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A B S T R A C T

In an inventory management model for perishables, depletion due to interacting with the demand is of im-
portance, but also, damage to products is a relevant variable. This article considers that demand and sales
phenomena do not always go hand-in-hand. The demand process relates to the willingness to acquire products in
good condition, giving the customer the power to evaluate the quality of the product before an effective purchase
takes place. We also considered the cost of disposing of unsold units, besides the conventional costs for storage
and procurement. We then proposed a mathematical model to derive the Economic Order Quantity (EOQ) under
specific conditions, in order to minimize the expected management cost of perishables, assuming constant de-
mand and linearly decreasing purchase probability during the product life cycle. We proposed several random
instances and validate the mathematical model using simulation. We then found the optimal parameters for the
inventory policy using a third-order numerical approximation. Last, we developed a sensitivity analysis over the
product life cycle to prove that the proposed model approximates to a traditional EOQ model for perishables
when life cycle is sufficiently large.

1. Introduction

For many cases in real life, products may have a short life cycle. This
is the case for unpreserved foods and beverages. This makes conven-
tional inventory modeling to yield lesser efficiency, when not con-
sidering willingness to purchase, if one is concerned with the mini-
mization of all associated management costs, mainly due to
disregarding the fact that the products are deteriorating quickly. This
drives our interest towards developing an inventory model that con-
siders all constraints that arise from this condition. For instance, one
must include in this discussion the quality of the product over time, or
the effect that its deterioration generates in the customer's interest for
purchasing the product.

In addition, deterioration of these items may also yield waste that
has to be disposed of. Accordingly, the cost of disposal plays an im-
portant role in the industry, therefore having an impact on their op-
erations and giving us a reason to consider it for modeling inventory.

In the literature, there are many Reorder Point (ROP) models, such

as those mentioned in [1], all identified by different considerations and
assumptions, such as demand decline or increase over time; propor-
tional demand rate over time; possibility of shortage; and dynamic
demand [2], among others. In [3], the authors suggest a management
model for the case of gradual obsolescence of products.

The traditional EOQ model [4] suggests that the demand remains
constant over time, and that demand is the only variable responsible for
inventory depletion. Also, they assume that quality remains constant
throughout. Ghare and Schrader [5] started the discussion in inventory
depletion, considering an exponential decline of demand. Liu and Shi
[6] classified perishables in two different groups, those with permanent
decline and models with finite service life cycle.

A very detailed study on inventory theory with perishables is made
by Nahmias [7], who, for his time, researched the most relevant studies
in the subject, making distinctions between products with constant
demand and products with stochastic demand, as well as multiple
products and product life cycle. Authors such as Raafat [8] and Goyal
and Giri [9] made an updated review on this kind of study. Haiping and
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Wang [10] developed a model of EOQ, for the case where demand is
directly proportional to the cycle time, considering only ordering and
inventory holding costs. Wee [11], Papachristos and Skouri [12],
Goswami and Chaudhuri [13], Haringa and Benkherouf [14], and
Hollier and Mak [15] also studied the EOQ with inventory depletion.

All these studies are characterized by modeling the inventory di-
rectly as a differential equation, considering only ordering and holding
costs. In several of the aforementioned articles, it is presumed that
demand decreases over time due to spoilage. Safety stock placement
was proposed by Boulaksil [16] and replenishment from multiple
vendors was proposed by Otero-Palencia et al. [17], allowing busi-
nesses to achieve a high customer service level by having optimized
stock in their warehouses. Pricing is a factor that Gan et al. [18] in two
different studies detailed as a problem to solve and establish a model
and a decision system to optimize it. However, we argue that this is, to
our knowledge, not entirely true, because what changes is the will-
ingness to purchase the products over time due to the loss of quality.
Independent from the product degradation level in most cases, clients
have the desire to buy any given good and only the willingness to
purchase will be affected by product quality. In other words, what
varies over time is the willingness but not the desire to purchase.

