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A B S T R A C T

In recent decades, the integrated manufacturer-buyer supply chain problem has been widely studied by many
scholars, as it provides benefits to both parties in terms of planning flexibility, information sharing and joint
costs. The manufacturer produces a production lot of size Q, with variable production rate P ≤ U, where U
denotes the maximal production rate (e.g., due to technological restrictions or due to limited machinery and/or
manpower capacities). The manufacturer delivers the lot to the buyer in n (integer) smaller shipments, each of
size q. An upper bound on the production cycle length is assumed (e.g., to enable the scheduling of maintenance
periods or idle windows of time in which workers are not required to work.) In order to solve the problem
mathematically, we suggest a sub-optimal nested formulation of the problem that utilizes existing formulas for
n*(r) and q*(r) (where r denotes the demand-to-production rate ratio, r = D/P) for the unconstrained problem.
The optimal solution of the accurate formulation is obtained through numerical optimization, utilizing the IBM
CPLEX solver, and is compared with the proposed sub-optimal method. Among the advantages of the suggested
approach are that the solution is analytically derived, it is very simple to implement, and it yields a minimal joint
cost that is close to the accurate formulation.

1. Introduction

The joint optimization concept for buyer and vendor was first de-
scribed by Goyal [1]. There is evidence to suggest that improved syn-
chronization of the production and purchasing processes between the
manufacturer and the buyer, as well as greater information sharing, are
the most effective means of meeting demand and increasing profits
along the supply chain. Cooperation and information sharing are the
foundations of a good working relationship between the two players [2,
3], one that aims to decrease the joint costs of holding inventories,
transportation, internal shipment and production set-up [4]. Synchro-
nization between a manufacturer and a retailer who share information
about the market demand and about production capacity is exemplified
by the case of Toyota's automobile production system [5].

This study focuses on the production process, which is a particularly
important area for synchronization. Schweitzer and Seidmann [6] point
out that machine production rates can often easily be changed. Con-
sider an approach in which the manufacturer has flexibility in de-
termining the production rate, up to the limitations of the available
production speed [7]. Increasing the production speed has several ad-
vantages. Among them are postponing the subsequent production lot,
decreasing the possibility of shortage, enabling maintenance time-
windows, and shifting to the production of other products – a distinct
advantage in the current climate due to the growing competition among
multiple products for a limited storage capacity. On the other hand,

faster accumulation of inventory has a negative effect due to increased
holding costs.

A further influential variable with regard to the production process
is the length of the production cycle – in particular, whether the cycle
length is bounded or unbounded. An unlimited cycle length reduces
planning flexibility, whereas a bound on the production cycle allows
utilization of the time when the production system is idle (i.e., the delay
between production lots) for processing other products. Furthermore,
such delays allow workers free time (e.g., for personal or career-de-
velopment purposes). These delays may be end of weeks when the
production floor might be not active. Limiting the production cycle also
enables flexibility in reacting to changes in demand for specific re-
quirements. According to Milgrom and Roberts [8], in 1988, General
Motors' engineers were able, for the first time in company history, to
use a regular producing facility to make pilots of the next year's model.
The engineers set the equipment to make 1989 models after the workers
had left the factory on Friday afternoon, ran the equipment to manu-
facture the new models over the weekend, and then reset the equipment
to produce 1988 model cars so that regular production could be re-
sumed on Monday morning.

We seek to simultaneously find the optimal values of key decisions
along the supply chain such that the overall joint cost is minimized. In
particular, the decisions are: (1) production rate, P; (2) the shipment
size delivered from the vendor to the buyer, q; and (3) the shipment
frequency, n (an integer). The suggested methodology is essentially
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analytical, thus serving as a possible benchmark that could be used in
future studies to develop methods for solving similar problems or more
complex ones. The quality of the proposed approximation method is
measured by comparing the obtained results with the optimal solution.
The results show a relatively small deviation from the optimal objective
value.

2. Literature review

2.1. Manufacturer-buyer coordination

Goyal and Gupta [4] were the first to review the literature relating
to the integrated vendor-buyer paradigm. At least three additional re-
views have followed since. A review focusing on the coordination me-
chanisms between vendor and buyer through quantity discount
schemes is presented in Sarmah et al. [9]. A selected review of the
literature on the joint economic lot sizing problem (JELP) is provided
by Ben-Daya et al. [10]. A comprehensive review of lot-size models that
focuses on coordinated inventory replenishment decisions between
buyer and vendor, and their impact on the performance of the supply
chain, is presented by Glock [2].

