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Recently a new simulation-based optimization benchmark of groundwater contaminant source localization
problems has been introduced to the hydrogeological science community. Given information on contaminant
concentration levels at each monitoring well and each time step, its objective is to identify the location of
contaminant source. In this work, we analyze and look at the problem from different angles to gain more insights
on this class of groundwater problems. To tackle the problem, a novel simulation-based optimization algorithm
relying on an aggregated Gaussian process model, and the expected improvement criterion is introduced. Results
from this study show that the proposed algorithm, though relying on an approximated Gaussian process model,
demonstrates superior efficiency and reliability than a traditional expected improvement-based algorithm. The
location of the monitoring wells was confirmed to play a crucial role in assisting the optimization algorithm to
accurately localize the contaminant source. Additional monitoring wells, while adding more knowledge of the
space-time mapping of concentration levels, could nevertheless slow down convergence of the algorithm due to

the increase in problem complexity.

1. Introduction

Simulation experiments have been used extensively to study and
model many natural systems from physics, astronomy, chemistry,
biology, engineering etc. Not only is the effect of different values of
input variables in the system, but oftentimes, the interest is to find the
optimal value for input variables in terms of experiment outcomes. One
could, of course, run exhaustive simulation experiments for all possible
input variables and pick the best one; however, this is not always a
practical choice due to model complexity or expensiveness.

In general, the formulation of an optimization problem involves two
main aspects (1) defining an appropriate objective function or a func-
tional form which expresses the aim of optimization, and (2) choosing
efficient optimization method depending upon the objective function
and some restrictions (constraints). It is an undeniable fact that both the
function representation as well as the choice of optimization algorithm
play a key role in achieving accurate results for the problem under
investigation [4,19,36].

Objective functions can usually be formulated in more than one
way, all of which representing the same goal but resulting in different
complexity of functional landscapes: large basins of equal function
value, a rough or noisy landscape, a deceptive landscape or one that
bears a region of highly unattractive solutions which surround the
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E-mail address: tipaluck.kri@mahidol.edu (T. Krityakierne).

https://doi.org/10.1016/j.0rp.2020.100151

promising ones. Different landscapes due to different objective function
representations directly affect the performance of a chosen optimiza-
tion algorithm, and a representation with simpler landscape will be
more favourable, assisting the algorithm in rapidly converging to a
solution. This is particularly important when the objective function
evaluations are obtained from computationally intensive simulation
(e.g. taking minutes or hours per simulation). In simulation-based op-
timization, the approach starts with finding a good relationship be-
tween input and response variables for each simulated points. The re-
sponse surface model will then be used to find the best input variables
that produce desired outcomes in terms of response variables
[1,6,9,13,17,22].

In essence, a response surface (also known as a surrogate model)
provides an approximation of the objective simulation. The values from
response surface will be used as part of optimization algorithm in place
of the expensive evaluations. This class of methods is often called sur-
rogate-based optimization. Examples of response surfaces are linear,
quadratic approximations, as well as linear combinations of radial basis
functions (RBF). There are different choices of basis functions, e,g.
Gaussian, thin-plate splines, cubic splines and multi-quadratics.

Common to all surrogate-based optimization methods is the concept
of iteratively selecting new points for evaluation, and updating the
surrogate model with information gained from new sampling points
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during the course of iterations. The selection criteria of new points
usually balance the trade-off between local and global search. During
the exploitation phase, the algorithm will aim at refining those points
within the neighborhood of previously visited locations in order to
improve their solution quality. During the exploration phase, as an RBF
response surface does not provide uncertainty estimation of the pre-
diction, the optimization algorithm explores the search space by trying
to avoid those cluster points, and sample new points far away from
already evaluated points.

Examples of RBF-based optimization methods are the method in
[12] relying on sampling criteria which selects the point to maximize
the smoothness of the interpolation, using some external global opti-
mization algorithm. Several works are based on the idea of balancing
local and global searches by weighting the global minimization of the
surrogate model against the distance from previously selected points
(see e.g. [18,27,28]).