Other studies that include dynamic control policies for scheduling
inventory [19], or cooperation in clusters, such as the study by Land-
inez-Lamadrid et al. [20], show that there are several ways to manage
inventory in warehouses that are directly linked to the businesses.
Panda et al. [21] propose a single-item model where demand depends
on the stock level. The authors also describe a price reduction model
after the deterioration of the product which, in turn, increases the de-
mand. Their work focuses on the investigation of the appropriate level
of price reduction to maximize the profit per unit. In [22], the authors
propose a very interesting pricing model which is dependent on de-
mand in order to coordinate the supply chain. On the other hand, in
[23] they consider a deterioration model that adjusts to a Weibull
distribution. This is a very interesting work that considers costs due to
the deterioration and shortage of the products. Gan et al. [24] proposes
a model of pricing for short life cycle products with variable demand.
Also, when more than one item is under study and products present
correlation in the demand process, Lee and Lee [25] presents an ex-
tremely interesting inventory management system that can be devel-
oped. Last, Gan et al. [26] presents a pricing model for short life cycle
product in a closed-loop supply chain with random yield and random
demands.

The majority of the abovementioned articles do not consider the
cost for disposing of unsold products due to their deterioration over
time. With some exceptions, such as the work of Wang and Li [27], this
concept is not strongly considered. On the other hand, many of the
authors do consider that the demand for products decreases over their
life cycle.

There is a difference in what we propose to the work shown in [27].
There, the authors propose a pricing model based on dynamic quality
evaluation and examine impacts of timing and frequency of discount.
Our work introduces two concepts for modeling EOQ policies: first, the
units that remain after each cycle generate a cost of disposal and,
second, the demand of a perishable corresponds to a phenomenon,
which is different to the sales process itself. The demand relates to the
initial willingness of a customer to acquire a product, while the sale
corresponds to the actual effective purchasing interest of the customer.
This process occurs in the case of perishables, given that the willingness
to purchase a product decreases during the lifetime of a product once
the customer notices there is a change in aspect that inhibits the interest
to purchase.

In this article, we assume that the willingness to effectively purchase
a product decreases linearly throughout the lifetime of a product that
deteriorates. We also consider modeling the cost of disposal for da-
maged goods. To our knowledge, we could not find a similar modeling
structure aligned with these assumptions, making them a good

contribution to the literature.
We therefore present a method for the EOQ calculation in perish-

ables, where the purchase expectation, from the client side, decreases
gradually during the product's life cycle. In addition, there are simu-
lation results that show a high precision level in the predicted results by
the proposed equations.

2. Model description

In what follows, we describe the model used for this problem. First,
it is worthwhile to mention that the model considers the following as-
sumptions:

2.1. Assumptions

• The demand remains constant over time.

• Product shortage is not considered in the model.

• The willingness to purchase, from the client side, decreases pro-
portionally linear to the depletion of a product during its life cycle,
reaching zero at the end of its life cycle.

• Although the proposed model is built to show the behavior for a
single item, we want to clarify that the demand and sale of a product
is independent to that of any other product so that the equations
here derived hold.

• Unsold units are disposed of at the end of their life cycle.

• Time to replenish is instantaneous.

2.2. Notation

Q: Order quantity
n: Number of orders per year
D: Annual demand quantity
r: Demand per unit time
T: Time between succesive purchasing orders
W: Product life cycle
s(t, i): Selling at time t of cycle i
S(t, i): Accumulated selling at time t of cycle t
B(i): Spoilage at the end of cycle i
I(t, i): Inventory at time t of cycle i
Ī (i): Average Inventory during cycle i
Co: Ordering Cost
Cm: Annual Holding Cost per Unit.
CD: Unit cost per disposed product at the end of the life cycle
P(t, i): Selling probability of demand at time t of cycle i

With the notation, it is clear that, for any inventory cycle i ≤ n,
t ≤ T. From the assumptions, we gather that the probability that one
unit may be sold at time t of cycle i is:

= −P t i t
W

( , ) 1 (1)

Thus, the probability that a unit will be sold at a specific time is
given by the complement of the cumulative probability function with
parameters 0 andW. Another result that comes from the assumptions is:
Proposition 1. If the willingness to purchase a product at time t of cycle i is
r, then, the number of units sold at that instant is −r [1 ]t

W

Proof. Let …u u u, , , r1 2 be random variables that represent sales for
each one of the r units. If the sale for each one of them is independent,
we then have:

= + + …+s t i u u u( , ) r1 2

Applying the expected value:

= + +…+E s t i E u u u( ( , )) ( )r1 2
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= + + …+E u E u E u( ) ( ) ( )r1 2

Clearly, = − ∀E u k( ) [1 ],k
t

W
, since the demand of all r units is

given at one and only one instant of time t. Therefore,

= ⎡
⎣

− ⎤
⎦

+ ⎡
⎣

− ⎤
⎦

+ …+⎡
⎣

− ⎤
⎦

= ⎡
⎣

− ⎤
⎦

E s t i t
W

t
W

t
W

r t
W

( ( , )) 1 1 1 1
(2)

▲
We have hereby proved the instantaneous behavior that sold units

would have within a cycle. In essence, this corresponds to the product
of the demand per time with the probability of selling any unit. Note
that a discrete sales process has been assumed for each moment t.
Therefore, in that instant of time t, the random variable total sales will
correspond to the sum of r independent random variables. By extracting
the expected value of that sum, we obtain the value we are looking for.
The said expected value is essential to obtain the total cost equation
described later. It should be clarified that although at any given time
interval the process behavior is continuous, an instant of time as such
has discrete characteristics, since a customer or a set of customers in-
tends to buy a certain number of units at the same time, and not one by
one.
Proposition 2. The expected average inventory per cycle is:

⎡
⎣

+ ⎤
⎦

<Q Q
rW

Si Q rW1
2 6

;

− ≥rW r W
Q

Si Q rW2
3

;
2 2

Proof. First, we will determine what the total selling level over time t is.
For any given time t within a cycle i, sales are given by s(t, i). Assuming
a continuous process over time, accumulative selling S(t, i) are not more
than the integral of instantaneous selling:

∫=S t i s t i dt( , ) ( , )
t

0 (3)

Indeed, at any time, the inventory will be the difference between the
ordered units and the sold units:

= −I t i Q S t i( , ) ( , ) (4)

So, for any cycle i, there is inventory for any cycle time. The average
value is given by:

∫ ∫ ∫ ∫
= =

−
=

−
I i

I t i dt
T

Q S t i dt
T

Qdt S t i dt
T

¯ ( )
( , ) [ ( , )] ( , )T T T T

0 0 0 0

(5)

Replacing (3) in (5):

∫ ∫ ∫
=

−
I i

Qdt s t i dt dt
T

¯ ( )
[ ( , ) ]T T t

0 0 0
(6)

The expected value is given by:

⎜ ⎟= ⎛
⎝

⎞
⎠

=

=

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

− −

−

E I i E(¯ ( ))
Qdt s t i dt dt

T

E Qdt E s t i dt dt

T

Qdt E s t i dt dt

T

[ ( , ) ] ( ) ( [ ( , ) ] )

[ ( ( , )) ]

T T t T T t

T T t

0 0 0 0 0 0

0 0 0
(7)

From Proposition 1, s(t, i) has an expected value of −r [1 ]t
W

Replacing in (7):

=

=

∫ ∫ ∫

∫ ∫

− ⎡
⎣

⎡
⎣

− ⎤
⎦

⎤
⎦

− ⎡
⎣⎢

− ⎤
⎦⎥

E I i(¯ ( ))
Qdt r dt dt

T

Qdt r t dt

T

1T T t t
W

T T t
W

0 0 0

0 0
2

2
(8)

Solving for (8):

=

= − ⎡⎣ − ⎤⎦ = − ⎡⎣ − ⎤⎦
= ⎡⎣ + ⎤⎦ ∀ <

− ⎡
⎣⎢

− ⎤
⎦⎥E I i

Q rT Q Q

Q T W

(¯ ( ))

;

QT r

T
T
W

Q
rW

Q
rW

1
2 6

1
2 6

1
2 6

T T
W

2

2

3

6

(9)

IfQ ≥ rW, the integrals in (8) can be assessed untilW, given that in
the extra time range −T W there will be no inventory:

= = −

= − ∀ ≥

− ⎡
⎣⎢

− ⎤
⎦⎥E I i

rW T W

(¯ ( ))

;

QW r

T
QW

T
rW

T
r W

Q

3

3

W W
W

2

2

3

6 2

2 2

(10)

