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A B S T R A C T

Uncertainty propagation of large-scale discrete supply chains can be prohibitive when numerous events occur
during the simulated period and when discrete-event simulations (DES) are costly. We present a time-bucket
method to approximate and accelerate the DES of supply chains. Its stochastic version, which we call the L
(logistic)-leap method, can be viewed as an extension of the leap methods (e.g., τ-leap [36]and D-leap [6]
developed in the chemical engineering community for the acceleration of stochastic DES of chemical reactions).
The L-leap method instantaneously updates the system state vector at discrete time points, and the production
rates and policies of a supply chain are assumed to be stationary during each time bucket. We propose using the
multilevel Monte Carlo (MLMC) method to efficiently propagate the uncertainties in a supply chain network,
where the levels are naturally defined by the sizes of the time buckets of the simulations. We demonstrate the
efficiency and accuracy of our methods using four numerical examples derived from a real-world manufacturing
material flow application. In these examples, our multilevel L-leap approach can be faster than the standard
Monte Carlo (MC) method by one or two orders of magnitude without compromising accuracy.

1. Introduction

Supply chains are coordinated flows of materials from the suppliers
to the locations where they are consumed. Their dynamics can be very
complex due to heterogeneity and multi-scale phenomena. In manu-
facturing supply chains, resources are consumed, and products are
manufactured in the factories, parts are transported from factories to
warehouses, and final products are delivered to customers. Various
policies, for example, safety stock control [11,49], and push and pull
systems [58,59], can be designed to manage the rate of production and
the supply of inventory. Simulation is a powerful tool to model the
dynamic behavior of a supply chain. As one of the major supply chain
simulation methodologies, discrete-event simulation (DES) involves the
modeling of a system in which the state variables change in-
stantaneously at distinct points in time [47]. The method is commonly
used to analyze complex processes that are challenging with closed-
form analytical methods. Moreover, DES is widely used for supply chain
management analysis, such as manufacturing process and logistics
planning [40,51,72]. Simulations enable the design and evaluation of a
supply chain prior to its implementation by performing a what-if ana-
lysis to ensure supply chain resiliency and sustainability [47,48,61].

A DES model is rarely run only once. Multiple simulation runs are
usually required for various purposes. Because input parameters (e.g.,

the processing time of a product) are often random variables, multiple
runs with different realizations of the random input variables are re-
quired to obtain statistically meaningful outputs. Furthermore, if a
sensitivity analysis is applied on a simulation model to select input
parameters that have the greatest effect on response variables, another
layer of multiple runs is needed to vary input parameters, such as dif-
ferent distributions of processing times [50,53]. Optimization is an-
other technique that can be combined with DES to define optimal input
control variables (e.g., production capacity). Each optimization itera-
tion requires multiple simulation runs for a set of control variables
[27,42,44,60,70].

In summary, a large number of DES runs are often required for an
analysis task. As the scale of supply chains grows large, for example,
due to globalization and inter-enterprise collaboration [5,64], some
simulation models may take hours to complete one run. Therefore, the
time to perform analyses with thousands, sometimes hundreds of
thousands, of DES runs for a complex supply chain can be prohibitively
long when the standard Monte Carlo (MC) is used.

As an approximation of DES, the full simulation time can be divided
into periods of given time buckets, Δt. Time-bucket based simulation
does not model the occurrence of each event; instead, it counts the
number of events happening in each time bucket, at the end of which
the system state is updated using model equations. Therefore, in this
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approach, events can be considered to occur instantaneously at the end
of a period [48,68]. Note that our terminology “time bucket” is con-
sistent with that in the supply chain literature (e.g., [68]) in which Δt
can be equivalently denoted by “time interval”, “time leap”, and so on.
The size of the time bucket can be defined either as a fixed value or in a
time-dependent fashion. When the size of a time bucket is small enough
that each bucket has at most one event, then the model is equivalent to
DES. The advantage of the time-bucket method is that it is more scal-
able compared with DES when the size of the time bucket is relatively
large. The disadvantage is that, due to the aggregation of multiple
events, some interactions between events are lost; thus, the model is not
as accurate as DES and is less commonly used.

The τ-leap method [13,16,36,54] is essentially a stochastic time-
bucket method that has been widely used to accelerate the simulations
of chemical reactions modeled by continuous-time Markovian pro-
cesses. Rather than simulating every discrete event, the τ-leap method
simulates the stochastic change of the system state at discrete time
points using a constant propensity function to simulate the number of
processes occurring during a time bucket. Although the simulation re-
sults become less accurate due to the time buckets, significant accel-
eration can be achieved under acceptable tolerance. Recently, the D-
leap method has been proposed to accelerate the simulations of delayed
chemical reactions [6] by introducing a queue of reactions to take into
account the delays.

Our innovations are as follows. First, we extend the D-leap method
to consider the distinctive dynamical features of the manufacturing
supply chain and logistic networks in operational research. The re-
sulting L(logistic)-leap method is able to consider production time,
transportation time, limited capacity, inventory management, pull
system and back orders. Secondly, we use the MLMC method based on
time buckets to propagate the uncertainties in a supply chain, where
most of the computational work is shifted from the expensive models
(e.g., DES) to the inexpensive models defined by large time buckets. The
proposed approach is able to match the model accuracy of DES while
overcoming its scalability limitation with the help of the MLMC
method. To the best of our knowledge, this is the first time that this type
of leap method and the MLMC method have been used in supply chain
management, which opens the door to more applications of large-scale
problems in operations research and industrial practice.

This paper is organized as follows. Section 2 is a literature review on
the DES in supply chain management and leap methods. Section 3 de-
scribes the accelerated approximation of DES using the time-bucket
method and the detailed algorithms for the simulation of supply chain
features. Section 4 introduces the L-leap method, which is a time-bucket
method for simulating logistic systems driven by stochastic processes.
Section 5 presents an MLMC method in which the samples are drawn
from populations simulated using different sizes of time buckets. In
Section 6, we show the accuracy and gain in computational speed using
multiple examples. The first example models a push system, where the
production does not depend on orders. The second example is a pull
system with mixed orders of spare parts and final products. Transpor-
tation delays are also considered. The third example considers the un-
certainty propagation of a push system under parametric uncertainties.
The fourth example examines the uncertainty propagation of a pull
system under both parametric uncertainties and those driven by sto-
chastic processes. The quantities of interest are the final delivery time
of a fixed number of orders and the number of deliveries over a spe-
cified time period. We show that the error of the predictive simulations
with respect to (w.r.t.) the true solution provided by DES diminishes as
we decrease the size of the time bucket. We achieve an acceleration
factor of several orders of magnitude in computing the expected
quantities of interest using the MLMC method based on the time
buckets and L-leap, against the standard MC sampling.

2. Literature review

2.1. Discrete-event simulation in logistics and the supply chain

The DES approach is widely used in logistics and supply chain
management as a tool to simulate the change in a system state over a
time period of interest. For example, it has been used in supply chain
network structures [1,9,12], inventory management [4,7,10,15,23–26],
and supplier selection [21,22,41], and so on (see [66] for a detailed
survey on the application of DES in the context of logistics and the
supply chain). In DES, the system state variables change in-
stantaneously at discrete time points when relevant events take place.
While the definition of events is subject to the goal of the modeling,
systematic approaches can be followed to design such a simulation
[48]. The dominant type of DES is the next-event time-advance where
the time clock always leaps to the most imminent time among the times
of future events in an event list. The simulation complexity of DES is
therefore proportional to the number of events in a real system during a
simulated period, for a given number of processes. Distributed com-
putation can be used to accelerate DES. Specifically, the implementa-
tions, such as the random number generator and the manipulation of
the event list, can be parallelized. Moreover, a network can be de-
composed into several sub-networks whose simulations can be paral-
lelized. Many articles have been devoted to these topics, and detailed
surveys can be found in [28,29,56,67]. Given an event list {eventi}1⋅⋅⋅N
and the corresponding time list ⋯t{ } ,i

e
N1 the event-driven DES can be

summarized by the following pseudo code [30] of Algorithm 1.

