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A B S T R A C T

The literature associated with system modeling and decision-making falls short in automating policy formation
for correlated multiple-policy multiple-objective (MPMO) processes. Enthused by the effectiveness of multi-
variable control theory, this paper proposes the implementation of a multiple-input multiple-output (MIMO)
controller as a guidance tool for designing policies. System dynamics is considered for modeling the dynamic
behavior of MPMO systems. The model is then converted to a state-space system where objectives and policies
are mapped to time-varying reference trajectories and inputs, respectively. Subsequently, the design of policies
driving the system outputs to meet certain objective profiles is converted to a multivariable control problem.
This paper also recommends a class of multivariable controllers that is suitable for this domain of applications.
Numerical simulations are included to illustrate the effectiveness of the proposed systematic approach.

1. Introduction

Strategic planning has helped all types of organizations from cor-
porate companies to nonprofit and governmental institutions to align
their business activities and decision rules with their strategies and
vision [1]. Frameworks such as strength, weakness, opportunity and
threat (SWOT) analysis have evolved to more convoluted and more
comprehensive processes that aim at maintaining the organizations
competitive edge in a dynamic market. Approaches such as the
“growth-share matrix” and Porter's five forces analysis are widely used
by managers and consultants [2,3], while other concepts like Teece's
dynamic capabilities are witnessing an increasing interest in the aca-
demic and research community [4–6]. Such methods however become
detached from the small business activities, due to the high level of
abstraction and complexity they encompass, not to mention that re-
levant actions involve allocating resources and designing suitable ad-
ministrative systems [7,8].

Strategy maps present an efficient way of associating business ac-
tivities with high level strategies, hence its popularity as a management
tool [9–11]. However, researchers have found shortcomings in using
strategy maps [12–14]. To overcome these limitations, strategy maps
have been coupled with system dynamics (SD) modeling [12,14,15].
This helped identify key measures and their correlated dynamic beha-
vior; however, research stopped short of providing a design rule control
strategy. Such control strategies have existed in the literature of SD
since its early usage, making it an important tool for strategic policy
design [16–19]. Causal loop modeling, a technique based on SD,

highlights indiscernible interactions among variables [20] that can
better model complex real-world issues [21]. SD models can be used as
tools for visualizing control problems [22]. Simulations help the system
analyst understand the system and visualize its outputs for a given set of
policies. These policies are then adjusted to eliminate the discrepancies
between a certain desired objective and the current state of the system
[19]. This tedious process was replaced by control strategies that rely
on proportional or, at most, derivative feedback control [23–25]. Bor-
rowing design rules from control theory was not pursued any further,
mainly because of the conceptual view of SD as a tool primarily for
understanding complex systems and predicting their sometimes coun-
terintuitive behaviors. The analyst therefore remains the major decision
maker. For a small number of policies and objectives, the analyst may
manage to find a feasible set of policies that would steer the system
towards the desired objectives. This task however becomes practically
impossible for a larger number of policies and objectives, especially
when objectives are correlated. In some cases, this results in a “rugged
performance landscape”, where the size of the projects deteriorates the
performance of the organization [26].

Furthermore, existing decision-making structures have their own
hurdles when it comes to multivariable decision making. One such
example is hierarchal decision making, which as shown in work [27]
has the inherent weakness of objectives becoming more and more
constraint as we move from the top to the bottom of the hierarchy,
while decisions are being made. Fuzzy programing and logic were
employed to mitigate these weaknesses, yet, several drawbacks of this
applications surfaced as highlighted by the work [28]. Moreover, Fuzzy
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logic programming and logic is employed in several instances of in-
dividual or group decision making as a tool for weight assignment,
generally utilized to address sets and other decisions based on large
groups of variables in artificial intelligence as described by Kouatli
[29]. Fuzzy logic provides the user the ability to measure what could be
categorized as subjective variables such as employee performance as
shown in [30], similarly the work in [31] proposes a novel decision-
making approach that factors in both subjective and objectives weights
when comparing different decisions. While these methods are useful,
they become computationally heavy and more convoluted as more
variables and preferences are injected into the equation. As such the
expandability of these methods onto large governmental/institutional
cases would be difficult and taxing. The proposed policy design method,
which is based on control theory, mitigates such problems.