Bayesian optimization (BO) differentiates itself from other surro-
gate-based optimization by using the model developed under Bayesian
inferences to decide on the locations to sample next. The most com-
monly used model in BO is Gaussian process regression (GPR) where
the output of a deterministic function is treated as a realization of a
Gaussian process. While RBF approximation does not provide un-
certainty estimation of the prediction, GP model provides also a mea-
sure of uncertainty along with its predicted value. To balance between
exploration and exploitation, BO uses the expected improvement (EI)
sampling criteria, along with the posterior at the sampled point, as a
criteria to choose the next evaluation point. By relaxing the assumption
made in EI’s derivation that only those points previously evaluated can
be returned as final solution, the knowledge-gradient (KG) acquisition
function was proposed ([11,38]). Unlike EI sampling criteria which
only considers the posterior at the points sampled, the KG sampling
criteria considers the posterior over the entire search domain, and how
the sample will change that posterior.

It is undebatable that a well established estimation for probabilistic
functions like GPR may not be applicable for problems with determi-
nistic data of computer experiments. In particular, the problem known
as fixed-domain estimation of deterministic models is typical for ap-
plication of Bayesian optimization algorithms [39-42]. Many high fi-
delity simulations arising in industry, however, can be very expensive
to run, in terms of time, money, or resource. By effectively using all
valuable information from limited number of expensive computer si-
mulations, a class of BO algorithms and related methods turned out to
be parsimonious and highly effective to find a “near-optimal” solution
by performing only very few expensive simulation model evaluations in
order to keep the overall optimization time acceptable.

Over the last decade, surrogate response surface has been used for
modelling and optimizing a variety of groundwater applications. For
example, wastewater treatment processes [21], water resources appli-
cations [26], coastal aquifer pumping optimization problem [7], op-
timal well placement for groundwater remediation [32], to name a few.
Recently benchmark problems for simulation-based optimization driven
by groundwater contaminant source characteristics have been in-
troduced in Pirot et al. [24]. The localization of groundwater con-
taminant sources, a typical application in the field of groundwater en-
vironmental monitoring, aims at finding an effective and accurate
positioning method to locate the source of contamination. Using this
benchmark, the goal of this paper is twofold. Firstly, due to the ex-
pensiveness and highly non-linear nature of the groundwater objective
functions, a simulation-based Bayesian optimization algorithm relying
on an aggregated Gaussian process [31] and the expected improvement
criteria is developed. The results demonstrated the superiority of such
approach on this class of groundwater problems over classical Bayesian
Optimization algorithm [14]. Secondly, it may be logical to think that
as the level of contaminant information available to the algorithm in-
creases, the algorithm will solve the problem faster. However, this is
not the case for this class of groundwater problems. Using algorithm’s
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solving effort to define a measure of problem difficulty, the obtained
results indicated that incorporating information from too many mon-
itoring wells into the objective function could nevertheless increase the
number of iterations needed for an algorithm to solve the problem,
which in turn slows down the convergence of the optimization algo-
rithm to the source of contaminant.

The rest of this paper is organized as follows. Section 2 presents key
concepts and a gentle introduction to the classical Efficient Global
Optimization (EGO). A simulation-based optimization algorithm with
an aggregated Gaussian process model (AEI) will also be discussed in
this section. In Section 3, we introduce variants of the proposed AEI,
which will be compared with the EGO on the contaminant source lo-
calization problems in Section 4. Numerical results as well as inter-
esting findings on algorithm performance, effort and problem difficulty
will also be touched upon in this section. Finally, conclusions will be
given in Section 5.

2. Optimization Methodology

We consider a real-valued box-constrained optimization problem of
the form

min df (x)

x€DCR

®

with unknown gradients. In particular, the objective function f, ob-
tained from a simulation model, is blackbox and computationally ex-
pensive to simulate, in terms of money or time. The goal is to find the
best possible function value for f when a limited number of function
evaluations is allowed.