2.2. Time-bucket method

In the time-bucket method, the system clock leaps forward to the
next discrete time instance, and all the events occurring during the
corresponding time-bucket are simulated. The time-bucket method can
be viewed as a special case of next-event time-advanced DES [47,68].
The main advantage of the time-bucket method is that it can accelerate
the simulation process if the predetermined time interval is large.
However, because the system state only changes instantaneously at the
end of each time bucket, rather than at the exact time when each event
happens, it cannot provide an accurate timestamp for all events. For
certain quantities of interest that need to be computed from the time-
stamp and system state, this method may introduce a substantial error if
the predetermined time interval is too large. In general, the procedure
and analysis of the time-bucket method have rarely been elaborated on
in operations research literature for supply chain management. The
general time-bucket method can be summarized in the following
pseudo code of Algorithm 2.

2.3. τ-leap method for the approximation of DES in chemical and
biochemical systems

The τ-leap method [36] is a widely used time-bucket method for the
simulation of discrete chemical reactions. Rather than advancing the
system clock to the next time instance when a reaction process takes
place (e.g., Gillespie algorithm [35]), the τ-leap method predicts the
number of reactions in a time interval using a random variable:

1: Input parameters: T , N, {eventi}, {te
i }

2: Initialize the timestamp t ← 0, i← 1
3: while t ≤ T AND i ≤ N do
4: simulate eventi
5: if new event occurs, update {eventi}, {te

i }, and N
6: t ← te

i , i← i + 1
7: end while
Algorithm 1. General Algorithm for Discrete Event Simulation.
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+ = ×c t τ Poi τ r tΔ ( ) ( ( )) ,p (1)

where +c t τΔ ( )p represents the total number of processes, p, happening
during +t t τ[ , ), and Poi(τ × r(t)) is a Poisson random variable with
parameter τ × r(t), where r(t) is the rate function evaluated at time t.
Based on the number of processes that occurred, we can update the
system state variables (e.g., the numbers of products). Note that if r(t)
changes during the time period τ, the method introduces a time dis-
cretization error. However, the total simulation complexity is propor-
tional to the number of time intervals, and the τ-leap method could be
much faster than simulating every event for a given numerical toler-
ance. Efforts have been made to enhance the efficiency and accuracy of
the original version of τ-leap, for instance, using efficient time interval
selection [13], postleap checking [2], and a hybrid method [54]. In the
τ-leap method, the reaction products are generated instantaneously
without any delay after molecules collide. Its extension to delayed
chemical reactions leads to the D-leap method [6].

2.4. D-leap method for simulating delayed chemical and biochemical
systems

The D-leap method [6] is an extension of the τ-leap method in that it
considers delayed chemical reactions. It counts the number of reactions
occurring during a time interval using Equation(1) and the assumption
is that the reactants are instantaneously consumed; hence, the system
state is updated by the following:

∑+ = − + = …x t τ x t k c t τ for i n( ) ( ) Δ ( ) 1, , ,i i
p

pi p s
(2)

where xi is the ith system state variable, ns is the number of system state
variables, and kpi is the consumption of xi by a single event of the pth

reaction. The earliest possible production time is time t plus the given
minimum delay of the pth reaction, whereas the latest possible finishing
time of Δcp units of the pth reaction is +t τ plus the given maximum
delay of the pth reaction. During any time interval that overlaps with the
span between the earliest possible production time and the latest pos-
sible finishing time, the number of the accomplished pth reactions,
which is a fraction of +c t τΔ ( ),p is defined by a binomially distributed
random variable. Consequently, the system state is updated in a similar
fashion as Equation (2). Nevertheless, the productions lead to positive
changes in the number of the products w.r.t. a specific process. The
products of a process can be the resources of a different process. The D-
leap constitutes the basis for our Logistic-leap method in the logistic and
supply chain contexts where the lead time of a process is usually non-
negligible.

2.5. Monte Carlo method in supply chain management

The MC method is widely used to propagate uncertainties of random
inputs to a typical quantity of interest in a supply chain
[20,43,45,62,69]. Many variance reduction techniques [46,48] (e.g.,
antithetic variate and control variate) have been applied together with
DES to increase the statistical efficiency of the uncertainty propagation.
The MLMC method has emerged recently as a powerful sampling
method to accelerate the computation of an expectation via drawing
samples from a hierarchy of models [33,34], whereas control variate

can be viewed as the simplest form of the MLMC method consisting of
two levels [34]. In [3,55] the authors applied the MLMC method and
the τ-leap method to the stochastic simulation of chemical reactions to
achieve better scalability.

3. Time-bucket approximation of DES for supply chains

Supply chains transport materials from the suppliers to the places
where they are consumed. The raw materials usually are consumed and
transformed into intermediate products. We define the set � as all the
parts, set � �⊂ as all the supplies of raw materials, and set � �⊂ as all
the final products. For example, in the supply chain of the first nu-
merical example (Fig. 3), we have eight parts, among which, three are
raw materials, and one is the final product. Hence,
� � � � � � � � �= { , , , , , , , },1 2 3 4 5 6 7 8 � � � �= { , , },1 2 3 and � �= { }8 . The
actual supply chain can be modeled as discrete mass flows with limited
capacities (i.e., the production rate of each process is bounded from
above). Specifically, a supply chain can be defined by a set of n pro-
cesses, each of which can be described as follows:

= → = = …α p j n β p k n i n{ ^ | 1: ^ } { ˜ | 1: ˜ } 1, , ,ij ij i ik ik i (3)

where, for each process i, n̂i is the number of consumed parts, ñi in-
dicates the number of produced parts, p̂ij denotes the jth consumed part,
and p̃ik represents the kth produced part. We denote αij and βik as the
integer weights corresponding to parts p̂ij and p̃ ,ik respectively. In other
words, if process i happens once, it consumes αij units of part p̂ij and
produces βik units of part p̃ik. Note that the symbols p̂ij and p̃ik are
“local” w.r.t. process i. A part may have different local symbols in dif-
ferent processes. For example, �4 is locally p̃11 in the first process and
p̂32 in the third process in the first example. By definition, � contains all
the parts in the system; hence, we have � = ∪p p{^ } { ˜ },ij ik for all i, j, and
k. In addition, we have � = ∖p p{^ } { ˜ }ij ik and � = ∖p p{ ˜ } {^ }ij ik for all i, j and k.
We denote � �∈x | | as the state vector recording the number of parts,
where | · | denotes the set cardinal. Note that the mapping �→x{ } is
bijective, where {x} is the set of the components of x. Based on the
definitions of p̂ij and p̃ ,ik we have x p̂ij as the number of the jth parts
consumed in the ith process, and, similarly, x p̃ik is the number of the kth

parts produced in the ith process. For clarity, in the following text, we
use x̂ij and x̃ik to denote these quantities. At time t, the process occurs at
a rate λi(t), which is given by the following:

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− ≥

⎧

⎨
⎪

⎩⎪

⌊ ⌋ ⎫

⎬
⎪

⎭⎪

λ t

λ if x t α λ t

t
otherwise

( )

min{^ ( ) Δ } 0

min
Δ

,i

i
max

j
ij ij i

max

j

x t
α

^ ( )ij

ij

(4)

where λi
max is the maximum production rate (capacity) associated with

the ith process, Δt is the size of the time bucket, and
�⌊ ⌋ = ∈ ≤x m m xmax{ | } is the floor function, which rounds x down to

the nearest integer. The first expression in Equation (4) shows that the
process can achieve its maximum rate if all the materials have sufficient
inventory in this time bucket; Otherwise, the rate λi is reduced to the
value that prevents negative values of the consumed materials during
this time bucket. While Eq. (4) denotes a deterministic production rate,
other alternatives are possible. For example, the consumption rate λi in
Eq. (4) can be modeled by incorporating the expected arrivals of the
consumed parts [19] (i.e., when one part, e.g., p̂ ,ij does not have suf-
ficient inventory, its availability in the next time bucket may be esti-
mated by checking the scheduled productions in the preceding pro-
cesses over this time bucket). If the number of scheduled productions
plus the current inventory is larger than λ tΔ ,i

max the maximum capa-
city, λ ,i

max can still be achieved. Otherwise, the consumption rate λi can
be adjusted to match the summation of the expected arrival of p̂ij and its
current inventory. Nevertheless, we use Equation (4) in our approach

1: Input parameters: T , Δt
2: Initialize the timestamp t ← min(Δt,T )
3: while t ≤ T do
4: simulate all the events occurred during t and t + Δt
5: t ← t + Δt
6: update system vector
7: end while

Algorithm 2. General Algorithm for Time-Bucket Method.
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because it is more likely to prevent the negative inventory value of p̂ij.
In the case in which a single part can be consumed by multiple pro-
cesses, we assume this part is evenly consumed by all the following
processes.

The time bucket simulation of a supply chain process can be split
into two major phases. The first phase is material consumption, where
each process consumes the necessary parts instantaneously according to
its production rate - λi(t). The second phase is delayed production,
where due to the required processing time (lead time) in each process,
we consider that all the productions require delays after materials have
been instantaneously consumed. Our consumption-delayed-production
framework follows the modeling procedures of the D-leap method for
the delayed chemical reaction network simulation in [6]. More im-
portantly, in the context of logistics, we enrich the D-leap method with
several salient features of a supply chain: transportation, order-driven
production (pull system), and priority production. We describe in de-
tails the time-bucket simulation of consumption-production in
Sections 3.1 and 3.2.

3.1. Consumption

The consumption of parts during each time bucket is considered
instantaneously at the beginning of every time bucket. In each time
bucket Δt, the total number of the triggered ith process is the following:

=C t λ t tΔ ( ) ( )Δ .i i (5)

The state vector is then updated by the following equation:

= − − = ⋯x t x t t α C t j n^ ( ) ^ ( Δ ) Δ ( ), 1, , ^ .ij ij ij i i (6)

Note that it is possible to have a negative state variable x t^ ( )ij in (6).
To prevent this, we enforce a correction step that offsets the computed
number of triggered process by the amount related to the negative
states. For the sake of conciseness, we omit the variable t and use ΔCi

instead of ΔCi(t) in the remainder of this paper.
At each time point, we determine whether the executions of the ΔCi

processes should be completed or not, and estimate the number of
completions, which is a fraction of ΔCi. In the implementation, a queue
structure is created to store the necessary information, i.e., the index of
the delayed process d ,nq where = …n N1, , ,q q Nq is the number of pro-
cess batches in the queue; the number of the delayed processes Qn

delay
q ;

the earliest time of the production being completed tn
s
q ; and the time

span between the earliest and latest times of the production being
completed tn

span
q .

The earliest production time and the total production period of the
initiated processes can be computed as follows:

= +t t t̂ ,n
s

d
min

q nq (7)

= + + − = + −t t t t t t t tΔ ^ Δ ^ ^ ,n
span

d
max

n
s

d
max

d
min

q nq q nq nq (8)

where t̂i
min

and t̂i
max

are the minimum and maximum lead times for
each process i respectively. The definitions are schematically shown in
Fig. 1.

We present the simulation algorithm of consumption for process i in
Algorithm 3, which is a deterministic version of the consumption al-
gorithm in [6].

3.2. Delayed production

Productions are expected as long as Nq ≥ 1. The simulation algo-
rithm should determine whether any scheduled production is due to
occur in the current time bucket (i.e., if ∈ ⋯n N{1, , }q q exists that sa-
tisfies ≤ < +t t t tΔn

s
q ). Assuming that the productions are uniformly

distributed over time, the number of completed productions are pro-
portional to the time fraction + −t t tΔ n

s
q w.r.t. the total span tn

span
q .

Consequently, we update the associated components of the state vector
x{ ˜ },ik Q ,n

delay
q t ,n

s
q and tn

span
q . The details of the computations related to the

delayed production are summarized in Algorithm 4, which is a de-
terministic version of the production algorithm in [6].

3.3. Push system

A push system, such as material requirement planning [59], controls
the production flow moving from the supply end to the final retailer end
according to the prediction of demands. Incorporating Algorithms 3 and
4, we present Algorithm 5, which simulates a push system of the supply
chain. We may need to adjust the length of the last time bucket to
ensure that the simulation stops at =t T (lines 11–13 of Algorithm 5),
where T is the end time of the simulation.

3.3.1. Inventory management
Inventory management is usually an important part of a push

system. Safety stock is a popular and easy-to-implement remedy to
mitigate disruptions in supply-chain operations [11,47,49,63], which
can be caused by the temporal variations of product orders and the
uncertainties in the supply. One strategy we can use to update the in-
ventory is by adding the replenishment order quantity when the in-
ventory is less than the safety stock, as follows:

= ⎧
⎨⎩

≤
x t

S if x t x
otherwise

( )
( )

0
,p

b p p p
s

(9)

where �∈p is a raw material, xp
s is the safety stock, and Sp is a constant

used as a safeguard for the stock of part p. Another possible way to
place the replenishment order could be as follows:

= ⎧
⎨⎩

− + ≤
x t

x x t S if x t x
otherwise

( )
( ) ( )

0
,p

b p
s

p p p p
s

which is more resilient toward uncertainties in the supply chain net-
work. On the other hand, when we increase the amount of inventory,
we expect increased storage costs. Finding a good balance between the
safety stock x ,p

s safeguard Sp, order delay t ,p
d and costs remains chal-

lenging in practice. The optimal strategy for inventory management is
problem specific, and extensive literature has been devoted to this topic
[18,37,63,71].

Let t̄p denote the time when the next supply of part p arrives. Given a
constant M > T, our inventory management can be summarized as
shown in Algorithm 6 for each time t when we update the system state.

3.4. Pull system

A pull system, such as the Toyota production system [58], also
called just-in-time production or lean manufacturing, is a different
policy design of manufacturing supply chain compared with a push
design in that its production and inventory management are driven by
incoming orders. In this section, we describe the time-
bucket algorithms for order projection before we introduce the full
time-bucket algorithm of the pull system. The inventory management
simulation should remain the same as described in Section 3.3.1.

3.4.1. Projected order and pull system
Once a demand order is given, a supply chain system first de-

termines whether sufficient inventory exists to meet the demand. IfFig. 1. Timeline of the processes started during Δt.
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1: Input parameters: t,Δt, �x, n̂i,Nq, λ
max
i , {αi j}, t̂min

i , t̂max
i

2: Compute the total number of the triggered ith processes using Equation
3: Update state vector {x̂i j} using Equation
4: Check for negative values in {x̂i j}. If x̂iJ is the smallest negative value in {x̂i j}, reduce the number of the triggered ith processes

by −|x̂iJ |/αi j and repeat Step 3
5: Increase the queue length by one: Nq ← Nq + 1
6: Record the current process index in the queue structure: dNq ← i

7: Record the current consumption in the queue structure: Qdelay
Nq
← ΔCi

8: Compute the earliest production time ts
Nq

and the production period tspan
Nq

using Equations and , respectively

Algorithm 3. Consumption.

