines the portfolio turnover as
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where wt, i and +wt i1, denote the ith asset weight at time t and time +t 1,
respectively.

In our research, since the result of portfolio optimization is pre-
sented as the number of lots, we modify the above mentioned formula
to represent the average change in the number of lots, that is,
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where xt,i and +xt i1, denote the number of lots of the i-th asset at time t
and +t 1, respectively.

Denote pti as the price of the assets i at time t. By defining

=
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w
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and using the result w̃t i, to replace the wt, i in the formula of the portfolio
turnover, we can obtain the modified portfolio turnover (MPT) that
could be compared with the portfolio turnover (PT). The portfolio
turnover, lot turnover, as well as the modified lot turnover, represent
the rebalancing of assets in the portfolio that must be done to maintain
the portfolio at optimal conditions. Rebalancing assets need some
money to buy the assets and pay the transaction cost, hence the better
portfolio is the one that exhibits a smaller turnover.

4. Simulation study

In this section, we study the property of the modified mean-variance
portfolio optimization problem with additional transaction lots con-
straint and robust estimators for the covariance matrix via simulation
studies. Here we consider a mixture of a multivariate normal distribu-
tion Fδ(r) with contamination. In this model, δ ∈ (0, 1) represents the
proportion of contamination to the multivariate normal model. Hence,
the actual asset returns follow the following distribution,

= − +μF r δ N δHΣ( ) (1 ) ( , ) ,δ p

where Np(μ, Σ) denotes the multivariate normal distribution with mean
vector μ and covariance matrix Σ.

Following the simulation study of Supandi et al. [34], a set of re-
turns data for three independent assets is generated. The generated data
are multivariate normally distributed, with mean vector

=μ (0.12, 0.15, 0.13)

and covariance matrix Σ, where we consider the case of the in-
dependent returns with

= ⎛

⎝
⎜

⎞

⎠
⎟Σ

0.012 0 0
0 0.015 0
0 0 0.016 (5)

and the dependent returns with

Table 1
The parameterization of the genetic algorithm.

Method (Parameters) Value

Chromosome length 6 (equal to the number of assets in the portfolio)
Representation of genes real number between 0 and 1
Number of population 150
Crossover method Uniform crossover
Crossover probability 0.7
Mutation method Random mutation
Mutation probability 0.1
Selection method Tournament (roulette-wheel) selection
Elitism 3
Number of generation 2000
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Fig. 1. The fitness function values of all populations for each generation of the genetic algorithm (in the case of independent returns with lot constraint). In the right
panel, we zoom into the plot by only showing the best values of the fitness function. It clearly shows that after 2000 generations, the results are already stable.

Fig. 2. Risk of portfolios calculated with transaction lots (TL) (with size 100 and 500 shares per lot) and without transaction lots (NTL) based on classical MLE and
several robust estimators (independent returns).
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= ⎛

⎝
⎜

⎞

⎠
⎟Σ

0.012 0.001 0.001
0.001 0.015 0.001
0.001 0.001 0.016

.
(6)

For the presence of any outliers, we assume that H is multivariate
normal distributed with the same covariance matrix Σ but with

different mean vector, that is,

= − − −μ ( 0.12, 0.15, 0.13).H

For each of these covariance matrices Σ and mean vector μH, three
sets of data were generated: (1) data without outliers, (2) data with 5%
outliers, and (3) data with 10 percent outliers. Data from each type

Fig. 3. Risk of portfolios calculated with transaction lots (TL) (with size 100 and 500 shares per lot) and without transaction lots (NTL) based on classical MLE and
several robust estimators (dependent returns).

Table 2
The mean of Sharpe Ratio and Robust Sharpe Ratio (in italic) from simulated data (independent case).

Estimator No Transaction Lots Lot = 100 Lot = 500

Type 0 pct. 5 pct. 10 pct. 0 pct. 5 pct. 10 pct. 0 pct. 5 pct. 10 pct.

