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A B S T R A C T

This paper deals with a generic problem of matching agents with underlying preferences while guaranteeing a
certain level of privacy is met. As a general framework, we consider consumers and prosumers who trade energy
on a platform. Consumers buy energy to the platform to maximize their usage benefit while minimizing the cost
paid to the platform. Prosumers, who have the possibility to generate energy, self-consume part of it to maximize
their usage benefit and sell the rest to the platform to maximize their revenue. Inspired by a variant of the
Hotelling model, product differentiation is introduced and consumers can specify preferences regarding locality
and green origin of their supply. The consumers and prosumers problems being coupled through a matching
probability, we provide analytical characterization of the resulting Nash equilibrium, and conditions for ex-
istence and uniqueness. Assuming supply shortages occur on the platform, we reformulate the local market
clearing problem as a consensus problem that we solve using Consensus Alternating Direction Method of
Multipliers (C-ADMM), enabling minimal information exchanges between prosumers and consumers. C-ADMM
complexity is recalled and strategyproofness is analysed. The algorithm is then run on a case study made of 300
prosumers from New South Wales in Australia, equipped with solar panels. We consider privacy-preservation
output against a centralized benchmark approach, and evaluate C-ADMM computational time under three
scenarios with an increasing number of agents. Regarding economic analysis, we observe that it is more prof-
itable for prosumers than for consumers to be flexible within a local energy community, and that belonging to a
local energy community incentivizes them to reduce their demands by comparison with their initial targets.
Furthermore, the expectation to make a substantial profit is a main driver for prosumers’ engagement within a
community; whereas for consumers, the green origin of the supply is determinant.

1. Introduction

1.1. From centralized to decentralized electricity markets

The increasing amount of Distributed Energy Resources (DERs),
which have recently been integrated in power systems, the develop-
ment of new storage technologies, and the more proactive role of
consumers (prosumers) have transformed the classical centralized
power system operation (mostly based on centralized unit commitment)
by introducing more uncertainty and decentralization in the decisions.

Following this trend, electricity markets are starting to restructure,
from a centralized market design in which all the operations were
managed by a global (central) market operator, modeled as a classical
constrained optimization problem, to more decentralized designs in-
volving local energy communities which can trade energy by the in-
termediate of the global market operator [22,39] or, in a peer-to-peer
setting [15,23,25,29,36,42]. Coordinating local Renewable Energy
Sources (RES)-based generators to satisfy the demand of local energy
communities, could provide significant value to the power systems, by
decreasing the need for investments in conventional generations and
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transmission networks. In practice, the radial structure of the dis-
tribution grid calls for hierarchical market designs, involving trans-
mission and distribution network operators [24]. But, various degrees
of coordination can be envisaged, from full coordination organized by a
global market operator (transmission network operator), to bilateral
contract networks [30], to fully decentralized market designs allowing
peer-to-peer energy trading between the prosumers in a distributed
fashion [23,29], or within and between communities/coalitions of
prosumers [38,40]. The end of the feed-in-tariff also calls for new
market mechanisms to avoid the wasting of prosumers’ energy sur-
pluses while guaranteeing a significant investment in RES-based tech-
nologies to reach the ambitious renewable production target in the
energy mix fixed by the EU.

In the energy sector, peer-to-peer energy trading is a novel para-
digm of power system operation, where prosumers providing their own
energy from DERs such as solar panels, wind turbines, combined heat
and power (CHP), gas boilers, storage technologies, demand response
mechanisms, etc., exchange energy/capacity with one another. Zhang
et al. provide in [44] an exhaustive list of projects and trails all around
the world, which build on new innovative approaches for peer-to-peer
energy trading. A large part of these projects rely on digital platforms
which match RES-based generators and consumers according to their
preferences and locality aspects (such as Piclo in the UK [47], Trans-
Active Grid in Brooklyn, US [48], Vandebron in the Netherlands [49],
etc.). In the same vein, cloud-based virtual market places to deal with
excess generation within microgrids are developed by PeerEnergyCloud
[5] and Smart Watts [14] in Germany. Some other projects rely on local
community building for investment sharing in batteries, solar PV pa-
nels, etc., in exchange of bill reduction or to obtain a certain level of
autonomy with respect to the global grid (such as Yeloha and Mosaic in
the US [27], SonnenCommunity in Germany which has recently been
bought by Shell, etc.).

1.2. Two-Sided matching market literature and the rise of the sharing
economy

In many papers in the energy market literature and more generally,
in classical commodity markets, the market clearing price determines
whether a prosumer (or more generally, an agent bidding in the
market) is a consumer or a generator. On the contrary, the problem we
consider in this paper describes a “two-sided matching market”. The
term “two-sided” refers to the fact that agents in such a market belong,
from the outset, to one of two disjoint sets [35] – e.g., consumers
without generation facility whose demand is supplied by a platform
connected to the grid and prosumers with generation facilities who
have the possibility to consume part or all of their self-generations
without buying anything from the grid to meet their demands. Note
that from one time period to another, the roles of the agents might
change but we will consider it as fixed for the time period over which
the market clearing occurs. Typically, at night, all the agents are con-
sumers, since the solar panels do not produce anything.

In our model, the matching process itself is not considered, we
consider instead in the utility functions of the prosumers the probability
that they are matched to a consumer. As we impose no condition on the
number of consumers to which a prosumer having energy in surplus is
matched, our matching model is one-to-many.

The theoretical part of the two-sided market literature started in
1962 with the seminal work of Gale and Shapley on college admission
which allows complex heterogeneous preferences and (possibly) lim-
itations on how parties may split the surplus of a relationship; and the
stability of marriages, which assumes simple preferences, with men and
women being ranked from the best to the worst and transferable utility
functions [2,35]. The family of models has since then been extended by
considering stability issues and internal structure of the set of stable
outcomes, while proposing computational algorithms for labor market
for physicians in the US looking for a position after the medical school;

and auction markets where coalitions of agents can collude to influence
the outcome [35].

The rise of the sharing economy, understood as an umbrella concept
that encompasses several information and communication technology
(ICT) developments, among others collaborative consumption (endor-
sing sharing the consumption of goods and services through online
platforms [16]) has been triggering new research questions regarding
efficiency in matching, pricing strategies, equilibrium analysis, etc.
[13]. Boysen et al. highlight the better performance reached by opti-
mization-based matchings of supply and demand, compared to tradi-
tionally used list-based approaches, and detail the resemblance of the
matching task in the sharing economy with other problem settings from
a structural point of view, such as machine scheduling [20], interval
scheduling, jobs assignment, etc. They propose a classification of static
and deterministic matching problems and provide complexity analysis
through the identification of appropriate polynomial time algorithms,
well-known to the operations research community, or NP-hardness
proofs [4]. Juding by the recent contributions in the sharing economy
literature, platform design is an active area of research [2,9,12,13].
Three needs are identified for platform deployment: a first requirement
is to help buyers and sellers find each other, taking into account pre-
ference heterogeneity. This requires to find a trade-off between low-
entry cost and information retrieval from big, heterogeneous, and dy-
namic information flows. Buyers and sellers search can be performed in
a centralized fashion (Amazon, Uber), or it might allow for effective
decentralized search (Airbnb, eBay), or even fully distributed search
(OpenBazaar, Arcade City). A second need is to set prices that balance
demand and supply, and ensure that prices are set competitively in a
decentralized fashion. A third requirement is to maintain trust in the
market, relying on reputation, feedback mechanisms and loyalty pro-
grams. Sometimes, supply might be insufficient and subsidies should be
designed to encourage sharing on the platform [12]. Fang et al. give an
example of such subsidies design through loyalty programs in the
sharing economy [13].

1.3. Some definitions of privacy

Various privacy models have been developed in the data science and
machine learning literature. We review some of them below. In the
context of privacy of databases, popular approaches include k-anon-
ymity and (epsilon-delta) differential privacy, a detailed review of both
is presented in [26] and summarized below.

For databases, the first definition of privacy comes with the idea of
k-anonymity, which is a property of protecting released data from re-
identification. It can be applied when private data – such as energy load
profiles – need to be shared for public usage with the constraint that
individual subjects of the data cannot be re-identified from the released
data, so as to protect their privacy – e.g., in that context, their name,
address, telephone number, etc. In other words, all the records in the
released database should remain unlinkable to the consumers. A first
possibility is to remove the sensitive information. However, quasi-
identifier attributes such as age, gender, race, zip code, that can be
found from external databases could be used to infer the identity of the
consumers [26]. k-anonymity requires that in the released data, each
record can be mapped to at least k records in the original data, e.g.,
each record from the released data will have at least k 1 identical
records in the same released data. It has been proven that under k-
anonymity, external data cannot be used to infer private input. In-
tuitively, this is because each record in released data will have at least
k 1 same records.

Differential privacy has been proven to be more robust than k-
anonymity against attacks [26]. The intuition underlying the notion of
differential privacy is that an agent’s privacy cannot be compromised
by a statistical release if their data are not in the database. Therefore
with differential privacy, the goal is to give each individual roughly the
same privacy that would result from having their data removed. That is,
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the statistical (such as query) functions run on the database should not
overly depend on the data of any one individual. In practice, the idea is
to add noise to the database. Of course, how much any individual
contributes to the result of a database depends in part on how many
people’s data are involved in the query.