2.1. Gaussian Processes and Bayesian Optimization

Gaussian Process (GP) models, also known as kriging, have long
been applied to solve engineering optimization problems such as model
selection and hyperparameter optimization [23,34], and recently
caught attention of hydrogeological science community due to model
efficiency and flexibility [5,15,16,24]. The objective function is seen as
a realization of a Gaussian process, employing the GP as a prior (in a
Bayesian sense) over a function. Gaussian Process Regression (GPR)
brings considerable conceptual and computational simplicity to the
calculation, and therefore, has been applied as a model in derivative-
free optimization known as Efficient Global Optimization (EGO)
[14,20]. EGO is efficient and can be used when very little is known
about the objective function, and particularly when the objective
function is an expensive black-box function. Convergence as well as
consistency properties of the algorithm was discussed in [3,37]. A brief
refresher of these topics will now be given.

Assume that we have observed the vector of outputs

f Ksim) = {f(xl)) ""f(xn)}

of the simulator runs at locations X, C D (a set of n training points).
By taking u,(-) = 0, one can update the prior belief about f at any new
point x, and obtain a predictive distribution of a function value at a new
point x:

FOOf Ksim) ~ N(u(x), o*(x)) (2
where
ﬂn(x) = K(x’ Xsim)K (Xsim)_lf (Xsim)

Urf (x) K (x’ x) -K (x, Xsim)K(Xsim)ilK (Xsima x) (3)

are, respectively, the posterior mean and variance of a function value at
x. For notation: given X = {X,---,x,} C D and Y = {y;,---,3,} C D, the
object K(X, Y) is defined as an m X n matrix whose elements are k(x; y;)
where k is the prior covariance kernel. Also, K(X) := K(X, X), assuming
invertible here, is defined analogously. See [25] for more details.

In each iteration, EGO selects the next function evaluation point
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Step 1. Construct a GP model using the training set

{Xo, £} = {(x1, f(x1).; G, f(30))}
Step 2. f. < minf,
Step 3. Repeat until n > N,

1. Find x,; that maximizes the expected improvement:

Xpil = argmax{x eD: IEn[maX (0, Soin = f(x))]}

2. Simulate f(x,+1)

3. Update the training set X,,4; < X, U {xy41}, £or1 «— £, U{f(xpr)}, n e n+1
4. Update the GP model, and f;’ﬂn <« minf,

Algorithm 1. Bayesian Optimization

Xp+1 € D by maximizing the so-called expected improvement (EI) cri-
terion, which depends both on the mean prediction y,(x) and on the
associated uncertainty o7 (x) given by the GP model. More rigorously,
forn = ng, let f7, = min{f (x),---,f (x,)} be the best objective function
value. EI is defined as the conditional expectation of the improvement
brought by evaluating at a candidate point x and it has a closed-form

expression:
EL(x) = Eq[max(0, fi,, —f(0)]
= (ain — #n@))@(w) + an(x)¢[w)

On (X ) On (X )
(€]

where [E, is the conditional expectation given information
f (), ---,f (x,) of all previous function evaluations, ® and ¢ are the
standard Gaussian cdf and pdf, respectively. The next function eva-
luation is performed at a point maximizing EL,(x), and the GP model is
updated. Since EI values, as well as its first and second derivatives, can
be computed quickly, optimizing EI function (Equation 4) can be done
by using any off-the-shelf optimization solver such as a multistart al-
gorithm with gradient ascent, or genetic algorithm with derivatives.
Specific steps of EGO are outlined in Algorithm 1.