MLE 4.2232 4.2208 4.2285 4.2420 4.2372 4.2449 4.2434 4.2331 4.2377
4.5132 4.5108 4.5191 4.5309 4.5259 4.5345 4.5319 4.5227 4.5271

MCD 4.2531 4.2481 4.2532 4.2441 4.2393 4.2452 4.2425 4.2359 4.2423
4.5418 4.5369 4.5425 4.5337 4.5285 4.5346 4.5312 4.5255 4.5315

S 4.2530 4.2480 4.2532 4.2421 4.2394 4.2467 4.2416 4.2348 4.2414
4.5418 4.5368 4.5424 4.5311 4.5284 4.5359 4.5303 4.5245 4.5312

OGK 4.2530 4.2481 4.2532 4.2428 4.2387 4.2464 4.2411 4.2351 4.2391
4.5417 4.5369 4.5425 4.5318 4.5278 4.5357 4.5297 4.5245 4.5285

MM 4.2531 4.2483 4.2533 4.2466 4.2400 4.2438 4.2375 4.2357 4.2399
4.5418 4.5371 4.5426 4.5354 4.5292 4.5333 4.5262 4.5249 4.5293
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were generated 200 times, meaning that we simulated returns data for
three stocks in 200 observations. By assuming that the price of each
stock at the beginning of the period is =P 1000,0 the price at the end of
the period can be calculated using the sum of the generated log returns.
This simulation was repeated 200 times, yielding 200 different data
sets.

For each generated data set, the portfolio optimization problem
with transaction lots (we only consider lot size 100 and 500 shares
here) and without transaction lots were calculated as described in
Section 3. The covariance matrix was estimated using the mentioned
methods: the MLE, the MCD estimator, the S-estimator, the OGK esti-
mator, and the MM-estimator. Based on the five covariance estimates,
the optimum weights in the portfolios are obtained using the genetic

algorithm approach (see Sections 3.1. and 3.2), assuming that short
selling is prohibited. The parametrization for the genetic algorithm is
presented in Table 1. We generate three different optimal portfolios and
compare the fitness function’s value for each combination. Only port-
folios with the best (largest) fitness were considered and further ana-
lyzed.

Fig. 1 shows the fitness function values (the mean, the median and
the best) of all populations for each generation in the genetic algorithm
(in the case of independent returns with lot constraint). From Fig. 1
(right panel), we clearly can see that the results already stabilize after
2000 generations.

Figs. 2 and 3 show that the portfolio optimization method without
transaction lot constraint based on the robust estimators has lower risk
compared to the MLE risk. When the transaction lots were applied, the
classical MLE and several robust estimators yield portfolios with similar
risk.

Tables 2 and 3 summarize the mean of both the Sharpe Ratio (SR)
and the Robust Sharpe Ratio (RSR) of the independent and dependent
returns, respectively, as defined in Section 3 above. For the optimal
portfolio without transaction lots, it can clearly be seen that the robust
estimator yields better portfolios than the classical MLE in the presence
of outliers, both for the independent and dependent returns. In this
case, the MM-method seems to always perform better than the other
robust methods. The simulation results obtained for the optimal port-
folio with transaction lots can be summarized as follows. In case of

Table 3
The mean of Sharpe Ratio and Robust Sharpe Ratio (in italic) from simulated data (dependent case).

Estimator No Transaction Lots Lot = 100 Lot = 500

Type 0 pct. 5 pct. 10 pct. 0 pct. 5 pct. 10 pct. 0 pct. 5 pct. 10 pct.

MLE 3.4719 3.4669 3.4675 3.4452 3.4376 3.4286 3.4272 3.4229 3.4071
3.7145 3.7106 3.7096 3.6839 3.6779 3.6673 3.6650 3.6590 3.6458

MCD 3.4794 3.4762 3.4745 3.4408 3.4331 3.4391 3.4239 3.4194 3.4165
3.7226 3.7208 3.7172 3.6793 3.6745 3.6798 3.6611 3.6556 3.6548

S 3.4799 3.4759 3.4744 3.4466 3.4342 3.4434 3.4267 3.4294 3.4101
3.7232 3.7204 3.7171 3.6849 3.6750 3.6834 3.6643 3.6663 3.6495

OGK 3.4793 3.4755 3.4739 3.4429 3.4392 3.4347 3.4361 3.4322 3.4185
3.7225 3.7200 3.7165 3.6817 3.6800 3.6737 3.6747 3.6691 3.6571

MM 3.4797 3.4762 3.4750 3.4413 3.4439 3.4391 3.4234 3.4222 3.4156
3.7230 3.7209 3.7178 3.6805 3.6849 3.6782 3.6607 3.6582 3.6552

Table 4
Price range and descriptive statistics of each asset returns.