Using additive random vectors to increase privacy is common
practice. In differential privacy, because it provides certain privacy
guarantees, Laplace noise is usually used [8,26,32]. However, when
maximal privacy with minimal distortion is desired, Laplace noise is
generally not the optimal solution. The fundamental question to de-
termine the noise distribution achieving maximal privacy for a given
allowable distortion level is investigated in an information-theoretic
framework in [32]. Similar framework was considered in [23], to
analyse a peer-to-peer market involving strategic agents who are not
willing to disclose their private information, which is assumed to be
known by the other agents up to a certain level of noise caused by the
bias introduced voluntarily (in a differential privacy context) to protect
input information or involuntarily (when trying to learn the other
agents’ private information).

In this paper, we will focus on another notion of privacy that comes
from the literature on security games [18]. In such games, agents are
typically reluctant to share sensitive – even secret – information with
other agents, in part because of the potential for leaks. The problem is
to coordinate the resource allocation between multiple agents so that
social welfare efficiency is reached and minimum amount of sensitive
information is shared within the agents. In this paper, the goal is to
coordinate prosumers and consumers with heterogeneous preferences
so that social welfare efficiency is reached while operational constraints
are met, and minimum information is exchanged between the agents.

In Game theory, the notion of private information is often linked to
the theory of Bayesian games and mechanism design. An asymmetric
game where agents have private information – contained in so called
“types” – is said to be strategyproof if it is a weakly-dominant strategy
for every agent to reveal his/her private information [41], i.e., you are
best or at least not worse by being truthful, regardless of what the
others do. Goal in such games is to design mechanisms that can take the
form of payment functions/penalties guaranteeing social welfare effi-
ciency while inducing the agents to be truthful. In this paper, we will
assess the strategyproof property of the energy trading algorithm.

1.4. Classifying the information

Our goal is to determine the optimal demands of the consumers,
self-usage quantities and quantities shared by the prosumers on the
platform. The information involved can thus be classified into two ca-
tegories – static and dynamic – depending on whether it is available
from the outset or evolving dynamically.

• Static information is the information that is private to the agents
(consumers and prosumers) and available to them from the outset.
For the prosumers, it is their own self-usage benefits and associated
parameters (target self-consumption, calibration parameters), and
their cost functions. For the consumers, it is their own usage benefits
and associated parameters, their preferences regarding the green
and local origin of the supply, and their cost functions. Throughout
the text, it will be called the private input of the agents.
• Dynamic information is the information obtained as output of the
market clearing, i.e., the optimal self-usage and shared quantities of
the prosumers and the demand of the consumers. Throughout the
text, it will be called the output of the market clearing problem. Goal
is to keep it private to the agents.

To compute the optimal decisions of the agents, some information is
shared iteratively between the agents such as the local market clearing
price updates.

1.5. Adversial attack and trust

From an ICT perspective, a fully decentralized electricity market
design provides a robust framework since if one node in a local market
is attacked or in case of failures, the communication network archi-
tecture should remain in place and information could find other paths
to circulate from one point to another, avoiding malicious nodes/cor-
rupted paths [36]. However, among the peers, some nodes might per-
form data injection attacks to alter the estimation of the system real
state, enabling them to manipulate the market clearing price to obtain
economic benefits. As such, security, detection of malicious behaviors
and robustness against adversial attacks remain major issues for peer-
to-peer electricity markets to emerge.

Security and trust enforcement among the peers requires blockchain
technology. A blockchain is a continuously growing list of records,
called blocks, which are linked and secured using cryptography. By
design, blockchains are inherently resistant to modification of the data
[36]. The validation of new blocks relies on a distributed consensus
algorithm and miner node selection which is specific to the blockchain
protocol in place. Most current protocols are heavily energy greedy (see
Bitcoin). In [25], an innovative miner selection rule based on a fixed-
share exponentially-weighted average density function is analysed. It is
far less energy greedy than classical Proof-of-Work methods, and in-
tegrates the peers’ past performance contrary to Proof-of-Steak methods
used in Ethereum which relies for a large part of it on random miner
selection. On top of blockchain technology, smart contracts are au-
tonomous computer systems, written in code, that manage executions
in the form of rules between parties on the blockchain. For example, the
reaching of a consensus between nodes, specific events (like adversial
attacks) can be detected online, and the execution of the smart contract
is automatically triggered [37]. To avoid any influence of a malicious
node, consensus algorithms are employed [21,31]. The core idea be-
hind various distributed decision applications is the ability of individual
agents to reach agreement globally via local interactions [39]. Several
algorithms for consensus can be found in the literature and have at-
tracted much attention in the last decades in the broader framework of
sensor management and data fusion: they differentiate on the basis of
the amount of communication and computation they use, on their
scalability with respect to the number of nodes, on their (online)
adaptability, and, finally, they can be deterministic or randomized [10].
In this paper, we will focus on Consensus ADMM (C-ADMM) [3], which
can play the role of a smart contract: once coordination among the
agents is reached – meaning that the local decisions of the agents give
rise to a Pareto efficient solution under minimal information exchange
among the nodes – buying and selling offers are matched on the virtual
trading platform. Note that adversial attack, miner selection process,
and more generally blockchain design, will not be considered in this
paper.

1.6. Contributions

We decompose our contributions to the two-sided matching markets
literature, according to three main tracks.

1) We first formulate the two-sided market matching problem as a
noncooperative networking game [1] that we reformulate as a Mixed
Complementarity Problem (MCP), and analyse its solutions in terms of
existence and uniqueness relying on appropriate solution concepts [1].
We also determine conditions under which supply shortages occur on
the platform, highlighting the needs for the design of subsidies and
loyalty programs.

2) Second, we compute analytically the centralized market clearing
solution in case the local Market Operator determines the optimal de-
mand, self-usage and shared quantities on the platform that maximize
the social welfare of the local energy community.

3) Though a closed form result can be inferred for the centralized
market clearing, it does not allow privacy preservation. To allow output
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privacy-preservation, we introduce a distributed (algorithmic) ap-
proach. Our algorithm, C-ADMM, is an application of the classical
Alternating Direction Method of Multipliers (ADMM)[3] to the market
clearing problem that we reformulate as an optimal exchange problem
and solved as a consensus problem. We analyse formally the algo-
rithmic properties of C-ADMM regarding its strategyproofness, the level
of privacy preservation, and its complexity. Computational properties
as a function of the number of agents involved is quantified in a case
study.

The remainder of the paper is organized as follows. In Section 2, we
formally introduce our two-sided market platform model. The agents,
their utility functions, as well as appropriate solution concepts to ana-
lyse the platform outcome are detailed. In Section 3, the platform
market clearing problem is formulated as an optimal exchange pro-
blem, output privacy-preservation is formally defined. The different
approaches we use to solve the market clearing problem, either cen-
tralized or distributed, are described in Section 4. Finally, a case study
providing computational results for C-ADMM and economic guidelines
regarding the emergence of local energy communities is introduced in
Section 4.

2. Model description

We consider a set of N nodes. Each node can be either a prosumer,
P, having the possibility to generate and consume (part) of her own
energy while selling the excess by the intermediate of a sharing plat-
form operated by a local Market Operator (MO), or a consumer-only, C,
without generation facility. We denote by , the prosumer set, and by

, the consumer-only set. Furthermore, we have the relationships:
= and = . Local energy demand and supply balance is

guaranteed by the local MO, who can sell excess production or buy
shortage to the power grid.

Our inspiration for the prosumer-consumer interaction model comes
for the literature of two-sided markets [2,12,13], though the structure
of electricity markets and asymmetry of prosumer role, who can benefit
from consumption of self-production (therefore, behaving as con-
sumers) and excess production selling by the intermediate of the
sharing platform (therefore, behaving as producers), makes extensions
of this literature tricky. The consumer-prosumer platform framework is
visualized in Fig. 1. Note that we assume a uniform platform price, p ,t
at every time period t (e.g., there is no discrimination between the
nodes). Futhermore, there exist lower and upper bounds on the plat-
form price, such that p p pt at every time period t, with 0 ≤ p and

< < +p0 . We do not consider contract for the supply provision,
though this can be an interesting instrument for risk hedging in case
uncertainty associated with the RES-based generation supply is con-
sidered. In our model, the consumers just pay the prosumers for the
quantity of energy supplied. The payments are performed at each time
step t, relying on the unit price pt defined uniformly by the local
market operator.

Remark 2.1. In practice, the prosumers’ households are equipped with
smart meters that provide near real-time data and granular information.
Energy surpluses are then traded online on the electronic trading
platform (in the form of tokens) by the intermediate of a smart
contract [36]. In case of excess production (resp. supply shortages),
the excess (resp. missing) quantity is sold (resp. bought) to (resp. from)
the power grid. In this paper, we assume that storage can be performed
at interface transmission grid nodes [24], assuming that the suppliers in
these nodes invest in some forms of storage such as hydro-electric dams,
or prosumers collectively invest in global storage technologies (see
SonnenCommunity, in Germany). The cost of battery acquisition at the
prosumers’ level being still quite high, we do not consider individual
storage technology at the residential level.

Remark 2.2. In the formulation of our optimization problems, we do
not describe the techno-economical constraints of the generating

technologies that are captured through complex bids in the energy
market literature. Such a setting deeply complexifies the
noncooperative game analysis as it introduces non-convexities in the
agents’ optimization problems. However, this can be an interesting
direction for future work.

