
Alarcon Ortega, Emilio J.; Schilde, Michael; Doerner, Karl Franz

Article

Matheuristic search techniques for the consistent
inventory routing problem with time windows and split
deliveries

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Alarcon Ortega, Emilio J.; Schilde, Michael; Doerner, Karl Franz (2020) :
Matheuristic search techniques for the consistent inventory routing problem with time windows
and split deliveries, Operations Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 7,
pp. 1-15,
https://doi.org/10.1016/j.orp.2020.100152

This Version is available at:
https://hdl.handle.net/10419/246423

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2020.100152%0A
https://hdl.handle.net/10419/246423
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Matheuristic search techniques for the consistent inventory routing problem
with time windows and split deliveries
Emilio J. Alarcon Ortega⁎, Michael Schilde, Karl F. Doerner
Department of Business Decisions & Analytics, University of Vienna, Oskar-Morgenstern Platz 1, Vienna 1090, Austria

A R T I C L E I N F O

Keywords:
Inventory routing problem
Adaptive large neighborhood search
Consistency
Matheuristics,

A B S T R A C T

This article introduces a new variant of the inventory routing problem related to real-world businesses.
Specifically, in the beverage industry, business customers such as restaurants and bars, demand consistent de-
livery times, have different opening times and delivery time windows, and occasionally, due to special events,
exhibit demands that exceed single-vehicle capacity leading to the need of splitting demands between several
vehicles. We present two variants of a mathematical formulation that include all the characteristics of this
inventory routing problem. In the first, we apply the maximum level policy, whereas in the second variant, we
apply an order-up-to-level policy. As a solution technique, we propose a matheuristic based on an adaptive large
neighborhood search algorithm for which we developed several destroy and repair operators specifically de-
signed to address the special problem features. Extensive computational tests based on artificial and real-world
instances affirm the efficiency of the solution approach. Furthermore, we analyze the solution quality, the impact
of the characteristics and policies applied, and the practicability for the real world.

1. Introduction and literature review

The consistent inventory routing problem with time windows and
split deliveries (CIRPTWSD) arises in the beverage industry, where
transportation plans must meet multiple requests from customers and
various characteristics create the need to develop innovative, efficient
solution approaches for distribution and stocking decisions. Many
companies already have adopted vendor-managed inventory (VMI)
systems, such that the supplier manages all the replenishment and
distribution plans centrally, largely because the application of VMI can
substantially reduce overall logistics costs [1]. Within the VMI frame-
work, the inventory routing problem (IRP), first introduced in the
seminal paper [2], aims to deal with this situation. Beverage industries,
in particular beer industry, are especially remarkable in their central
planning efforts to reduce overall logistics costs. Although beer con-
sumption per capita and year is quite stable, consumption is very sen-
sitive to external factors such as weekends, holidays, and special events
(e.g., sports events, music festivals). Moreover, it encompasses different
types of customers, such as bars, restaurants and retailers many of
which have different opening hours and delivery time windows. Hence,
to deal with these differences between opening hours, to set a max-
imum driving time and due to different working shifts, customers divide
each period into different subperiods (e.g. morning, afternoon,

evening). Another special characteristic that customers present is the
demand of consistency in the delivery times, to enable themselves to
prepare for a delivery. In addition, temporary high demands and the
need to deliver to every customer creates a distinct possibility of
splitting deliveries across multiple trucks.

One critical characteristic, in the real world context where we de-
scribe our problem, is that the product is consumed continuously within
the time periods. This characteristic is often present in articles about
inventory management, however, it is a relatively new characteristic in
the VRP and IRP literature, see [3]. In this paper, the authors refer to
this variant of the IRP as continuous-time IRP. In this work, authors
study the critical components of a dynamic discretization discovery
algorithm, where the algorithm aims to discover which times are
needed to obtain an optimal solution by solving a small sequence of
integer programs. Authors deal with the problem of replenishing a set
of customers over a finite planning horizon but, unlike the problem we
describe in this work, stock out situations are not considered, the re-
plenishment plan is performed over a single period and consistency in
the deliveries and time windows are not considered. Due to this con-
tinuous consumption of product, high additional efforts must be driven
to carefully plan delivery times and amounts. Customers that are visited
too late in time can lose sales due to stock out situations. On the other
hand, early deliveries to customers can be unprofitable, as the total

https://doi.org/10.1016/j.orp.2020.100152
Received 15 May 2020; Accepted 15 May 2020

⁎ Corresponding author.
E-mail addresses: emilio.jose.alarcon.ortega@univie.ac.at (E.J. Alarcon Ortega), michael.schilde@univie.ac.at (M. Schilde),

karl.doerner@univie.ac.at (K.F. Doerner).

Operations Research Perspectives 7 (2020) 100152

Available online 21 May 2020
2214-7160/ © 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2020.100152
https://doi.org/10.1016/j.orp.2020.100152
mailto:emilio.jose.alarcon.ortega@univie.ac.at
mailto:michael.schilde@univie.ac.at
mailto:karl.doerner@univie.ac.at
https://doi.org/10.1016/j.orp.2020.100152
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2020.100152&domain=pdf


amount delivered to the customer can be too low and, therefore, ad-
ditional deliveries can be necessary in the subsequent periods.

Our contributions in this paper are threefold: (1) We introduce and
mathematically formulate a new variant as CIRPTWSD where the pro-
duct is being consumed continuously at the customers and they demand
consistency in the delivery times in order to anticipate and be ready to
receive them. We present two different versions of the mathematical
formulation using two different replenishment policies, the order-up-to-
level policy (OU) and the maximum level policy (MLP). The first policy
requires that every visit to a customer means the entire inventory ca-
pacity is filled. The second policy provides more flexibility to decide
delivery amounts, such that for each customer visit, any amount can be
delivered as long as inventory capacity is respected [4]. (2) We propose
a matheuristic solution method based on an adaptive large neighbor-
hood search algorithm (ALNS) to deal with the CIRPTWSD. In this al-
gorithm several destroy and repair operators are applied to an initial
solution to iteratively remove and rebuild parts of the solution. This
algorithm also includes a mathematical subproblem where, given a fix
plan of deliveries to the customers, the arrival times and delivery
amounts are optimally calculated. (3) We evaluate the performance of
the proposed algorithm and the impact of the characteristics considered
in the problem. In order to evaluate the effectiveness of the algorithm,
we developed a modified and more simple version of the algorithm to
solve a benchmark set of instances for the IRP introduced in [4]. We
then propose an adapted set of instances from another benchmark set
and a real world based set of instances to conduce the experiments.
Very preliminary results were presented at the OR2016 conference and
published in the conference proceedings, Alarcon et al. [5].

The CIRPTWSD belongs to the family of vehicle routing problems
(VRPs), first present in [6], and, more specifically, the group of IRPs.
The family of IRPs, are NP-hard problems and, it is in particular the
CIRPTWSD, as it can be considered as an extension of the VRP with
time windows (VRPTW) when considering a single period and sub-
period (the VRPTW is an NP-hard problem [7]). Extensive reviews of
IRP literature are available in [8] and [9], and in [10] we find an
overview of different industrial applications of IRPs. Several articles
include different aspects of the CIRPTWSD, and the two key features
that represent the focus of our research, consistency and split deliveries,
are widely discussed in [11,12] and [13]. With regard to consistency,
Coelho et al. [11], present different interpretations of consistency
(quantity consistency, driver consistency, and others), but not con-
sistency in delivery times. This is the interpretation of consistency that
we introduce in the CIRPTWSD. Therefore, we propose defining de-
liveries to a customer as consistent if all deliveries arrive at the same
time of day. Kovacs et al. [14] introduce consistency in delivery times
in a mathematical model, by ensuring that the arrival time difference to
a customer is lower than a certain parameter value. Further insights
into VRPs in which consistency is an important characteristic are
available in [12], as well as [15] and [16]. Turning to split deliveries,
each customer can be serviced by more than one vehicle in the same
period and subperiod. Recent studies ([17,18]) introduce new appli-
cations for split pick-ups and split deliveries, first with discrete com-
modities and then in real-world situations related to the fuel industry.
Furthermore, Christiansen [19] presents a problem with both inventory
management and the possibility of split deliveries. Finally, Archetti and
Speranza [13] consider the possibility of split deliveries in VRP pro-
blems with a single period, while also noting the main properties and
different solution approaches for dealing with several variants of the
basic VRP with split deliveries.

Another key characteristic, which we introduce herein, is time
management combined with inventory routing. We consider an IRP
with intra-day time windows. In most of the existing literature, time
windows refer to a group of periods during which a delivery can take
place, instead of a time interval within time periods. But because each
customer has different opening times, we seek to operationalize de-
livery time windows in a way more commonly adopted in research into

VRP problems, such as in Azi et al. [20]. Although this approach is less
common in relation to IRP, some works consider these types of time
windows, [21]. As another contribution, related to time and commodity
management, we address linear commodity consumption by customers.
This characteristic is also present in [3], while the possibility of lost
sales is not considered. Combining linear consumption and the ex-
istence of intra-day time windows enables us to account for the possi-
bility of lost sales due to stockout situations, not just at the end of each
period, but also within time periods. In our work, lost sales may occur if
customers do not have enough goods to satisfy corresponding demand
before the next delivery. In our formulation, we penalize the amount of
lost sales in the objective function.