Control theory presents a suitable approach to solve such problems.
The SD model can be regarded as a dynamical plant, and the analyst as
the controller. Controlling a plant and driving its output to track a user-
defined reference trajectory has been an important problem in auto-
matic control. This paper proposes a systematic approach for guiding
managers in multiple policy multiple objective (MPMO) strategic policy
making. The proposed method borrows techniques employed in mul-
tivariable control theory in order to design policies driving an industrial
process to meet desired time-dependent target profiles pertaining to
some correlated objectives. The first step of the proposed approach
consists of converting the dynamical model into a state space system,
from which a controller is developed. Employing a multivariable con-
troller supports the formation of policies that can drive the outcomes to
seamlessly track desired target profiles. Some of these resulting policies
may seem counterintuitive for strategic managers, and therefore com-
plements their experience and expertise in policy formation. To the
knowledge of the authors, no implementation of any multiple-input
multiple-output (MIMO) controller in MPMO strategic policy making
has been proposed in the literature. In addition to providing insight on
policy formation, control theory answers whether there exist a set of
feasible policies that will achieve the desired objectives or not. This is
done through output tracking analysis, a concept very well understood
in control theory. Such analysis also helps redefine the operational
strategies on an organizational level since full manipulability of the
desired objectives may require additional policies to be implemented.

As an application, a simple and fictitious university model is con-
sidered. The SD and state-space models are presented as well as nu-
merical simulations for the controlled system.

2. Proposed methodology

The process of managing a complex organization by adjusting the
policies to meet desired objectives can be perceived as a control pro-
blem, as depicted in Fig. 1. The plant in Fig. 1 refers to the system under
study, the controlled variable y denotes the actual outcome of this
system and the reference variable r is the set of desired states or targets.
The controller in this case is associated to the analyst and the control
input u is the set of policies defined by the analyst. In this scenario, the
analyst compares the current state of the system with the desired ob-
jectives and regulates the set of policies in order to reduce the resulting
error e, or discrepancy.

Analysts can manipulate the input variables over a certain time

period and try to achieve the desired objectives through trial and error.
The resulting control input, or set of policies over the analysis period,
can be thought of as the strategic plan. In control theory, the plant is
usually a physical system and is modeled by differential equations.
Essential parameters are drawn from this mathematical model and a
controller is designed accordingly. During the past few decades, the
development of SD leveraged the SP exercise by providing a simple way
to mathematically model any system of any size and complexity.
Analysts are now able to predict the behavior of a system and identify
certain trends through numerical simulations. The latter assumes that
the system builders can understand and model all possible issues and
system parts. Consequently, such systems become only an approxima-
tion of reality. However, rigor in causal modeling can lead to fresh
theoretical insights and discoveries [32]. Although the abstract model
was replaced by a mathematically well-defined model, the analyst re-
mains the major acting controller. The application of SD expanded to
urban-level and even world-level systems that incorporate correlated
MPMO. Moreover, one could expand such models to a higher-level of
abstraction such as modeling human behavior [33], or in order to
balance short-term and long-term goals [34]. Such large and complex
systems are difficult to understand and even more difficult to control.
Therefore, the analyst can no longer rely only on his/her expertise and
intuition and needs an automated guidance mechanism that can process
the system under study with all its size and complexity. In this paper,
we borrow concepts from control theory in order to develop such a
control mechanism.