2.2. Bayesian Optimization with Aggregated Gaussian Process Model

An aggregated GP model [31] was proposed as an approximation to
the exact GP model for a function in order to handle large number of
input data points. The method is based on the idea of aggregating GP
submodels that are cheaper to construct as follows. Let
X = {x, %,--,X,} C R be input training points whose value Y(x,) are
known. The idea is to split the input data set X into p groups,
X;,i=1, ---,p. To make a prediction at a new point x € D, namely Y
(x), each GP submodel M,; is trained using a subset of the data X; as the
training set:

M;(x) = E[Y IY (X)] = k(x, Xk (Xi, X)™'Y (X)), )

where k( -, -) is a given covariance function.
To aggregate the GP submodels, we define the vector

M () =(M; (x), -+, Mp (X))

which gathers all p submodels. Here, we consider M;(x) and Y(x) as
random vectors. It was shown that the p X 1 covariance vector ky,
(x) = Cov[M(x), Y(x)] and the p X p covariance matrix
Ky (x) = Cov[M (x), M (x)] can be obtained analytically. Subsequently,
the aggregated model M,(x) as well as the corresponding mean squared
error v4(x) can be computed by

My (x) = ko () Ky ()™M (x)
va(x) = k(x, x) — kar () Kpr (06) " epg (x). (6)

Observe a similarity between these two equations and the equations
of the exact GP (Equation 3). The aggregated GP model M, can be seen
as an approximation to the exact GP model, and moreover it also enjoys
many nice properties. The model has shown to be the best linear un-
biased estimator of Y(x) that writes le a;M;(x), where
a = ky () Ky (x)71, with the mean squared error
E[(Y (x) — My(x))?] = v4(x). In addition, the aggregated model is in-
terpolating, that is, if there is a model M; such that M;(x;) = Y (x;), then
we also have that M, (x;) = Y (x;) and in this case v, (x;) = 0. More de-
tails can be found in [31].

Thanks to these properties, by using the aggregated GP model as a
predictor, we define corresponding expected improvement and the
optimization algorithm in line with that of standard expected im-
provement in Equation 4 and Algorithm 1. In particular, by replacing
the predictive mean and standard deviation p, and o, in Equation 4
with M, and vs, we obtain the expected improvement for the ag-
gregated models.

We shall refer to this algorithm AEI: Aggregated GP-based optimi-
zation algorithm with Expected Improvement.

3. Experimental Study
3.1. AEI algorithm variants and alternatives

The aggregated GP model was fit using k-means to cluster the
training data for the submodels in [2,31]. In this work, since the ag-
gregated GP posterior mean and variance will later be used as para-
meter inputs for the AEI optimization algorithm, we in addition split
and cluster the training data for the submodels randomly to compare
and contrast the resulting expected improvement criteria. Therefore,
two variants of AEI optimization algorithm will be considered de-
pending upon how the training data is being gathered into p sub-
models:

e Variant 1. AEI-kmeans: the k-means is used to cluster training data
points.

e Variant 2. AEI-rand: the training points are split into clusters
randomly with roughly equal size.

In the experiment for Variant 2, in each iteration we divide the total
number of observations n by a pre-defined number of clusters, p. If the
quotient m of this fraction is not a whole number, for each of the first
p — 1 clusters, we randomly pick 'm1 points from the data, and then
assign the remaining n — (p — 1)[m] points to the final cluster.

Example of the two aggregated approximation models on a 2-di-
mensional Branin-Hoo function is given in Figure 1.

The AEI algorithm performance is compared with that of the stan-
dard Bayesian optimization algorithm, which relies on the standard GP,
as defined in Algorithm 1. In the sequel, the initial design is an optimal
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(c) aGP-rand
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Fig. 1. Comparison of the true Branin-Hoo function surface and aggregated GP approximations. (a) Branin-Hoo function; (b) Variant 1 (k-means); (¢) Variant 2

(rand).

no-point Latin hypercube sampling (LHS) [8]. For all experiments, we
utilized Gaussian process models with a Matern-3/2 covariance func-
tion. The EGO algorithm relies on the implementation in the R Di-
ceOptim package [29], and the construction of the aggregated GP
models are based on the code available in [30].