2.1. Modeling consumers

For each consumer C , we denote the usage benefit obtained
from consuming a quantity yt

C of energy, by U y( )C t
C . We assume that

UC(.) is only known to the consumer and is not public knowledge. We
make the assumption that UC(.) is continuous and strictly concave and
non-negative on +. Following the approach in [23] and to fix the idea,
we assume that consumer C usage benefit is a quadratic function of the
consumer demand y ,t

C leading to the following definition:

= +U y y y( ) ( ) ˜ ,C t
C C

t
C

t
C C2 (1)

where , ˜C C are positive parameters, and yt
C is the target demand of

consumer C at time period t. For the usage benefit to remain non-ne-
gative on the interval of definition of yt

C (e.g., the interval [0; κC]), we
impose conditions on the parameters such that UC(0) ≥ 0 and

UC(κC) ≥ 0, leading to y t, 0.C
t
C˜ ˜C

C
C
C Note that the

maximum usage benefit is reached in =U y( ) ˜C t
C C and in case

=U (0) 0,C i.e., zero demand implies zero usage benefit, we have the
following relationship between the consumer target demand and usage

benefit parameters: =C U y

y

( )

( )
C t

C

t
C 2 .

We refine the consumer model by introducing horizontal product
differentiation. In [23], the preferences were captured through (pro-
duct) differentiation prices. These prices can model taxes to encourage/
refrain the development of certain technologies (micro-CHPs, storage,
solar panels) in some nodes. They can also capture agents’ preferences
to pay regarding certain characteristics of trades (RES-based genera-
tion, location of the prosumer, transport distance, size of the prosumer,
etc.). In this paper, we capture the agents’ preferences relying on a
variant of the discrete choice model introduced by Hotelling [17] for
horizontal product differentiation with quadratic distance [7]. In the
Hotelling model, consumers’ preferences are located by points on the
same unit segment. The extremities of the same line are used to re-
present the two alternatives. We assume that each consumer has the
choice between two alternatives: “buying 100% green certified en-
ergy”1 located in 0 or “buying energy without any guarantee of origin”
located in 1. Beyond this, these two energy supplies are seen as perfect
substitutes by the consumers. For < ,C

1
2 consumer C has strict

Fig. 1. Example of a sharing platform involving consumers-only on one side
and prosumers on the other side.

1 In practice, it is very difficult to determine where the electrons that make
the supply come from. A blockchain technology on top of a digital peer-to-peer
energy trading platform can help trace back the origin of the supply and pro-
vide certificates of green origin [31,36]. In our paper, the supply is 100% green
if, and only if, the demand is exclusively covered by the prosumers’ RES gen-
erations.
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preference for a 100% green energy supply; whereas for > ,C
1
2 con-

sumer C would rather be supplied by a mix without any guarantee of
origin. For = ,C

1
2 consumer C is indifferent between the two alter-

natives.

Remark 2.3. In this paper, the platform provides demand and supply
matching for consumers and prosumers providing RES-based
generation. This means that as long as the demand does not exceed
the local supply, the consumers have the guarantee to be supplied by
green energy only.

We introduce γ > 0 as the coefficient (interpreted as unit transport
price in [17]) which determines the importance of the distance (be-
tween the consumer’s preferences and the two alternatives), by com-
parison with the energy price on the platform. We define θC ∈ [0; 1], as
the preference of consumer C regarding these two alternatives.

The utility consumer C obtains from energy consumption y ,t
C

y( ),C t
C is given by the usage benefit UC(.) minus the cost to buy energy

on the platform operated by the local MO, pt times the consumption
y ,t

C minus the cost associated with the distance between his preference
and the two alternatives for the origin of his supply. Formally, we have:

=y

U y p y y C

U y p y y C( )

( ) if is supplied by
100% green energy

( )

(1 )

if is supplied by a
mix

without any guarantee of origin
.

C t
C

C t
C

t t
C

t
C

C

C t
C

t t
C

t
C

C

2

2

(2)

Consumers determine their product choice (e.g., their demand)
based on the difference between the usage benefit of consuming yt

C and
the supply cost, and discrepancy between the green supply feature and
their own desire. By varying the values of γ and (θC)C, we model dif-
ferent markets where market clearing price has different effect on the
supply origin and where consumers can have varying sensitivities to the
green origin of their supply. Close to our work, Fang and Huang char-
acterize the effect of brand in market competition, relying on a variant
of the Hotelling model [11].

To determine in which class each consumer falls, we assume without
loss of generality that the consumers are ordered according to their pre-
ferences such that < …+ C, {1, , card( ) 1},C C 1 and that the
consumers are served by the local MO one after the other, in the in-
creasing order of their θs. In practice, this means that the platform supply
is used to fulfill the demand of the consumers with the smallest θs (e.g.,
the ones with the highest sensitivity to the RES-origin of their supply)
until supply shortage occurs and the local MO is forced to buy the missing
quantities to the grid to fulfill the demand of the remaining consumers
with the highest θs. We denote C̄ the index of the first consumer that is
not fully served by the platform. Formally, it can be defined as

= >= =C C y s y s¯ : max{{ | { } { }}; 0}i
C

t
i

P t
P

i
C

t
i

P t
P

1
1

1 . Note
that, by convention, in case of excess of supply compared to the platform
demand, =C̄ 0 and all the consumers are served by the platform.

Each consumer C determines his demand yt
C so as to maximize the

sum of his utility function (2), under non-negativity and maximum
capacity of consumption, κC, constraints:

C y( ) max ( ),
y

C t
C

t
C (3)

s t y. . , ( )t
C C

t
C (4)

y0 . ( ˜ )t
C

t
C

(5)

Note that the dual variables associated with constraints (4) and (5)
are denoted by Greek letters between brackets at the right of the con-
straints. We will follow the same convention throughout this article.

We prove in the proposition below that there always exists a unique
solution to the consumer utility maximization problem.

Proposition 1. There exists a unique solution to the consumer optimization
problem C( ).

Proof of Proposition 1. We start by computing the Lagrangian
function associated with the consumer’s optimization problem C( ):

= +y y y y( , , ˜ ) ( ) ( ) ˜ .C t
C

t
C

t
C

C t
C

t
C

t
C C

t
C

t
C (6)

Then, we distinguish between the two classes of consumers in-
troduced in (2).

• Consumer Cis served by the platform: The consumer Lagrangian
function takes the form =y( , , ˜ )C t

C
t
C

t
C

+ + +y y p y y y y( ) ˜ ( ) ˜C
t
C

t
C C

t t
C

t
C

C t
C

t
C C

t
C

t
C2 2 .

Derivating the consumer’s utility function (2) with respect to yt
C a

first time, we obtain = y y p2 ( )y
y

C
t
C

t
C

t C
( ) 2C t

C

t
C ; and a

second time, we get = <2 0y
y

C( )
( )

C t
C

t
C

2

2 . We conclude that ΠC(.) is

strictly concave in y ,t
C meaning that KKT conditions are necessary

and sufficient conditions to find the optimum solution of C( ).
Derivating the Lagrangian function with respect to y ,t

C the stationary
condition implies that at the optimum

=
+ +

y y
p

*
˜

2
.t

C
t
C t C t

C
t
C

C

2

(7)

Primal feasibility constraints impose that y *t
C C and y0 *t

C .
From dual feasibilty constraints we get: 0t

C and ˜ 0t
C . Finally,

with complementarity slackness conditions, we have the relation-
ships: =y( * ) 0t

C
t
C C and =y˜ * 0t

C
t
C .

• Consumer Cis served by the grid: The consumer Lagrangian
function takes the form =y( , , ˜ )C t

C
t
C

t
C

+ + + +y y p y y y( ) ˜ (1 2 )C
t
C

t
C C

t t
C

t
C

C t
C

C
2 2

y y( ) ˜t
C

t
C C

t
C

t
C.

Derivating the consumer’s utility function (2) with respect to yt
C a

first time, we obtain = y y p2 ( ) (1 )y
y

C
t
C

t
C

t C
( ) 2C t

C

t
C ;

and a second time, we get = <2 0y
y

C( )
( )

C t
C

t
C

2

2 . We conclude that

ΠC(.) is strictly concave in yt
C.

Derivating the Lagrangian function with respect to y ,t
C the stationary

condition implies that at the optimum

=
+ +

y y
p

*
(1 ) ˜

2
.t

C
t
C t C t

C
t
C

C

2

(8)

Primal and dual feasibility constraints as well as complementarity
slackness conditions remain the same as in the case consumer C is
served by the platform.

□
In the following proposition, we aim at finding a link between the

consumer total demand and statistical measures (such as empirical
mean and variance) of the consumers’ preference sample. To that
purpose, we define =^ [ ]: 1

card( ) C
C and

=^ ( ): 1
card( )

^ [ ]
C

C
2 2 as the empirical mean and (biased)

empirical variance of the consumers’ preference sample. We also in-
troduce the conditional empirical mean of the consumers’ preference

sample as =
+

^ [ | : 1
card( ) C̄ 1C

C C
C¯

¯
.

Proposition 2. Assuming that =C and <p y C2 , ,t
C

t
C at
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the optimum, the sum of the consumers’ demands can be expressed as a
closed form expression in the empirical mean, variance, and conditional
empirical mean of the consumers’ preference sample.

Proof of Proposition 2. From Proposition 1, we infer that in case
consumer C is served by the platform, < <y0 *t

C C is equivalent to

<C
y p2 C
t t . Whereas in case consumer C is served by the grid,

< <y0 *t
C C is equivalent to > 1C

y p2 C
t
C

t . From these two

relationships, we infer that < + <p y C C2 , ¯
t C

C
t
C2 and

<p y C C2 (1 ) , ¯
t

C
t
C

C
2 .