2.1. Conversion of the SD model to state-space representation

A common approach for designing multivariable controllers is based
on modern control theory, which employs the time-domain state space
representation. A state-space (SS) representation is a mathematical
model of a physical system composed of a set of inputs, outputs, and
state variables related by vector-valued first-order differential or dif-
ference equations. Consequently, the first step of a controller design
involves converting the SD model into SS. Consider a SD model with n
stocks (or state variables), m auxiliary variables, and p exogenous
(input) variables represented respectively by the sets

=x k x k x k( ) [ ( ), . . ., ( )]n
T

1 , =v k v k v k( ) [ ( ), . . ., ( )]m
T

1 , and
=u k u k u k( ) [ ( ), . . ., ( )]p

T
1 , where [ · ]T is the transpose operator. We

assume that ui, 1 ≤ i ≤ p can be manipulated; otherwise they would
be modeled as auxiliary variables or considered as system parameters.
The dynamic equation at any stock xi(k), where 1 ≤ i ≤ n, is given
by:

+ =x k g x k v k u k( 1) [ ( ), ( ), ( )]i i

Where � �→+g (.):i
n p Also, any auxiliary variable vj(k) can be ex-

pressed as a function of the stocks and exogenous variables in the
system:

=v k q x k u k( ) [ ( ), ( )]j j

where � �→+q (.):j
n p and 1 ≤ j ≤ m. We can therefore write the

dynamic equations at any stock as a function of the stocks and exo-
genous variables in the system:

+ =x k f x k u k( 1) [ ( ), ( )]i i

Fig. 1. Control system diagram.
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Where � �→+f (.):i
n p

Practically, analysts or strategic planners define certain outcomes
related to the system, and associate a desired short, medium and/or
long-term target to each one of them. These outcomes are usually stocks
and/or auxiliary variables. We denote by =y k y k y k( ) [ ( ), . . ., ( )]q

T
1

the set of outcomes observed with �∈y k( ) q . The SS equations are
thus given by:

+ =x k f x k u k( 1) [ ( ), ( )]

=y k w x k u k( ) [ ( ), ( )]

Where =f f f[ , . . ., ]n
T

1 is the set of dynamic equations at all the state
variables and =w w w[ , . . ., ]q

T
1 is the set of functions

� �→+w (.):l
n p , 1 ≤ l ≤ q, relating each observed outcome to the

stocks and exogenous variables in the system. Linearizing the above
system yields:

+ = +
= +

x k A k x k B k u k
y k C k x k D k u k

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

Where =
∂
∂A k( ) |f

x x k u k
Δ

( ), ( )0 0 and =
∂
∂B k( ) |f

u x k u k
Δ

( ), ( )0 0 are the Jacobian
matrices of f with respect to x and u, respectively, evaluated at the
operating point (x0(k), u0(k)); and =

∂
∂C k( ) |w

x x k u k
Δ

( ), ( )0 0 and

=
∂
∂D k( ) |w

u x k u k
Δ

( ), ( )0 0 are the Jacobian martices of w with respect to x and
u, respectively, also evaluated at (x0(k), u0(k)).

In modern control, the set of stocks x(k) is referred to as the set of
state variables, and the set of exogenous variables u(k) is referred to as
the set of input variables. In fact, the input, u, is the only variable that
can be manipulated and hence it is continuously changed to drive the
system from one state to another desired state. It is therefore associated
to the set of policies formulated by the analyst. The set of outcomes y(k)
indicates in this case the set of output variables. It is desired for these
variables to track a certain pre-defined trajectory or achieve a given
target profile. These variables are monitored throughout the control
process and the difference between the actual outcomes and the desired
targets is applied as feedback to the controller. The output of the con-
troller becomes an input to the system, which should bring the actual
outcomes closer to the desired target profile. The knowledge of the state
transition matrix, A(k), the input coupling matrix, B(k), the output
coupling matrix, C(k), and the input-output transition matrix, D(k), can
for example support the design of an optimal multivariable controller.

2.2. Proposed class of controllers

This problem, known as output tracking, has been addressed using
different techniques, such as Linear Quadratic Gaussian synthesis with
Loop Transfer Recovery [35], model reference adaptive control [36],
and the most common control scheme used in industry Proportional-
Integral-Derivative (PID) [37–40]; all of which are applied for multi-
input multi-output (MIMO) dynamical systems. All non-iterative tra-
jectory tracking controllers can guarantee tracking convergence at
steady state, that is, =

→∞
y k y klim ( ) ( )

k
d where k represents the time-

domain index, and yd(k) is the desired reference trajectory. However,
uniform convergence may not be guaranteed due to typical errors in the
transient response. On the other hand, iterative learning control (ILC)
[41], operating in an iterative mode over a finite-time horizon, can
guarantee uniform tracking convergence, =