Despite the recent introduction of some exact solution methods for
IRPs ([22–25], we seek to solve large, real-world instances, so we
choose a heuristic method. Heuristic methods are often used to deal
with IRP variants, such as the combination of an integer programming
approach and variable neighborhood search approach to deal with
blood inventory and supply problems [26]. A template-based adaptive
large neighborhood search applied to deal with the consistent vehicle
routing problem [14], with template routes that include frequently
serviced customers, then an introduction of sporadic customers in the
template routes. An ALNS [11] is presented to solve different inter-
pretations of consistent multi-vehicle IRPs. Other solution approaches
for IRP include a matheuristic solution approach [27], a variable
neighborhood search [28], and a decomposition approach [29]. No-
tably, we find increasing research interest in developing solution ap-
proaches to deal with IRPs with stochastic demands, such as with the
introduction of two simheuristic approaches for the stochastic IRP with
stockouts for single and multiple period ([30,31]).

In Section 2, we present a new formulation for the CIRPTWSD that
integrates inventory management, vehicle routing, and delivery sche-
duling decisions with the previously detailed characteristics. In
Section 3, we present a matheuristic solution approach in which we
solve a linear subproblem based on the problem formulation of the
CIRPTWSD, using the idea of an ALNS. We apply several destroy and
repair operators to an initial solution obtained using a cheapest inser-
tion heuristic, followed by two local search operators, then explore
different solution neighborhood operators while, iteratively assigning
more importance to the most successful neighborhoods by increasing
the probability of using them. After we describe both, the mathematical
formulation and the proposed solution approach, in Section 4, we
present an extensive computational study. To evaluate the effectiveness
of the solution approach, we use a set of instances of different sizes,
adapted from a benchmark set. We also compare the results obtained by
an exact solver with the results obtained using our proposed method.
Furthermore, we study the impact of different time window sizes with
respect to the different cost factors. Our algorithm provides high quality
solutions for small instances after short computation times, compared
with the exact solver, but for instances of medium and large sizes, the
matheuristic provides better solutions than the exact solver; the solver
cannot find optimal solutions within a given computational time limit
of ten hours. In Section 5 we summarize the findings and propose ad-
ditional research questions related to the CIRPTWSD.

2. Problem description

In this section, we describe the different characteristics of the pro-
blem and propose a mathematical formulation that includes all of them.
In Fig. 1, we present a graphic scheme that represents the inventory
flow and other aspects of the problem for a typical customer. A cus-
tomer with a given initial inventory and inventory capacity, over a
planning horizon of three periods, faces four different issues. The first
characteristic represents the nature of the demand the customer man-
ifest; every customer experiences linear commodity consumption in
every period and subperiod, but the commodity consumption of each
customer may vary from period to period. According to the second

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

2



characteristic, each customer presents different time windows for de-
livery and require consistency in delivery times, we represent this ele-
ment by assuming that the customer prefers to be delivered at the same
time in every period or subperiod. The third characteristic denotes
stockout situations, when the commodity cannot be served anymore, so
we calculate the amount of commodity not served and penalize it in the
objective function as lost sales. Finally, the fourth characteristic enables
the creation of a pseudo-rolling horizon, such that we calculate the
difference between the initial and the ending inventory level and pe-
nalize this difference in the objective function as lost sales. Excluding
this characteristic would eliminate deliveries in the last periods and
subperiods, to save possible routing costs, such that the ending in-
ventory levels of the customers would tend to zero.

The CIRPTWSD is represented on a complete directed graph
=G V A( , ), where V is the set of all nodes and A is the set of all arcs. We

denote the depot as 0 and V′ as the set of customers. We consider a
finite planning horizon with p ∈ P periods; each of these periods is
divided into a given number of subperiods r ∈ R with length Tr. We
apply this division to deal with two issues. First, it helps us state a
maximum route duration. Second, it represents a real-world situation
caused by the different working shifts that a company has. We consider
a finite and homogeneous fleet of vehicles, k ∈ K, with capacity Q. A
cost cij and a time tij, both non-negative values, are considered for each
arc (i, j) ∈ A. Furthermore, for each customer i ∈ V′ and subperiod r ∈ R,
ai

r and bi
r represent the start and end times when the customer can be

served. Initial inventory levels Ii
R0| | are assigned to each customer i ∈ V′

and so are the inventory capacities Ci. To assign these initial inventory
levels, we create a dummy period 0, and we assign the initial inventory
levels to the last subperiod |R| of this dummy period. This way, we can
use the same notation for all the inventory information about the pro-
blem. The service time for delivering to a customer is represented as si.
Finally, di

pr represents the commodity consumption of customer i in
period p and subperiod r. We consider this consumption continuous
within subperiods.

In our model, we also include different decision variables. The
binary variables xij

kpr and yi
kpr indicate if an edge (i, j) is being used by

vehicle k in period p and subperiod r and if customer i is visited by
vehicle k in period p and subperiod r, respectively. Moreover, we in-
clude continuous variables related to time and commodity manage-
ment. The variables t ,i

kpr t ,i
r and ti

r relate the time and consistency
management of the problem. The first type represents the arrival time
of a vehicle k to a customer i in period p and subperiod r over all per-
iods. The latter two types of variables represent the earliest and latest
arrival time to each customer i for each subperiod r. Furthermore, σkpr

represents the loading time of each vehicle at the depot in each period
and subperiod. Finally, we have other groups of decision variables as-
sociated with the commodity management. First, variables qi

kpr re-
present the amount of commodity delivered to each customer i by each

vehicle k in period p and subperiod r. Second, Ii
pr shows the inventory

levels of each customer i at the end of each period p and subperiod r.
Third, Δi represents the difference between the initial and the ending
inventory level of each customer i, if the initial inventory is higher than
the ending inventory. We use Δi to create a pseudo-rolling horizon and
to avoid empty ending inventories. Fourth, oi

pr represents the amount of
lost sales at customer i in period p and subperiod r due to stockout
situations. Fifth, because of the split delivery characteristic of the
problem, we introduce Ai

kk pr to represent the amount qi
kpr delivered by

vehicle k to customer i if this vehicle arrives before vehicle k′ in period p
and subperiod r, and 0 otherwise. The notation used in the mathema-
tical formulation is summarized in Table 1.

Using this notation, we can formulate the CIRPTWSD.

Fig. 1. Inventory flow and different characteristics of the problem for a given customer.

Table 1
Notation.

Data Sets V set of nodes
V′ set of customers
K set of vehicles
P set of periods
R set of subperiods
cij travel cost for arc (i, j)
tij travel time for arc (i, j)
a ,i

r bi
r time windows of customer i in subperiod r

Ci inventory capacity of customer i
Data and Parameters Ii

R0| | initial inventory level of customer i in dummy
period 0 and subperiod |R|

si service time of customer i
di

pr commodity consumption of customer i in period p
and subperiod r

Q vehicle capacity
Tr duration of subperiod r

xij
kpr use of arc (i, j) by vehicle k in period p and

subperiod r

yi
kpr visit to customer i in period p and subperiod r

Ii
pr inventory level of customer i at the end of period

p and
subperiod r

Decision Variables ti
kpr arrival time of vehicle k to customer i in period p

and subperiod r
t ,i

r ti
r earliest and latest arrival times to customer i in

subperiod r
σkpr load time of vehicle k in period p and subperiod r
Δi final inventory decrease of customer i

qi
kpr quantity delivered to customer i by vehicle k in

period p and subperiod r

Ai
kk pr previous deliveries to customer i in period p and

subperiod r
oi

pr quantity lost due to stockouts of customer i in
period p and subperiod r

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

3



2.1. Objective function

+ +

+ +

Minimize c x t t

Lo L

( )
i V j V k K p P r R

ij ij
kpr

i V r R
i
r

i
r

i V p P r R
i
pr

i V
i

(1)

The objective of the problem is to minimize total costs (1). We
consider four different cost factors to minimize. The total routing cost
incurred by servicing the customers, the penalty imposed according to
the difference between the earliest and latest delivery to a customer,
costs caused by stockout situations, such that the amount of commodity
that each customer is not able to serve is weighted by a parameter L
(initially set to three times the commodity cost), and the difference
between initial and ending inventory levels at each customer, when this
difference is positive, measured as sales lost, which enables us to create
a pseudo-rolling horizon.

2.2. Time and routing flow constraints

=x y i V k K p P r R, , ,
j V

ji
kpr

i
kpr

(2)

y R i V k K p P| | , ,
r R

i
kpr

(3)

y i V p P r R2 , ,
k K

i
kpr

(4)

x k K p P r R1 , ,
i V

i
kpr
0

(5)

=+x x k K p P r R0 , ,
i V

i
kpr

i V
i n
kpr

0 ( 1)
(6)

=x x h V k K p P r R0 , , ,
i V

ih
kpr

j V
hj
kpr

(7)

+ +t s t M x t i j V k K p P

r R

(1 ) , , , ,i
kpr

i ij ij
kpr

j
kpr

1

(8)

a y t b y i V k K p P r R, , ,i
r

i
kpr

i
kpr

i
r

i
kpr (9)

t k K p P,kp kp
0

1 1 (10)

++t t k K p P r R, , {1}kpr
n
kp r kpr

0 1
( 1) (11)

=
t T k K p P r R, ,kpr

l

r

l0
1

1

(12)

=
t T i V k K p P r R, , ,i

kpr

l

r

l
1 (13)

= s y k K p P r R, ,kpr

i V
i i

kpr

(14)

t t M y i V k K p P r R(1 ) , , ,i
r

i
kpr

i
kpr

2 (15)

+t t M y i V k K p P r R(1 ) , , ,i
r

i
kpr

i
kpr

2 (16)

We include two Big-M parameters (M1 and M2) related to the time
management of the problem set, equal to the period length. Constraints
(2)–(4) guarantee that every customer can be visited by at most two
vehicles in each subperiod and each vehicle can visit each customer in
every period. Constraints (5)–(7) are flow conservation constraints that
describe each individual route. Constraints (8)–(14) ensure the feasi-
bility of the time schedule. Constraints (9) force ti

kpr to be 0 if customer i
is not served by vehicle k in period p and subperiod r. Constraints (13)
ensure that every vehicle must return to the depot before or at the

moment the current subperiod ends. Constraints (14) define the loading
time for each route as the sum of the service times over all customers in
the routes multiplied by a constant factor β. Constraints (15) and (16)
define the earliest and latest arrival times of each vehicle k to each
customer i in subperiod r.