3.2. Preliminary Results

We now demonstrate the applicability of the algorithm on two
benchmarking functions: Branin-Hoo function (2D) and Hartman6
function (6D) [10]. The domain for the first function is
[=5, 10] x [0, 15] and for the Hartman6 is a unit cube [0, 11°.

Each experiment was repeated 30 times with different designs of
experiments, and we represent the current best objective function value
in terms of progress curve where we average the current best function
value over 30 replications. Hereafter, plot legends “AEI-km”, “AEI-ra”,
and “EI” will be used to refer to Bayesian optimization algorithms with
aggregated GP model variant 1, variant 2, and the standard EGO, re-
spectively.

Figure 2 shows the compared performances of the algorithms. On
the left panel, the evolution of average current best function value is
shown. At iteration 0, since all algorithms used the same initial design,
all algorithms, and hence all plots start from the same average best
function value. On the right panel, boxplots representing distribution of
the best function values at the final iteration are shown.

For Branin-Hoo function, the size of initial LHS design in iteration 0
is set to 20 and the aggregated GP model uses 2 submodels. As the GP
model used for predictions in EGO is an exact model while AEI variants
are based on the approximated GP model, we did not expect the AEI
method to work as well as EGO. From the progress plot, EGO indeed
decreased the function value faster than AEI did. Nevertheless, the
quality of the final value of AEI-kmeans is superior as can be seen from
the boxplot.

As for Hartman6é function, we further explore the impact of the
number of submodels used to fit the aggregated GP. We consider here 2,
5, and 10 submodels. The size of initial LHS design is set to 200. In this
case, even though EGO seems to work best, the quality of the solution at
the final iteration was outperformed by AEI-kmeans with 2 submodels.
Indeed from modelling perspective, the number of submodels/clusters
is directly related to the accuracy of the model (compared to the exact
GP). The model with fewer number of clusters requires longer time to
train (as it takes longer to fit a GP model with more points). The ac-
curacy of the model, however, increases with decrease in the number of
clusters. In practice, the number of clusters should be set by deciding on
the maximum allowable number of observations in each cluster taking
into account speed-accuracy tradeoff when training the model. The
number of clusters can also differ from iteration to iteration, for ex-
ample, to maintain the maximum number of points in each cluster.

3.3. Contaminant Source Localization Benchmark

The crux of the methodology behind the construction of the con-
taminant source localization optimization benchmark introduced in
[24] is the use of inverse problem formulation to localize the con-
taminant source. Given information on the contaminant concentration
levels at each of the groundwater monitoring wells i = 1, ---,25, and at
times t = 1, ---,T days through reference (observed) concentration map-
ping cops (i, t), the problem is to localize the source of the contaminant.
An example of reference curves for the well number 2, 16, and 22 are
given in Figure 3.

The unknown location of the contaminant source is denoted as
x* = (x5, %), and cgim (, i, ) denotes the simulated contamination level
obtained at (i, t) when the source is located at x which can be obtained
by running a computationally expensive (blackbox) simulator when the
contaminant source is assumed to be at x. Given a pre-defined set of
monitoring wells in the contributing area 7, the true location of the
contaminant source (x*) therefore can be found by solving a mini-
mization problem whose objective function is a misfit function:

T
FO) =27 leons(is £) = Cim (X, i, D),

iel t=1

()

where x is in the search zone Z € [20, 170] X [—75, 75] restricted to a
discrete regular grid of 3m resolution, and the well location index set
I c{1,2,---,25} as shown in Figure 3. Data and the R function used to
generate benchmarks are available at GitHub through https://github.
com/gpirot/BGICLP.