Stock Stock price Stock returns

Code Min Max Mean Median Std.Dev MAD Skewness Kurtosis

S1 3500 8375 0.046 0.00 0.022 0.019 0.066 3.311
S2 5050 9250 −0.013 0.00 0.021 0.017 0.069 5.226
S3 3450 9950 0.001 0.00 0.020 0.017 0.216 5.331
S4 3175 8250 0.008 0.00 0.019 0.015 0.102 5.769
S5 3100 7500 0.073 0.00 0.019 0.013 0.196 4.185
S6 4680 9200 0.019 0.00 0.021 0.014 0.102 5.049

Fig. 4. Normal QQ-plot of stock S1 until S6 returns data.
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portfolio optimization with outliers, the robust estimator can yield
better portfolios than the classical MLE, both for the independent and
dependent returns. There is no single robust method that always per-
forms best in all situations. However, the performance of the MCD
method seems to be the best in the independent returns. In the de-
pendent case with moderate lot size (100), we obtain that MM will give
the best portfolio, whereas for larger lot size (500), the method OGK
will be superior over the other robust methods. We also further study
the dependent case with stronger covariance, and the results are very
similar, namely, in the presence of outliers, the robust estimators can
give a better portfolio than the classical one. However, to save space,
we omit the details.

In the simulation study, we do not consider the rolling horizon
procedure, therefore the portfolio turnover and the lot turnover cannot
be reported here. We report these two measures for the empirical ex-
ample in the following section.

5. Empirical example

In this section, we apply the proposed approach discussed in
Section 3 above to real stock market data.

5.1. Data description

We choose six stocks in the Indonesia Stocks Exchange (IDX) and
obtain the data for 20 months. All stocks exhibit similar prices, ranging
from IDR 3100 to IDR 9,950. The stock prices as well as the descriptive
statistics of the calculated returns data for each asset are shown in
Table 4.

From Table 4 it can be seen that most assets have non-negative
returns. The skewness shows us that some of the assets have near
symmetric distribution. From the sample kurtosis, we know that the
asset returns do not follow normal distribution, as confirmed by Fig. 4.
The plot of Mahalanobis distances as well as robust Mahalanobis dis-
tances (Fig. 5) confirms that the stock returns data might contain out-
liers.

5.2. Procedures

In this empirical study, we consider the estimation window or
rolling horizon procedure. The number of outliers for each stock varies
among the estimation windows. We estimate the covariance matrix
using various methods, namely the maximum likelihood estimator
(MLE), MCD, the S-estimator and the MM-estimator. The optimum
weights in the portfolios are obtained using the genetic algorithm ap-
proach, assuming that short selling is prohibited. The parametrization
for the genetic algorithm is the same as in the simulation study, pre-
sented in Table 1 (see Section 4).

We generate three different optimal portfolios and compare the
fitness function’s value for each combination along the rolling horizon.
Only portfolios with the best (largest) fitness were considered and
further analyzed. To examine the lot size effect, we consider two dif-
ferent sizes of lots, namely 100 shares and 500 shares.

Fig. 5. Mahalanobis distance of the data. Points above the dashed line represent possible multivariate outliers.

Table 5
Daily (1-day), 3-days, and 5 days average Lot Turnover (LT) for portfolio with
two different lot sizes.

Estim- 1-day LT 3-days LT 5-days LT

ator 100 500 100 500 100 500

MLE 128.34 18.64 152.39 21.46 143.13 20.21
MCD 133.94 14.23 128.85 13.59 146.38 13.96
S 121.52 16.85 124.43 15.14 126.09 15.61
MM 129.27 21.33 135.00 17.71 128.05 19.62
OGK 134.24 19.12 140.74 20.55 145.14 21.66

Table 6
The daily (1-day), 3-days, and 5-days Modified Portfolio Turnover (MPT) for each portfolio without transaction lots, with transaction lots equal to 100 unit stocks,
and with transaction lots equal to 500 unit stocks.