2.3. Inventory flow constraints

q Q k K p P r R, ,
i V

i
kpr

(17)

q y M i V k K p P r R, , ,i
kpr

i
kpr

3 (18)

= +I I q d o i V p P,i
p

i
p R

k K
i
kp

i
p

i
p,1 ( 1) | | ,1 ,1 ,1

(19)

= +I I q d o i V p P r R, , {1}i
pr

i
p r

k K
i
kpr

i
pr

i
pr( 1)

(20)

I i V p P r R0 , ,i
pr (21)

I C i V p P r R, ,i
pr

i (22)

I I i Vi
R

i
P R

i
0| | | | (23)

i V0i (24)

In this second group of constrains, we include commodity and in-
ventory management constraints. Constraints (17) establish a maximum
vehicle capacity. Constraints (18) indicate that a customer cannot re-
ceive any amount by a vehicle if it is not visited by that vehicle in a
period and subperiod. The big-M parameter in these constraints is equal
to the vehicle capacity. Constraints (19) and (20) define the inventory
levels of every customer at the end of each subperiod, calculated as the
sum of the previous inventory level plus the amount of commodity
received in the current subperiod and the amount that the customer is
not able to serve due to stockouts. This value is further decreased by the
commodity consumption of the customer in the current subperiod.
Constraints (21) and (22) forbid inventory levels to be negative or ex-
ceed the inventory capacity of the customer. With Constraints (23) and
(24), we calculate the difference between the initial and the ending
inventory of each customer when the difference is positive.

2.4. Previous deliveries constraints:

< = > =t t A q i V k k K p P r R, , , ,i
kpr

i
k pr

i
kk pr

i
kpr

(25)

= > =t t A i V k k K p P r R0 , , , ,i
kpr

i
k pr

i
kk pr (26)

We introduce two groups of constraints to deal with the split de-
liveries characteristic. By using Constraints (25) and (26), we define the
matrix of variables Ai

kk prz. If a customer i is visited more than once in a
subperiod, the amounts delivered to the customer by the previous ve-
hicles are calculated.

2.5. Stockout and overstock constraints

+I d t T o
A

i V k K p P

/

, ,

i
p R

i
p

i
kp

i
p

k K k k
i
k kp

( 1) | | ,1 ,1
1

,1

:

,1

(27)

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

4



+
<

I
d t y

T T o

A

i V k K p P
r R

(

)/

, , ,
{1}

i
p r

i
pr

i
kpr

i
kpr

l R l r
l r i

pr

k K k k
i
k kpr

( 1)

:

:

(28)

+

+

q I d t T

o C A

i V k K p P

/

, ,

i
kp

i
p R

i
p

i
kp

i
p

i
k K k k

i
k kp

,1 ( 1) | | ,1 ,1
1

,1 ,1

(29)

+

+
<

q I

d t y T

T o C
A

i V k K p P
r R

( )

/

, , ,
{1}

i
kpr

i
p r

i
pr

i
kpr

i
kpr

l R l r
l

r i
pr

i

k K k k
i
k kpr

( 1)

(30)

We create some constraints to avoid excessive stock at the customers
at any time, considering a continuous commodity consumption.
Furthermore, as a result of continuous commodity consumption, we
have to calculate possible stockouts that occur at any time within the
time periods. Constraints (27) and (28) ensure that at the arrival time of
any vehicle to a customer, the inventory level is non-negative. They also
account for whether any other delivery occurs before the arrival time of
each vehicle. Whenever a stockout occurs, the amount out of stock is
calculated. Constraints (29) and (30) act in the opposite way, to avoid
excessive inventory levels while also considering possible previous
deliveries.

2.6. Additional OU constraints

The model we propose satisfies one of the most commonly used
policies related to the inventory management and delivery amounts in
IRP literature, the MLP. It is outpacing the OU in popularity, because
the MLP allows companies to deliver any amount of commodity to each
customer, as long as that amount, plus the current inventory level, does
not exceed the inventory capacity. Alternatively, the OU policy ensures
that every time a vehicle arrives to a customer, it delivers the exact
amount of commodity necessary to fill inventory completely. Adapted
to our problem, the OU policy ensures that, when the last vehicle ar-
rives to a customer in a subperiod, the inventory must be full. If a
customer is visited by multiple vehicles in a subperiod, the first vehicle
does not necessarily fill the inventory entirely.

+

+

y M q

C I o d t T
i V k K
p P

(1 )

( ) /
, ,

i
kpr

l K
i
lp

i i
p R

i
p

i
p

i
kp

4
,1

( 1) | | ,1 ,1 ,1
1

(31)

+

+

<

y M q

C I
o d t y

T T

i V k K p P
r R

(1 )

( )
(

)/

, , ,
{1}

i
kpr

l K
i
lpr

i i
p r

i
pr

i
pr

i
kpr

i
kpr

l R l r
l r

4

( 1)

(32)

We propose Constraints (31) and (32) to deal with the OU policy in
our problem. By adding these constraints to the model, we ensure that,
when the last vehicle has arrived, the total amount of commodity de-
livered satisfies the OU policy.

2.7. Variable domain

x i j V k K p P r R{0, 1} , , , ,ij
kpr

(33)

y i V k K p P r R{0, 1} , , ,i
kpr (34)

t i V k K p P r R0 , , ,i
kpr (35)

q i V k K p P r R0 , , ,i
kpr (36)

A i V k k K p P r R0 , , , ,i
kk pr (37)

In Constraints (33) to (37), we define the domain of each variable of
the problem.

3. Solution approach

To solve the CIRPTWSD, we propose a matheuristic solution ap-
proach. Our method is based on the idea of the ALNS [32], which
provides an efficient algorithm for IRPs, particularly for IRPs for which
consistency is an important characteristic([11,14]). Given an initial
solution, the ALNS applies several destroy and repair operators to
iteratively remove and rebuild parts of the solution. We present dif-
ferent operators related to one or more characteristics of the problem.
Thus, we explore different solution neighborhoods to increase the
quality of the solutions. In contrast with a generic ALNS algorithm
though, we propose a hybrid version with a mathematical subproblem,
based on the mathematical formulation of the CIRPTWSD. Fig. 2 shows
an overview of the proposed method, including the two parts of the
algorithm, the constructive heuristic and the ALNS, their main com-
ponents, and where the exact subproblem is integrated in both.

3.1. Initial solution

The initial solution is generated using an adaptation of the cheapest
insertion heuristic [33] for a variant of the VRP. We combine this
constructive heuristic with a method to decide which customers must
be visited in each period and subperiod. We then apply two local search
operators to improve the quality of the initial solution and solve a
mathematical optimality subproblem to determine the optimal timing
and delivery quantities and to introduce waiting times when necessary.
A pseudocode of the complete heuristic is presented in Algorithm 1.

3.1.1. Preprocessing
Before we construct the routes for each period and subperiod, we

decide which customers must receive a delivery in that subperiod. We
create a priority list containing all customers whose inventory level at
the beginning of the subperiod is not sufficient to survive without a
stockout before the next possible delivery time window. We then cal-
culate an upper and lower bound for the delivery amount for each
customer. The upper bound is the difference between the current

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

5



inventory level and the inventory capacity. The lower bound is the
amount necessary to avoid a stockout before the end of the next de-
livery time window. In Fig. 3, we present a small example. The cus-
tomer has enough inventory, so it will not suffer a stockout during
Period 1. However, it runs out of stock before the next time window
ends (in this case, in Period 2). Thus, the customer must receive a de-
livery in the current period. Then, after deciding if the customer must
be visited or not, we calculate the two bounds. We repeat this process
before applying the insertion heuristic for every period and subperiod.

3.1.2. Cheapest insertion
When we obtain the list of customers to be served in the current

period, we insert them as follows: First, we initialize a route by in-
serting the customer farthest away from the depot that is included in
the list of customers that we just created. Second, we insert customers
according to a cheapest insertion algorithm, using the largest possible
quantity, which is the upper bound, increased by the quantity con-
sumed until the arrival of the delivery. Third, if we cannot insert any
more customers in the route, due to capacity constraints of trucks or

time windows of the remaining customers, we initialize a new route in
the same way. We iterate until no more insertions are possible.

If all customers from the list have been inserted, the method stops. If
there are still customers that need a delivery but cannot be inserted
with the maximum quantity, we try to insert them with the minimum
amount. We apply the cheapest insertion algorithm, as described, using
the lower bound quantity increased by the amount that will be con-
sumed until the delivery arrives.

If this second insertion step is not enough to insert all customers, a
third procedure applies to balance the amount delivered to all custo-
mers and, if necessary, split deliveries to remaining customers into two
different routes, assuming there is enough vehicle capacity available. If
not, this customer receives a delivery in a later period. We balance the
amounts delivered to customers by reducing the delivery amounts of
customers inserted with the upper bound amount to reduce the total
truck load and, therefore, allow for the insertion of more deliveries into
the existing routes. If a customer’s demand is greater than the vehicle
capacity, or we have not been able to insert it, we try to split the
amounts to be delivered in two vehicles.