Since θC ∈ [0; 1], a sufficient condition to have < <y0 *t
C C in case

consumer C is served either by the platform or the grid, is to check
<p y2t

C
t
C .

Using the definitions of the empirical mean, variance, conditional
empirical mean and (7), (8), the sum of the consumers’ demands at the
optimum can be analytically expressed as follows

= +

+

y y p* card( )
2

card( )
2

^ ( ) ^ [ ]

card( ) C̄ 1 ^ [ | 1
2

.

C
t
C

C
t
C

t
2

C̄
(9)

□

Remark 2.4. As a corollary of Proposition 2, it is worth noting that the
sum of the consumers’ demands is decreasing in the platform price pt .
It is also linearly decreasing in the variance (which can be interpreted
as the spread) of the consumers’ preference sample. This means that the
more heterogeneous the consumers’ preferences are, the smaller the
total demand is.

For the sake of simplicity, in the following, we set
=V y: 2t

C C
t
C

C
2 and =W y: 2 (1 )t

C C
t
C

C
2.

Proposition 3. At the optimum, the consumer demand can be expressed as
a stepwise linear decreasing function in the platform price, pt :

=
<

y p

V p
C C

W p
C C

1

1
( )

2
if ¯ ,

2
if ¯ .

t
C

t

t
C

t
C p V

t
C

t
C p W

[0; [

[0; [

t t
C

t t
C

(10)

Proof of Proposition 3. The analytical expression of the optimal
demand of consumer C is given in Equation (7) in case <C C̄ and in
Equation (8) in case C C̄ . Complementarity constraints are detailed
in Proposition 1 proof.

In case <C C̄, the consumer demand can take three values: =yt
C C

(then =˜ 0t
C ), =y 0t

C (then = 0t
C ), or = +y y ]0; [t

C
t
C p C

2
t C

C

2
.

It is straightforward to prove that having yt
C equal the last value is

equivalent to < <y p y2 ( ) 2C
t

C
C t

C
t
C

C
2 2. Then, we ob-

tain the following expression for the demand of consumer C at the

optimum: = +y 1 1t
C C

p V
V p

p V V2 2 ] 2 ; [t t
C C C

tC t
C t t

C C C
t
C . Since

<V 2 0t
C C C if <yt

C C and >p p 0,t the expression of the
consumer demand can be simplified to give the expression in the
Proposition statement.

In case C C̄, similar reasoning applies, replacing Vt
C by Wt

C.
□
Substituting the expression of the consumer demand derived in

Proposition 3 in the consumer’s utility (2) assuming <C C̄, we obtain:

=

+ +

+

+ =
p

V p
y p

V p V p V

y p V
( )

(
2

) ˜ 1
2

( )

1
2

( )
2

if [0; [,

( ) ˜ ( 0) if ,

by definition of
and ˜ .

C t

C t
C

t
C t

C C
C t

C C t
C

t
t
C

C C t t
C

C
t
C C

t t
C

C

C

2 2

2 2

2

(11)

In case C C̄, we obtain a similar expression replacing Vt
C by Wt

C.
We note that p( )C t is strictly convex in p V[0; [,t t

C indeed

= > C0,p
p

( )
( )

1
2

C t

t
C

2

2 . This means that the platform price that
maximizes the consumers’ utility is reached in one corner of the interval
p p V[ ; min{ ¯ ; min }]C t

C . Same holds with Wt
C.

Remark 2.5. From Proposition 1 proof and Proposition 3, if
<p y C2 , ,t

C
t
C all the consumers get an equitable access

to the market platform, i.e., no consumer is denied access to the
platform because of a too high market clearing price.

2.2. Modeling prosumers

Prosumers have two ways to derive benefits from their production:
using it themselves or selling it through the sharing platform by the
intermediate of the local MO. We let xt

P be prosumer P self-usage
quantity and st

P be the quantity of energy that prosumer P shares
through the platform. When prosumers consume their own energy
production, they experience benefit from the consumption, like con-
sumers-only. But, unlike consumers-only, they do not have to pay the
local MO for their consumption, though their consumption may lead to
production costs that can be interpreted as usage (in case of micro-CHP
activation for example) or maintenance cost, or government taxes, etc.
We denote the benefit from self-usage by U x( )P t

P and the production
cost incurred by +c x s( )P t

P
t
P . As in the case of the consumers-only, we

assume that UP(.) is continuous and strictly concave and non-negative
on +. In the same spirit as the consumer model, we assume that
prosumer P usage benefit is a quadratic function of the prosumer self-
consumption x ,t

P leading to the following definition:

= +U x x x( ) ( ) ˜ ,P t
P P

t
P

t
P P2 (12)

where , ˜P P are non-negative parameters, and xt
P is the target self-

consumption of prosumer P at time period t. For the self-consumption
benefit to remain non-negative on the interval of definition of xt

P (e.g.,
the interval [0; κP]), we impose conditions on the parameters such that

UP(0) ≥ 0 and UP(κP) ≥ 0, leading to x t, 0.P
t
P˜ ˜P

P
P
P

Similarly to the consumers, the maximum usage benefit is reached in
=U x( ) ˜P t

P P and in case =U (0) 0,P we have the additional relationship

=P U x

x

( )

( )
P t

P

t
P 2 .

When the prosumers share their excess production through the
platform, they receive a revenue and incur costs. The revenue they
receive from sharing depends on how many other prosumers are also
sharing their excess production. We introduce the probability μ(yt, st)
that a prosumer is matched to a consumer as follows:

=y sµ
y
s

( , ): min ; 1 .t t
C t

C

P t
P

(13)

Naturally, μ(yt, st) < 1 if, and only if, <y s ,C t
C

P t
P i.e., there is

an excess of supply compared to the actual demand on the platform.
And, =y sµ ( , ) 1t t in case the consumer total demand is larger than the
prosumers supply, therefore requiring that the local MO buys the
missing quantity to the grid. In the following, for the sake of simplicity,
we will write: μt ≔ μ(yt, st).

The utility function of a prosumer is the sum of the benefit she
derives from the consumption of her self-production plus the expected
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revenue she derives from the selling of her excess production con-
ditionally to her matching with a consumer minus her production costs,
leading to the following mathematical expression:

= + +y sx U x p µ s c x s( , , ) ( ) ( ),P t
P

t t p t
P

t t t
P

P t
P

t
P (14)

where cP(.) is prosumer P cost function.
Assuming that prosumer P cost function is quadratic in her self-

usage production, we set = + +c x c x c x c x( ) ,P P P P2
2

1 0 with cP2,
cP1, cP0 non-negative parameters.

Each prosumer P determines her self-usage quantity xt
P and the

quantity to share on the platform st
P that maximize her utility function

(14), under non-negativity of her self-usage and shared quantities in
(17), and maximum capacity of generation, κP, in (16), by solving the
following optimization problem:

P y sx( ) max ( , , ),
x s

P t
P

t t
,tP tP (15)

+s t x s. . , ( )t
P

t
P P

t
P (16)

x s0 , . ( ˜ , ˜ )t
P

t
P

t
P

t
PS (17)

Observing the form of P( ), we can already distinguish between two
cases:

• =µ 1t implying that the prosumers’ optimization problems are de-
coupled from one another, and from the consumer’ ones. As a result,
solving P( ) is equivalent to solve an optimization problem in x s,t

P
t
P.

• μt < 1 implying that the prosumers’ optimization problems are
coupled through their utility functions ΠP(.). The consumers’ de-
mand yt also impact the prosumers’ utilities but since it is optimized
by the consumers independently of the prosumers’ reactions, we will
consider it as a fixed parameter.

Proposition 4. In case =µ 1,t provided > c P, ,P
P2 there exists a

unique optimum solution to the prosumer optimization problem P( ). In case
μt < 1, there exists a Nash equilibrium solution to the noncooperative game
involving the prosumers and consumers C P( ) ( ).

Proof of Proposition 4. We start by computing the Lagrangian
function associated with the prosumer’s optimization problem P( ):

= + +y s y sx s x s x s

x s

( , , , , , ˜ , ˜ ) ( , , , ) (

) ˜ ˜ .
P t

P
t
P

t t
P

t
P

t
P

t
PS

P t
P

t
P

t t
P

t
P

t
P

t
P

P
t
P

t
P

t
PS

t
P (18)

Then, we distinguish between two cases depending whether supply
shortage occurs on the platform.