▲
This proof shows the theoretical behavior that the average in-

ventory will have within each cycle. If the cycle time is less than the
product's lifetime, the average inventory will be +Q [ ]Q

rW
1
2 6 . Thus, we

will have the typical average inventory of the EOQ model ( )Q
2 plus a

factor of Q
rW6

2
. In mathematical terms, this factor is less in magnitude

than Q
6
, and loses value as W grows. This last factor in the inventory is

due to units that do not have a successful sale by state.
Proposition 3. The expected number of spoiled units per cycle is:

<Q
rW

Si Q rW
2

;
2

− ≥Q rW Si Q rW
2

;

Proof. The number of spoiled units at the end of cycle T is nothing more
than the difference between the ordered quantity and sold quantity:

∫= − = −B i Q S T i Q s t i dt( ) ( , ) ( , )
T

0 (11)

The expected value is given by:

∫ ∫

∫ ∫

⎜ ⎟ ⎜ ⎟= ⎛
⎝

− ⎞
⎠

= − ⎛
⎝

⎞
⎠

= − = − ⎡⎣ − ⎤⎦

E B i E Q s t i dt E Q E s t i dt

Q E s t i dt Q r dt

( ( )) ( , ) ( ) ( , )

( ( , )) 1 (12)

T T

T T
t

W

0 0

0 0 (12)

If Q < rW, (12) integrates until T:

= − ⎡
⎣

− ⎤
⎦

= − ⎡⎣ − ⎤⎦ = − ⎡⎣ − ⎤⎦

= ∀ <

E B i Q r T Q rT Q Q

T W

( ( )) 1 1

;

T
W

T
W

Q
rW

Q
rW

2 2 2

2

2

2

(13)

If Q ≥ qW, the product can cover the life cycle in each inventory
cycle, consequently (12) must be integrated until W:

= − ⎡
⎣⎢

− ⎤
⎦⎥

= − ∀ ≥E B i Q r W W
W

Q rW T W( ( ))
2 2

;
2

(14)

▲
The previous result indicates the number of units discarded per

cycle. If we analyze the result Q
rW2

2
, we notice that this is less than Q

2
(Q < rW), and tends to zero as the product's lifespan increases, which is
somewhat consistent with what it would be weighted in real life.
Proposition 4. The optimal order quantity that reduces the expected
annual total cost is depicted by this equation:
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+ − = ≤

= > − − >

+Q Q Si Q rW

Q D Si Q rW y C D C r W C DrW

0;

; 6 4 3 0

C D rWC
C

rWC D
C

o m D

3 3[ ]
2

2 3

2 2

D m
m

o
m

Proof. The total cost is given by the total ordering cost, inventory
holding cost and the total spoilage cost per unit:

∑= + +
=

CT C D
Q

C I C B j¯ ( )o m D
j

n

1 (15)

The expected value in (16) is given by:

∑

∑

⎜ ⎟= ⎛
⎝

⎞
⎠

+ +
⎛

⎝
⎜

⎞

⎠
⎟ = +

+

=

=

E CT E C D
Q

E C I E C B j C D
Q

C I

C E B j

( ) ( ¯) ( ) ¯

( ( ))

o m D
j

n

o m

D
j

n
1

1 (16)

If Q < rW, replaces (9) and (13) in (16):

= + ⎡⎣ + ⎤⎦ + ∑

= + ⎡⎣ + ⎤⎦ +

= + ⎡⎣ + ⎤⎦ +

= + ⎡⎣ + ⎤⎦ +

=E CT C C Q C

C C Q C n

C C Q C

C C Q C

( ) o
D
Q m

Q
rW D j

n Q
rW

o
D
Q m

Q
rW D

Q
rW

o
D
Q m

Q
rW D

Q
rW

D
Q

o
D
Q m

Q
rW D

DQ
rW

1
2 6 1 2

1
2 6 2

1
2 6 2

1
2 6 2

2

2

2

(17)

Hence, (17) is derivate in Q and it is equal to zero:

= − + + + =

→− + + + =
→ + + − =

→ + − =+

C

rWC D rWC Q C Q C DQ
C Q C D rWC Q rWC D

Q Q

0

6 3 2 3 0
2 3[ ] 6 0

0

d E CT
dQ o

D
Q

C C Q
rW

C D
rW

o m m D

m D m o
C D rWC

C
rWC D

C

( ( ))
2 3 2

2 3 2

3 2

3 3[ ]
2

2 3

m m D

D m
m

o
m

2

(18)