Wahab et al. [11] determine the optimal production–shipment
policy by minimizing the total expected cost per unit time in an inter-
national coordinated vendor–buyer green supply chain with a return
policy that consists of sending back the defective items to the vendor.
Hoque [12] analyzes coordinated vendor-buyer models with an ex-
ponential distribution for the lead time in a two-stage supply chain. The
vendor produces a product at a finite rate and delivers the lot to the
buyer in a number of equal-sized batches (sub-lots) to meet the de-
terministic demand, where backlog is allowed. Sajadieh and Larsen
[13] consider a manufacturer-retailer model for a two-stage supply
chain. The retailer and the manufacturer face random demand and
random yield, respectively. Marchi et al. [14] develop a financial col-
laboration model between a single manufacturer and a single buyer in
which the vendor has the option to invest in increasing its production
rate. Our model specializes in determining the production rate for the
integrated manufacturer-buyer supply problem when constraints are
present.

2.2. Variable production rate and constraints over the production cycle and
the production rate

Khouja and Mehrez [15] and Khouja (1995) extend the classical
economic production lot size (EPL) model to cases where the produc-
tion rate is a decision variable and the unit production cost becomes a
function of the production rate. Khouja (1995) assumes a deterministic
setting while Khouja and Mehrez [15] assume a random setting where
the quality of the products produced by the system is related to the
speed of production. Eiamkanchanalai and Banerjee (1999) develop a
model for simultaneously determining the optimal run length and the
rate of production for a single item. They assume that the production
cost per unit is a quadratic function of the production rate. Note,
however, that the above studies did do not consider an integrated
supply chain but rather a single player. Their problem settings include
fuzzy demand, inspection errors and an adjustable production rate.

Hajji et al. [16] address the joint supplier selection, replenishment
and manufacturing control problem in a dynamic, stochastic context.
The production rate is bounded and the decision variable is the pro-
duction rate as a function of time, where the production system is
subject to machine failures. A dynamic stochastic model is proposed,
and the resulting optimality conditions are solved numerically. Unlike
our problem, the system under optimization consists only of the man-
ufacturer. Jauhari et al. [17] investigate an integrated production-in-
ventory system consisting of a single vendor and a single buyer. They
extend the model of Lin [18] by addressing additional considerations,
including fuzzy annual demand, stochastic demand, inspection errors,

partial backorders, and an adjustable production rate. Jauhari and Saga
[19] extend the work of Jauhari et al. [17] by including fuzzy ordering
cost, setup cost reduction, and service-level constraint.

Lee and Rosenblatt [20] suggest limiting the production cycle length
in order to allow scheduled preventive maintenance and machine ca-
libration. McCormick et al. [21] suggest a heuristic for maximizing
throughput in a multi-product assembly line. The scheduling problem is
to minimize the cycle time. Ben-Daya and Hariga develop a model
under which the total lead-time, which consists of the production cycle
time and the transportation time from the manufacturer to the buyer, is
limited.

2.3. Closely related work and contribution of present study

Jauhari and Pujawan [22] present a synchronized vendor-buyer
model in which they employ iterative solution procedures to determine
the delivery lot size, delivery frequency, production lot, raw material
lot size, and production rate – with the objective of minimizing the total
cost. Aidurgam et al. [23] utilize the EPQ (Economic Production
Quantity) model to analyze the joint problem of the two players. They
assume that the demand is stochastic and that the production rate is a
decision variable.

We follow the framework proposed by David and Eben-Chaime [24]
in the sense that we analytically address a similar problem and we
assume that each of the two players participates in the internal ship-
ment costs. The buyer operates according to the known EOQ (Economic
Order Quantity) model and the manufacturer follows the EPQ model
(see Fig. 1). David and Eben-Chaime [24] show that the lot-for-lot re-
gime (i.e., a single shipment delivered for each production lot) is not
necessarily optimal. In another paper (see [25]), these authors show
that under specified conditions, the gap between the optimal cost when
assuming an integer shipment frequency and the optimal cost under
continuous shipment frequency does not exceed 1.5%. Yang and Pan
[26] and Glock [27] also assume an integer shipment frequency. In
these studies, the authors carry out convex optimization of the con-
tinuous cost as a function of shipment frequency.

The present study contributes to the relatively modest literature that
combines an integrated inventory and a variable production rate (see
Table 1 in [17]). In contrast to the aforementioned algorithmic solu-
tions, we analytically address the manufacturer-buyer problem, given a
bound on the production cycle length, and we provide explicit solu-
tions. We simultaneously seek the integer shipment frequency, ship-
ment size and production rate. We introduce a simplified nested for-
mulation that is solved analytically and is numerically compared with
the optimal solution. The simplified formulation utilizes known optimal
solutions by David and Eben-Chaime [25] for the reduced problem
(which does not consider production rate as a decision variable, nor
does it assume a bound on the production cycle length).