1: Input parameters: t, Δt, Nq, {ñi}, �x, {βik}, {Qdelay
nq
}, {ts

nq
}, {tspan

nq
}, {dnq }

2: for nq ∈ {1, . . . ,Nq} do
3: Get the process index from queue structure: i← dnq

4: if tspan
nq
> 0 AND ts

nq
< t + Δt then

5: Compute the number of finished processes in the current time bucket: ΔPi ← Qdelay
nq

min(
t + Δt − ts

nq

tspan
nq

, 1)

6: Update state vector: x̃ik(t)← x̃ik(t − Δt) + βikΔPi, k = 1, . . . , ñi

7: Update queue structure: Qdelay
nq
← Qdelay

nq
− ΔPi

8: Update queue structure: ts
nq
← t + Δt

9: Update queue structure: tspan
nq
← max(0, tspan

nq
− (t + Δt − ts

nq
))

10: end if
11: end for

Algorithm 4. Production.

1: Input parameters: T , Δt, n, {ñi}, {n̂i}, {αi j}, {βik}, {λmax
i }, {t̂min

i }, {t̂max
i } and {x̂i j(0)}

2: Initialize the queue length and the first time t > 0: Nq ← 0, t ← min(Δt,T )
3: while t ≤ T do
4: x(t) = x(t − Δt)
5: for all i ∈ {1, . . . , n} do
6: Apply Algorithm 3 for consumption
7: end for
8: if Nq ≥ 1 then
9: Apply Algorithm 4 for productions

10: end if
11: if t + Δt > T then
12: Δt ← T − t
13: end if
14: t ← t + Δt
15: end while

Algorithm 5. Push System of a Supply Chain.

1: Input parameters: t, �x, {td
p}, {t̄p}, M, {xs

p}, {S p}
2: for all p ∈ S do
3: Compute the back order quantity xb

p using
4: if t ≥ t̄p then
5: Back order arrived. Add it into the state vector: xp ← xp + xb

p
6: Reset the next arrival time: t̄p ← M
7: else if t < t̄p AND t̄p = M AND xb

p > 0 then
8: Compute the next back order arrival time: t̄p ← t + td

p
9: end if

10: end for

Algorithm 6. Inventory Management.
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there is insufficient inventory to fulfill the demand, the supply chain
needs to start the production to fill the gap. Hence, we need to back-
track to determine whether the existing inventories of all the inter-
mediate parts can satisfy their own demands.

To guarantee that all the demands are satisfied, the projected ac-
cumulated demand gp, which includes the number of parts that are
consumed in the intermediate processes, should be calculated using the
following recursive function:

�

∑ ⎜ ⎟

=

⎧

⎨

⎪

⎩
⎪

∈

⎛
⎝
⌈ ⌉⎞

⎠
+

=

g t

g t if p

α
g

β
g t otherwise

( )

^ ( )

max ^ ( )
,p

p

i j p p
ij

k

p

ik
p

{( , ) | ^ )}

˜

ij

ik

(10)

where = ∑ ≤g t g τ^ ( ) * ( )p τ t p is the total order of part �∈p cumulative in
time up to t, where {τ} are discrete time points in the simulation, g τ* ( )p
is the incoming order of part �∈p at time τ, and

�⌈ ⌉ = ∈ ≥x m m xmin{ | } is the ceiling function, which rounds x up to
the nearest integer. The second expression of Equation (10) consists of
the direct order of part p and the demand associated with its “offspring”

parts: ∑ ⌈ ⌉= ( )α maxi j p p ij k
g

β{( , ) | ^ )}ij

pik

ik

˜ .

This recursive projection can be visualized by a process starting
from the final product. For example, consider a small supply chain that
involves four parts as shown in Fig. 2. Assume we have some spare part
orders at time t for parts B and D, and each order requires 100 units.
Using backward recursion (10), we can obtain the projected demands
for parts A, B, C, and D as 200, 200, 100, and 100, respectively.

The projected value gp indicates the necessary quantity of part p that
must be produced to satisfy the given orders. Quantity −g ĝp p re-
presents the least amount of part p that should be consumed in the
related processes. The estimated consumption according to Eq. (5) may
be larger than −g ĝp p during a given Δt. In this situation, we introduce a
variable flag to control the consumption. The value of flag is determined
by comparing the accumulated consumption

= ∑ ∑≤ =c t α C τ( ) Δ ( )p τ t i p p ij i{ | ^ }ij
with −g ĝp p. If > = −c t g g( ) ^ ,p p p then

part p has already been consumed sufficiently, and no more consump-
tion should happen. The projected order and pull strategy is summar-
ized in Algorithm 7. Finally, Algorithm 8 lays out the simulation
iterations of a pull system.

Remark 1. The simulation using the proposed algorithms (Algorithms 5
and 8) converges to the results from the DES, when the time interval Δt
is small enough such that each individual event is resolved in the
simulation. We numerically show this in the first example.

3.5. Hybrid system

A hybrid system is a combination of push and pull strategies
[31,32,38,39]. In a hybrid system, some of the production stages are
organized by push strategies due to a low level of uncertainty of the
demand from their following stages; the production at the other stages,
such as the final assembly, is organized by a pull strategy due to the
high level of demand uncertainty. The corresponding time-bucket im-
plementation would combine the push and pull strategies described in
the previous sections on a system level.

4. Stochastic time-bucket method: L-leap

In the previous sections, we presented the deterministic time-bucket
approximation of DES, where the number of processes occurring during
a fixed time interval is a deterministic value (i.e., =C λ t tΔ ( )Δ ,i i
= ⋯i n1, , ). By introducing randomnesses into the simulation, it allows

us to better understand the potential risk in the supply chain system.
Similar to D-leap [6], we treat both the number of triggered processes,
ΔCi, and the number of accomplished processes, ΔPi, as random vari-
ables. Note that our framework can extend easily to model the un-
certainties from other sources, such as the demand and supply.

We use the Poisson distribution to model the number of processes
occurring in Δt with parameter λiΔt [6,48]:

∼ = ⋯C Poi λ t i nΔ ( Δ ), 1, , ,i i (11)

and the binomial distribution to model the number of productions
[6,48] in + −t t tΔ n

s
q given the fixed number of production, Q ,n

delay
q

during tn
span
q :

∼
+ −

= ⋯P B Q
t t t

t
n NΔ ( , min(

Δ
, 1)) 1, , .d n

delay n
s

n
span q qnq q

q

q (12)

Note that binomial sampling leads to uniformly distributed production
over the production span in the continuous time limit as Δt → 0.

In addition, Algorithms 3 and 4 can be easily extended to their
stochastic version using (11) and (12). The stochastic consumption and
production can be embedded in the simulation flow of Algorithm 8,
which leads to a new stochastic simulation strategy. We call it the L
(logistic)-leap method, where we use a constant average production
rate, Boolean values associated with the inventory policies, and the
order projections at time t to predict the productions during t and
+t tΔ . There is a finite probability at every time step that the computed

number of parts becomes negative because the number of processes ΔCi

generated in (11) can be arbitrarily large. To prevent this, we enforce a
correction step that effectively constrains the Poisson distribution to a
feasible domain.

Compared with the exact simulation of the DES, the approximation
used here has the flexibility of accelerating the computation under
prescribed numerical tolerance. Indeed, we show that uncertainty
propagation in a supply chain can be dramatically accelerated without
sacrificing any accuracy if we use the time-bucket simulation in a co-
ordinated way. The L-leap method we are using has a piece-wise con-
stant rate function, and its stability can be proved using the approach
described in [14].