If Q ≥ rW, replaces (10) and (14) in (16):

= + ⎡
⎣

− ⎤
⎦

+ ∑ ⎡⎣ − ⎤⎦

= + ⎡
⎣

− ⎤
⎦

+

= + +

=

⎡
⎣

− ⎤
⎦

− −

E CT C C rW C Q

C C rW

C rW C D

( ) o
D
Q m

r W
Q D j

n rW

o
D
Q m

r W
Q

C Q D

Q

C D C r W C DrW
Q m D

2
3 1 2

3

(6 4 3 )
6

D
rW

o m D

2 2

2 2 2

2 2

(19)

Eq. (19) is decreasing if − − >C D C r W C DrW6 4 3 0o m D
2 2 . As Q can

achieve a maximum value per year likeD, this would be the optimal
ordering value for established conditions. If

− − <C D C r W C DrW6 4 3 0o m D
2 2 , Eq. (19) is increasing, and Q takes as

optimal value the minimum possible value, i.e. rW. However, (17) and
(19) take the same value in =Q rW , which suggests that the possibility
of a value Q < rW can exist that reduces the cost in (17). Certainly, it is
doubtful that perishable products receive only one order per year, so
the solution of Eq. (18) for the minimization of total cost will be as-
sumed.

This result is probably the most important, since by means of this
equation it is subsequently possible to find the appropriate value of Q. If
we analyze the main equation, that is, when T < W, we see that the
holding cost tends to be the one observed in the EOQ model if the total
life cycle time tends to be very large. On the other hand, the cost as-
sociated with discarded units tends to be reduced when the shelf life of
the product tends to grow. This result shows coherence of the mathe-
matical structuring for the model proposed in this work.

3. Solution method and validation

From Eq. (18) let = + −+Q Q Q( ) C D rWC
C

rWC D
C

3 3[ ]
2

2 3D m
m

o
m

. f(Q) has a

first derivative ′ = + +f Q Q Q( ) 3 C D rWC
C

2 3[ ]D m
m

, which is always clearly
positive for any value of Q ≥ 0. Therefore, f(Q) will always be a
growing function at intervals −∞ − +( , ]C D rWC

C
[ ]D m

m
and +∞[0, ) and will

be a decreasing function at interval − +( , 0)C D rWC
C

[ ]D m
m

. Clearly, =Q 0 is a
relative minimum, given that f(0) < 0. This guarantees the existence of
only one real positive root for f(Q).

Observing (17), we can see that the total expected average annual
total cost increases if unit costs CD or Cm increase. However, such cost
decreases when r and W increase. In general, the total expected cost
results are highly sensitive to the parameter W, which appears in two of
the cost components. We evaluated the limit to the cost function when
W tends to infinite:

= + ⎡⎣ + ⎤⎦ +

= +
→+∞ →+∞

E CT C C Q C

C

lim ( ) lim
W W

o
D
Q m

Q
rW D

DQ
rW

o
D
Q

C Q

1
2 6 2

2
m

This is a very interesting result since it shows that for the case of
products with a considerably large life cycle, our model converges to
the conventional EOQ. With respect to the recommended method for
finding a positive root of f(Q), we could suggest finding direct solutions
using the Cardano approximation method:

= + −

= − − + −

= − − − −

+

+

Q S S

Q S S

Q S S

( )

( )

a

S S a i

S S a i

1 1 2 3

2
( )

2 3
3

2 1 2

3
( )

2 3
3

2 1 2

1

1 1 1

1 1 1

Where:

= + + = − +

= =

= = = −

− − −

+

S R Q R S R Q R

Q R

a a a

,

,

, 0,

a a a a a a

C D rWC
C

rWC D
C

1
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As a numerical example, we can have a case with the following
information: =D 20, 000 units, =W 30 days, =C unit$500/D ,

=C unit$100/M , =C Order$100.000/O . Assuming 360 working days
per year and using the Cardano approximation method, we obtained:

Q* ≈ 808.18 E(CT(Q*)) ≈ $4′974.160.5.
To capture the stochastic nature of the willingness to purchase, an

instance of the problem was simulated in the software Arena Rockwell
14.0, with parameters previously established, using values of Q that
fluctuated between 400 and 1200, obtaining the cost graph illustrated
in Fig. 1. It is shown that the minimum cost appears close to

=Q 800, which is very close to the one predicted by this method.
We experimented with 20 randomly generated instances. In each

instance, the expected optimal cost was calculated, and the percentage
gap was determined from the optimal cost obtained by the simulation.