3. Modeling the problem

3.1. Supply-chain description and assumptions

Consider a supply-chain (see Fig. 1) in which a single manufacturer
produces continuously a production lot of size Q items with constant
production rate P ≥ D, where D is the given demand rate posed by the
buyer (e.g., the market). We define the demand-to-production rate ratio
r = D/P.

We assume that the two players cooperate and seek to minimize
their joint total cost associated with inventory holding, production set-
up and internal shipping. Shortages are not planned in either ware-
house. In order to prevent endless production (i.e., =r 1), we define an
upper bound rmax on the production rate ratio r. We define also an
upper bound U on the production rate. This bound is associated with
technological restrictions or limited machinery and/or manpower ca-
pacities. To prevent long production cycles and exploit the advantages
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of a limited production cycle length, we define a bound on the pro-
duction cycle length, Tp. Very long production cycles hinder the sche-
duling of maintenance periods (which usually take place at the end of
the week) or idle windows of time in which workers are not required to
work. Very long production cycles also result in the accumulation of
large quantities of the product in storage, which might exceed the
vendor's storage capacity. The key decisions are: the demand-to-pro-
duction rate ratio r, the shipment size q, and the shipment frequency n
(integer).

3.2. Notations and assumptions

The following notations will be used to develop the model:
Parameters:

U - upper bound on the production rate
D - demand rate
rmax - upper bound on the production rate ratio
Tp - upper bound on the production cycle length
k - total delivery cost of a single shipment from the manufacturer to
the buyer
cV - unit cost to the manufacturer
K - production set-up cost
hV - unit holding cost per unit time in the manufacturer's storage
facility
hB - unit holding cost per unit time in the buyer's storage facility

Decision variables:

r - production rate ratio (r = D/P)
Q - production lot size
q - shipment size
n - number of shipments in each production lot (integer)

The following assumptions are used in our model:

(1) all parameters are fixed and known
(2) the unit cost to the manufacturer is independent of the production

rate
(3) both players share information and have an agreement regarding

sharing the joint profit
(4) the production rate is bounded from above
(5) the production rate is greater than the demand rate
(6) the production cycle length is bounded
(7) shipment frequency is an integer
(8) each production lot incurs a production set-up cost
(9) each shipment incurs a delivery cost.

3.3. Problem formulation

The problem we address in this paper is formally defined as
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≤
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≥
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and is given by
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In (2), cV is the unit cost to the manufacturer, k denotes the total
delivery cost of a single shipment from the manufacturer to the buyer, K
denotes the production set-up cost, and hV and hB are the unit holding
costs per unit time in the manufacturer's storage facility and in the

Fig. 1. Inventory level at the buyer, inventory level at the manufacturer, and total inventory (adapted from David, I., & Eben-Chaime, M., 2008)

Table 1
Optimal solution r* for all feasible cases of the relationship between the critical
points rmin, r0, rup, rmax.

no. Case Condition r*

1 r0 < rmin < rup < rmax - rup
2 r0 < rmin < rmax < rup - rmax

3a rmin < r0 < rup < rmax C(rmin) < C(rup) rmin

3b rmin < r0 < rup < rmax C(rmin) ≥ C(rup) rup
4a rmin < r0 < rmax < rup C(rmin) < C(rmax) rmin

4b rmin < r0 < rmax < rup C(rmin) ≥ C(rmax) rmax

5 rmin < rup < r0 < rmax - rmin

6 rmin < rmax < r0 < rup - rmin

7 rmin < rup < rmax < r0 - rmin

8 rmin < rmax < rup < r0 - rmin
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buyer's storage facility, respectively. In order to solve problem (P1) we
use the common IBM CPLEX optimization solver and numerically ob-
tain the optimal solution.

4. Mathematical analysis

We compare the optimal solution of formulation (P1) with the op-
timal solution (with rounding to obtain an integer value of n) of the
proposed sub-optimal nested formulation (P2), which is described in
the following.

4.1. Nested formulation

We present below a sub-optimal formulation of problem (P1) and
subsequently assess its effectiveness.