Fig. 2. Components of the method.

Require: Input Data
1: for p = 1 : |P| do
2: for r = 1 : |R| do
3: for i = 1 : |N| do
4: if (Inventory of customer i6 demand until next time window)then
5: Add customer i to thePriority List
6: Calculate upper and lower bounds for the delivery
7: end if
8: end for
9: Cheapest insertion with maximum quantity for all customers inPriority List

10: if (Priority list not empty) then
11: Cheapest insertion with minimum quantity for the rest of customers inPriority List
12: end if
13: if (Priority list not empty) then
14: Balance quantities and split deliveries
15: end if
16: Local search 1: delete single customer routes
17: Local search 2: 2-opt
18: end for
19: end for
20: Solve exact subproblem
21: return Initial Solution

Algorithm 1. Initial Solution.

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

6



3.1.3. Local search
To improve the quality of the initial solution, we apply two different

local search operators that have been widely studied. The first operator
aims to destroy single-customer routes and inserts these customers into
other routes. The single customer route operator identifies the route
and the customer to be re-allocated, then calculates the total amount of
capacity left in all the remaining routes of the same period. Then, by
decreasing the amounts delivered to the other customers of the route, it
tries to insert the customer into an existing route. We only insert the
customer in another route if the distance of the detour caused by this
new insertion is lower than the total distance of the single customer
route we are trying to avoid. The second operator is the well known 2-
opt algorithm. In Appendix A, we list the results of the proposed al-
gorithm using different chain lengths of the 2-opt algorithm. In the rest
of the experiments, we apply the 2-opt algorithm with a maximum
length of four customers. To ensure feasibility, we do not allow any
changes that could violate the time windows of the customers. Thus we
search for better sequences of customers, that satisfy the other char-
acteristics of the problem.

3.1.4. Exact subproblem
We repeat the described construction heuristic for every period and

subperiod to obtain a feasible initial solution. However, this first so-
lution may not be optimal for this route sequence. To obtain the optimal
delivery quantities for customers, introduce waiting times to improve
possible inconsistent deliveries, and increase the final inventory levels
that will create a pseudo-rolling horizon, we solve a reduced problem
based on the problem formulation. The reduced problem contains all
constraints of the original problem formulation, using MLP or OU when
necessary, but the customer visits yi

kpr and route sequences xij
kpr are no

longer a variables and instead function as parameters.

3.2. Adaptive large neighborhood search

We use ALNS to improve the initial solution provided by the con-
struction heuristic. The method integrates several operators to itera-
tively destroy and repair the current solution. Moreover, for some good
solutions that we find during the ALNS, we solve the exact subproblem
to obtain the optimal delivery schedule using the provided route se-
quences, as explained in the previous section. A pseudocode of the
method is in Algorithm 2. To avoid local optima, we introduce the

Fig. 3. Example of customer inserted in the priority list of Period 1 with the corresponding upper and lower bound amounts calculated.

Require: Initial solution and cost.sinitial & cinitial

1: sbest, sincumbent= sinitial

2: cbest, cincumbent= cinititial

3: t, tlast = 0 Start time and time of last improvement
4: while time t <MAXTIME do
5: scurrent = sincumbent

6: Select a pair of destroy and repair operatorsd andr
7: Apply operatord to scurrent

8: Actualize inventory flows and stockouts
9: Apply operatorr to scurrent

10: 2-opt local search
11: Evaluate solution and get costccurrent

12: if (ccurrent < 1.5 · cbest) then
13: Solve exact subproblem and get costcexact

14: if (cexact< cbest) then
15: sbest, sincumbent= scurrent

16: cbest, cincumbent= cexact

17: Update weightρidr of operatorsd andr
18: else
19: if (cexact< cincumbent) then
20: sincumbent= scurrent

21: cincumbent= cexact

22: else
23: if (t − tlast > timelimit) then
24: sincumbent= scurrent

25: cincumbent= cexact

26: end if
27: end if
28: end if
29: end if
30: end while
31: return sbest & cbest

Algorithm 2. ALNS.

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

7



option to accept deteriorating solutions after long periods without
finding an improving solution.

In each iteration of the ALNS, we generate a new solution by ap-
plying one destroy and one repair operator. The selection of these op-
erators relies on a roulette-wheel selection operator based on the past
performance of the operators. The selection and priorization of destroy
and repair operators are pairwise, rather than separate. Weights ρ0dr

related to each pair of destroy and repair operators are initially set to
the same value of 20; when we find a new better solution, we update
the weights of the operators, increasing them by = 5, then we resume
the procedure of updating the operator weights as follows:

=
+ ifnewbettersolutionfound.

ifnobettersolutionfound.idr
i dr

i dr

( 1)

( 1) (38)

In this case, i is the current iteration of the ALNS algorithm. We propose
eight destroy operators and seven repair operators, as described next.

• Remove worst insertions: Given a solution s, we define the cost of
the detour caused by the insertion of customer i as

= +cost c c c ,ki ij kj where k and j are the preceding and succeeding
customers in the route, respectively. Then, the operator calculates
the detour cost caused by every insertion, selects the p worst in-
sertions with respect to these costs, and removes them from the
solution.

• Remove random insertions: This operator selects p different inser-
tions from random periods, subperiods, and route, and removes
them from the solution.

• Remove vehicle: This operator selects a vehicle at random and re-
moves all deliveries performed by this vehicle in every period and
subperiod.

• Remove subperiod: This operator selects a random period and sub-
period and removes all routes of that subperiod.

• Remove customer: This operator selects p customers at random and
removes all their deliveries.

• Remove customer and closest: This operator selects p customers at
random and removes all deliveries to these customers and to their
closest customer in terms of distance.

• Remove furthest customer and closest: This operator identifies the p
furthest customers from the depot, in terms of distance, and removes
all deliveries done to these customers and their closest customers in
terms of distance.

• Remove similar inventory customers: This operator selects p custo-
mers at random and, for each, selects one other customer with a
similar percentage of initial inventory level. Then, it removes all
deliveries to all selected customers.

Every time we apply a destroy operator, the inventory levels of the
removed customers change, and new stockout situations may occur.
Because we consider intra-period stockouts, it is possible that a re-
moved customer faces a stockout before the next delivery takes place
but, at the end of the subperiod in which this next delivery happens, the
inventory might partially fill again. As we describe in the mathematical
formulation, stockout situations can also occur inside the periods and
subperiods, which requires recalculating the new inventory flow. In
Fig. 4 we provide an example of how we update the inventories of re-
moved customers. In this example, a customer with an inventory ca-
pacity of 30 units, a demand of 15 units per period, and a total period
length of six hours has its first out of three deliveries removed. This
delivery was performed two hours after Period 2 starts, and the quantity
delivered was 30 units. The delivery arrived at the exact moment in-
ventory ran empty. As a result of its removal, the customer does not
have enough inventory to satisfy the whole period’s demand and faces
lost sales of = =Demand InventoryLevel 15 5 10 units. However,
this delivery also affects the subsequent period, such that in Period 2. In
Period 3, the customer does not have any delivery scheduled, and thus

loses all demand, leading to the lost sales of Period 3 equal to
= =Demand Inventory 15 0 15 units. Finally, in Period 4, the cus-

tomer has a scheduled delivery two hours after the period starts and
therefore loses all demand that occurs before the new delivery takes
place. In this case, the new amount of lost sales is

= =Demand ArrivalTime PeriodLength· / 15·2/6 5 units.
After we update the inventory levels and the amount of lost sales for

the removed customers, we create a list of customers that must be re-
inserted into the solution, because that need deliveries to avoid
stockout situations caused by their removal. We then apply the corre-
sponding repair operator to create new deliveries to the customers in
the list.

• Best insertion in destroy order: This operator inserts customers in
the same order in which they were removed from the previous so-
lution. To reinsert these customers into the existing routes, we
create a list of possible insertions for the period a stockout occurs
and for all preceding periods. The possible insertions are sorted by
the total distance of the detour caused by them. We then randomly
select one of the three best possible insertion positions and perform
the insertion. If, after evaluating the new inventory flow of the
customer, there still are stockout situations in the later periods, we
repeat the process between the new stockout period and the last
insertion period. Fig. 5 shows how this repair operator works with
the same customer that we used in Fig. 4. After updating the in-
ventory and the lost sales for the customer, we find a first stockout
situation in Period 2. To avoid it, we evaluate all possible insertions
in Period 2 and all earlier periods. As a result, we select a possible
insertion of the customer with a delivery of 20 units four hours after
Period 1 starts. We then calculate the resulting inventory flow and
stockouts after this new delivery. Finally, we search for other pos-
sible stockouts, and we repeat the process, calculating possible in-
sertions between the period of the new stockout(i. e., Period 3 in
Fig. 5) and the period adjacent to the previous delivery (i. e., Period
2).

• Best insertion in random order: This operator works in the same way
as the previous operator, except that we randomly select the next
customer to be reinserted into the solution.

• Random insertion in destroy order: This operator creates a list of
possible insertions just like the best insertion in destroy order operator
but then randomly selects one of all possible insertions from the
entire list.

• Random insertion in random order: This operator creates a list of
possible insertions just as the previous operator and then randomly
selects one of them from the entire list. We repeat the process until a
feasible solution is reached.

• Consistent insertion in destroy order: This operator inserts custo-
mers such that the difference between the earliest and the latest
arrival times to this customer is minimized.

• Consistent insertion in random order: This operator inserts custo-
mers in the same way as the previous operator, but in this case, the
customer to be inserted is selected randomly and not in the destroy
order.