5. Uncertainty propagation using time bucket simulation and the
MLMC method

In this section, we describe the problem of colorredforward un-
certainty propagation, the MC discretization of an expectation, and the
MLMC approach to compute the expectation. The MLMC method was
combined with τ-leap for uncertainty quantification in the context of
stochastic chemical reactions in [3,55].

Forward uncertainty propagation is concerned with the estimation
of the expected value of a quantity of interest(q), such as the delivery

Fig. 2. The flowchart on top shows two orders on parts B and D, and each order
requires 100 units. The bottom flowchart shows the projected demand of each
part.
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time of the final products. The standard MC estimator is given by the
following

�∑ ⎜ ⎟= + ⎛
⎝

⎞
⎠=

E θ θq ω
N

q ω
N

[ ( , )] 1 ( , ) 1 ,θ ω
s k

N

k k P
s

,
1

s

(13)

where θ is the vector of random parameters, ω is the noise that perturbs
the system state variables dynamically, and Ns is the number of sam-
ples. The notation of a sequence of random variables �=Y d( )N P Ns s in-
dexed by Ns means that, for any ϵ > 0, a finite K and a finite N0 exist,
such that, for any Ns > N0, the probability >Pr Y Kd( )N Ns s is smaller
than ϵ. Assigning a tolerance ϵs and a confidence level α on the statis-
tical error leads to the following

∑⎛

⎝
⎜ − < ⎞

⎠
⎟ =

=

θ E θPr
N

q ω q ω α1 ( , ) [ ( , )] ϵ .θ
s k

N

k k ω s
1

,

s

(14)

Considering the central limit theorem (CLT) (i.e.,
�∑ − ∼ → ∞= θ E θq ω q ω as N( , ) [ ( , )] (0, )θN k

N
k k ω

V
N s

1
1 ,s

s
s

), we can
equivalently express Eq. (14) using the distribution function of a stan-
dard normal:

= +N
V

αΦ(
ϵ

) 1
2

.s s

Consequently, we obtain the expected number of samples to control the
statistical error in probability:

= −N Vc ϵ ,s α s
2 2 (15)

where V is the variance of the quantity of interest, = − +c Φ ( )α
α1 1

2 is the
inverse distribution function of the standard normal distribution, and ϵs
is the tolerance on the absolute error of the MC estimator. Then, the
total computational cost of a standard MC sampler is as follows:

= −C C Vc ϵ ,mc m α s
2 2 (16)

where Cm is the average cost of a single DES.
The MLMC method is optimized in the sense that the total compu-

tational cost is minimized for a given tolerance of the numerical error.
In the hierarchy of models, high-level models are more accurate and
computationally more expensive than low-level models. Provided that
the expectation and variance of the difference between the approximate

and true solutions diminish at certain rates as the level increases, we
can construct an MLMC sampler that can be several orders more effi-
cient than the standard MC method. Note that the standard MC method
would put all of its samples on the highest level to control the bias of
the estimator. Let ql denote the corresponding level l approximation of
the quantity of interest q. Assume that the numerical discretization
error is bounded uniformly in the probability space as follows:

�− =E q q t( ) (Δ ) ,l l
a (17)

where Δtl is the size of the time bucket on level l, �∈ +a is the con-
vergence rate of the numerical discretization, and the notation

�=Y d( )t tΔ Δ indexed by Δt is the deterministic version of �=Y d( ),t P tΔ Δ
which means that a finite K and a finite Δt0 exist, such that, for any
Δt < Δt0, YΔt ≤ KdΔt.

The expectation in Equation (13) can be rewritten as a telescopic
sum as follows:

�∑= − + =
=

− −E Eq q q t q( ) ( ) (Δ ) , with 0 .
l

L

l l L
a

0
1 1

(18)

Furthermore, we can write the first term on the right hand side
(r.h.s.) of Eq. (18) as a summation of sample averages, and Eq. (18)
becomes the following:

� �∑ ⎜ ⎟= + ⎛
⎝

⎞
⎠
+ =

=
−E q q

N
t q( ) ^ 1 (Δ ) , with 0 ,

l

L

P
l

L
a

0
1

(19)

where

∑ ∑= −
= =

−q
N

q q^ 1 ( ) ,
l

L

l k

N

l
k

l
k

0 1
1

l

(20)

is the MLMC estimator of q, �∑= ( )l
L

P N0
1

l
is the statistical error, and

� t(Δ )L
a is the numerical bias. A heuristic argument on the computa-

tional advantage of using this estimator is the following: the variance of
− −q ql l 1 becomes very small as l increases; hence, few high-level sam-

ples are drawn while most of the samples are shifted to the lower levels
where the computations are fast.

Next, we optimize the computational cost of the MLMC estimator
for given tolerances on the bias and statistical error, which are written
as follows:

Fig. 3. A manufacturing system with five processes
and eight parts in Section 6.1.

1: Input parameters: n, {ĝp}, {cp}, {αi j}, {βik}
2: for all i ∈ {1, . . . , n} do
3: f lagi ← 0
4: end for
5: for all p ∈ P do
6: compute the projected accumulated demand gp using
7: if cp < gp − ĝp then
8: for all i ∈ {i | ∃ p̂i j = p} do
9: the process that produces p still needs to be continued by setting f lagi ← 1

10: end for
11: end if
12: end for

Algorithm 7. Projected Order and Pull Strategy.
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− =E q q( ) ϵ ,L b (21)

− < =EPr q q α(|^ ( )| ϵ ) ,L s (22)

where ϵb is the tolerance for the bias and ϵs is the tolerance for the
statistical error. Note that we can use the CLT to convert Eq. (22) to the
following variance constraint:

=Var q
c

(^)
ϵ

.s

α

2

2 (23)

The maximum level can be obtained from Eqs. (17) and (21):

=L
a

log1 (ϵ ) ,b2

assuming that =− t2 Δl
l.

The optimal number of samples on each level can be obtained by
minimizing the total cost under the constraint of Eq. (23) on the var-
iance of the estimator:

∑ ∑= … = ⎡

⎣
⎢ + ⎛

⎝
⎜ − ⎞

⎠
⎟
⎤

⎦
⎥

= … = =

N l L C N λ V
N c

{ , 0, , } arg min
ϵ

,l
opt

N l L l

L

l l
l

L
l

l

s

α{ , 0, , } 0 0

2

2
l

where Cl is the average computational cost of − −q q ,l l 1 Vl is the var-
iance of the random variable − −q ql l 1 and λ is a Lagrangian multiplier
(by an abuse of notation).

Solving the above minimization problem leads to the following

=
∑

==N V
C

C V
cϵ̄

with ϵ̄
ϵ

.l
opt l

l

l
L

l l

s
s

s

α

0
2

2
2

2

Consequently, the optimal total computational cost of the multilevel
estimator is as follows:

∑ ∑

∑

=
∑

= ⎛

⎝
⎜

⎞

⎠
⎟

= =

=

=

−

C N C V
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L

l l
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l

L
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l

l

l
L

l l

s

l

L

l l s

0 0

0
2

0

2
2

It is common that the variance Vl and cost Cl have the asymptotic
bounds: �=V t(Δ )l l

b and �= −C t(Δ ),l l
g where b and g are the rates that

describe the algebraic decrease/increase of the variances and compu-
tational costs, respectively. In the cases where

> > > >⋯>>C V C V C V ,L L0 0 1 1 the total cost is represented by −C V ϵ̄s0 0
2. In

the cases where > > > >⋯>>− −C V C V C V ,L L L L1 1 0 0 the total cost is re-

presented by =− − −
−

C V C Vϵ̄ ϵ ϵ̄L L s b s
2

0 0
2

g b
a . In the cases where

= = ⋯=− −C V C V C V ,L L L L1 1 0 0 the total cost is
=− −L C V C V log aϵ̄ ( ϵ ) ϵ̄ /s b s

2
0 0

2
0 0 2

2 2 2. Note that, in the literature, it is
common to impose a total tolerance ϵ2 on the mean square error of the
MLMC estimator and to split the error budget into two parts - θϵ2 and
− θ(1 )ϵ2 where (0 < θ < 1) on the bias and variance [33,34,52]. We

give an explicit confidence level to the statistical error control in this
study, which is consistent with the literature [8,17,55].