→∞
y k l y klim ( , ) ( )

l
d ,

=k T1, . . ., , where l represents the iterative-domain index, and the
finite-time horizon is represented by integer T < ∞. The basic learning
process employs information from previous repetitions, typically output
error and its corresponding control, to improve the control signal. From
a mathematical perspective, ILC acts on two domains, an infinite
iteration domain, and a finite-time domain over each iterative cycle.
Most of these methodologies are based on contraction mapping re-
quirements [42,43,40] that lead to uniform tracking convergence
through repeated iterations. The improvement in tracking performance

is attained over the iteration domain. Although the repetitive require-
ment of ILC algorithms may be considered stringent for general appli-
cation to physical plants, its characteristics and ease of implementation
make it very appealing to solving the problem under consideration,
which does not require real-time implementation. Furthermore, unlike
non-iterative controllers, system stability is not considered an issue for
continuous systems with bounded inputs when considering im-
plementation of ILC since the time domain is finite. However, the
boundedness of u(k, l) and

→∞
u k llim ( , )

l
is key in ILC theory.

3. SD and SD modeling of a fictitious academic institution

The proposed systematic approach is illustrated with an application
to a fictitious institution of higher education where the population of
faculty and students being considered as the key ingredients. In parti-
cular, a university may have two goals to be attained in a specific period
of time; e.g., in ten years: (a) increasing the total number of students to
a desired target level, and (b) improving its quality of education by
decreasing the student-to-faculty ratio (SFR) to a desired target level.
The associated desired target levels cannot be set without taking into
consideration the physical and operational capacity of the university.
Consequently, these goals may very much require an increase in the
university's facilities such as an increase in (a) the number of class-
rooms, (b) number of staff, and (c) number of offices for staff and fa-
culty. The latter is assumed to be planned a priori, and according to a
“facility-expansion” plan, the desired target levels associated with the
SFR and total number of students are designed appropriately.
Consequently, the target levels must possess a specific desired transient
period which is shaped by the time-dependent constraint pertaining to a
pre-designed facility-expansion plan.

3.1. Modeling the system

The example considered in this paper is a simplified model of the
student and faculty population in a university. Note that the academic
institution under consideration is a not for profit organization, financial
success is hence reflected in a positive revenue/cost balance.
Furthermore, the main source of revenue is assumed to be the student
tuition fees. Subsequently, the larger number of students results in
greater revenues. It is known that a good quality of teaching reflects a
good academic reputation [44]. The quality of teaching therefore be-
comes an important skill that the institution should maintain. One
measure of the quality of teaching is the SFR, which is adopted as one of
the metrics used in university rankings such as U.S. News Best Colleges
Rankings, Times Higher Education (THE) World University Ranking,
and Quacqarelli-Symmonds (QS) World University Rankings. Finally,
the academic institution will sustain its successful performance by
maintaining a relatively large pool of faculty members. Increasing the
number of faculty will decrease the SFR and increase research
throughput, which will in turn improve the academic reputation of the
institution. For the impact of size, research results, and media coverage
of a university's spinoff portfolio on university income, the reader is
referred to [45] and the references therein.

An SD model is subsequently constructed. The model consists of 5
stocks, 13 auxiliary variables, 5 parameters and 2 exogenous variables.
The stock and flow diagram of the SD model is represented in Fig. 2.
Remark 1. A more accurate model should include more stocks for the
faculty and student population. However, regardless what population
model is employed the proposed systematic approach would remain the
same. The SD model equations are provided below:

v Full-Time Faculty:
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+ =

× ⎡
⎣

− ⎤
⎦

+
+ =

× ⎡
⎣

− − ⎤
⎦

+

+ =

× −

+

×

×

Assistant Professors k Assistant Profesosor k

Newly Hired Faculty k
Associate Professors k Associate Profesosor k

Retirement and Retention Rate

Full Professor k Full Professor k

Retirment and Retention Rate

( 1) ( )

1

( )
( 1) ( )

1

( 1) ( )

(1 )