The purpose of the simulation model is to capture the stochastic
component of the sales phenomenon, since the cost equation proposed
here estimates the expected (average) value. The inputs of the model
correspond to the costs already defined, the annual demand and the
useful life of the product.

For each simulated instance, the optimal order quantity was theo-
retically calculated (according to the solution of Eq. (18) by the Car-
dano method). This value corresponds to an input for the simulation
model.

Then the order frequency was established for each year, using the Q
/ D ratio. This result (making the respective temporary conversion)
determined how often orders were placed. At each instant of time
(minutes, for our simulations) many possible sales were generated,
corresponding to r (dependent on D). Said lot was sent to a decision
process to determine if each unit of the lot was sold or not. The prob-
ability of sale was given by Eq. (1), being t bounded by Wmin( , )Q

D .
Within the model, internal counting variables were carried, such as I(i)

R.D.S. Díaz, et al. Operations Research Perspectives 7 (2020) 100146

4



and B(i). At the end of a simulation year, the software yielded the
average value of I(i) and the sum of all the B(i), the latter being the total
units discarded over the year. These values were substituted in Eq. (15)
to obtain the total annual real cost.

The value of Q was also an input of the model, which was then
optimized using the Input Analyzer option of the software. At each in-
stant of time, by means of a decision block, the probability of sale of a
unit was determined, taking −1 t

W as the reference probability. With
this, the number of units sold was determined at every moment. When
the end of the cycle was reached, the program calculated the total
number of units discarded and accumulated them in a global variable.
The average inventory was calculated automatically by the software.
With all these internal variables, at the end of the simulation time (1
year) the cost of the year was calculated. This cost function was used to
guide the internal optimization process of the simulator, which ulti-
mately reported the optimal value of Q and CT. The entities that cir-
culated through the model were the units demanded, which only had to
be entered into a decision block to determine whether they were sold or
not. On the other hand, fictitious entities traversed the model to de-
termine the end of a cycle and the beginning of a new one, with the
purpose of updating internal variables.

The results are shown in Table 1. As it can be appreciated, the
maximum gap found was 3.23%, and frequently, it was below 1%. This

indicates that the developed equations have a high level of accuracy
even under random conditions. The values of Q* were approximated to
the nearest integer.

3.1. Managerial implications

The overarching rationale for our proposal is that it offers a more
realistic framework for modeling inventory of perishables, which gen-
erates domain-specific results enhancing the applicability of research to
industry practice. As such, our findings have implications for practi-
tioners. In particular, the impact of deterioration over time for these
items may yield in waste that has to be disposed of, thus yielding dis-
posal costs and having a negative impact on operations.

Generally, managers should recognize that deciding what to do at
the right moment with items that could perish, typically results in po-
sitive outcomes. Hence, firms are advised to identify and evaluate the
appropriate inventory levels for perishables, which may guide their
supply chain operations to adjust and thereby avoid suboptimal out-
comes. Previous research shows many options in which managers
should analyze inventory for perishables. Reorder Point (ROP) models,
such as those referred to in our literature section, identify different
considerations and assumptions. In addition, some of the research
suggests management models for the case of gradual obsolescence of

Fig. 1. Simulated results for the proposed numerical instance for several values ofQ. Compiled by author.

Table 1
Validation of random instances through simulation. Compiled by author.