Remark 2. In the case where CL ≈ Cm, the complexity of a standard MC

sampler is � ⎛
⎝

⎞
⎠

− −ϵ̄ ϵ ,s b
2

g
a where −ϵ̄s

2 is proportional to the number of

samples of a standard MC method and −ϵb

g
a is proportional to CL, the

computational cost of each sample on the highest level L. Therefore, the
computational complexity of MC (16) will always be asymptotically
higher than those that can be achieved by the MLMC method, namely

�
−(ϵ̄ ),s

2
� ⎜ ⎟⎛
⎝

⎞
⎠

− −
−

ϵ ϵ̄ ,b s
2

g b
a and �

−log(( ϵ ) ϵ̄ )b s2
2 2 .

Remark 3. The terms ql
k and −ql

k
1 in Eq. (20) should always be

computed using the same realization of the random parameters as
their inputs to ensure the correlation between ql and −ql 1. In the cases in
which the randomness is driven by stochastic processes, we adopt the
coupling scheme proposed in Algorithm 2 of [3]. The key idea of this
algorithm is to use the additivity property of Poisson processes to
tightly correlate two processes on different levels. For the sake of
completeness, we describe the coupling procedure as follows. The
processes associated with ql

k and −ql
k

1 at time steps t, +t tΔ ,l and
+ −t tΔ l 1 are simulated as in Algorithm 9. In this way, two processes on

two consecutive levels can be coupled, and the variance of − −q ql l 1 can
be effectively reduced. This approach is used in our final example. We

1: Input parameters: T , Δt, n, {ñi}, {n̂i}, {αi j}, {βik}, {λmax
i }, {t̂min

i }, {t̂max
i }, {x̂i j(0)}, {td

p}, {t̄p}, M, {xs
p}, {S p}, {ĝp}

2: Initialize the queue length Nq ← 0; timestamp t ← min(Δt,T ); next back order arrival time {t̄p} ← M; accumulated consump-
tion {cp} ← 0

3: while t ≤ T do
4: x(t) = x(t − Δt)
5: Apply Algorithm 6 to compute back order
6: Apply Algorithm 7 to compute the projected order quantities
7: for all i ∈ {1, . . . , n} do
8: if f lagi > 0 then
9: Apply Algorithm 3 for consumption

10: for all j ∈ {1, . . . , n̂i} do
11: Update the accumulated consumption: cp̂i j ← cp̂i j + αi jΔCi

12: end for
13: end if
14: end for
15: if Nq ≥ 1 then
16: Apply Algorithm 4 for productions
17: end if
18: if t + Δt ≥ T then
19: Δt ← T − t
20: end if
21: t ← t + Δt
22: end while

Algorithm 8. Time-Bucket Simulation of the Supply Chain-Pull System.
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can likely further reduce the variance of − −q ql l 1 by coupling the
binomial random variables in Eq. (12), which are associated with two
consecutive levels. One option is to first convert the binomial random
distributions to their approximate Poisson random distributions, whose
average number of events per interval equals the mean of the
corresponding binomial random distributions [57], and then use the
additivity property of Poisson processes to perform the coupling.
Nevertheless, we achieved accelerated results, although we did not
couple the binomial random variables in the last example because the
coupling of the Poisson processes on two consecutive levels provided an
effective reduction of variances.

6. Experimental validation

In this section, we present four examples of numerical experiments
with increasing complexities. The first example is a manufacturing
material flow simulated using deterministic and stochastic time-bucket
methods. The second example is a pull system considering inventory
replenishment, priority delivery, and transportation delays simulated
using time-bucket methods. We carried out uncertainty propagation
using the MLMC method in the third and fourth examples. We used
MATLAB to implement the time-bucket algorithm and built our code of
the MLMC method on the original version from https://people.maths.
ox.ac.uk/gilesm/mlmc/.

6.1. time-bucket approximations of a simple push supply chain network

We considered a supply chain system for manufacturing industry,
which is schematically shown in Fig. 3. It involves five processes and
eight parts, and we show the consumption-production relationships in
Eqs. (24)–(28). The parts on the left hand side of the equations are
instantaneously consumed when the processes are started, while the

parts on the r.h.s. are produced after certain periods of delays, char-
acterized by the production time/lead time of each process. The pro-
duction rate, which describes the capacity of a process, is the number of
parts that are processed in a time unit (e.g., one day).

� �→2 4 (24)

� �→3 5 (25)

� � �+ →1 4 6 (26)

� �→5 7 (27)

� � �+ →6 7 8 (28)

A push system starts the production process according to the de-
mand prediction. We assume the following initial conditions:

= =x t( 0) 1000,1 = =x t( 0) 500,2 and = =x t( 0) 1000,3 which describe
the initial inventory levels of � ,1 � ,2 and �3. For all �∉i (i.e., the in-
termediate and final products), we let = =x t( 0) 0i . First, we assume
the deterministic production rates of =λ 8,1 =λ 8,2 =λ 4,3 =λ 8,4 and

=λ 25 . We also assume the processing time is deterministic (i.e.,

=t t^ ^ ,i i
max min

= ⋯i 1, ,5, which are =t̂ 1,1
min

=t̂ 1,2
min

=t̂ 10,3
min

=t̂ 1,4
min

and =t̂ 105
min

).
Fig. 4 shows the time histories of the state vector, which represents

the number of each part in the system at any given time, simulated
under two different values of the time bucket. The time-bucket ap-
proximation can capture the main dynamic features of the system, even
when a coarse time bucket size, =tΔ 16 days, is used. The monotonic
decrease of �1 stops at 500 parts due to the initial inventory level of �2.
In addition, x8 monotonically increases after an initial period of
waiting, which is attributed to the production delays. The dynamics of
the intermediate parts, � ,4 � ,5 � ,6 and � ,7 are primarily determined by
their consumption and production rates.

Fig. 5 illustrates that the time-bucket method converges to the
“ground truth” computed using DES when Δt reduces from 32 days to 4
days. The error is smaller than 2% when the time bucket is smaller than
4 days.

The absolute error of the 200-day production decreases linearly
when the time-bucket size decreases as shown on the left in Fig. 6. The
CPU time of the time-bucket approximation increases linearly as the
number of time buckets increases during the simulation time (the CPU
time is an average value over 100 repetitive runs).

Next, we use the L-leap method to approximately simulate the sto-
chastic system where the state vector is dynamically driven by a Poisson
process. Fig. 7 visualizes 1000 trajectories using identical initial data. In
addition, the average trajectories shift from left to right when we re-
duce Δt; for example, the 500th �8 is produced in around 300 days
when =tΔ 16 days, while it is produced in around 270 days with =tΔ 2
days. This is due to the artificially delayed availability of its previous
parts when the time bucket is coarse.

for j = 0, 1 do
A1 = min(λi(x̂l

i j(t + j × Δtl)), λi(x̂l−1
i j (tn)))

A2 = λi(x̂l
i j(t + j × Δtl)) − A1

A3 = λi(x̂l−1
i j (t))) − A1

ΔC1 = Poi(A1 × Δtl)
ΔC2 = Poi(A2 × Δtl)
ΔC3 = Poi(A3 × Δtl)
x̂l

i j(t + ( j + 1) × Δtl) = x̂i j(t + j × Δtl) − αi j × (ΔC1 + ΔC2)

x̂l−1
i j (t + ( j + 1) × Δtl) = x̂i j(t + j × Δtl) − αi j × (ΔC1 + ΔC3)

end for
t = t + Δtl−1

Algorithm 9. Algorithm to couple the consumptions on levels l and −l 1.

