A Service of

[) [J
(] [)
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Merschformann, M.; Lamballais, T.; de Koster, René; Suhl, Leena

Article

Decision rules for robotic mobile fulfillment systems

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Merschformann, M.; Lamballais, T.; de Koster, René; Suhl, Leena (2019) : Decision
rules for robotic mobile fulfillment systems, Operations Research Perspectives, ISSN 2214-7160,

Elsevier, Amsterdam, Vol. 6, pp. 1-15,
https://doi.org/10.1016/j.0rp.2019.100128

This Version is available at:
https://hdl.handle.net/10419/246403

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

-. https://creativecommons.org/licenses/by/4.0/

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2019.100128%0A
https://hdl.handle.net/10419/246403
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Operations Research Perspectives 6 (2019) 100128

Contents lists available at ScienceDirect

Perspectives

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Decision rules for robotic mobile fulfillment systems R

Check for
updates

M. Merschformann®™?, T. Lamballais”, M.B.M. de Koster”, L. Suhl®

2 DS&OR Lab, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
b Rotterdam School of Management, Erasmus University, PO Box 1738, Rotterdam, 3000 DR, The Netherlands

ARTICLE INFO ABSTRACT

Keywords: The Robotic Mobile Fulfillment Systems (RMFS) is a new type of robotized, parts-to-picker material handling
Logistics system, designed especially for e-commerce warehouses. Robots bring movable shelves, called pods, to work-
Warehouse control stations where inventory is put on or removed from the pods. This paper simulates both the pick and replen-
Simulation

ishment process and studies the order assignment, pod selection and pod storage assignment problems by
evaluating multiple decision rules per problem. The discrete event simulation uses realistic robot movements and
keeps track of every unit of inventory on every pod. We analyze seven performance measures, e.g. throughput
capacity and order due time, and find that the unit throughput is strongly correlated with the other performance
measures. We vary the number of robots, the number of pick stations, the number of SKUs (stock keeping units),
the order size and whether returns need processing or not. The decision rules for pick order assignment have a
strong impact on the unit throughput rate. This is not the case for replenishment order assignment, pod selection
and pod storage. Furthermore, for warehouses with a large number of SKUs, more robots are needed for a high
unit throughput rate, even if the number of pods and the dimensions of the storage area remain the same. Lastly,
processing return orders only affects the unit throughput rate for warehouse with a large number of SKUs and

Robotic mobile fulfillment system
Parts-to-Picker system

large pick orders.

1. Introduction

The rise of e-commerce has created the need for new warehousing
systems. Traditional, manual picker-to-parts systems work best when
orders are large, i.e. consist of many SKUs so that consolidation has to
be organized well. However, e-commerce orders are typically small and
e-commerce warehouses are often large as they need to contain large
assortments of products, which results in long walking distances for the
pickers. In contrast to manual picker-to-part systems, automated parts-
to-picker systems eliminate the time pickers spend traveling. Thus, they
can achieve higher pick rates.

The Robotic Mobile Fulfillment System (RMFS) is an automated
parts-to-picker system. Robots transport movable shelves, called
“pods”, that contain the inventory, back and forth between the storage
area and the workstations. As RMFSs eliminate picker walking time,
high pick rates can be expected. The systems are mainly used by
Amazon, which bought the company that invented the RMFS, Kiva
Systems, and has since deployed more than 100,000 robots in its
warehouses (see [18]). Recently, competitors such as Swisslog, Inter-
link, GreyOrange, Mobile Industrial Robots and Scallog have been
rolling out their versions of an RMFS.

* Corresponding author.

The RMEFS is described in more detail in [5] and [19]. They mention
that numerous operational decision problems are yet to be examined in
depth, for example the assignment of customer orders to workstations
or of pods to storage locations. Each of these decision problems comes
with a trade-off. An order may be assigned to a workstation if it is
nearing its due time, but assigning another order that has lines in
common with other orders assigned to that workstation may result in
more picks per pod and hence a reduction in the number of pod trips.
Furthermore, assigning a pod to a storage location that is close to the
workstation reduces travel time, but keeping the inventory sorted by
assigning pods to favorable storage location if they are likely to be
needed in the near future may reduce travel times more.