Time to review promotion

Time to review promotion

Assistant Professors k Assistant to Associate Promotion Rate
Time to review promotion

Associate Professor k Associate ot Full Promotion Rate
Time to review promotion

1

1

( )

( )

In this example, the Newly Hired Faculty is considered an exogenous
variable and is guided by the controller as future policy. Note k is ex-
pressed in years.

v Students:

⎜ ⎟+ = × ⎛
⎝

− ⎞
⎠

+

Students k Students k
Average Time to Graduate

New Students k

( 1) ( ) 1 1

( )

v Part-Time Faculty: The Change in Part Time Faculty in this case is
bidirectional. If the Faculty Gap is greater than the Additional Faculty,
new part time faculty will be hired, or terminated otherwise. In
order to calculate the Faculty Gap, we assumed that for every 10
additional students (difference between new students and

graduating students); one Full Time Equivalent faculty is required.

+ =

+

−

Part Time Faculty k Part Time Faculty k

Faculty Gap k

Additional Faculty k

( 1) ( )

( )

( )

Where

=

=

− −

× − +

×

⎛
⎝

− ⎞
⎠Faculty Gap k

Additional Faculty k Newly Hired Faculty k

Assistant to Associate promotion Rate

Assosciate Professors k Full Professors k

Retirement and Retention Rate

( )

( ) ( )

(1 )

[ ( ) ( )]

New Students k

Assistant Professors k
Time to review promotion

( )

10

( )

Students k
Average Time to Gradute

( )

v System Relevant Outputs:

=
+ +

+

Student to Faculty Ratio k
Students k

Assistant Professors k Associate Professors k Full

Professors k

( )
( )

( ) ( )

( ) Part Time Faculty k( )
3

3.2. SS equations

As indicated in the Proposed Methodology Section, conversion from
SD to SS is straightforward. The equations of the SD model formulated
in the previous section do not need major manipulation since most of
them are only expressed in terms of the stock variables, system

Fig. 2. Simple stock and flow diagram of the student and faculty population in a fictitious university.
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parameters and the two exogenous variables. The variable names in the
stock and flow diagram and their corresponding SS variable names are
listed in Table 1.

Referring to Table 1, the following linearized SS equations may be
obtained:

+ = +
=

x k Ax k Bu k
y k C k x k

( 1) ( ) ( )
( ) ( ) ( )

Where,

=

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

− −

−

−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= =

⎡

⎣

⎢
⎢
⎢
⎢
⎢−

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= ⎡

⎣
⎢

⎤

⎦
⎥

= + + +

−

− − − −

A k A

r

r

r r

B k B

C k

γ k x k x k x k

( )

1 0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1 0

1

, ( )

1 0
0 0
0 0
0 1
1

( )
0 0 0 1 0

,

and ( ) ( ) ( ) ( ) .

r
r
r

r
r
r
r

r
r

r r

x k
γ k

x k
γ k

x k
γ k γ k

x k
γ k

x k

1

3

3

1

1
3 3

1
10

1
10

( )
( )

( )
( )

( )
( )

1
( )

( )
3 ( )

1 2 3
( )
3

4
1
4

2
4
2
4

5

1
4 5

4
2

4
2

4
2

4
2

5

3.3. Control law under consideration

We consider a D-type ILC given by:

+ = + + −u k l u k l K k l e k l e k l( , 1) ( , ) ( , )[ ( 1, ) ( , )

Where l is the iteration index, = −e k l y k y k l( , ) ( ) ( , )d is the
output error due to the control action ∈u k l( , ) p� , ∈y k( )d

q� is the
reference trajectory or desired output, and the matrix ∈ ×K k l( , ) p q�

represent the learning gain. The controller parameter in ILC algorithms
is the learning gain, K(k, l). Depending on whether q ≥ p or p ≥ q, the
learning gain is selected such that the corresponding contraction con-
dition is satisfied [46]. For example, a common condition for contrac-
tion in the case where q ≥ p is − + <I K k l C k B k|| ( , ) ( 1) ( )|| 1,

and in the case where p ≥ q the condition is
− + <I C k B k K k l|| ( 1) ( ) ( , )|| 1, where I is the identity matrix of

appropriate size. This condition must be satisfied almost everywhere;
that is, the set of iterations for which the condition does not hold is a set
of measure zero. In addition, if the system dynamics satisfy the Lip-
schitz condition, then the solution is unique. It is worth noting that the
number of outputs can be equal to the number of state variables; e.g., in
case it is desired to have all the state variables follow pre-specified
reference trajectories. These conditions can be satisfied if the matrix