Fig. 4. The time history of the state vector in the push system in Section 6.1. From left to right, figures present the case for =tΔ 16 days and =tΔ 2 days, respectively.
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6.2. time-bucket approximations of a complex pull system

This example is a pull system dealing with mixed orders of spare
parts and final products while considering transportation time. The
system receives spare part orders of � ,4 � ,5 � ,6 and �7 every 50 days.
Meanwhile, the following inventory policy is adopted to refill � ,1 �2 and
�3: when the quantity of a part in inventory falls below 200, replen-
ishment orders of 200, 250, and 300 are placed for � ,1 � ,2 and � ,3 re-
spectively. The delivery delays are 15, 20, and 30 days for � ,1 � ,2 and
� ,3 respectively. Moreover, each of the parts has an initial inventory of
500. In addition to the spare part orders, we place three orders of final
products on the first day, the 100th day, and the 200th day, and each
order consists of 100 final products �8. Upon the receipt of final product
orders, priority is given to the final product production over spare part
orders.

Additionally, we include the transportation time between con-
secutive processes. The transportation of products is modeled as addi-
tional processes characterized by transportation rates and transporta-
tion delay time (similar to the production rates and processing time of a
production process). The new system is shown in Fig. 8, where the first
five processes are the original processes, and the second set of five
processes are the transportation processes. For Processes 6 to 10, we use
transportation rates = ∀ ∈ ⋯λ i8, {6, ,10}i and the constant transpor-

tation delay time =t t^ ^ ,i i
min max

at 10, 10, 10, 50, and 10 days.
Fig. 9 shows the simulated numbers of parts in the system as they

change over time using two different lengths of time buckets (i.e.,
=tΔ 16 and 2 days). The start of the delivery of the final product �13

has been shifted to a later date compared to that of the case without
transportation. Due to the creation of the new processes, we can si-
mulate the number of goods in the buffers right after their production,
during the transportation, and in the buffers before their instantaneous
consumption in the following process.

Additionally, we simulate a stochastic pull system with mixed

orders and transportation using the L-leap method. We present the
average number and its 95% confidence interval in 700 days for part �3
in Fig. 10. Very large uncertainties exist at the points where the in-
ventory can be refilled.

6.3. uncertainty propagation using the MLMC method - push system

We use the MLMC method to compute the expected number of �8
delivered in 300 days in the previous push system. We consider 13
random parameters (i.e., −λ λ1 5 are the production rates of the pro-
cesses −1 5, =x t( 0),1 =x t( 0),2 and =x t( 0)3 are the initial inventories
of � �− ,1 3 and = ⋯t i^, 1, ,5i are the processing times of processes
−1 5). The parameters are independently uniformly distributed as

follows:

� � �

� �

� �

�

� � � �

�

∼ ∼ ∼

∼ ∼

= ∼ = ∼

= ∼

∼ ∼ ∼ ∼

∼

λ λ λ

λ λ

x t x t

x t

t t t t

t

(8, 12) , (8, 12) , (4, 6) ,

(8, 12) , (1, 3) ,

( 0) (800, 1200) , ( 0) (300, 700) ,

( 0) (800, 1200) ,
^ (1, 2) , ^ (1, 2) , ^ (10, 20) , ^ (1, 2) ,
^ (10, 50) .

1 2 3

4 5

1 2

3

1 2 3 4

5

We evenly split the total tolerance between the bias and statistical
error (i.e., = TOLϵ 0.5 ,b

2 2 = TOLϵ̄ 0.5s
2 2). The estimated values of a, b, and

g are 1.5, 2, and 1, respectively. They are empirically estimated as the
slopes of the regression curves that fit the logarithm of the data, namely
the sample averages, variances, and computational costs of − −q ql l 1
against the first five levels. To understand the errors of the estimated a,
b, and g, we repeat the regression process 100 times, during which
10,000 independent samples of − −q ql l 1 are used on every level. The
sample averages and variances of − −q ql l 1 are plotted in Fig. 11 (a) and
(b), respectively. The regression results are = ±a 1.31 0.06,
= ±b 2.03 0.09, and = ±g 0.97 0.15 with a 99.7% confidence interval.

Fig. 5. Push system in Section 6.1. Left figure is the simulated evolution of the number of final products (�8); right figure is the convergence of the number of
products produced in 200 days w.r.t. the reciprocal of the size of time bucket. The reference value is 357.

Fig. 6. Push system Section 6.1. Left figure is the absolute error of the 200 days production w.r.t. the reciprocal of the size of the time bucket. Right figure is the CPU
time averaged over 100 repetitive runs of the simulation up to 200 days, w.r.t. the size of the time bucket.
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Theoretical estimation of the convergence rates can be carried out
following a similar procedure associated with Theorems 1 and 2 in [3],
and we leave it to a different paper. Note that in this example, we do
not use the Poisson and binomial random variables in the path simu-
lation; in other words, we only model the uncertainties introduced by

the aforementioned 13 parameters.
We show the numbers of samples in Table 1. The number of re-

quired levels commonly increases as we decrease the tolerance.
Nevertheless, we have overkilled the bias when the tolerances are set to
be 2.5% and 0.5%. Consequently, the number of levels does not change

Fig. 7. The time history of the state vector in a stochastic push system in Section 6.1. From left to right, figures present the case for =tΔ 16 days and =tΔ 2 days,
respectively.

Fig. 8. A modified manufacturing system which includes transportation in Section 6.2.

Fig. 9. The time history of the state vector in the complex pull system with transportation in Section 6.2. From left to right, the trajectories are simulated using time
buckets =tΔ 16 days and =tΔ 2 days, respectively.

Fig. 10. The stochastic pull system with mixed orders and transportation in Section 6.2. From left to right, =tΔ 16 days and =tΔ 0.5 days, respectively. .
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when the tolerances decrease to 1.25% and 0.25%.
The results and costs of the MLMC estimator are listed in Table 2.

We achieve 3.27 times acceleration when the tolerance is 30(7.5%), 7
times acceleration when the tolerances are 10(2.5%) and 5(1.25%), and
70 times acceleration when the tolerances are 2(0.5%) and 1(0.25%).
The time-bucket size of the MC method is chosen as the same of the
deepest level of corresponding MLMC. The rationale is stated previously
in Remark 2.

6.4. uncertainty propagation using the MLMC method - pull system

In the last example, we considered uncertainty propagation in the
pull system given in Section 6.2. We varied 23 parameters in the

system, where −λ λ1 5 are the average production rates of corre-
sponding processes −1 5, −λ λ6 10 are the mean transportation rates
associated with processes −6 10, =x t( 0),1 =x t( 0),2 and =x t( 0)3 are
the initial inventories of � �− ,1 3 = ⋯t i^, 1, ,5i are the processing times
of processes −1 5, and = ⋯t i^, 6, ,10i are the transportation delays in
processes −6 10. The parameters are independently uniformly dis-
tributed as follows:
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(7, 9) , (7, 9) , (7, 9) , (7, 9) ,

(1, 2) ,

( 0) (800, 1200) , ( 0) (300, 700) ,

( 0) (800, 1200) ,
^ (1, 2) , ^ (1, 2) , ^ (10, 20) , ^ (1, 2) ,
^ (10, 50) ,
^ (8, 12) , ^ (8, 12) , ^ (8, 12) ,
^ (40, 60) , ^ (8, 12) ,

1 2 3

4 5

6 7 8 9

10

1 2

3

1 2 3 4

5

6 7 8

9 10

We imposed repetitive final product orders (100 per order) with 100-
day intervals. We also imposed spare part orders for parts 4, 5, 6, and 7

Fig. 11. Results in Section 6.3. From left to right, the graphes represent the logarithm (log2) of the sample averages and sample variances of − −q q ,l l 1 respectively.
The error bars are associated with three standard deviations.