Problem (P2):

=
≤ ≤

≤

⎧
⎨⎩

⎫
⎬⎭

C r q n
D
U r r

r
DT
nq

C r q nmin ( , , ) min min ( , , )
r q intn

p

q intn, ,
max

,
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The continuous-n version of the internal optimization problem,
which does not consider any constraints, is analyzed by David and Even
Chaime [25]). The solution is as follows:
Proposition 1. If > −h h r(1 2 )B V , n is continuous, and r < 1 is given,
then

=
− −

= − −
−

n r K h h r
kh r
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B V
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are minimal and unique solutions to the sub-problem C r q nmin ( , , )
q n,

.

We approximate the optimal solution of problem (P1) by inserting
solution (4) into C(r, q, n), thus reducing the objective to a function of a
single variable r:

= − + − −C r q n DKh r Dk h h r( , , ) 2 (1 ) 2 ( (1 2 )) .V B V (5)

4.2. The feasible domain

Problem (P2) includes two constraints, D/U ≤ r ≤ rmax and rnq/
D ≤ Tp. Combining (4) with the constraint rnq/D ≤ Tp, we obtain

−
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The solution of inequality (7) is:
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The following result connects the original problem (P1) to the ap-
proximated one (P2). In particular, Theorem 1 specifies the conditions
under which approximating the solution is not required since the ob-
tained solution coincides with the optimal solution.
Theorem 1. If ≥T Tp p

min, where Tp
min is the root of =r T r( )up p max (see (8)),

then the optimal solution of the sub-optimal nested formulation (P2) is also
optimal for the general formulation (P1).

Proof. When rup ≥ rmax, constraint (1.2) is redundant. Tp
min is obtained

by equating =r T r( )up p max . ∎

4.3. The optimal solution of problem (P2)

To construct the optimal solution of problem (P2), we utilize the
observation (from the first-order condition) that C(r) has an interior
unique maximal point, r0, when 0 < r0 < 1. Otherwise, C(r) is strictly
decreasing in r, where

= ⎧
⎨⎩

<− −
+ −r

K

otherwise0
.

kh K h h
h K k
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2 ( 2 )

4V B V
V

V
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(9)

Critical point r0, together with rmax, rmin and rup, assist in estab-
lishing the approximation developed in our paper, i.e., the optimal
solution of problem (P2).
Theorem 2. Let us define =r D U/min . Problem (P2) has a unique global
optimal solution, r*, as presented in Table 1 below.

< < <r r r rmin up max0

Proof. Based on the unimodality of C(r) with r, and on Eqs. (8) and (9),
problem (P2) reduces to a single-variable, convex optimization search:

=
≤ ≤

C r q n C rmin ( , , ) min ( )
r q n r r, ,int ( , )D

U
DTp

max nq

.∎

Below we prove a technical lemma supporting the unimodality of
the objective with n when r is given, and as a result make the search for
the optimal integer shipment frequency, n, significantly simpler.
Lemma 1. Given a demand-to-production rate ratio r, if > −h h r(1 2 )B V ,
the cost function C(r, q*(n), n) is unimodal with variable n.

Proof. See Appendix A.

Table 1 shows 10 feasible cases, two of which (1 and 3b) have the
optimal solution rup, i.e., a faster production rate than the optimal rate
under problem (P1), rmax. In order to overcome the difficulties asso-
ciated with a continuous shipment size n, we use Lemma 1 referring to
the unimodality of C(n), and replace n* by the better of the two (if
feasible) closest integer neighbors, i.e., =n *int

= + C r q r nargmin ( *, * ( *), *)n n n*, * 1 .

5. Numerical illustration

In Section 4 we optimally solved problem (P2). Yet, problem (P2)
has two flaws. The first is that the shipment size n is allowed to be
continuous; however, this has been dealt with by replacing n* with n *int.
The second is that the nested formulation (3) may be too restricting
with respect to the original formulation (1), in which case it could result
in a non-optimal solution under problem (P1). In this section we present
a numerical example illustrating the applicability of the approximated
formulation (P2).

5.1. Comparison of the optimal solutions of problems (P1) and (P2)

Consider the data presented in Table 2.
Given the above settings, =r 0.0380 and =r 0.4min . Table 3 presents

the optimal solution of problem (P1) and the optimal solution of pro-
blem (P2) for different values of the bound on the production cycle
length, Tp. We define ρ (%)Tp as the percentage difference between the
value of rnq/D obtained by the optimal solution of problem (P2) and the

Table 2
Parameter values chosen for the numerical example

Parameter k K D U hV hB rmax cV

100$ 5000$ 200
units
per day

500
units
per day

10$ per
unit per
unit
time

10$ per
unit per
unit
time

0.8 100$
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optimal production cycle length rnq/D obtained by numerically solving
problem (P1). We define ρC(%) as the percentage difference (always
positive) between the optimal cost according to the optimal solution of
problem (P2) and the optimal cost obtained by numerically solving
problem (P1).