• Distance-related insertion: This operator can be considered as an
extension of the best insertion in destroy order operator. It selects
customers in the same order as they were removed from the solu-
tion, and we calculate the best possible insertions in terms of the
detour they cause, as we explained for Fig. 5. After inserting this
customer, we search, in the list of customers to be reinserted, for its
closest customer in terms of distance. We then try to insert this new
customer next to the previous customer if possible. If by inserting
this customer we can reduce its lost sales, we remove not only the
first customer from the list but both customers.

When we obtain a new solution after applying both, the destroy and

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

8



the repair operators, we evaluate the total costs of the solution. If the
new solution is not more than 50% worse than the best known solution,
we solve a reduced variant of the mathematical problem formulation, as
explained in Section 3.1. We consider a maximum 50% decrease in the
quality of the solution to be able to solve the reduced exact problem for
a considerable amount of new solutions, without expending un-
necessary time solving solutions with high costs. For a computational
justification, in Appendix A we also provide alternative results obtained
by solving instances when we consider different acceptance criteria
parameters in the proposed ALNS. Finally, we have a new solution with
optimal costs for these route sequences. If the new solution improves
the incumbent solution, we update the incumbent solution and the
weights for the destroy and repair operators used in this iteration. We
do the same with the best known solution if the new solution improves
on it. However, if the new solution does not improve the incumbent or
the best known solution, we proceed in two different ways. If the total
time since the last improvement is lower than a timelimit, we use the
previous incumbent solution as the starting solution for the next ALNS
iteration. If the total time since the last improvement exceeds that time
limit, we accept the new solution as the incumbent solution, and
therefore, as the input for the next iteration of the ALNS. We then reset
the time of the last improvement found to zero. We accept this new
solution to avoid strong local optima that prevent the method from
continuing to improve the quality of the solutions. The stopping cri-
terion for the ALNS is an overall limit on runtime.

4. Computational results

To the best of our knowledge, this is the first work on the CIRPT-
WSD that takes into account time windows and stockout situations
within the time periods. To analyze the effectiveness of the proposed
approach we first perform computational experiments using the
benchmark set of instances first introduced in [4]. In a second step, to
gain insights into the problem properties, we perform computational
experiments on two sets of instances. The first set is adapted from a
benchmark set, and the second is based on a real-life application of the
problem. Other sets of instances have been proposed to solve other
variants of IRPs, but the time window characteristic of our problem
makes it rather difficult to adapt these instances to our problem setting.
We evaluate the impact of different replenishment policies and the time
windows on our solutions and compare the results to others obtained
using an exact solver on our set of instances.

The algorithm we propose was coded in C++, and all computa-
tional experiments were performed on a Linux system equipped with
two Intel Xeon E5-2650(2.6 GHz) processors and 64 GB RAM. IBM
CPLEX 12.6.3 was used as a MIP solver with a maximum computation
solving time of ten hours.

4.1. Test instances

Because previous efforts to demonstrate the computational effec-
tiveness of the proposed methods do not include inventory information
related to capacity and initial inventory at the customers for IRPs with

Fig. 4. Update inventory flow after destroy operator.

Fig. 5. Update inventory flow after repair operator.

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

9



time windows, [21], we cannot compare this problem with any pre-
vious studies and instead create a new set of instances1 adapted from a
benchmark set[34]. This benchmark set of instances pertain to periodic
vehicle routing problem with time windows (PVRPTW), for which the
algorithm chooses between different visit day combinations that are
already given. In our case, the visit sequences must be chosen by the
algorithm based on current inventory levels.

These instances consider a planning horizon of four days and the
most efficient visit pattern must be chosen between different visit
combinations. We create instances of different sizes (5, 10, 15, 20, and
48 customers) and a planning horizon of four periods with one or two
subperiods. We use the customer information related to coordinates and
time windows from the instances of size 48 in the benchmark set.
However, we increase the commodity consumptions of the benchmark
set of instances to balance the inventory and stockout costs with the rest
of the costs in the problem. In the proposed set of instances, we consider
the commodity consumptions to be ten times the commodity con-
sumptions of the benchmark set. For smaller conversion factors, some
previous experiments show that the optimal decision would be not to
perform any delivery, because the routing and consistency cost would
be higher than stockout costs. Yet selecting a bigger factor would imply
high stockout costs compared with the other costs considered in the
problem. Finally, we created inventory information for our instances.
We consider different scenarios to create inventory information and
force every customer to be delivered at least once or twice, depending
on its demand periodicity. Every customer with daily commodity con-
sumption has an inventory capacity equal to two times the average
demand. For customers that present consumption every second period,
we set inventory capacity to 1.5 times the average consumption. For
customers that present consumption in one period for instances of four
periods and one subperiod, and two periods for instances with four
periods and two subperiods, the inventory capacity is set to approxi-
mately 1.1 times the average consumption. Then, based on the in-
ventory capacity of each customer, we generate initial inventory levels
by randomly selecting an initial percentage of initial inventory relative
to the inventory capacity (25%, 50%, 75%, or 100%). Vehicle capacity
is set to 2000 units, and we fixed the fleet size to be able to deliver twice
the average commodity consumption per period on a single period.
Furthermore, we set the penalty cost =L 3 for each unit of demand that
customers are not able to satisfy or unit of difference between the initial
and ending inventory level and the consistency cost weight = 1. We
select = 1 because the benchmark instances [34] consider time win-
dows that depend on the routing distances, so both routing and con-
sistency costs are measured using the same unit. We also set the penalty
cost =L 3 to balance the possible stockout and inventory costs, relative
to the rest of the costs considered in the problem.

The characteristics of the proposed instances are summarized in
Table 2. For each instance size, we create four groups of ten instances.
For fair comparisons, each group includes different characteristics of
the problem to evaluate the impact of these aspects on the costs. In-
stances in groups of type a include regular commodity consumption, so
most of the customers engage in commodity consumption in every
period. Instances of type b include the same customers but without any
time windows. Instances of type c include customers with less regular
consumption, such as customers with consumption once or twice per
time horizon. The last group, instances of type d, includes information
for four periods and two subperiods, unlike the other types for which
we include information of four periods and one subperiod. In Table 2,
we also include the number of vehicles available at the depot at the
beginning of the planning horizon.

In addition to the described set of instances, we perform computa-
tional experiments using another two set of instances. In order to

evaluate the performance of the algorithm and compare the effective-
ness with respect of previous works present in the literature, we solve a
simpler version of the problem using the benchmark set of instances
introduced in [4]. This set of instances presents information about de-
mand, inventory capacity and level and location of different sets of
retailers whereas no time-related information is not included. Fur-
thermore, different planning horizons are considered in the instances
(three and six periods) and, unlike the problem we face in this work,
two variants with high and low holding cost are considered. For further
information about the benchmark set of instances we refer to the ori-
ginal paper.

In the last step, we create a set of instances based on a real-world
application of the problem. We have information about average beer
consumption per sit place, opening times and locations, and real-world
distances and times for 400 bars, restaurants, and beer stands in the city
of Vienna. We generated five groups of real world-instances (a, b, c, d
and e) that include information about 92 customers located in its inner
city. For each group, we generate demand using a normal distribution
that reflects daily average beer consumption. Each group contains five
instances with different initial inventory levels generated, in ac-
cordance with the adapted benchmark set of instances. We provide
further information about these instances in Table 3. They feature a
planning horizon of a week (seven days) with one or two subperiods
and a fleet size of five vehicles. Furthermore, customers prefer different
time windows and have varied opening days.

4.2. Comparison to benchmark set of instances

In order to evaluate the effectiveness of the proposed method, and

Table 2
Characteristics of instances for the CIRPTWSD.

Group Size Periods SubPeriods Vehicles Consumption Time Windows

1a 5 4 1 1 High TW
1b 5 4 1 1 High No TW
1c 5 4 1 1 Low TW
1d 5 4 2 1 High TW
2a 10 4 1 2 High TW
2b 10 4 1 2 High No TW
2c 10 4 1 2 Low TW
2d 10 4 2 2 High TW
3a 15 4 1 2 High TW
3b 15 4 1 2 High No TW
3c 15 4 1 2 Low TW
3d 15 4 2 2 High TW
4a 20 4 1 3 High TW
4b 20 4 1 2 High No TW
4c 20 4 1 3 Low TW
4d 20 4 2 2 High TW
5a 48 4 1 6 High TW
5b 48 4 1 3 High No TW
5c 48 4 1 6 Low TW
5d 48 4 2 3 High TW

Table 3
Characteristics of real-world instances for the CIRPTWSD.

Group Size Periods SubPeriods Vehicles Consumption Time Windows

92a 92 7 1 5 Normal TW
92b 92 7 1 5 Normal TW
92c 92 7 1 5 Normal TW
92d 92 7 1 5 Normal TW
92e 92 7 1 5 Normal TW
92a2 92 7 2 5 Normal TW
92b2 92 7 2 5 Normal TW
92c2 92 7 2 5 Normal TW
92d2 92 7 2 5 Normal TW
92e2 92 7 2 5 Normal TW

1 The set instances are available at https://bda.univie.ac.at/research/data-
and-instances/vehicle-routing-problems/ when published

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

10

https://bda.univie.ac.at/research/data-and-instances/vehicle-routing-problems/
https://bda.univie.ac.at/research/data-and-instances/vehicle-routing-problems/


compare the obtained results with a benchmark set of instances, we
have adapted the method to solve a simpler version of the problem. We
use the set of instances introduced in [4]. In this work, authors present a
different variant of the IRP where time-related information and the
possibility of stock situations is not considered. Removing the calcula-
tions related to these characteristics from the proposed method, would
drastically transform the algorithm. However, small adaptations can be
performed to create a fair comparison. The proposed algorithm is
adapted so that the continuous consumption of commodity is no longer
considered. That is, customers experience demands at the end of the
planning horizon and, therefore, it is no longer possible to incur in stock
out situations within the time periods, whereas the stock out possibility
remains at the end of the subperiods. Secondly, the mathematical
subproblem solved within the algorithm must be also adapted. In this
case, we solve a mathematical formulation related to the IRP variant
presented in [4]. Using this mathematical formulation, we can also
calculate the different cost considered in this version of the problem.
Inventory holding cost are calculated using this mathematical

subproblem, and those solutions which present an stock out situation
can be discarded.