4. Optimization Results for Contaminant Source Localization
4.1. Main Results

In this section we solve a class of inverse formulation simulation-
based optimization problems as detailed in Section 3.3. The objective
function representing the mismatch concentration levels as described in
Equation 7 is defined for eight well configuration settings with different
numbers of monitoring wells and locations. We consider the case when
the true contaminant source is located at location (x;, ;) = (89, —36),
and geological geometry 1 is assumed (as described in [24]). Since each
expensive simulation takes approximately one hour, the algorithm that
can solve the problem in fewest number of function evaluation calls is
most desirable.

For each configuration, the locations of the wells were not selected
in random fashion but instead they are chosen so as to form a line or-
thogonal to the main flow directions (Problems 1-6) or diagonal to the
main flow directions (Problems 7-8). The identification of the wells for
each configuration is given in Table 1, and the resulting objective
function surface landscape is shown in Figure 4. Recall that different
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Fig. 2. Compared performances of AEI variants and the exact GP Bayesian optimization algorithms. Left: current best function value evolution (averaged over 30

trials); Right: distribution of the best function values at the final iteration.

shapes of landscapes are due to different representations of the same
objective of source localization problem. Refer to Figure 3 for the lo-
cation of each well.

Since the objective function was defined on a discrete domain, we
adapt our algorithms in a straightforward way. In particular, the ex-
pected improvement function is maximized over a discrete domain in-
stead of a continuous one.

The experiment was repeated and averaged over 30 trials. For each
run, we start with a random initial Latin hypercube design of size 30,
and let the algorithm run for 70 iterations using 2 submodels in AEL
The efficiency is again visualized by the progress curve; however, this
time with the logarithmic scale on the y-axis for the sake of clarity. The
obtained results are shown in Figure 5.

4.2. Algorithm Performance, Effort and Problem Difficulty

Using all 25 wells (Figure 5, Problem 6), surprisingly, both AEI al-
gorithms turned out to work significantly better than EGO. Reducing
number of wells to 20, 15 or 10 wells (Problems 5, 4, 3, respectively),
although sometimes EGO could decrease function value somewhat
faster at the beginning, it was shown that the other two AEI variants
were able to catch up and succeed in getting ahead of EGO. Finally,
when the number of wells was reduced to 5 or 3 (Problems 2 and 1,

respectively), although EGO and AEIl-kmeans worked better than AEI-
rand did, all the three algorithms could locate the contaminant source
within 30 iterations. Now, as for the diagonal configuration (Problems
7 and 8), even though all the three algorithms succeeded in finding the
source, AEI-rand outperformed the other two as it could overall get to
the minimum value fastest (in less than 35 iterations).

One can see that the number, as well as the locations of the wells
does play an important role on the number of iterations each algorithm
needs in order to locate the contaminant source. In particular, while
Problems 2, 7, and 8 are all using 5 monitoring wells, placing these
wells orthogonal to the main flows simplify the problem as all three
algorithms could locate the contamination source with smallest number
of iterations.

Although AEI-km variant did not work as well as its counterpart
AEl-rand algorithm, overall AEI-kmeans also outperformed EGO. It is
however very interesting to observe the resemblance between the
performance behavior of AEI-km and EGO. This can possibly be ex-
plained by the fact that the training data set for AEI-km is being
grouped by the k-means clustering, and so the data points in a cluster
are closer together. Each submodel can then be thought of as a fine
resolution “local GP”. Merging each local GP into one aggregated GP
model would, at least in theory, give a good approximation to the exact
GP model leading to similarity of the performance of these two
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Fig. 3. The spreading of the contaminant concentration over time and concentration curves. (a) location of the 25 monitoring wells and source of contaminant at
time 0; (b), (c), (d) concentration curves obtained at wells 2, 16, and 22, respectively.