The results in Table 3 support Theorem 1, indicating that the two
formulations reach identical optimal solutions for all bounds ≥T Tp p

min,
where ∈T (3.5, 4]p

min . For small values of Tp, the decision variables (i.e.,
r, n and q) obtained by the suggested approximation may be distant
from those of the optimal solution. Nevertheless, values of the decision
variables that are distant from the optimal ones do not necessarily
imply poorer decisions, provided no constraints are violated and the
difference between both costs remains relatively small. For the case
where =T 2p , for example, the shipment frequency differs only by 1 (11
instead of 10). At the same time, the production rate ratio r is sig-
nificantly smaller (0.580 instead of 0.8). However, these changes are
"compensated for" by the larger shipment size q (58.72 instead of 50),
such that there is a relatively small gap (1.22%) in the optimal joint
cost. In this example, our approach suggests a faster production rate
and, accordingly, a shorter production cycle. This outcome could be
considered as advantageous over the optimal policy in the sense that it
frees up more time that the decision-makers can then dedicate to other
activities (e.g., maintenance, processing other products). In general,
when the bound Tp is less than Tp

min, the gap between the optimal cost
and the cost obtained by the suggested model does not exceed 1.5%,
and is even less on average.

In all instances, the optimal production rate and shipment size as-
sociated with problem (P2) are larger than those obtained for the
general problem (P1). When the bound on the production cycle length
is active (for the original problem), the optimal cycle length obtained
by problem (P2) is smaller (by approximately 6%) than the bound Tp.
This is a direct outcome of constraint (6). Interestingly, for very small
values of Tp, the resulting solution of problem (P2) is infeasible. This
result is explained by reaching an infeasible production rate rup < D/U.
Keeping in mind that there is always a feasible solution to the original
problem (P1), the manufacturer can always, in such scenarios, set

=r D U* / while assigning values for the couple set (q, n) that comply
with nq ≤ UTp, i.e., that comply with (1.2).

5.2. Sensitivity analysis of the joint cost and production cycle length

Figs. 2 and 3 present, respectively, the sensitivity of the gaps in the
optimal cost, ρC(%), and the optimal production cycle length, ρ (%)Tp , to
changes in the values of the key model parameters. The parameter
values correspond to the data presented in Table 2, and the baseline
value for the bound on the production cycle length was set at =T 2.5p .
Considering the baseline values = −ρ (%) 5.84%Tp , and =ρ (%) 1.42%C ,
(see Table 3), it is evident from the results presented in Figs. 2 and 3
that even large changes in each of the key parameters have a negligible

influence on the effectiveness of the suggested approach. In particular,
the cost parameters k, hV and hB barely affect the gap (in terms of joint
cost per unit time) between the models. The largest value of ρC(%) due
to deviations of between -50% and 50% in one of the cost parameter
values is obtained when the unit cost cV decreases by half (i.e.,

= =ρ (%) 1.7624·1.42 2.5%C ).
Increasing each of the parameters D, k, and cV generally decreases

the gap ρC(%); thus, for these scenarios the joint cost per unit time in
the two models becomes more alike. Increasing each of the parameters
D, k, and hB generally decreases the gap ρ (%)Tp ; i.e., the production
cycle length in the two models becomes more alike. Decreasing the
production set-up cost K decreases the gap between the models' optimal
unit-time cost C, while decreasing the total delivery cost of a single
shipment, k, decreases the gap between the models' optimal production
cycle length rnq/D. Decreasing the unit holding cost hB by half results in
the highest gap of = − = −ρ (%) 1.4762·5.84 8.62%Tp , meaning that uti-
lizing the suggested method results in a production cycle length that is
nearly 9% shorter than the bound.

Unlike a gap between the models in terms of the unit-time cost C, a
gap in terms of the production cycle length rnq/D (e.g., a shorter pro-
duction cycle in our model) does not imply an inferior solution, since
the additional available time may be utilized. Interestingly, the per-
centage change in ρC(%) with demand rate, D, and with the unit holding
cost per unit time in the manufacturer's storage facility, hV, shows a
concave curve (see Fig. 2); i.e., the deviations from the optimal unit-
time cost C are bounded.

In contrast to the relatively simple curves obtained for the deviation
in ρC(%) (see Fig. 2), the deviation in ρ (%)Tp with changes in the model
parameters (see Fig. 3) exhibits oscillated curves. We assign the results
in Fig. 3 to the rounding of n after obtaining the continuous optimi-
zation. These oscillations may indicate that even for very large devia-
tions (%) from the original parameter values, the percentage change in
the gap between cycle lengths remains limited.