• =µ 1,t the prosumers’ optimization problems are decoupled:
Derivating the prosumer’s utility function (14) with respect to
xt

P a first time, we obtain =x s
x

( , )P t
P

t
P

tP

+x x c x s c2 ( ) 2 ( )P
t
P

t
P

P t
P

t
P

P2 1; and a second time, we get
= <2 0x s

x
P( , )

( )
P t

P
t
P

tP
2

2 . Similarly, derivating the prosumer’s utility

function with respect to st
P a first time, we get

= +p c x s c2 ( )x s
s t P t

P
t
P

P
( , )

2 2
P t

P
t
P

tP
; and a second time, we have

= <c2 0x s
s P
( , )

( ) 2
P t

P
t
P

tP
2

2 . Then, cross-derivatives give

= = <c2 0x s
x s

x s
s x P

( , ) ( , )
2

P t
P

t
P

tP tP
P t

P
t
P

tP tP
2 2

. The Hessian matrix associated
to the two-variable utility function ΠP(.) admits as determinant

c c4 ( ),P
P

P2 2 we conclude that the determinant is positive if, and
only if, ηP > cP2. Under this assumption, since the first minor
( 2 P) is negative, we conclude that Πp(.) is concave with respect to
x s,t

P
t
P. Furthermore, the Hessian matrix being definite negative in

any point of the space of definition, we get the stronger result that
ΠP(.) is strictly convex in x s,t

P
t
P. As a result, the optimization pro-

blem P( ) admits a unique solution.
To determine the analytical expression of the optimum, we compute
the stationary conditions which give

=
+

x x
p

*
˜

2
,t

P
t
P t t

PS

P (19)

= + + + + +s x
c

p c
c c

* 1
2

( 1 1 )
2

1
2

( 1 1 ) ˜ .t
P

t
P

P
P t

P t
P

P P
P t

PS

2

1

2 2

(20)

Primal feasibility constraints impose that +x s* * ,t
P

t
P P

x s0 *, *t
P

t
P . From dual feasibility constraints we get:

0, ˜ 0, ˜ 0t
P

t
P

t
PS . Finally, the complementarity slackness

conditions give the following relationships:
+ = = =x s x s( * * ) 0, ˜ * 0, ˜ * 0t

P
t
P

t
P P

t
P

t
P

t
PS

t
P .

• μt < 1, the prosumers’ optimization problems are coupled: To
simplify the notations, we set =Y Y:t C t

C and =S s:t P t
P .

Derivating the prosumer’s utility function (14) twice with respect to
xt

P and s ,t
P we obtain = + <c2( ) 0s yx

x
P

P
( , , )
( ) 2

P t
P t t

tP

2

2 and

= <p c2 1 2 0s yx
s t

Y
S

s
S P

( , , )
( ) 2

P t
P t t

t
P

t
t

tP

t

2

2 respectively, while the

cross-derivatives give = = <c2 0s y s yx
x s

x
s x P

( , , ) ( , , )
2

P t
P t t

tP tP
P t

P t t

tP tP

2 2
. The

determinant of the Hessian matrix associated with ΠP(.) being po-
sitive, e.g., + + >c p c4( ) (1 ) 4 0,P

P t
Y
S

s
S P

P
2 2

t
t

tP and the first
minor + c2( )P

P3 being negative, we conclude that ΠP(.) is con-
cave in x s,t

P
t
P.

We now want to prove that in the most general setting, there is no
guarantee on the uniqueness of the Nash equilibrium [34]. To that
purpose, we introduce the Jacobian block matrix of the pseudo-
gradient of the non negative weighted sum of the two prosumers
P ≠ P′ utility functions with weights equal to 1 defined as

x x s x x x s

s x s s x s s

x x x s x x s

s x s s s x s

( )

( )

( )

( )

P

t
P

P

t
P

t
P

P

tP t
P

P

tP t
P

P

t
P

t
P

P

t
P

P

tP t
P

P

tP t
P

P

t
P

tP
P

t
P

tP
P

t
P

P

t
P

t
P

P

t
P

tP
P

t
P

tP
P

t
P

tP
P

t
P

2
2

2 2 2

2 2
2

2 2

2 2 2
2

2

2 2 2 2
2

=

+ c c

c p c p s p

p s p p s p

2( ) 2 0 0

2 2 (1 ) 2 0 2

0 0 0 0
0 2 0 2

.

P
P P

P t
Y
S

s
S P t

Y
S t

P
t

Y
S

t
Y
S t

P
t

Y
S t

Y
S t

P
t

Y
S

2 2

2 2
t

t
t
P

t
t

t

t

t

t

t

t

t

t

t

t

t

2 3 2

3 2 3 2

The determinant of the sum of the Jacobian block matrix and its
transpose being null, we cannot conclude that the sum of the Ja-
cobian block matrix and its transpose is negative definite. Therefore,
there might exist multiple Nash equilibria solutions of the non-co-
operative game C P( ) ( ).
The stationarity conditions indicate that a Nash equilibrium should
check the following relationships

+ + + + =c x x c s c2( ) 2 2 ˜ 0,P
P t

P P
t
P

P t
P

P t
P

t
P

2 2 1 (21)

+ + + + =p Y
S

s
S

c x s c P( 1) 2 ( ) ˜ 0, .t
t

t

t
P

t
P t

P
t
P

P t
P

t
PS

2 1

(22)

The primal and dual feasibility constraints as well as com-
plementarity slackness conditions are the same as the ones in-
troduced in the case =µ 1t and should hold for any P .

□
In the proposition below, we give explicit conditions on the prosu-

mers’ optimization problem parameters and constraints to guarantee
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uniqueness of the Nash equilibrium.

Proposition 5. In case μt < 1, assuming that >card ( ) 1, =c c ,P2 2
= P¯, ,P and st > 0, xt > 0, there exists a unique Nash

equilibrium solution of the noncooperative game involving the prosumers
and the consumers C P( ) ( ).

Proof of Proposition 5. The detailed proof can be found in
Appendix A.1.

Proposition 6. In case =µ 1,t the prosumer self-usage and shared quantity
on the platform can be expressed as stepwise linear decreasing and
increasing functions respectively, in the platform price, pt :

= +

= + +

+

+

+

+

x p x
x p

s p x
c

p c
c

1 1

1

1

( )
2

2
,

( ) 1
2

( 1 1 )
2

.

t
P

t t
P

p in c

P
t
P

t
P p c c c

t
P

t t
P

P
P t

P

P
p c c c

P
c c p

[0; ] ] ;2 [

2

1

2
] ;2 [

[2 , ¯]

t P t P P P P

t P P P P

P P P

1 1 2 1

1 2 1

2 1

Proof of Proposition 6. In case =µ 1t and > c P, ,P
P2 the

analytical expression of the optimal self-consumption and shared
quantity of prosumer P are given by Eqs. (19) and (20). Com-
plementarity constraints are detailed in Proposition 4 proof.

Each variable can take three values: 0, xt
P for xt

P (resp. κP for st
P), or

be such that +x s ]0; [t
P

t
P P . Using the analytical expressions of

x s,t
P

t
P mentioned above, it is straightforward to prove that this last

condition is equivalent to < < +c p c c2P t P
P

P1 2 1.
□

Remark 2.6. To avoid that the prosumers self consume all their
production and find incentives to share part of it on the platform, it
is realistic to assume p p pt with =p cmax { }P P1 and

+p c c P2 ,P P
P

1 2 .

Substituting the expressions of the prosumer self-usage and shared
quantity derived in Proposition 6 in case =µ 1t in the prosumer’s utility
(14), we obtain:

= +

+ + +

p
p

c
c

p c
c

c
c

p c
c

c

p x c
c c

p

( ) (
2

) ˜ ( 1
2 2

) ( 1
2 2

)

(
2

) 1
2

( 1 1 )( ) .

P t
P t

P
P

P
P

t
P

P
P

P
t

P

P

P

t t
P P

P P
P t

2
2

2

1

2

2
1

2

1

2

0

1

2 2

2
(23)

We note that p( )P t is strictly convex in p ,t indeed

= + > 0,p
p c

( )
( )

3 1P t

t P P

2

2 2
P . This means that the platform price

that maximizes the prosumers’ utility is reached in one corner of the
interval p p[ ; ¯].

2.3. On the need for an optimal design of subsidies

Proposition 7. Assuming that = C, ,C and = P¯, ,P at
>s * 0,t there exists a market clearing price upper bound, p̄ , below which

supply shortages occur on the platform.

Proof of Proposition 7. Starting with the consumers side: from
Proposition 2, the condition <p y C2 ,t t

C implies that the
sum of the consumers’ demands at the optimum takes the closed form
expression (9).

Continuing with the prosumers side: from the assumption >s * 0,t
the prosumers’ complementarity slackness conditions impose that

=˜ 0t
PS . Then, from Proposition 4, in case =µ 1t (e.g., consumers’ total

demand is larger than the prosumers’ supply), we infer from (20) and
(19) that <s xt

P P
t
P is equivalent to < +p c c P2 ,t p

P
P2 1 . So,

assuming these relationships hold, the sum of the prosumers’ shared
quantities on the platform can be expressed as a closed form expression

in the platform price

= + +s x
c

p c
c

1
2

( 1 1
¯

)
2

.
P

t
P

P
t
P

P P
t

P

P

P2

1

2 (24)

By definition =µ 1t ⇔ y sC t
C

P t
P. By substitution of the

closed form expressions of the sum of the consumers’ demand and
shared quantities obtained in (9) and (24), we infer that =µ 1t if and
only if

+ +

+ +

+ +

+ +

p
y x

^ ( ) ^ [ ] card( ) C̄ 1 ^ [ |
.

t
C t

C
P t

P
P

cP
cP

P cP

card

P cP

1
2 2

1
2

1
2

card( )
2 ¯

card( )
2

( )
2

2 C̄
1
2

1
2

1
2

card( )
2 ¯

card( )
2 (25)

So, if the upper bound on the market clearing price is chosen so that
<p y¯ min{2 min { } ; (25)},C t

C then supply shortages always occur
on the platform.

□
Proposition 7 coincides with the results obtained in [12] for Didi

Chuxing, the largest ridesharing platform in China: if the platform
market clearing price is not high enough, suppliers might lack in-
centives to share their production on the platform and consumer
shortages might happen. In such cases, optimal design of subsidies
might be necessary to give incentives to suppliers (prosumers) to share
their supply. The designs of optimal subsidies and loyalty programs are
discussed in [12,13], but is out of the scope of our paper.