Table 1
Number of samples associated with different levels in MLMC given the tolerances in Section 6.3.

Tol (percentage) level 0 level 1 level 2 level 3 level 4 level 5 level 6 level 7 level 8

1 (0.25%) 48,610 13,071 4248 1720 617 189 61 28 15
2 (0.5%) 11,872 3110 1085 441 164 53 16 6 2
5 (1.25%) 1700 459 145 58 21 7
10 (2.5%) 376 103 35 14 5 2
30 (7.5%) 43 15 5 2 1

Table 2
The results and costs of the MLMC compared to standard MC in Section 6.3.

Tol (percentage) result MLMC cost (second) MC cost (second)

1 (0.25%) 401 33.9 2470
2 (0.5%) 404 8.1 615
5 (1.25%) 402 1.1 7.5
10 (2.5%) 414 0.24 1.7
30 (7.5%) 396 0.034 0.11

Fig. 12. The results in Section 6.4 Case 1. From left to right, the graphes represent the logarithm (log2) of the sample averages and sample variances of − −q q ,l l 1
respectively. The error bars are associated with three standard deviations. .
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Fig. 13. The results in Section 6.4 Case 1. The left figure shows the expected delivered units of the final product in 3650 days in Example 6.4; The right figure shows
the average computational cost of MLMC w.r.t. the numerical tolerances in Example 6.4. The reference is computed using the MLMC theory in Section 5.

Fig. 14. The results in Section 6.4 Case 2. From left to right, the graphes represent the logarithm (log2) of the sample averages and sample variances of − −q q ,l l 1
respectively. The error bars are associated with three standard deviations. .

Fig. 15. The results in Section 6.4 Case 2.The left figure shows the expected delivery time of 500 units of the products in Example 6.4; The right figure shows the
average computational costs of MLMC w.r.t. the numerical tolerances in Example 6.4. The reference is computed using the MLMC theory in Section 5.

Fig. 16. The results in Section 6.4 Case 3. From left to right, the graphes represent the logarithm (log2) of the sample averages and sample variances of − −q q ,l l 1
respectively. The error bars are associated with three standard deviations. .
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at 30 parts per order, every 30 days. We evenly split the total tolerance
between the bias and statistical error (i.e., = =TOL TOLϵ 0.5 , ϵ̄ 0.5b s

2 2 2 2).

6.4.1. Case 1
In Case 1, we considered the deliveries of the final products in 3650

days. We drew 10,000 independent samples of each − −q q ,l l 1 where
= …l 1, ,5 and demonstrated the statistics of the sample mean and

variance in Fig. 12 after repeating the process 100 times. The regression
results are = ±a 1.75 0.16, = ±b 1.10 0.05, and = ±g 1.00 0.01 with a
99.7% confidence interval. Under parametric uncertainties, the ex-
pected deliveries of the final products in 3650 days are shown on the
left in Fig. 13, where the MLMC simulation is repeated 20 times for four
different values of tolerances (i.e., 1, 2, 5, and 10). The mean value of
the delivery quantity converges to 3560 as we decrease the tolerance,
whereas the variability of the estimator is tightly controlled by the
prescribed tolerance. On the right in Fig. 13, the computational time of
the MLMC method is compared with the standard MC method. The
MLMC method can be several magnitudes more efficient than the
standard MC method as it has a much smaller rate of growth w.r.t. the
tolerance than the MC method. Note that, in this case, we did not use
the Poisson and binomial random variables in the path simulation. We
only modeled the uncertainties introduced by the aforementioned 23
parameters.

6.4.2. Case 2
Furthermore, we computed the expected delivery time of 500 final

products. We drew 10,000 independent samples of each − −q q ,l l 1 where
= …l 1, ,5 and demonstrated the statistics of the sample mean and

variance in Fig. 14 after repeating the process 100 times. The regression
results are = ±a 1.21 0.02, = ±b 1.56 0.04, and = ±g 0.99 0.01 with a
99.7% confidence interval.

Fig. 15 (on the left) shows 20 batches of MLMC simulations of the
delivery time for four different values of the tolerances (i.e., 0.5, 1, 2
and 4 days). The mean value converges to 584 days, and the variability
of the MLMC results is controlled rigorously by the tolerance. On the
right, Fig. 15 compares the computational time of the MLMC estimator
with the standard MC method. Again, the MLMC method is several
orders of magnitude faster than the standard MC method. More speci-
fically, it is 10 times faster than the MC method when the tolerance is 4
days. This factor grows to 100 as we reduce the tolerance to 0.5 days. In
this case, we did not use the Poisson and binomial random variables in
the path simulation; in other words, we only modeled the uncertainties
introduced by the aforementioned 23 parameters.

6.4.3. Case 3
Finally, we considered both parametric uncertainties and un-

certainties driven by the Poisson and binomial random variables in the
path simulations. Specifically, the number of processes occurring in any
time bucket is a Poisson random variable (11), and the number of items

produced is an stochastic process related to a binomial distribution
(12). We computed the expected delivery time of 300 final products
using the MLMC method. We chose =tΔ 5 days as the coarsest level. We
drew 10,000 independent samples of each − −q q ,l l 1 where = …l 1, ,5
and demonstrated the statistics of the sample mean and variance in
Fig. 16 after repeating the process 100 times. The regression results are
= ±a 2.26 0.39, = ±b 0.97 0.03, and = ±g 0.99 0.01 with a 99.7%

confidence interval. On the left in Fig. 17, the results of 20 runs of the
MLMC method are displayed against the tolerances. The average de-
livery time converges to 393.6 days. Fig. 17 (on the right) shows the
average computational costs of the MLMC method w.r.t. the tolerances.
For a tolerance smaller than 1, the MLMC method is significantly ad-
vantageous to the standard MC method because the multilevel com-
plexity grows much more slowly than the MC method.

7. Conclusion

We have presented a multilevel uncertainty propagation framework
using a time-bucket method of simulating manufacturing supply chains.
We incorporated several distinctive dynamical features of supply chain
simulations, including limited capacities, push and pull productions,
transportation, inventory replenishment, and priority productions, into
the leap methods that were previously used to approximate the DES of
chemical and biochemical systems. The time buckets naturally offer a
hierarchy of models that can be combined with the MLMC method to
accelerate the propagation of uncertainties in a supply chain network.
We demonstrated more than 10 times the acceleration using our ap-
proach compared to the standard MC method using several manu-
facturing supply chain examples. Specifically, using DES to model
supply chain management and manufacturing processes, a medium-
sized model can easily take up to −0.5 1 hour to complete. To perform
statistically meaningful what-if analyses or optimizations, it is reason-
able to expect that a simulation model may be run hundreds of times to
generate one desired result, which will take days to complete. With the
acceleration of the proposed approach, the running time can be reduced
from hundreds of hours to tens of hours. Thus, the analysis now can be
complete within one day, instead of one week using the traditional MC
approach. Considering future work, we note that the framework of
combining time buckets and the MLMC method can be applied to the
agent-based [65] and continuous modeling [19] of a supply chain to
achieve efficient uncertainty propagation. The approach can also ben-
efit decision-making in a supply chain, for example, regarding circular
economy modeling and green supply chain management, as it accel-
erates the prediction of uncertainties using a discrete supply chain
model.
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