Table 1
Description of the eight well configurations

Problem Number of wells Well ID

1 3 11,13,15

2 5 11,12,13,14,15

3 10 11,12,13,14,15,1,2,3,4,5

4 15 11,12,13,14,15,1,2,3,4,5,21,22,23,24,25

5 20 11,12,13,14,15,1,2,3,4,5,21,22,23,24,25,6,7,8,9,10
6 25 1to 25

7 5\ 5,9,13,17,21

8 5/ 1,7,13,19,25

optimization algorithms. AEI-rand, on the other hand, is based on
submodels whose training data points are randomly selected from the
initial training set. Hence, each submodel can be viewed as a low re-
solution approximation model to the exact GP. And in our case, the
findings suggest that merging these submodels into one and couple it
with the expected improvement criteria lead to a more efficient and
robust optimization algorithm.

It is worth mentioning that AEI-rand is the only algorithm that
succeeded in locating the contaminant source in all 30 repetitions of all
the eight configuration settings. In particular, the AEI-rand algorithm
could solve all problems on average within 45 iterations. For the other
two algorithms, some trials failed to converge to the contaminant
source. Table 2 gives the number of trials and problems for which the
algorithms did not converge within 70 iterations.

Given a problem, the level of problem difficulty could be measured
by a success rate, i.e. computational performance, which reveals

problem difficulty as experienced by an algorithm. Moreover, a mea-
sure of effort (of an algorithm) could be defined as the number of
computational iterations (running time) of an algorithm that solves a
problem. We therefore propose using algorithm’s solving effort as a
measure of problem difficulty.

Because each of these problems has the goal of localizing the same
source of contaminant ((x,, y,) = (89, —36) in our case) and the fact that
AEl-rand could localize the source completely (success rate = 1), we
focus our investigation on AEI-rand algorithm. In particular, for each
problem, we will use the average number of iterations that required for
AEl-rand algorithm to converge to the source of contaminant as a re-
presentative of a problem difficulty. The distribution of the number of
iterations AEI-rand needed to solve each problem is shown in Figure 6.

Recall the mistfit objective function given in Eq. 7:

T
FO) =27 2 1eons iy D) = Com (x, 4, D)1

iel t=1

By increasing the number of monitoring wells in the contributing
area 7, more information regarding contaminant levels cgp, (X, i, t) from
additional monitoring wells i’s becomes available. As a result, we might
be tempted to think that the algorithm will accurately localize the
contaminant source quicker, this nevertheless was not the case here.

Consider Problems 1-6 which correspond to the configuration
placed along the vertical line perpendicular to the main flow when
using 3, 5, 10, 15, 20, and 25 wells, respectively. Since the former well
configuration setting is a subset of the latter ones, more information
becomes available to the algorithm in the latter cases. We can see that
adding information regarding contaminant levels for two more wells
from 3 to 5 helps to speed up the algorithm in locating the source of
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Table 2

Number of trials (out of 30 trials) that did not converge to the source of con-
taminant after 70 iterations. For other problems, both AEI-kmeans and EI
converged for all 30 trials. AEI-rand algorithm converged for all problems all
trials.

Algorithm Problem 3 Problem 4 Problem 5 Problem 6
AEl-kmeans 8 5 4 1
EI 11 5 6 6

Number of iterations

30 40 50 60 70 80 90
| |
-
_-I @

Problem

Fig. 6. Distribution of the number of iterations needed for AEI-rand algorithm
to locate the contaminant source on each problem configuration (30 replica-
tions).

contaminant as it requires fewer number of iterations to converge.
However, though seemingly counterintuitive, beyond this point, in-
cluding more information provided by additional wells, the number of
iterations needed for AEI-rand to converge grows which implies the
harder the problem became.

In reverse-chronological order, we now provide the results of Leave-
one-out cross validation on the initial design of the model to reveal the
predictive capabilities of aggregated GP models. We show the boxplots
of the distribution of mean-squared cross-validation errors in Figure 7.
We can see that both models fit the data quite well, with the aggregated
GP-rand version being slightly better. From another aspect, it is clearly
observed that the problem becomes harder to model when the number
of wells grows from 3 to 25 (Problems 1 to 6) as the value of the LOO
error becomes larger. This further supports the conclusion made earlier.