3. Interpreting the market clearing problem as an optimal
exchange problem

We will suppose that Proposition 7 holds in the rest of the paper.
This seems a reasonable assumption, as many experimental studies led
on sharing platforms lead to such an observation [12,13]. This means
that we assume that there exist upper and lower bounds p and p̄ on the
platform clearing price such that prosumers have incentives to share
their productions on the platform but supply shortages occur:

p p p t¯ , 0.t

On the platform, supply and demand balance gives rise to the fol-
lowing equation at every time period t:

+ =y s q 0,
C

t
C

P
t
P

t
(26)

where qt is the import/export to/from the platform from/to the grid. In
case supply shortage occurs, the local MO can import energy from the
grid at the wholesale market unit price pt

0.
As proved in Propositions 3 and 6, the optimal demand, self-usage

and shared quantities can be expressed as closed form expressions in the
platform price. Similarly, the quantity exchanged between the platform
and the grid qt can be expressed as a function of the platform price. This
last result is summarized in the proposition below:

Proposition 8. At the optimum in y x sp p p( ), ( ), ( ),t t t t t t the quantity
exchanged between the platform and the grid, qt(.), can be expressed as a
linear increasing function of pt .

Proof of Proposition 8. By definition, from the balancing Eqs. (26),
=q s p y p( ) ( )t P t

P
t C t

C
t . Substituting the expressions of

s p( ),P t
P

t y p( )C t
C

t obtained in Propositions 7 (precisely (24))
and 2 (precisely (9)) respectively, we obtain the following expression
for qt(.) as a function of the platform price pt :
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= + + + +

+ +

+

q p x y p
c

c
c

( ) ( ) 1
2

1 card( )
2 ¯

card( )
2

card( )
2

( ^ ( ) ^ [ ] )

(card( ) C̄ 1) ^ [ | 1
2

2
.

t t
P

t
P

C
t
C

t
P P

P

P

P

2

2

C̄

1

2 (27)

□
The local market clearing problem, which takes place in day ahead

(i.e., on =T̄ 24 consecutive time periods), consists for the local MO in
determining the optimal demand, self-usage quantity, shared quantity
and platform price schedules that maximize the sum of the consumers’
and prosumers’ utility functions and import cost. The local market
clearing problem that takes place over day d can be interpreted as a
concave optimization problem:

+
= +

y p x s p p qmax ( , ) ( , , ) ,
y x s p t d T

dT

C
C t

C
t

P
P t

P
t
P

t t t, , , ( 1) ¯ 1

¯
0

(28)

+s t x s P t. . , , , ( )t
P

t
P P

t
P (29)

x s P t0 , , , , ( ˜ , ˜ )t
P

t
P

t
P

t
PS (30)

y C t0 , , , ( ˜ , )t
C C

t
C

t
C (31)

p p p t¯ , , ( , ˜ )t t t (32)

with qt defined by (26). The objective function of the local market
clearing problem coincides with a social welfare, it will be denoted:

= +y x sSW p y p x s p p q( , , , ): ( , ) ( , , ) .t t t t
C

C t
C

t
P

P t
P

t
P

t t t
0

In the rest of this paper, to keep the analytical expressions tractable
and at relevant level of interpretation, we make the following simpli-
fying assumptions (some of them already hold in MCP solution analysis
in Sections 2.1 and 2.2):

a) = C, ,C

b) = P¯, ,P

c) statistical characteristics of the consumers’ preferences (e.g., mean
[ ], variance ( )) are known publicly. For card( ) large enough,

^ [ ] [ ]
as/

and ^ ( ) ( )
as/

.
d) production cost parameters cP2, cP1, cP0 are known publicly. Such an

assumption was already made in [33] for instance.

3.1. Generic formulation of the optimal exchange problem

To formulate the local market clearing problem as a generic optimal
exchange problem [3], we introduce the following variables

= = =X Y Zx s y p: ( , ), : , :t
P

t
P

t
P

t
C

t
C

t t .
For the objective functions, we set:

= +
= +

= =

<

X
Y

Z

f U x c x s
f U y y U y y

h p s y p q p p q

1 1
( ): ( ) ( ),
( ): ( ( ) ) ( ( ) (1 ) ) ,

( ): ( ) .

P t
P

P t
P

P t
P

t
P

C t
C

C t
C

t
C

C C C C t
C

t
C

C C C

t t
P

t
P

C
t
C

t t t t t

2 ¯ 2 ¯

0 0

Using these notations, the local market clearing problem (28)–(32)
can be reformulated as a generic optimal exchange problem:

+ +
= +

Y X Zf f hmax ( ) ( ) ( ) ,
X Y Z t d T

dT

C
C t

C

P
P t

P
t

, , ( 1) ¯ 1

¯

(33)

A Y
Z

bs t C t. . , , ,C
t
C

t
C

(34)

A X
Z

b P t, , ,P
t
P

t
P

(35)

BZ b t, ,t (36)

where =A 1 0
1 0 ,C =b

0
,C

C
=A

1 1 0
1 0 0

0 1 0
,P =b 0

0
,P

P

and

=B [1 1], = p pb [ ].
The local market clearing problem (33)–(36) is decomposable in

time and per agent. Under a centralized local market design, the local
MO solves (33)–(36) as a single optimization problem. All the decisions
(output) at the level of the consumers and prosumers are therefore
known and enforced by the local MO. The main drawback is that it
requires that the local MO has full access to the private input of each
node, this gives no autonomy to the nodes, and solving the optimization
problem might be computationally expensive depending on the number
of nodes considered. To introduce more autonomy in the computation
of the nodes’ decisions while sharing a minimal amount of sensitive
information, we consider a distributed approach whose privacy-pre-
servation capability and performance will be compared against the
centralized benchmark approach. Before describing consensus ADMM
(C-ADMM), we formally define the property of privacy-preservation.

3.2. Privacy-Preservation

Privacy preservation has been generating an intense research ac-
tivity in the last decade. It ranges from k-anonymity, to aggregation, to
differential privacy [26] (see Section 1.3 for a review of these defini-
tions of privacy). In this paper, we focus on the simpler notions of
private input and privacy-preservation output introduced by Jiang et al.
in the context of security games [18]. Static and dynamic information
were already defined in Section 1.4.

Definition 1. Private Input [18]

• fn(.), An, bn is the information privately held by agent n .
• h(.), B, b is the information known by all the agents in .

Definition 2. Privacy-preservation (output) goal
The goal is to solve the optimal exchange problem (33)–(36) so that

in the optimum X *t
P (resp. Y *t

C ) is a private output only known to
prosumer P (resp. consumer C), but Z*t is publicly shared by the local
MO and known to all the agents.

We wish to design coordination mechanisms (using distributed ap-
proaches) between the nodes that achieve (near) optimal efficiency
while sharing only a minimal amount of sensitive information.

4. Centralized versus distributed approaches to solve the optimal
exchange problem

4.1. Centralized approach

In the centralized approach, the local market clearing problem
(28)–(32) is solved by the local MO in y, x, s, p⋆.

The consumers’ and prosumers’ optimization problem solutions
coincide with the ones obtained in Propositions 3 and 6.

The Lagrangian function associated with the local market clearing
problem in pt writes down as follows:
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= + +

= + +

+

y x sp SW p p p p p

y p x s p p q p p

p p

( , , ˜ ) ( , , , ) ( ) ˜ ( ¯),

( , ) ( , , ) ( )

˜ ( ¯).

p t t t t t t t t t t t

C
C t

C
t

P
P t

P
t
P

t t t t t

t t

0

Derivating the local market social welfare function with respect to
p ,t we obtain = q ,y x sSW p

p t
( , , , )t t t t

t
which is negative or null since we

assume consumer total demand is larger than the prosumers’ supply
(see, e.g., Proposition 7 holds). Derivating twice the local market social

welfare function with respect to p ,t we obtain = 0y x sSW p
p

( , , , )
( )
t t t t

t

2

2 which
proves that the local market social welfare is a linear decreasing func-
tion of pt . This implies that =p p ,t and =˜ 0,t = q p˜ ( )t t where the
import is given in (27).

4.2. Consensus ADMM (C-ADMM)

Starting with the work of Tsitsiklis [39], distributed computation
has received an increasing attention in the last decades. The core idea
behind various distributed decision applications is the ability of in-
dividual agents to coordinate (e.g., reach agreement globally) via local
interactions.

The literature on consensus and sharing problems, detection pro-
blems (making the link to some extent with data fusion), consensus
averaging in the presence of an adversary [19] is vast and provides
generic frameworks for distributed optimization.

ADMM can be used in the generic context of consensus problems
[3]. Extension to the asynchronous case exist [28] ADMM has the fol-
lowing characteristics:

• ADMM uses an iterative process to solve the optimal exchange
problem (33)–(36).
• ADMM only shares the iterative updates of the shared variables Zt.
• fP(.), AP, bP, X *t

P (resp. fC(.), AC, bC, Y *t
C ) are only known to pro-

sumer P (resp. consumer C).

Applying ADMM to our problem, the concave objective function of
the optimal exchange problem (33) is maximized subject to constraints
(34)–(36), by performing alternating individual optimizations over fC(.)
and fP(.). While it was originally introduced to achieve faster con-
vergence [3], it was observed in [18] that when the functions fC(.) and
fP(.) are private information belonging to consumer C and prosumer P,
ADMM has the additional advantage of sharing only a small amount of
private information between the different parties.