+C k B k( 1) ( ) is full-column rank whenever q ≥ p or +C k B k( 1) ( ) is
full row rank whenever p ≥ q. In our case study, we have

= =p q 2. One way to generate the learning gains is by simply
setting ≡ + −K k l α C k B k( , ) [ ( 1) ( )] 1,0 < < α ≤ 1 or by em-
ploying the sub-optimal recursive algorithm presented in [47], which is
given by:

= +
+ = −

−K k l P k l N NP k l N S
P k l I K k l N P k l

( , ) ( , ) [ ( , ) ]
( , 1) [ ( , ) ] ( , )

T T 1

where +=N C k B k( 1) ( ),Δ S is a symmetric positive-definite matrix,
and P(k, 0) is a symmetric positive-definite matrix, ∀ l. It is worth noting
that the equations above are independent of the state transition matrix.

4. Numerical example

In this section we illustrate the performance of the proposed sys-
tematic approach by taking into consideration the model presented in
the third section. It is important to note that the controller basically
forms its policies pertaining to the number of students to be enrolled
and number of faculty to be recruited based on the values of the SFR
and the total number of students provided by the model. All simulations
are carried out using MATLAB according to the following algorithm:

SILC Algorithm

1: Initialize the policies, ∀u k k( , 0),
2: Initialize the value of error covariance matrices of SILC, S and P k( , 0)
3: While >e t lmax ( , ) ϵ

t
4: = +l l 1
5: for = …k T1, 2, , do
6: Linearize symbolic matrices based on model parameters
7: Evaluate linearized system, A k B k C k( ), ( ), ( ), based on current state and

input, x k l( , ), u k l( , )
8: Update SILC gain and covariance

9: ← + −K k l P k l N NP k l N S( , ) ( , ) [ ( , ) ]T T 1

10: + ← −P k l I K k l N P k l( , 1) [ ( , ) ] ( , )
11: end for
12: Compute objective errors at +k 1: + ← + − +e k l y k y k l( 1, ) ( 1) ( 1, )d
13: Compute objective errors at k : ← −e k l y k y k l( , ) ( ) ( , )d
14: + ← + + −u k l u k l K k l e k l e k l( , 1) ( , ) ( , )[ ( 1, ) ( , )
15: End

The values of the system parameters considered in this example are
listed in Table 2.

We set the initial values of the SFR and total number of students to
be 13.33 and 8000, respectively. Furthermore, this study is considered
as a strategic plan over ten years. We associate the desired tracking
profiles for SFR with yd1(k) and total number of students with yd2(k) as

Table 1
SD and SS Variable Names.

SD Stock Variable Name SS State Variable Name

Assistant Professors x1
Associate Professors x2
Full Professors x3
Students x4
Part Time Faculty x5
SD Exogenous Variable Name SS Input Variable Name
Newly Hired Faculty u1
New Students u2
SD Output Measure Name SS Output Variable Name
Student to Faculty Ratio y1
Students y2
SD Auxiliary Variable SS System Parameter
Assistant to Associate Promotion Rate r1
Associate to Full Promotion Rate r2
Retirement and Retention Rate r3
Time to review promotion r4
Average Time to Graduate r5

Table 2
System parameters.