In Table 4, we show the gap obtained when solving the set of in-
stances with respect to the known optimal solution. We report results
for those instance sizes where the algorithm was able to find feasible
solution within a total computational time of 30 minutes. Solutions that
present stock out situations are treated as non feasible solution, as the
problem presented in [4] does not consider this situation. For most of
the small instances (5, 10 customers) with high and low holding cost
and three and six subperiods, the proposed algorithm is able to find
optimal or nearly optimal solutions for the problem, even if the original
proposed method does not aim to reduce holding cost or can consider
stock outs. For medium size instances (15, 20 customers), the solutions
obtained by the method present relatively small gaps with respect to the
optimal solution. Finally, we can see how, for large instances, the al-
gorithm has difficulties to obtain solutions without stock outs, as this is
not the main feature considered in the method.

Table 4
Comparison to benchmark set of instances. Gaps with respect to the known optimal solutions when the algorithm finds solutions without stock out situations.

3 Periods 6 periods

High Holding cost Low Holding cost High holding cost Low Holding cost

Instance Optimal Gap Optimal Gap Optimal Gap Optimal Gap

abs1n5.dat 2149.80 0% 1281.68 0% 3335.24 1% 5942.82 1%
abs2n5.dat 1959.05 0% 1176.63 0% 2722.33 0% 5045.91 0%
abs3n5.dat 3265.44 0% 2020.65 0% 4776 0% 6956.28 0%
abs4n5.dat 2034.44 0% 1449.43 0% 3246.66 2% 5163.42 1%
abs5n5.dat 2362.16 0% 1165.40 0% 2419.67 0% 4581.66 0%
abs1n10.dat 4970.62 0% 2167.37 0% 4499.25 1% 8870.15 1%
abs2n10.dat 4803.17 0% 2510.13 0% 5236.98 1% 8569.73 0%
abs3n10.dat 4289.84 0% 2099.68 0% 4652.53 3% 8509.81 0%
abs4n10.dat 4347.06 0% 2188.01 0% 5104.91 4% 8792.29 1%
abs5n10.dat 5041.62 0% 2178.15 0% 4670.76 0% 9620.07 0%
abs1n15.dat 5713.84 2% 2236.53 4% 5462.68 1% 12118.83 2%
abs2n15.dat 5821.04 0% 2506.21 0% 5494.74 4% 11932.10 3%
abs3n15.dat 6711.25 4% 2841.06 9% 6060.38 11% 13554.15 5%
abs4n15.dat 5227.56 0% 2430.07 0% 5504.65 5% 10618.55 3%
abs5n15.dat 5210.85 0% 2453.50 1% 5309.48 4% 10385.548 3%
abs1n20.dat 7353.83 5% 2793.29 12% 6490.18 - 14702.95 -
abs2n20.dat 7385.03 2% 2799.90 4% 6082.54 3% 14646.96 1%
abs3n20.dat 7903.97 - 3101.60 - 6950.20 - 14532.91 -
abs4n20.dat 7050.91 - 3239.31 - 7432.78 - 14539.72 -
abs5n20.dat 8405.83 4% 3330.99 9% 7210.73 - 15896.71 -
abs1n25.dat 8657.70 11% 3309.64 - 7095.86 - 15581.47 -
abs2n25.dat 9266.87 - 3495.97 - 7484.84 - 16823.16 -
abs3n25.dat 9843.60 - 3481.45 - 7728.76 - 18098.02 -
abs4n25.dat 8677.86 - 3272.74 - 7509.02 - 16303.69 -
abs5n25.dat 10857.68 0% 3695.94 1% 7452.28 - 19047.70 -

Table 5
Results of our method vs CPLEX. * CPLEX is not able to solve all instances optimally. ** CPLEX is not able to find a feasible solution for some instances.

Instance set CPLEX CPLEX Gap Matheuristic Max Gap Avg Gap Min Gap No Sol. Opt Imp

1a 1045.05 -% 1048.51 3.06% 0.31% 0.00% 0 10 0
2a 2108.96 -% 2154.38 11.93% 2.14% 0.00% 0 7 0
3a* 2820.83 4.87% 2914.63 14.28% 3.39% -0.51% 0 3 1
4a* 3348.52 37.54% 3553.61 22.09% 6.42% -0.56% 0 1 1
5a* 24693.08 89.82% 7546.64 -49.36% -60.88% -82.78% 0 0 10
1c 1023.23 -% 1028.96 3.58% 0.55% 0.00% 0 8 0
2c 1371.44 -% 1381.52 6.27% 0.71% 0.00% 0 8 0
3c* 1774.83 1.19% 1813.37 12.11% 2.20% -0.80% 0 2 1
4c** 2356.80 9.41% 2624.99 23.54% 11.39% 3.19% 2 0 0
5c** 5299.79 59.77% 5153.55 11.71% -2.59% -20.26% 1 0 9
1d 1709.77 -% 1747.43 15.86% 2.26% 0.00% 0 5 0
2d* 3162.38 3.67% 3349.76 20.16% 5.89% -2.52% 0 0 3
3d 3941.18 8.15% 4483.99 32.18% 13.99% -4.39% 0 0 1
4d* 5247.19 36.35% 5692.06 31.50% 8.74% -10.18% 0 0 4
5d* 71007.81 94.24% 13730.58 -69.51% -72.08% -87.58% 0 0 10

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

11



4.3. Comparison to the exact solver

In a second step, we solve the adapted set of instances and we
compare the results obtained by applying our solution approach to in-
stances of types a, c and d which include all the characteristics of the
CIRPTWSD. We solve each instance of the different groups ten times
with a maximum computation time of 30 minutes, where the timelimit
without finding a new better solution is set to five minutes. In Table 5,
we compare the results with those obtained by solving the instances
using CPLEX with a time limit of ten hours.

In Table 5, each row reports the average objective cost of the ten
instances included in every group with both CPLEX and our solution
approach. Groups of instances with an asterisk (*) indicate that CPLEX
was not able to prove that the best solution found was optimal within
the time limit. Furthermore, groups of instances with two asterisk (**)
meet that condition but also indicate that CPLEX was not able to find
any feasible solution during the processing time for some instances. The
column “CPLEX Gap” shows the average gap reported by CPLEX for
those instances where the solver does not find the optimal solution, and
the column “No Sol.” reports the number of instances of each group
where CPLEX is not able to find any feasible solutions. For groups 3a,
3c, 4a, and 4c, CPLEX finds optimal solutions for some instances,
whereas for groups 5a and 5c, CPLEX is not able to find any optimal
solution. The column labeled “Opt” reports how many of the ten in-
stances in each group our solution approach was able to solve to op-
timality. The last column (“Imp”) reports for how many instances, our
solution approach was able to provide better results than the ones found
by CPLEX. Our algorithm thus obtains good results relative to CPLEX.

For small instances with five and ten customers, we find optimal
solutions for most cases. For example, for group 1a, the algorithm finds
optimal solutions for all instances, with an average gap of 0.31%. For
instances with 15 and 20 customers, our algorithm still finds good so-
lutions, but we find bigger gaps compared with the solutions obtained
by CPLEX when solving instances that contain 20 customers. The lar-
gest gap corresponds to the group of instances 3d, where CPLEX finds
solutions that are 13.99% better on average. Furthermore, the algo-
rithm can get stuck in local optima, such as in instances 3d and 4d,
where, the maximum gaps compared with the best solution found by
CPLEX reach 32.18%, though the average gap for these groups of in-
stances is smaller than 14%. Finally, CPLEX is not able to obtain effi-
cient solutions for bigger instances, and the proposed algorithm out-
performs CPLEX when solving considerably big instances. For example,
in groups 5a and 5d, the proposed algorithm finds better solutions for
every instance, improving 60.88% and 72.08% on average, and for the
group of instances 5c, it finds a better solution for nine out of ten in-
stances.

Our algorithm performs better especially when customers exhibit
more frequent commodity consumption, that is, for instances of group
a. On the contrary, it becomes more difficult to integrate more custo-
mers with infrequent commodity consumption. However, for the big-
gest size of every group, the algorithm obtains better solutions than
CPLEX with significantly shorter running times. Instances of type d,
which present the results for a planning horizon of four periods and two
subperiods, reveal similarities with instances with one subperiod, in
that CPLEX is only able to provide optimal results for five customers,
and some instances of 10, 15, or 20 customers, but it cannot find good
solutions for bigger instances. Overall, the proposed method outper-
forms the alternative option for these large instances.

4.4. Time windows

A key characteristic that can drastically affect the total cost is the
existence of time windows. Therefore, we examine the impact of time
windows on the different cost factors. This impact has been widely

studied for different variants of the VRP, yet literature related to IRP
problems with time windows within the time periods is scarce.