5.3. Sensitivity analysis of the decision variables r, q and n

Figs. 2 and 3 addressed the deviations in terms of the main mea-
sures, i.e., the unit-time cost C and the production cycle length rnq/D.
The following tables address the deviations in terms of the values of the
decision variables, i.e., the production rate ratio r, the shipment size q,
and the shipment frequency, n. The baseline differences in the values
obtained by solving problem (P2) and those obtained by optimally
solving problem (P1), for the case where the bound on the production
cycle length is =T 2.5p , are = −d 0.144r , =d 3.13q and =d 1n (calcu-
lated from Table 3). Tables 4a and b show the changes in these dif-
ferences as a result of assuming negative and positive deviations (re-
spectively) in the original model parameter values. For example, a
change of 1 in the shipment frequency, such as occurs for a -30% de-
viation in the demand rate (see Tables 4a), implies a difference of 2

Table 3
Comparison of the optimal solutions of problems (P1) and (P2)

Tp (days) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
r*(P1) rmin 0.419 0.619 rmax rmax rmax rmax rmax rmax rmax

r*(P2) non feasible non feasible 0.482 0.580 0.656 0.715 0.762 rmax rmax rmax

n*(P1) 4 7 9 10 12 15 18 20 20 20
n*(P2) – – 9 11 13 15 17 20 20 20
q*(P1) 62.5 68.19 53.85 50.00 52.08 50.00 48.61 50.00 50.00 50.00
q*(P2) – – 64.41 58.72 55.21 52.89 51.23 50.00 50.00 50.00
C*(P1) 25320.00 24060.64 23691.33 23300.00 23025.73 22883.33 22818.24 22800.00 22800.00 22800.00
C*(P2) – – 23847.42 23585.78 23352.19 23147.31 22965.37 22800.00 22800.00 22800.00
T* (P1)p 0.5 1 1.5 2 2.5 3 3.5 4 4 4

T* (P2)p – – 1.397 1.873 2.354 2.836 3.318 4 4 4

ρ (%)Tp – – –6.87 –6.35 –5.84 –5.46 –5.20 0 0 0

ρC(%) – – 0.66 1.22 1.42 1.15 0.64 0 0 0
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relative to the optimal value of n obtained by solving (P1).
Since the analyzed problem is modeled as a non-linear integer for-

mulation, one would expect decisions to alter even under moderate
changes in the parameter values. The performance of the suggested
approach is mainly tested against in terms of the objective (i.e., joint
cost). As illustrated in Fig. 2, the suggested approach achieves relatively
good performance according to this measure; in fact, for a wide range of
parameters, it achieves the optimal solution. Thus, the decision maker
can achieve relatively good performance even under substantial de-
viations in the original parameters. However, as shown in Tables 4a and
b, at the same time, the values of the decision variables may alter quite
substantially. As argued above, in principle, there is nothing wrong
with deviations in the decision variables from the optimal values, as
long as no constraints are violated and the performance remains near
optimal. From the results presented in Tables 4, it can be seen that the
value of the shipment frequency n does not notably increase from the
baseline value (i.e., the maximal deviation is 1). The maximal deviation
from the optimal production rate ratio (-0.226 = -0.144-0.082) is ob-
tained due to a change in parameter hV (when its value is decreased by
40%). This of course indicates a significantly higher production rate
than the optimal value. In order to maintain a near-optimal joint cost,
as shown in Fig. 2a (for the parameter hV), the suggested approach
chooses also a significant increase in the shipment size (of 8.38). We
conclude that, relative to the optimal method, the suggested approach
may choose higher production rates (and accordingly a shorter pro-
duction cycle), as well as bigger shipment sizes; yet it simultaneously
keeps the main objective (i.e., joint cost) close to the optimal value.

5.4. Comparison of the optimal solutions of problems (P1) and (P2) for the
case where the unit cost depends on the production rate

The assumption used in our model, whereby the unit cost is in-
dependent of the production rate, simplified the mathematical analysis
and assisted in deriving explicit solutions for the constrained integrated
supply chain under discussion. Assuming that the unit cost is in-
dependent of the production rate does not mean, as some may assume,
that the production costs are fixed when the production rate changes.
When the production rate increases by 25%, for example, the quantity
produced per unit time also increases by 25%, and accordingly, the
production cost per unit time increases. Yet, in numerous scenarios this
"linearity" does not accurately represent real production floors and the
unit cost may alter as is disputed in existing literature. In this sub-
section we follow Khouja and Mehrez [15], who extend the economic
production lot size (EPL) problem and assume the unit cost cV(P) de-
pends on the production rate P according to