To make the link with the classical consensus formulation and assess
privacy-preservation properties, we reformulate the generic optimal
exchange problem (33)-(36) as a consensus problem:

+

=

= +
u v

B u d
B v d
u v

F G

s t t
t

t

max ( ) ( ) ,

. . , ,
, ,

, ,

u v t d T

dT

t t

t

t

t t

, ( 1) ¯ 1

¯

1 1

2 2

(37)

with ut, vt independent copies of X Y Z( ) ,t
T

t
T

t
T

= +u YF f( ) ( ) ,Z
t C C t

C h ( )
2

t = +v XG f( ) ( ) Z
t P P t

h ( )
2

t .

Remark 4.1. We note that the optimal exchange problem (33)–(36) can
be decomposed in time, because there is no link between the
optimization problems at different time periods. As a result, the time
index might be omitted in (33)–(36) and (37).

Proposition 9. The optimal exchange problem (33)–(36) is a special case
of the consensus problem (37).

Proof of Proposition 9. By construction in Problem (37), the vari-
ables ut and vt both represent independent copies of X Y Z( )t

T
t
T

t
T . For-

mally, let the objective function F(.) and G(.) be defined as follows:

= +u YF f( ) ( ) ,Z
t C C t

C h ( )
2

t = +v XG f( ) ( ) Z
t P P t

P h ( )
2

t .
It is easy to see that B1 and d1 can be created by inserting zeros in

appropriate places such that the constraint set B1ut ≤ d1 reduces to the
union of A Y Z b C( ) ,C t

C
t

T
C and BZt ≤ b. B2 and d2 can be

generated following the same way, e.g., by inserting zeros in appro-
priate places such that the constraint set B2vt ≤ d2 reduces to the union
of A X Z b P( ) ,P t

P
t

T
P and BZt ≤ b.

This completes the construction of Problem (37).
□
Updating Rules, Privacy-Preservation and Stopping Criteria:

We define =u u B u d( ): { | }1 1 as the feasibility set of u and
=v v B v d( ): { | }2 2 as the feasibility set of v. We introduce ρ > 0 as a

penalty parameter. ADMM solves Problem (37) in an iterative manner
[18], where for each time period t, each iteration k has three steps [43]:

1. + ++u u v uFarg min ( )
2

,
u u

t
k

t
k

t
k1

( )
2

2. + ++ +v v v uGarg min ( )
2

,
v v

t
k

t
k

t
k1

( )
1 2

3. = ++ + +v u( )t
k

t
k

t
k

t
k1 1 1 .

Remark 4.2. The consumer and prosumer optimization problems being
separable in each agent, first step can be solved independently by each
consumer C ; second step can be solved independently by each
prosumer P ; while last step is computed by the local MO. Note that
the role of u and v is almost symmetric, but not quite.

The update steps of the consensus-based ADMM algorithm violate
the output privacy requirements because ut (resp. vt), which is revealed
to the consumers (resp. prosumers), contains a copy of the private
output variables of all the other agents. However, the key point to
observe is that the optimization problem in each step can be decom-
posed into components that depend on different individual variables of
ut (resp. vt). Therefore, the set of components in the optimization steps
of each agent that depend on the private output of the other agents can
effectively be removed from the objective function, and at the same
time, the feasible region (.) can be reduced to the feasible region
over Y Z,t

C
t for any consumer C (resp. X Z,t

P
t for any prosumer P).

Hence, the optimization can be carried out in a way that each agent is
only revealed his (her) final value Xt

P (Yt
C) and Zt. Hence, the output

privacy is also preserved by the consensus-based ADMM algorithm.
The primal and dual residuals, rt

k and ,t
k are used to monitor con-

vergence:

= v ur : ,t
k

t
k

t
k 2 (38)

= +u u v v: .t
k

t
k

t
k

t
k

t
k1 2 1 2 (39)

C-ADMM stopping criterion is expressed as r ,t
k ,t

k where
ϵ > 0 is the stopping tolerance.

As a by-product, we can observe the objective function convergence
+ +u vF G F G( ) ( ) * *,t

k
t
k

k t t where +F G* *t t is the optimal value of the
optimization problem (37) at time period t, and dual variable con-
vergence pt

k
k t . C-ADMM steps are summarized in Algorithm 1.

Remark 4.3. Though X *t
P (resp.Y *t

C ) are private outputs known only to
prosumer P (resp. consumer C), e.g., not shared with the other
prosumers/consumers, the local MO needs to have access to
X Y P C, , ,t

P k
t
C k, , to update the dual variable variable t

k

in Step 3.

5. Algorithmic properties of C-ADMM

5.1. Convergence results

F and G are closed concave functions. We let γ be any constant such
that 2 t 2. We recall the following results which are classical in
the literature on the convergence of C-ADMM [6]:
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+ +
+

+

+

u v
v v

F G F G
k

( ) ( ) ( * *)
*

2( 1)
,

I
t
k

t
k t t

0 2 ( )t
0 2 2

(40)

=
+ +

+
u v

v v
r

k
:

* ( )
( 1)

,I
t
k

t
k

t
k t t t

2

0 2 0
2

2

(41)

where for any C, =z z CzC
T2 and =z z zT

2 denotes the l2 norm of
vector z.

In addition, C-ADMM is known to have a O(1/k) convergence rate
under mild conditions for concave (convex in case of a minimization)
problems, while a O(1/k2) rate is possible when at least one of the
functions is strongly concave or smooth. Iteration complexity is 0(1/ϵ).

5.2. Strategyproofness

The input information is kept private to each agent. In the updating
steps of C-ADMM, the consumers and prosumers’ optimization pro-
blems are independent of the reports of the other agents regarding their
last iteration outcomes. However, the market clearing price t

k update
depends on the reports of the outcomes of the consumers and prosu-
mers’ optimization problems. So, to increase their own profits, the
consumers and prosumers might have incentives to manipulate the
reports of their optimization problem outcomes to the local MO. We
prove that it is not in their best-interest, because the outcome of such a
noncooperative game is a variational equilibrium, i.e., the set of solu-
tions of the noncooperative game coincides with the set of social wel-
fare optima to which C-ADMM converges. Let’s split (37) in each agent,
we obtain a noncooperative game that can be formulated as follows:

C

P

=
=

u

v

B u d
B v d

u v u
v

F

G

s t t
s t t

t
t

( ) max ( ),

( ) max ( ),

. . , ,
. . , ,

, .
, .

u

v

t
t

t
t

t

t

t t t

t

1 1

2 2

Proposition 10. The set of Variational Equilibria solutions of C P( ) ( )
coincides with the set of social welfare optima to which C-ADMM converges.

Proof of Proposition 10. The term “variational” refers to the varia-
tional inequality problem associated to such an equilibrium: indeed, if
we define the set of admissible solutions as

C P= u v: {( , ) | ( ) ( ) hold for each consumer-prosumer}t t then
u v( ^ , ^ )t t is a Variational Equilibrium if, and only if, it is a solution of

+u v
u u
v v

u vF G[ ( ^ ) (^ )]
^
^ 0, ( , ) .t t

T t t

t t
t t

(42)

We observe that Variational Equilibria are defined by exactly the same
KKT system than the social welfare maximizer (or equivalently as the
solution of the same variational inequality (42)). Therefore, we obtain
the proposition statement.

□

6. Case study

In the case study, we aim at quantifying the performance of a digital
trading platform, where prosumers’ households equipped with solar
panels can sell their solar surplus to consumers. Such a framework is in
line with electronic trading platforms deployed by TransActive Grid, in
Brooklyn, US [48], or more recently by EDF, in the suburbs of London,
UK [50].

The data used to illustrate the case study come from a database
made of 300 prosumers equipped with solar panels spread through New
South Wales in Australia. The database is detailed in Section 6.1. To
validate our approach, we determine the computational time needed
for C-ADMM to converge in Section 6.2. Privacy-preservation property
is also discussed. Economic impacts on the local energy community
social welfare, prosumers and consumers’ engagements within the
community are quantified in Section 6.3.

6.1. Data description

We consider the solar home electricity database for Australia,
shared by Ausgrid [45]. The database is made of 300 prosumers
equipped with solar panels spread through New South Wales, in Aus-
tralia (see Fig. 2a). The data ranges from July 1, 2012 to June 30, 2013
with a granularity of 30 min. Each prosumer is identified by a customer
ID, a postcode corresponding to her geographical location, and her
generation peak capacity that we will identify to her generation capa-
city.

Using the database, we isolate =P card( ) prosumers considering
as their target self-consumptions their gross generations (GG), and

=C card( ) consumers considering as their target demands the sum of
their general consumptions (GC) and controlled load (CL) consump-
tions. The prosumers’ generation capacities (κP)P are the generators’
peak capacities. The consumers’ maximum demands (κC)C are identified
as the maximum over all the general and controlled load consumptions,
for any time period (see Fig. 2b).

The consumers’ preferences regarding the origin of their supply are
distributed according to a Uniform density function with support the
interval [0; 1]; with mean and variance resp. 0.5 and 0.083. The con-
sumers with the lowest θs will have a strong preference to be supplied
by green energy from the platform only, whereas the consumers with
the largest θs will make no discrimination regarding the source of their
supply. The prosumers’ and consumers’ usage benefit parameters ¯ and
η are displayed in Table 1, as well as the coefficient γ characterizing the
importance of the consumers’ preferences regarding the green origin of
their supply with respect to the cost of the supply. We choose = 0.5,
meaning that the consumers are equally sensitive between the green
origin of their supply and its cost.