Estim- 1-day PT 3-days PT 5-days PT

ator No.TL 100 500 No.TL 100 500 No.TL 100 500

MLE 0.0010 0.0454 0.0470 0.0022 0.0521 0.0482 0.0031 0.0506 0.0479
MCD 0.0048 0.0239 0.0222 0.0065 0.0224 0.0210 0.0071 0.0244 0.0212
S 0.0011 0.0187 0.0162 0.0022 0.0196 0.0147 0.0029 0.0196 0.0157
MM 0.0010 0.0248 0.0222 0.0021 0.0264 0.0216 0.0028 0.0257 0.0209
OGK 0.0046 0.0200 0.0173 0.0053 0.0210 0.0186 0.0060 0.0202 0.0182

D. Rosadi, et al. Operations Research Perspectives 7 (2020) 100154

9



5.3. Results

The result of the portfolio optimization can be seen from two points
of view: (1) stability of its weights, and (2) portfolio performance.

Table 5 demonstrates that a higher number of shares per lot implies
smaller lot turnover. We notice that using all methods, by increasing the

size of the lot from 100 to 500 shares (five times larger) reduces the
average 1-day, the average 3-days and the average 5-days lot turnover
by more than eighty percent. This result shows that when the lot size is
increased, the portfolio weight becomes more stable.

Another important result is that the various robust statistics exhibit
different lot turnover (LT). The S-estimator consistently produces lower
portfolio turnover than the classical MLE. The OGK estimator yields
portfolios that can be with a higher lot turnover than the MLE, where
the LT of MCD is similar to the MLE. The LT of MM is similar to the MLE
for a daily LT, and significantly lower than MLE for higher numbers of
days.

Table 6 presents the values of the modified portfolio turnover (MPT)
(see Section 3.3 for the definition of MPT). For portfolios without
transaction lot constraint, the MLE gives lower turnover compared to
the MCD and the OGK estimator. However, it has almost identical
turnover with the S-estimator and the MM-estimator. When the trans-
action lot constraint was applied in the portfolio selection model, all
four robust estimators would give lower MPT compared to the classical
MLE. Hence, the portfolio weights become more stable using robust
estimators.

The performance of the portfolio could be examined based on the
total returns as well and its standard deviation, which are presented in
Fig. 6. In general, the MM-estimator gives the highest total returns in
any case of lot constraints. For the risk in terms of the standard de-
viation, the usage of a robust covariance estimator can yield portfolios

Fig. 6. Total returns of the optimal portfolio calculated based on classical and several robust estimators of the covariance matrix. This figure is obtained when a 1-day
rolling horizon procedure is applied to the data.

Table 7
The average of Sharpe Ratio and Robust Sharpe Ratio (in italic) for the portfolio
without transaction lot and with transaction lots equal to 100 and 500 shares.
This table is obtained when a 1-day rolling horizon procedure is applied to the
data.

Estim- Mean

ator No.TL 100 500

MLE −0.424 −0.09 0.444
−0.95 −0.542 −0.02

MCD −0.051 0.123 0.245
−0.741 −0.491 −0.236

S 0.026 0.126 0.272
−0.618 −0.419 −0.242

MM −0.096 0.071 0.256
−0.717 −0.505 −0.189

OGK 0.064 0.233 0.279
−0.467 −0.231 −0.233
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with lower risk.
In general, the portfolio performance can be compared using the

Sharpe Ratio (SR) and Robust Sharpe Ratio (RSR) as presented in
Table 7. In the case of portfolios with integer lot transactions containing
outliers, the value of the mean SR (and RSR) show that the robust
portfolio can diminish the chance of obtaining higher loss, especially
when the number of lots is equal to 100 or less. The same results also
apply in the case of no lot constraint used in the optimization. Different
results were obtained for the portfolio with 500 shares per lot, which
shows that the classical MLE can produce portfolios better than the
robust estimators.

6. Conclusion and future research

In this paper, we have extended the study of the mean-variance
portfolio optimization with integer transaction lots by considering ro-
bust estimators of the covariance matrix. Based on simulation studies
and empirical results, it turned out that the robust estimators outper-
form the classical MLE when the data contain outliers and when the lots
have moderate sizes. Further research needs to be done using other
robust estimators as well as adding more constraints to represent the
real condition of the stock markets.
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