= +c P a
P

bP( )V (10)

Thus, the joint objective (2) becomes

= ⎛
⎝

+ ⎞
⎠

+ + + ⎛
⎝

+ − − ⎞
⎠

+

C r q n D ar
D

bD
r

DK
nq

kD
q

h rq
nq

r
q

h
q

( , , )
2

(1 )
2

2

V

B (11)

We numerically evaluate the effect of using the above dependency

Fig. 2. a. Percentage change in ρC(%) with deviation (%) from original parameter value (cV, K, hV). Figure 2b. Percentage change in ρC(%) with deviation (%) from
original parameter value (D, k, hB)

Fig. 3. . a. Percentage change in ρ (%)Tp with deviation (%) from original parameter value (cV, K, hV). Figure 3b. Percentage change in ρ (%)Tp with deviation (%) from

original parameter value (D, k, hB)
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of the unit cost on production rate with regard to the performance of
our simplified approach. Specifically, the solution approach presented
previously is not altered and it is compared with the optimal solution
(numerical search) of problem (P'1) where cV(P) is given by (10). We
replace (P1) with (P'1) and (P2) with (P2′) to denote the two general-
ized problems. In order for the comparison to be "fair", we find initial
values for the parameters a and b that result in a function cV(P) that
crosses the former fixed line = =c P c( ) 100V V (see Table 2) twice (i.e.,
the first time when it is decreasing and the second time when it is in-
creasing). Accordingly, the chosen initial values are a=17142 and
b=0.142857. Similar to Sections 5.2 and 5.3, the baseline value for the
bound on the production cycle length is set at =Tp 2.5.

Tables 5 shows that the three decision variables are assigned almost
identical values by the two models. The suggested approach obtains a
joint cost that is only 0.04% higher than that obtained by the optimal
policy. In comparison to the case where the unit cost is independent of
the production rate, the gap between the production rates in the two
approaches is significantly decreased (see Table 3 for =T 2.5p ). One
might imagine that the selected parameters (i.e., a and b) are the main

cause of the high-quality result. Thus, in the following two figures we
present the effect of selecting other values of these two parameters on
the performance of our approach. In particular, we present the values of
ρ (%)Tp and ρC(%) for several values of a and b, plotted in terms of their
deviation (%) from their original values.

Fig. 4 shows that the suggested approach results in an increase of no
more than 5.5% in the joint cost due to deviations of between -50% and
50% in one of the parameters that determines the shape of the unit cost
function cV(P). This indicates that the quality of the suggested ap-
proximation remains high even when it is applied to a more complex
problem design than that initially assumed. For the production cycle

Table 4
a. Changes in the difference in the values of the decision variables between (P2) and (P1) with negative deviations (%) from the original parameter values. b.
Difference ((P2) and (P1)) in dr, dq and dn with positive deviations (%) from the original parameter values

Change in % in parameterValueParameter −50 −40 −30 −20 −10

D −0.044 −0.080 −0.064 −0.038 −0.016 dr
1.74 4.97 1.76 1.46 3.12 dq
0 0 1 0 0 dn
0.109 0.082 0.058 0.037 0.017 dr

K −0.088 0.846 1.715 −1.48 −0.715 dq
0 1− −1 0 0 dn
0 0 0 0 0 dr

k 1.19 0.58 1.41 1.62 1.187 dq
0 0 0 0 0 dn

hV −0.059 −0.082 −0.061 −0.038 −0.018 dr
2.729 5.248 4.2 2.79 5.401 dq
1 1 1 0 0 dn

hB 0 0 0 0 0 dr
4.567 6.296 7.667 4.773 2.245 dq
−1 −1 0 1− 0 dn

cV 0 0 0 0 0 dr
0 0 0 0 0 dq
0 0 0 0 0 dn

Change in % in parameter Value parameter 10 20 30 40 50

D 0.016 0.030 0.04 0.055 0.066 dr
1.216 −1.68 0.359 1.29 −1.17 dq
0 0 0 −1 0 dn
0.016− 0.031− 0.045− −0.057 −0.069 dr

K 0.709 1.358 1.98 2.42 3.171 dq
0 1 1 1 1 dn
0 0 0 0 0 dr

k 2.706 0.552 3.022 5.40 7.69 dq
0 0 0 −1 0 dn

hV 0.016 0.030 0.043 0.055 0.066 dr
2.586 1.381 0.13 −0.79 −2.2 dq
−1 −1 −1 0 0 dn

hB 0 0 0 0 0 dr
2.029 0.239 2.047 0.571 −0.783 dq
0 0 0 0 1 dn

cV 0 0 0 0 0 dr
0 0 0 0 0 dq
0 0 0 0 0 dn

Table 5
Comparison of the optimal solutions of problems (P'1) and (P'2)

r* (P'1) r* (P'2) n* (P'1) n* (P'2) q* (P'1) q* (P'2)