For the production cost parameters, we display the lower and upper
bounds in Table 2. The prosumers’ cost production parameter values are
evenly allocated to each of them along these intervals. Note that cP1 is
the same for any prosumer P . Finally, the wholesale day-ahead
market price time series p( )t t

0
0 for imports and exports are extracted

from the Australian National Electricity Market (NEM) website [46]
from July 1, 2012 to June 30, 2013, with 30 min granularity.

Parameters: K maximum number of iterations,ρ > 0 penalty parameter.Initialization : u0
t , v

0
t , λ0

t , k = 0.

While stopping criterion (38)-(39) is not met andk < K

– Locally updateuk
t (see Step 1.).

– Locally updatevk
t (see Step 2.).

– Globally update dual variableλk
t (see Step 3.).

k = k+ 1.

Algorithm 1. Consensus ADMM (C-ADMM) [43].
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6.2. Performance

In Table 3, we compare the privacy-preservation capabilities of the
centralized approach against the distributed C-ADMM based approach,
relying on the definitions of private input and output introduced in
Definitions 1 and 2. The computational time of C-ADMM is quantified
in sec (s) before the stopping criterion is met. With C-ADMM, the
stopping tolerance is fixed such that = 10 6 and we choose = 0.5.

For the centralized approach, the solution can be computed analytically
so no computational time results from it. The market clearing problem
being decomposable in time, the performance are analysed on three
consecutive time slots in July 28, 2012 for (a) two consumers, three
prosumers, (b) 20 consumers, 30 prosumers, (c) 40 consumers, 60
prosumers, in Table 3. We observe that the computational time is in-
creasing in the number of agents interacting on the platform. Further-
more, there is a factor 100 between (a) and (b) convergence times, and
of 5 between (b) and (c) convergence times. For the last scenarios, e.g.,
considering 100 agents, the computational time is around 60 s (e.g.,
1 min) per time slot, which remains acceptable as we can expect that
local energy communities would not contain more than few hundreds
agents.

In Fig. 3a, b, c, and –d, we have represented the convergence of the
primal and dual residuals as functions of the number of iterations for
three time slots for one day per season of the year 2012–2013. We
observe that the primal and dual residuals convergence is quite fast
(less than 20 iterations for a stopping tolerance = 10 6), which is
corroborated by (41) provided u0 and v0 are initialized with values
close to the optimum.

6.3. Economic analysis

Demand side management enables the prosumers/consumers to be
flexible. The value of flexibility (e.g., the gain/cost the prosumer/con-
sumer derives/incurs from being flexible) is measured as the difference
between the prosumers/consumers’ utility function evaluated in the
optimum Π., obtained as outcome of C-ADMM, and the utility function

Fig. 2. Prosumers spread around Syndney, Australia (a), consumers’ maximum demand and prosumers’ generation capacities (b).

Table 1
Usage benefit calibration and preference related
parameters.

Parameters

η 0.8
¯ 0.1
γ 0.5

[ ], ( ) 0.5, 0.083

Table 2
Prosumers’ production cost parameters interval values [23,38].

Parameters Lower Bound Upper Bound

cP2 ($/MW 2) 1. 2.
cP1 ($/MW) 0.01 0.01
cP0 ($/MW) 0.01 0.05

Table 3
Performance comparison of centralized vs distributed based C-ADMM.

Method Privacy Preservation Computational Time (s)
(a) (b) (c)
C=2,P=3 C=20,P=30 C=40,P=60

Centralized analytics • input known by the local MO N/A N/A N/A
• output decided by the local MO

Distributed C-ADMM • private input 0.213 16.766 79.450 slot 1
• output decided by each node n , private to 0.220 15.264 65.465 slot 2
the other nodes in n{ } but known to the local MO 0.256 16.345 56.286 slot 3
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evaluated in the target value, . . We observe in Fig. 4a, d, g, j, b, e, h,
and k, that:

• being flexible, e.g., agreeing to reduce their demands, is less prof-
itable for the consumers than for the prosumers. In some cases, it
might even lead to financial losses for the consumers (though these
losses remain reasonable, e.g., less than 1$ per time slot). On the
contrary, the prosumer can significantly beneficiate from being
flexible, with financial gains up to 60$ per time slot. Furthermore,
the highest losses go to the consumers with the strongest sensitivity
to the green origin of their supply. This means that this class of
consumers will be more reluctant to decrease their demands.
Indeed, being served first, they want to maximize their usage ben-
efits in priority with green energy supply even if it is as the cost of an
increase in their supply costs.
• the value of flexibility for the prosumers is higher in May and
February 2013 (e.g., during Fall and Summer in Australia) than
during Winter (July 2012). This can be explained by the higher
production rates of solar panels during Fall and Summer, which are
generally very hot in New South Wales.

From Fig. 4c, f, i, and l, we observe that there are no significant
variations of the local energy community social welfare between three
consecutive time periods, whatever the season. Decomposing per
season, the social welfare of the local energy community is the lowest in
May 2013 (e.g., during Fall): due to unexpected demands from the
consumers, as well as large discrepencies between the self-usage targets
and the self-consumptions of the prosumers (see Fig. 5h), who prefer to
share their productions on the platform than to self-consume it (to
maximize their usage benefits) because of high platform prices. It is the
highest in July 2012 (e.g., during the Winter), the solar panels pro-
duction being lower, the discrepencies between self-usage and sharing

on the platform are not as big as during the Fall (see Fig. 5b). During
Winter, consumers’ demand – at a reasonable level – is balanced by
local generation which remains high enough (the Winters being quite
mild in Australia, solar panels production remains high).

We also observe that both prosumers and consumers significantly
reduce their demand inside the local community, by comparison with
their initial target demands, most probably because of the high clearing
price on the platform. The quantity of energy shared by the prosumers
on the platform is independent on the season, it is decreasing in the
prosumer ID, because of increasing production costs. Independently of
the season, the prosumers share the same quantity of energy and prefer
sharing it on the platform than self-consuming it, e.g., increasing their
utility through the revenues generated by the selling to the local MO
while reducing their usage benefits.

To summarize the case study results, we would like to highlight the
following observations:

(i) being flexible within a local energy community is more profitable
for the prosumers than for the consumers.

(ii) within a local energy community, both consumers and prosumers
significantly reduce their demands compared to their initial tar-
gets.

(iii) prosumers will prefer sharing their solar panel generations than
self-consuming it, meaning that the expectation to make a sub-
stantial profit is also a driver for prosumers to join a local energy
community.

(iv) the green origin of the supply is another driver for consumers to
join the energy community. This class of consumers are less flex-
ible and prefer maximizing their usage benefit, even at high supply
costs.

Fig. 3. Convergence of primal and dual residuals with C-ADMM.
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7. Conclusion

In this paper, we consider consumers and prosumers who interact
via a platform. On the one hand, consumers specify their target demand
and optimize their demand to the platform in order to find a trade-off
between maximizing their usage benefit and minimizing the cost they
pay to the platform. On the other hand, prosumers need to determine
the amount of generated energy they self-consume and the quantity
they share on the platform. Our study introduces product differentia-
tion, through a variant of the Hotelling model, and consumers’ pre-
ferences regarding the locality and the green origin of their supply.
These preferences are used to match the prosumers generation char-
acteristics. We introduce the probability for a prosumer to be matched
to a consumer. In case the consumer demand is larger than the pro-
sumer supply, the matching problem can be decomposed in decoupled

optimization problems, that we solve analytically. In case of an excess
of supply compared to the demand on the platform, the consumers and
prosumers problems remain coupled through the matching probability,
giving rise to a noncooperative game. We provide analytical conditions
for the existence and uniqueness of a Nash equilibrium in case of
coupled optimization problems. Additionally, we prove the existence of
a market clearing price cap below which supply shortages always occur
on the platform. To guarantee output privacy-preservation, we for-
mulate the market clearing as a distributed consensus based problem,
that we solve using Consensus ADMM (C-ADMM). The consensus al-
gorithm complexity is recalled and its strategyproofness is analysed. We
evaluate the computational time of C-ADMM on a case study made of
300 prosumers equipped with solar panels in New South Wales,
Australia. Economic interpretations regarding the local energy com-
munity social welfare, prosumers and consumers’ engagement are

Fig. 4. Prosumers and consumers flexibility gains in each season of 2012 2013 and local energy community social welfare.
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provided.
From this work, one possible new research direction would be to

introduce uncertainty through random variables modeling the prosu-
mers’ RES generations, which is unpredictable and only partially con-
trollable. Risk measures could be used to quantify the impact of such
variability on the market clearing outcome. From a methodological
point of view, the coordination of agents with heterogeneous risk

measures still raises open research questions. Another direction would
be to include the prosumers’ techno-economical constraints, power grid
operational constraints and power flow constraints in the market
clearing problem resulting in a large-scale non convex optimization
problem. ADMM is known to still be applicable in non convex en-
vironments but the scale of the problem and the introduction of the
strategic behaviors of the agents still remain an issue.

Fig. 5. Prosumers and consumers optimal decision variables.
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Appendix A. Appendix

A1. Proof of Proposition 5

By substraction of the stationarity condition (22) from (21) at st > 0, xt > 0, we obtain
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Taking the sum of (44) over all P , we obtain
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But, taking the sum over all P in (43), we obtain another expression for s S( , )P P t
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By substitution of (46) in (45) and multiplying both parts of the equality by St, we obtain a second order polynomial equation in St
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2 we

conclude that it admits a unique positive solution in St
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Substituting s *t
P and S*t in (43) gives the expression of x *t

P in the Nash equilibrium.
□
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