To evaluate how time windows affect the costs, we compare the
results obtained by solving data sets a and b. These customers have the
same coordinates, commodity consumption, and inventory information,
but type b excludes time windows. In Table 6, we list the average total
cost for each instance size; the “Obj. Cost %” column reports the per-
centage of the decrease from the total cost, calculated using the formula
TotalCost TotalCost TotalCost( )/TW NoTW TW . In the last four columns, we

present the difference for every cost factor using both policies.
Time windows have a strong impact on the overall costs; the total

cost decreases for every instance without time windows, even if that
decrease is related mainly to the routing and inventory costs. The lack
of time windows makes it easier for the algorithm to obtain better
routes in terms of distances and also allows the customer to receive late
deliveries to increase the ending inventory level and, therefore, reduce
inventory costs. In the third row, for instances of size 15, 3a vs. 3b, the
presence of time windows implies an increase of 39.12% in the overall
cost, whereas a smaller improvement takes place for instances of 48
customers, 5a vs. 5b, with an average of 3.32%. This difference on
percentages is mainly due to a significant increase on the sales lost for
bigger instances when not considering time windows. In general,
stockout costs decrease for small instances but increase for larger in-
stances. The last column shows the increase in consistency costs, which
arise because the time windows force the algorithm to deliver to cus-
tomers within smaller time ranges. Some of the reported percentages
are quite large as in instances 2a vs. 2b, where the percentage is equal
to 894%. These big values emerge when the consistency cost for one
group of instances is very big (in this case, 2b), but for the other group
(2a) is relatively low, or even close to zero.

4.5. Real-world based instances

In addition to the computational experiments, we evaluate the ef-
fectiveness of the proposed algorithm using instances based on a real-
world application. These instances contain information about beer
consumption in different establishments in the city of Vienna. However,
no previous results exist, and we cannot solve these instances using
CPLEX.

There exist commercial solvers that create delivery plans for vehicle
routing problem applications. Nevertheless, these solvers do not con-
sider inventory information or multi-period problems. Therefore,
companies must create delivery plans using simple heuristics. In this
section we evaluate the impact of applying the ALNS and report the
costs decrease compared to the solution obtained with the construction
heuristic (C.Heuristic).

In Tables 7 and 8, we report costs for instances that contain in-
formation related to 92 customers located in the inner city of Vienna
with a planning horizon of seven periods and one and two subperiods,
respectively. We provide the percentage of difference in total costs, as
well as the total difference for every individual cost factor.

In the results, we can see how the use of the ALNS algorithm with
the mathematical subproblem significantly improves the quality of the
solutions. Using the proposed matheuristic, we find solutions that re-
duce the overall costs, generally achieved by inserting additional de-
liveries to customers, so that it avoids customer lost sales and reduces
inventory costs as well. In Table 7 for example, regarding 92a, the
matheuristic reduces the costs by 46.43% compared with the initial
solution. It may increase the routing cost by 79%, but it reduces in-
ventory, stockout, and consistency costs by 59%, 49%, and 18%, re-
spectively. For instances with a planning horizon of seven days and two
subperiods, the matheuristic also drastically improves the results ob-
tained with the insertion heuristic, in that it performs more deliveries
and thus diminishes sales lost due to stockouts while also avoiding low

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

12



inventory levels at the end of the planning horizon.
Further computational experiments where driven in order to eval-

uate the impact of both, MLP and OU policies. This experiments show
that the difference between the MLP and OU results are caused mainly
by the randomness of the algorithm. The problem we present does not
include inventory holding costs, which are the ones derived from
creating the pseudo-rolling horizon, so an OU policy is often considered
the best replenishment policy when using the MLP approach. We pre-
sent these computational experiments in Appendix B.

5. Conclusions and further research

We introduce the CIRPTWSD, which is part of the family of IRPs.
The characteristics of the problem we present arise from a real-world
application namely, route planning and inventory management for beer
and other beverages companies. Here, customers have different opening
times and time windows, so to satisfy overall demand, it may be ne-
cessary to split the deliveries across more than one vehicle.
Furthermore, consistency in delivery times improves service quality and
customer satisfaction, which is a key factor in a competitive market. We
propose a mathematical formulation for the CIRPTWSD. We formulate
the problem as a MIP with two variants. The first variant includes all
characteristics of the problem and uses the maximum level replenish-
ment policy, which gives companies the flexibility to decide on the
delivery amounts and times. The second variant includes all constraints
of the first variant and some additional constraints, in line with an OU
policy that requires the inventory capacity of each customer to be
completely filled at the moment each customer is served.

To solve the proposed mathematical formulation, in Section 3, we
propose a matheuristic solution approach to solve the CIRPTWSD. The
solution approach we propose is based on an ALNS that includes several
destroy and repair operators applied to improve an initial solution
obtained the cheapest insertion algorithm. Furthermore, during the
process of obtaining good solutions, we solve an exact subproblem up to
optimality using good solutions. We solve this mathematical sub-
problem to obtain optimal delivery amounts and times using the given
routes. Successful neighborhood operators become more important as
the algorithm obtains new, better solutions, until a maximum proces-
sing time is reached and the algorithm ends.

In some previous literature, authors have presented an IRP with
time windows, but they rely on benchmark instances that do not in-
clude inventory information, so we cannot report any comparison with
previous results. To test the efficiency of the proposed method, we
present a range of computational tests with a benchmark set of in-
stances and with new instance set adapted from a benchmark set. To
perform the first computational experiments, and compare our results

with previous results in the literature, we have adapted our algorithm
to not account for some of the characteristics that the CIRPTWSD pre-
sents. This characteristics are related to the continuous consumption of
product at the customers, and the possibility of lose sales. The algo-
rithm finds good solutions in short processing times, whereas the exact
solvers are not able to solve large instances even with long processing
times. We report the results obtained from solving instances of different
sizes. In these results, for small instances, the algorithm obtains optimal
solutions in most occasions. However, for instances that include 20
customers, the algorithm uncovers bigger gaps compared with the re-
sults obtained using an exact solver. Finally, for the bigger instances
solved, the algorithm outperforms the results obtained with CPLEX.
Other experimental comparisons show the differences between the two
described replenishment policies, as well as the impact of the time
windows. Finally, we perform computational experiments using in-
stances that include real-world information about beer consumption in
the city of Vienna.

In this field, research could take different directions. Model-specific
research might study other aspects of the problem, such as the possi-
bility of a multi-echelon distribution systems in which a central retailer
supplies different intermediate storage centers, and customers are re-
plenished from these storage centers. It also may be interesting to in-
clude stochasticity in the problem. Several studies include stochastic
travel times or commodity consumption by customers. We aim to de-
velop a two-stage stochastic formulation for the CIRPTWSD. In a first
stage, we will obtain an initial delivery plan that includes the set of
routes and information about the delivery times and amounts to cus-
tomers over the planning horizon. In the second stage, different re-
course actions can be considered to reduce the overall costs when the
stochastic data are being revealed. Another research possibility would
be to develop more efficient solution methods. The proposed method
provides better solutions for customers with high consumption peri-
odicity, but as the number of non-frequent customers increases, it be-
comes more difficult to integrate them into the solution efficiently.
Novel solution approaches could seek better solutions for instances with
more punctual demands, larger instance sizes, and instances with
longer planning horizons.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Table 6
Impact of time windows.

Groups TW No TW Obj.Cost(%) Rou.Cost Inv.Cost S.O.Cost Cons.Cost

1a vs 1b 1048.51 770.38 26.53% 15% 71% -46% 0%
2a vs 2b 2154.38 1412.90 34.42% 10% 80% 37% -894%
3a vs 3b 2914.63 1774.39 39.12% 13% 76% 58% -80%
4a vs 4b 3553.61 2444.93 31.20% 9% 71% -67% -239%
5a vs 5b 7546.64 7307.72 3.32% 16% 15% -247% -245%

Table 7
Real-world instances, seven periods one subperiod.

Groups C.Heuristic Math. Obj. Cost Rou. Cost Inv. Cost S.O. Cost Cons. Cost

92a 5609.20 3005.10 46.43% -79% 59% 49% 18%
92b 6093.48 5031.46 17.43% -53% 12% 39% 12%
92c 6321.41 4507.27 28.70% -63% 38% 44% 12%
92d 7082.99 5034.76 28.92% -60% 33% 47% 10%
92e 6967.24 5417.25 22.25% -67% 20% 48% 8%

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

13



Acknowledgment

Financial support from the Austrian and German Science Funds

(FWF and DFG, D-A-CH) under grant # I 2248-N32 is gratefully ac-
knowledged. The computational results presented herein were
achieved, in part, using the Vienna Scientific Cluster (VSC).

Appendix A

In Tables 9 and 10 we provide results obtained when solving instances of the group a, described in Table 2 using different values for the
maximum chain length considered in the 2-Opt algorithm and different values of the acceptance criteria applied in the proposed ALNS. In the tables,
we list the average costs obtained when solving the instances with the different parameters and the average gap compared with the results of the
selected parameters.

Appendix B

Table 11 presents a similar structure to Table 6. We present the percentage decrease in total cost between the results obtained solving the
problem with both, MLP and OU policies, along with the total difference of every cost factor.

The difference between the MLP and OU results are caused by the randomness of the algorithm. The problem we present does not include
inventory holding costs, which are the ones derived from creating the pseudo-rolling horizon, so an OU policy is often considered the best re-
plenishment policy when using the MLP approach. For example, for instances 1a, 3a, and 5a, MLP policy obtains better solutions on average than the
OU policy with a 0.36% average difference in group 3a. Nevertheless, the algorithm finds better solutions for groups ‘2a and 4a when applying OU
policy.

Table 8
Real-world instances, seven periods two subperiods.