0.639 0.656 13 13 56.98 55.22
C* (P'1) C* (P'2) Tp* (P'1) Tp*(P'2) ρ (%)Tp ρC(%)

23298.41 23308.01 2.367 2.354 −0.55 0.04
Fig. 4. ρC(%) with deviation (%) from original parameter value (a, b)
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length, more substantial changes are observed (Fig. 5). In the in-
dependent scenario, the production cycle length was only ever shorter
for (P2) than for (P1). The specific set (a, b) determines whether a re-
lative increase or decrease in production cycle length is realized. In-
terestingly, when b exceeds some minimal threshold and when a is
lower than some maximal threshold, the production cycle length is
unaffected. This can be explained by the fact that an optimal value of
the cycle length is active (i.e., Tp=2.5). Small values of b or large values
of a result in a cycle length that is larger for the suggested approach
than for the optimal policy, i.e., a positive value of ρ (%)Tp . Yet, as ar-
gued above, as long as the joint cost remains alike and no constraints
are violated, a difference in the value of the cycle length does not imply
inferiority of the suggested approach.

6. Conclusions

6.1. Summary

In this paper we analytically analyze an important and well-known
problem regarding the operational relations between the manufacturer
and the buyer – two key players in many supply chains. A variable
production rate has several advantages. Among them are postponing
the subsequent production lot, decreasing the possibility of shortage,
enabling maintenance time-windows, and shifting to the production of
other products. We add to the existing formulations of this problem the
consideration of a bound on the cycle length. Such a limitation may be
imposed due to scheduled maintenance, end-of-week shut downs, or
demand for other products requiring the processing machinery.
Extensive numerical work is carried out to show the applicability and
quality of the suggested approach.

6.2. Contribution and model advantages

We use existing optimal solutions for shipment frequency n*(r) and

shipment size q*(r) obtained for the unconstrained problem as a basis
for developing a simplified optimal solution to a nested formulation of
the investigated problem. We use the critical points rmin, r0, rup, rmax and
obtain the optimal demand-to-production rate ratio r* for all feasible
cases. We derive the theoretical relationship between the two problems
through the existence of Tp

min, which is the root of =r T r( )up p max ; when
≥T Tp p

min, the optimal solution of the sub-optimal nested formulation
(P2) is also optimal for the general formulation (P1). The suggested
approach is not optimal; yet it achieves solutions that are close ap-
proximations to the optimal one in terms of joint cost. When the bound
is active, the production cycle length that is obtained is always smaller
(due to a higher production rate) than the bound itself. This outcome
may be utilized when there are machine breakdowns or when un-
expected events arise that mean additional time is required for com-
pleting new assignments. The suggested approach is also compared
with the optimal problem for the case where the unit cost function cV(P)
depends on the production rate P. The numerical results support the
conclusions drawn for the simplified case (where =c P c( )V V ) regarding
the quality of the suggested approximation.

6.3. Drawbacks and future research

The current approach of comparing the two models involves the use
of numerical optimization of problem (P1). Although the sensitivity
analysis of the key parameters reported in this study further supported
the conclusions, and illustrated the effectiveness of the suggested ap-
proach, future research should adopt a more theoretical approach – one
that analytically develops the optimal solution under the assumption of
a discrete shipment frequency and that takes into consideration the
discussed constraints. Furthermore, the developed model assumes a
unit production cost that does not depend on the production rate. As
this assumption is violated in numerous real-life production floors, we
numerically evaluated the quality of the suggested model also for the
case where the unit production cost depends on production rate. A
possible future research direction, therefore, is to develop theoretical
solutions for a specification of the model in which the unit production
cost depends on the production rate. Such a research avenue could
improve the quality of the suggested approach.
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Appendix A. Proof of Lemma 1

Let us begin by computing the Hessian matrix of C(r, q, n), which results in
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, assigning the Hessian matrix, FOC (4) results in

Fig. 5. ρ (%)Tp with deviation (%) from original parameter value (a, b)
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Thus, the Hessian is positive definite. Since each point complying with the FOC is a local minimum, and since there is only one such point (e.g.,
(4)), this point is the global minimum and we conclude that objective C(r, q, n) is unimodal with variable n. ∎
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