System Parameter Value

r1 50%
r2 20%
r3 3%
r4 6 years
r5 4.5 years
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described in the following models:

= ∞ + − ∞ ∈−y k y y y e i( ) ( ) ( (0) ( )) , {1, 2}d d d d
k
τ

i i i i i

Where ∞y ( )di represents the desired steady-state output, y (0)di the
current output, and τi is the time constant; that is, after years τi,

≈ ∞ +y τ y y( ) 0.63 ( ) 0.37 (0)d i d di i i . We consider a case where it is desired
that the SFR decreases from SFR of 13.33 to 11 in 5 years and even-
tually reaches a final SFR of 10 after 10 years. Concurrently, the total
number of students increases from 8000 to 13,000 students in 6 years
and eventually reaches 16,000 students after 10 years. Consequently,

= + −

= + −

−

−

y k e

y k e

( ) 10 (13.33 10)

( ) 16000 (8000 16000)

d

d

k

k
1 4

2 6

Where ∈ …k {0, 1, 2, 3, , 10}. The system outputs corresponding to a
presumably accurate model are y1(k) and y2(k), which represent the
actual SFR and total number of students, respectively. The initial state
under consideration is:

≡X (0) [270 112 68 8000 450] .T

In what follows, we will be demonstrating our approach on two
scenarios. Scenario 1 demonstrates the performance of our multi-
variable SILC approach without constraining the policies. Whereas,
Scenario 2 considers constraint policies while allowing some model
parameters to vary in time. Another ILC algorithm is implemented for
the constraint system.

Scenario 1:
The parameters for the SILC controller are selected as follows:

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

∀ = ⎡
⎣⎢

⎤
⎦⎥

∀
−

S P k k u k k10 0
0 1

, ( , 0) 10 0
0 10

, , and ( , 0) 0
0 , .

6 2

9

The control inputs generated by ILC along with corresponding

outputs are shown in Fig. 3. By examining Fig. 3, the desired outputs
are perfectly tracked by ILC. Fig. 4 shows the corresponding numbers of
assistant professors, associate professors, full professors and part time
faculty for both controllers.
Remark 2. In order to decrease the SFR while increasing the number of
students, one would intuitively expect to recruit faculty at a faster rate
than enrolling new students. However, the corresponding inputs
suggest early aggressive faculty recruitment that decreases gradually
with time whereas enrollment of new students gradually increases with
time (see Fig. 3). This contradicts the intuitive rationale. In addition, an
alternative approach could suggest considering an open-loop control
problem, where the system output is not employed for correcting the
input and instead a flat policy is applied. One good choice we found is
by setting u(k, 0) ≡ [145 3250]T, ∀ k. As shown in Fig. 5, the system
output only meets desired profiles at =k 9. Other values of (constant)
u(k) do not lead to acceptable performance.

Remark 3. An optimal multivariable controller [37] is implemented to
the same example. Unlike our ILC yielding perfect tracking in 20
learning iterations within the specified time horizon, tracking errors are
observed using this PID controller. However, such performance is not
surprising since the tracking errors due to feedback controllers, such as
PID, are expected to converge to zero as time goes to infinity with a
high likelihood of transient errors.

Scenario 2
The model considered in Scenario 1 is based on a nonlinear time-

invariant system where policies are not constraint to any value. The
latter gives room in finding policies that yield perfect solution; that is,
the desired objectives can be achieved with zero error throughout the
discrete-time domain. In this scenario we use the same model except for
making selected rates time varying, which leads to a nonlinear time-
varying system. In particular, we set the Assistant to Associate

Fig. 3. Scenario 1: System performance: Top plots correspond to policies and bottom plots correspond to outcomes versus desired target profiles.
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Promotion Rate, = − −r k( ) 0.5(1 0.1( 1) )k
1 , Associate to Full Promotion

Rate, = + −r k( ) 0.2(1 0.1( 1) )k
2 , and Retirement and Retention Rate,

= − −r k( ) 0.03(1 0.1( 1) )k
3 . These rates change by ± 10% from their
nominal rates (listed in Table 2) from year to year. In addition, we limit
the two policies to some prespecified values so that the solution to the
unconstraint problem is no longer applicable. In particular, we assume
that at any given year, the university cannot recruit more 160 faculty
and cannot enroll more than 3350 students. In this setting, we should
no longer apply the same ILC because the controller assumes the ex-
istence of a solution associated with the reference trajectories. Instead,
we apply a reformed D-type ILC but while constraining the policy at
each iterative cycle. We consider the following ILC law:

+ = + + −u k l sat u k l u K k l e k l e k l( , 1) ( ( , ), ¯) ( , )[ ( 1, ) ( , )]

Where ū is the upper bounding magnitude of the control profile, and
sat u k l u( ( , ), ¯) is a saturator function defined as follows:

=
sat u k l u sign u k l u k l u( ( , ), ¯) Δ ( ( , ))min( ( , ) , ¯)

We choose = −K k l N( , ) 0.1 1 and = ⎡
⎣

⎤
⎦

ū 158
3340 . The reason behind

choosing slightly smaller values associated with the specified con-
straints is for not dealing with significantly large iterations to reach to
convergence; i.e., the constraint solution. We use 100 iterative cycles.
The results are illustrated in Fig. 6. By examining Fig. 6, we observe
that the two objectives are closely attained. Such results would guide
the designer to relax the objectives according to a set of compulsory
constraints.
Remark 4. Throughout the analysis, the matrix +C k B k( 1) ( ) remains
full rank, indicating that the desired output trajectories are trackable
with the existing policies [47]. If it were not the case, more policies may
be needed to make all the desired trajectories trackable. For example,

the SFR and the total number of students cannot be tracked
simultaneously if only the number of new students or the number of
new faculty is manipulated. In this case, the matrix +C k B k( 1) ( )
becomes rank deficient. To overcome this problem, the analyst would
have to identify additional policies that would achieve full rank of the
matrix +C k B k( 1) ( ), enabling uniform tracking of the desired
objectives. On the other hand, in some instances, reducing the
number of policies may not affect the ability to track desired
objectives. In such cases, and if less policies are desired, it may be
beneficial to determine the minimum sufficient set of policies for which
the objective trajectories are trackable, since this simplifies the system
and may require less resources to achieve the same goals. Finding this
minimum set of policies is achieved by choosing the minimum number
of inputs such that +C k B k( 1) ( ) is full rank. The advantages and
disadvantages of the proposed approach are summarized in Table 3.

5. Conclusion

In this study, a novel systematic approach based on multivariable
control theory has been proposed for guiding strategists in shaping
policies that can drive correlated outcomes to uniformly track desired
target profiles. These time-varying target profiles may incorporate
constraints that reflect the company's capacity limitations in the policy
making process. In addition, output tracking analysis established in
control theory can guide strategists determine whether the target pro-
files are trackable using the existing set of policies or not. If not, the
analyst may further exploit tracking analysis to identify a set of policies
needed to achieve full uniform tracking capability. Another main ad-
vantage of the proposed methodology is the straightforward approach
in undertaking complex systems with arbitrary large numbers of po-
licies and correlated objectives.

Fig. 4. Scenario 1: Faculty population corresponding to policies shown in Fig. 3.
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It was also shown that some of the policies formulated by the con-
troller may seem counterintuitive for strategic managers, and therefore
could be used to complement their experience and expertise in policy
formation. Although the effectiveness of implementing a multivariable
controller has been demonstrated, the resulting policies should only be

considered as a guidance tool for the system analyst. For example, one
actual application of these kinds of systems is in considering a group
decision-making where the system is being built as a consensual ex-
ercise of the managers involved and by running simulations on the
system where the outcomes can be mapped and better understood by

Fig. 5. Scenario 1: Outcomes of a flat policy with u(k) ≡ [145 3250]T, ∀ k.

Fig. 6. Scenario 2: Top plots correspond to policies and bottom plots correspond to outcomes versus desired target profiles.
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the participants.
The application presented in this work relied on a simplified model

of a fictitious university, this was done to highlight the capabilities of
our approach. However, for systems with no unique solution, in which
case constrained optimization techniques would be leveed. The latter is
one avenue the authors will expand on in future works.
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Disadvantages Requires the existence of a sufficiently accurate model of the system dynamics under consideration
Advantages Based on selected objectives, our approach provides evidence on whether policies were insufficient, sufficient or superfluous
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not
Borrowing techniques from the control theory such as having the dynamics of the system satisfying a Lipschitz condition, one can find out if the solution
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