Groups C.Heuristic Math. Obj. Cost Rou. Cost Inv. Cost S.O. Cost Cons. Cost

92a2 4435.51 3420.17 22.89% -98% 33% 32% -1%
92b2 4302.27 3366.31 21.76% -80% 37% -9% -22%
92c2 4816.63 3393.24 29.55% -72% 33% -75% 33%
92d2 2947.45 1934.91 34.35% -124% 60% 27% -11%
92e2 6635.6 3558.50 46.37% -120% 55% 44% -47%

Table 9
2-OPT chain length tests.

2-OPT 4 2-OPT 3 2-OPT 5

Group Avg Avg Gap Avg Gap

1a 1048.51 1048.63 0.01% 1048.11 -0.04%
2a 2154.38 2212.55 2.70% 2210.99 2.63%
3a 2914.63 3325.05 14.08% 3334.46 14.40%
4a 3553.61 3850.44 8.35% 3881.62 9.23%
5a 7558.39 8853.96 17.14% 8890.04 17.62%

Table 10
ALNS acceptance parameter tests.

ALNS 1.5 ALNS 1.25 ALNS 1.75 ALNS 2

Group Avg Avg Gap Avg Gap Avg Gap

1a 1048.51 1051.84 0.32% 1048.50 0.00% 1048.90 0.04%
2a 2154.38 2251.46 4.51% 2218.89 2.99% 2219.21 3.01%
3a 2914.63 3191.90 9.51% 3373.62 15.75% 3316.87 13.80%
4a 3553.61 3702.64 4.19% 3874.88 9.04% 3910.33 10.04%
5a 7558.39 8594.27 13.71% 8846.71 17.04% 8911.45 17.90%

Table 11
Results of MLP vs. OU.

Instances MLP OU Obj.Cost(%) Rou.Cost Inv.Cost S.O.Cost Cons.Cost

1a 1048.51 1051.38 -0.09% 0% 0% -7% 0%
2a 2154.38 2153.19 0.06% 0% -1% 6% -511%
3a 2914.63 2925.03 -0.36% -1% -3% 22% -22%
4a 3553.61 3548.27 0.15% 1% 0% -6% 15%
5a 7546.64 7552.95 -0.08% 1% 0% -9% 1%

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

14



References

[1] Lee HL, Whang S. The whose, where and how of inventory control design. Supply
Chain Manag 2008;Review 12(8):22–9.

[2] Bell WJ, Dalberto LM, Fisher ML, Greenfield AJ, Jaikumar R, Kedia P, et al.
Improving the distribution of industrial gases with an on-line computerized routing
and scheduling optimizer. Interfaces (Providence) 1983;13(6):4–23.

[3] Lagos F, Boland N, Savelsbergh M. The continuous-time inventory-routing problem.
Transp Sci 2020;Articles in Advance:1–25.

[4] Archetti C, Bertazzi L, Laport G, Speranza MG. A branch-and-cut algorithm for a
vendor-managed inventory routing problem. Transp Sci 2007;41(3):382–91.

[5] Alarcon Emilio J, Schilde M, Doerner Karl F. Consistent inventory routing with split
deliveries. Operation Research Proceedings 2001. p. 395–401.

[6] Dantzig GB, Ramser J. The truck dispatching problem. Manag Sci 1959;6(1):80–91.
[7] Savelsbergh M. Local search in routing problems with time windows. Ann Oper Res

1985;4:285–305.
[8] Bertazzi L, Speranza MG. Inventory routing. In: Raghavan R, Golden B, Wasil E,

editors. The vehicle routing problem latest advances and new challenges, operations
research/computer science interfaces series, Springer, Berlin. 43. 2008. p. 49–72.

[9] Coelho LC, Cordeau J-F, Laporte G. Thirty years of inventory routing. Tranp Sci
2014;48(1):1–19.

[10] Andersson H, Hoff A, Christiansen M, Hasle G, Lokketangen A. Industrial aspects
and literature survey: combined inventory management and routing. Comput Oper
Res 2010;37(9):1515–36.

[11] Coelho LC, Cordeau J-F, Laporte G. Consistency in multi-vehicle inventory-routing.
Tranp Res Part C 2012;24:270–87.

[12] Kovacs AA, Golden BL, Hart RF, Parragh SN. Vehicle routing problems in which
consistency considerations are important: a survey. Networks 2014;64(3):192–213.

[13] Archetti C, Speranza MG. Vehicle routing problems with split deliveries. Int Trans
Oper Res 2012;19:3–22.

[14] Kovacs AA, Parragh SN, Hartl RF. A template-based adaptive large neighborhood
search for the consistent vehicle routing problem. Networks 2014;63(1):60–81.

[15] Kovacs AA, Braekers K. A multi-period dial-a-ride problem with driver consistency.
Transp Res Part B: Methodol 2016;94:355–77.

[16] Campelo P, Neves-Moreira F, Amorim P, Almada-Lobo B. Consistent vehicle routing
problem with service level agreements: a case study in the pharmaceutical dis-
tribution sector. Eur J Oper Res 2019;273(1):131–45.

[17] Qiu M, Fu Z, Eglese R, Tang Q. A tabu search algorithm for the vehicle routing
problem with discrete split deliveries and pick-ups. Comput Oper Res
2018;100:102–16.

[18] Hennig F, Nygreen B, Furman K, Song J. Alternative approaches to the crude oil
tanker routing and scheduling problem with split pick-up and split delivery. Eur J
Oper Res 2015;243(1):41–51.

[19] Christiansen M. Decomposition of a combined inventory and time constrained ship
routing problem. Transp Sci 1999;33(1):3–16.

[20] Azi N, Gendreau M, Potvin J-Y. An exact algorithm for a vehicle routing problem
with time windows and multiple use of vehicles. Eur J Oper Res
2010;202(3):756–63.

[21] Liu S-C, Lee W-T. A heuristic method for the inventory routing problem with time
windows. Expert Syst Appl 2011;38(10):13223–31.

[22] Adulyasak Y, Cordeau J-F, Jans R. Formulations and branch-and-cut algorithms for
multivehicle production and inventory routing problems. INFORMS J Comput
2013;26(1):103–20.

[23] Desaulniers G, Rakke JG, Coelho LC. Branch-and-price-and-cut algorithm for the
inventory-routing problem. Transp Sci 2015;50(3):1060–76.

[24] Coelho LC, Laporte G. Improved solutions for inventory-routing problems through
valid inequalites and input ordering. Int J Prod Econ 2014;155:391–7.

[25] Archetti C, Desaulniers G, Speranza MG. Minimizing the logistic ratio in the in-
ventory routing problem. EURO J Transp Logist 2017;6(4):289–306.

[26] Hemmelmayr V, Doerner KF, Hartl RF, Savelsbergh MW. Delivery strategies for
blood products supplies. OR Spectrum 2009;31(4):707–25.

[27] Archetti C, Boland N, Speranza MG. A matheuristic for the multivehicle inventory
routing problem. INFORMS J Comput 2017;29(3):377–87.

[28] Popovic D, Vidovic M, Radivojevic G. Variable neighborhood search heuristic for
the inventory routing problem in fuel delivery. Experts Syst Appl
2012;39(18):13390–8.

[29] Campbell AM, Savelsbergh MW. A descomposition approach for the inventory
routing problem. Transp Sci 2004;38(4):488–502.

[30] Juan AA, Grasman SE, Caceres-Cruz J, Bektas T. A simheuristic algorithm for the
single-period stochastic inventory-routing problem with stock-outs. Simul Model
Pract Theory 2014;46:40–52.

[31] Gruler A, Panadero J, de Armas J, Perez JAM, Juan AA. A variable neighborhood
search simheuristic for the multiperod inventory routing problem with stochastic
demands. Int Trans Oper Res 2018;00:1–22.

[32] Pisinger D, Ropke S. A general heuristic for vehicle routing problems. Comput Oper
Res 2007;34:2403–35.

[33] Solomon MM. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper Res 1987;35(2):254–65.

[34] Cordeau J-F, Laporte G, Mercier A. A unified tabu search heuristic for the vehicle
routing problems with time windows. J Oper Res Soc 2001;52:928–36.

E.J. Alarcon Ortega, et al. Operations Research Perspectives 7 (2020) 100152

15

http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0001
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0001
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0002
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0003
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0003
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0004
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0004
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0034
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0034
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0005
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0006
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0006
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0007
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0008
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0008
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0009
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0009
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0009
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0010
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0010
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0011
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0011
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0012
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0012
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0013
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0013
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0014
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0014
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0015
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0016
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0017
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0018
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0018
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0019
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0019
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0019
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0020
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0020
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0021
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0021
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0021
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0022
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0022
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0023
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0023
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0024
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0024
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0025
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0025
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0026
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0026
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0027
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0027
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0027
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0028
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0028
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0029
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0029
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0029
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0030
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0030
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0030
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0031
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0031
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0032
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0032
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0033
http://refhub.elsevier.com/S2214-7160(20)30042-7/sbref0033

	Matheuristic search techniques for the consistent inventory routing problem with time windows and split deliveries
	Introduction and literature review
	Problem description
	Objective function
	Time and routing flow constraints
	Inventory flow constraints
	Previous deliveries constraints:
	Stockout and overstock constraints
	Additional OU constraints
	Variable domain

	Solution approach
	Initial solution
	Preprocessing
	Cheapest insertion
	Local search
	Exact subproblem

	Adaptive large neighborhood search

	Computational results
	Test instances
	Comparison to benchmark set of instances
	Comparison to the exact solver
	Time windows
	Real-world based instances

	Conclusions and further research
	Declaration of Competing Interest
	Acknowledgment
	Appendix A
	Appendix B
	References