D CO CD CM W Q* Optimal Predicted Cost Optimal Cost by simulation Absolute Percentage Gap

1,000,000 200,000 100 15 10 2776 $ 12.229.166,51 $ 12.189.940,00 0,32%
20,000 40,000 1000 400 20 295 $ 5.431.085,91 $ 5.460.571,00 0,54%
60,000 300,000 20,000 2500 60 541 $ 66.420.164,08 $ 66.563.979,00 0,22%
500,000 150,000 200 60 45 9488 $ 15.794.165,30 $ 15.749.321,00 0,28%
1200 5,000,000 100,000 30,000 100 172 $ 68.867.480,93 $ 68.959.947,00 0,13%
500 30,000 50,000 20,000 50 10 $ 3.404.800,00 $ 3.405.052,00 0,01%
2000 30,000 1000 500 15 70 $ 1.719.542,86 $ 1.730.507,00 0,63%
2500 200 5 2 25 116 $ 8.628,18 $ 8.715,00 1,00%
24,000 5000 40 12 70 1046 $ 229.056,23 $ 233.125,00 1,75%
85,000 10,000 2000 350 45 323 $ 5.272.676,73 $ 5.296.112,00 0,44%
100 200 20 10 20 5 $ 4.932,50 $ 5.097,00 3,23%
12,000 400 30 5 10 95 $ 102.086,38 $ 101.406,00 0,67%
500 100 5 1 30 40 $ 2.476,40 $ 2.460,00 0,67%
7500 150 2 2 4 83 $ 21.134,77 $ 20.971,00 0,78%
35,000 220 6 4 5 187 $ 81.990,43 $ 82.319,00 0,40%
9500 1000 100 10 45 153 $ 124.089,36 $ 121.662,00 2,00%
250 2500 85 30 80 53 $ 22.976,51 $ 22.852,00 0,54%
65,000 120 3 1 12 414 $ 37.690,76 $ 37.873,00 0,48%
32,000 650 40 25 60 395 $ 105.117,62 $ 105.396,00 0,26%
24,000 10,000 200 10 90 770 $ 623.703,01 $ 628.571,00 0,77%
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products. However, we here argue that managers now really have to
pay attention to the willingness to purchase the products over time of
the customer, due to the loss of product quality. Independently from the
product degradation level for most of the cases, clients have the desire
to buy any good and only the willingness to purchase will be affected by
product quality. On the one hand, managers should consider the
benefits resulting from a more accurate model for inventory of perish-
ables, while on the other hand, they should be able to commit effort to
better understanding the behavior of a customer whose willingness to
purchase an item could decrease with the decaying quality of the goods;
therefore posing new ideas for pricing protocols such as discount po-
licies which can be a possible avenue for our research work.

4. Conclusions and recommendations

In this paper, we proposed an EOQ model for perishables, assuming
that the demand remains constant over time, whilst the purchase
probability, from the client side, decreases linearly over the product life
cycle. The principal objective was to discover the order quantity that
minimizes the annual expected total cost under the assumed conditions.

Under the established assumptions, we determined a third-order
equation to find the value of Q that minimizes the total annual expected
cost. We proved that there exists one and only one feasible solution to
said equation (only one positive root). Using the Cardano approxima-
tion method, this root could be determined in a relatively simple way.

In our model, the total expected average annual cost is highly sen-
sitive to the product's life cycle. While the life cycle increases (that is,
the product lasts longer), the total expected average cost tends to de-
crease. In fact, if life cycle tends to infinite, the model hereby presented
reduces to a conventional EOQ model. The product's life cycle is not the
only dependent variable in the model to which it shows sensitivity, but
it is our intention to show that a product's life cycle must be given a
great deal of consideration.

As with the results, in real life situations where the assumptions
come close to those proposed in our model, the inventory policy yielded
becomes very robust. As such, in scenarios where (1) replenishment
time is relatively small, (2) the units at the end of each cycle are to be
disposed of and (3) the loss of quality of the product is linear during the
span of its lifetime, then the model hereby presented could be suc-
cessfully applied. However, the analysis also takes into account that the
demand process has to show little variability.

We validated the results through simulation, considering the
random nature in the willingness of clients to purchase. Simulated in-
stances showed a high level of accuracy in the predictions of the de-
veloped equations, given that the predicted cost was diverted up-
wardsby 3.23% according to the optimal cost found by simulation.

For future research, one has to consider new variations of this
problem, such as stochastic demand; cost penalization due to unfulfilled
demand; non-linear behaviors for the loss of quality in perishables, and
other issues that may cause the model to be more applicable in real life.
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