We also tested the genetic algorithm (GA) ([33]) on the con-
taminant source localization problem to get some baseline perfor-
mance. Here, we let the algorithm run until it converged, with popu-
lation size equal 100 in each generation. The average number of
generations required by the algorithm until converging are 17.90,
19.48, 20.47, 21.59, 22.40, 22.58, 22.53, 21.70, respectively for Pro-
blems 1-8. Note that since each GA population carries some solutions

2!
-

Mean-Squared LOO Error
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Fig. 7. Distribution of the mean leave-one-out error of the aggregated GP

models on the initial design (30 replications) for Problems 1-8. Grey: ag-
gregated GP with k-means, Red: aggregated GP with rand.

0.0
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over the generation, we did not have to recompute these simulations
every time. Counting only the number of unique simulations required
over the course, the average number (over 30 trials) of expensive si-
mulations needed are 484.37, 509.87, 522.60, 529.02, 543.46, 549.76,
548.14, 533.97, respectively. These numbers are to be directly com-
pared with the results of AEI-rand algorithm with the average number
of simulations ranging between 40-60 as reported in Figure 6. We can
see that if we run the algorithm long enough, the minimum can also be
located by GA, though at a higher price. In particular, since each si-
mulation takes roughly 1 hour, ignoring other negligible computational
overhead, AEI-rand could achieve solution much more quickly, and
save several hundreds of hours of wall-clock time. This indeed high-
lights the potential benefits of using BO over metaheuristic methods on
the groundwater applications. In addition, the results obtained from GA
algorithm also confirms our findings that incorporating information
from too many monitoring wells may result in an increase in problem
complexity.

From a computational perspective, since the computationally ex-
tensive part comes from running simulations, it follows that the expense
is roughly the same for each of the benchmark problems, as long as they
run the same number of iterations, no matter how many wells are
contributing the information. Therefore, efficient groundwater mon-
itoring network can substantially assist the algorithm in successfully
localizing the source of contaminant, or even accelerating the process.
From an operational perspective, not only will the groundwater mon-
itoring wells that were improperly constructed or installed slow down
the convergence speed of the algorithm, they may need to be reclaimed
or replaced, resulting in significant additional costs.

5. Conclusions

In this work, we studied and analyzed some interesting properties of
a class of groundwater contaminant source localization problems under
various well configuration settings using a Bayesian optimization al-
gorithm relying on an aggregated GP model. While we showed the
applicability of such approach on groundwater applications, we
strongly believe that the method will prove very beneficial in solving
other classes of optimization problems especially once we move our-
selves to a higher dimension and therefore more data points are needed
beyond the feasibility of the standard GP models.

As strange as it may seem, the proposed simulation-based optimi-
zation with an approximate model demonstrates superior reliability
than those of the exact GP model. The reason might be that model over-
fitting occurs with the exact Gaussian process regression: it fits too good
to the peculiarities of the data, rather than summarizing the underlying
behavior of a highly complex non-linear objective function. Because the
AFEI-rand algorithm has successfully located the source of contaminant
in all problems, and all trials, we subsequently defined a problem dif-
ficulty level through an algorithm’s solving effort using the number of
iterations required for the algorithm to converge.

As the groundwater simulation is computationally expensive (can
sometimes take longer than an hour per simulation), the optimization
problem that requires fewest number of iterations to converge to the
contaminant source is considered most cost-effective. Thus from both
an algorithmic and economic points of view, the evidence from this
study suggests that no less important to finding the configuration set-
ting (number and location of wells) was the optimization methods that
are robust and time efficient in localizing the contaminant source. It is
nevertheless worthwhile to keep in mind that the groundwater mon-
itoring system in practice involves also the minimum number of mon-
itoring wells necessary to meet the performance standards issued by the
protection agency [35]. This interesting topic could be the subject for
further investigation and future works.
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