These trade-offs are linked to the number of robots in the system. As
an example, with more robots, more trips can be done and hence the
order due times can become a more important criterion than the
number of picks per pod when selecting a pod to be transported to a
workstation. The trade-offs are also linked to the resources and condi-
tions in the warehouse. For example, the more SKUs a warehouse
contains, the more difficult it becomes to assign orders to pick stations
in such a way that multiple products can be picked from a single pod.

As these examples indicate, a need exists for finding methods to

E-mail addresses: marius.merschformann@upb.de, marius.merschformann@uni-paderborn.de (M. Merschformann), lamballaistessensohn@rsm.nl (T. Lamballais),

rkoster@rsm.nl (M.B.M. de Koster), leena.suhl@upb.de (L. Suhl).

https://doi.org/10.1016/j.0rp.2019.100128

Received 27 March 2019; Received in revised form 7 October 2019; Accepted 21 October 2019

Available online 01 November 2019

2214-7160/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/BY/4.0/).

http://www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2019.100128
https://doi.org/10.1016/j.orp.2019.100128
mailto:marius.merschformann@upb.de
mailto:marius.merschformann@uni-paderborn.de
mailto:lamballaistessensohn@rsm.nl
mailto:rkoster@rsm.nl
mailto:leena.suhl@upb.de
https://doi.org/10.1016/j.orp.2019.100128
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2019.100128&domain=pdf

M. Merschformann, et al.

address the decision problems in an RMFS, for research on the perfor-
mance of RMFSs across performance measures, and for examining
performance while varying aspects like the number of robots. This
paper addresses this need. We study the pick order assignment, re-
plenishment order assignment, pick pod selection, replenishment pod
selection, and pod storage assignment decision problems and propose
several decision rules for each. To see which trade-offs in performance
may exist, we use different performance measures. Furthermore, we
vary three aspects of the RMFS, namely whether or not return orders
need to be processed, the size of the orders, and the number of SKUs in
the warehouse. This study focuses on both the pick process and the
replenishment process, because a more efficient replenishment process
frees up robots for pick tasks. Lastly, the number of pick stations and the
number of robots per pick station is varied. Varying these numbers
shows how many pick stations and robots are needed to provide pickers
with a near continuous supply of pods.
In the following we outline the main contributions of this work:

® A hierarchical definition of the core RMFS control decision problems

e A number of intra-logistic-typical and RMFS-tailored decision rules
suitable for controlling RMFS

® A large two-stage experiment providing insights about the perfor-
mance of the rules and importance of the decision problems

e The source code of all decision rules and the evaluation framework
itself is available for open-access at: https://github.com/
merschformann/RAWSim-O

Section 2 describes the RMFS in more detail, Section 3 points out
related work, Section 4 the decision problems, and Section 5 the deci-
sion rules, while Section 6 explains the evaluation framework, Section 7
shows the results of the analysis, and Section 8 provides conclusions
and directions for future research. For a description of the realistic si-
mulation built for evaluating the decision rules refer to Appendix A.

2. The robotic mobile fulfillment system

An RMFS consists of shelves on which products are stored (called
pods), robots that can move underneath and also carry them (see
Fig. 1a), and work stations.

Fig. 1 b shows the storage and retrieval processes, where the robots
transport pods between the workstations and the storage area. Starting
at the replenishment station, in the example, two replenishment orders
with 4 and 8 units of two SKUs (green & orange) are stored on a pod
that was retrieved from the inventory by a robot. Some units of the blue
SKU, also relevant to the process example, have already been available
on the pod at this point. After the pod was handled at the station it is
stored in inventory again. Next, if the pod is selected for picking at a

(a) Robot carrying a
pod (see Enright and
Wurman (2011))

Retrieval trip

Operations Research Perspectives 6 (2019) 100128

pick station, it is brought to that station. The operator at the station
then picks the units matching the open order lines at the station from
the pod and puts them into the bins for the respective pick orders. As
soon as a pick order is completed it leaves the pick station and is
handled by further warehouse systems. If zoning is in place at the
warehouse, the pick order may only be a part of a larger customer order
and must be consolidated further with the other partial pick orders in a
following sortation process. If the customer order is already completely
fulfilled at the pick station, it may be packed into a carton and prepared
for shipping immediately with no further handling. The latter may only
be possible in e-commerce operations where lines per order are small.

Each pair of storage and retrieval trip is one robot cycle in an RMFS.
During one cycle the robot does not set-down or leave the rack until it is
returned to a storage location. Note that, the pod may be brought to
further replenishment or pick stations between the retrieval and the
storage trip, if further replenishment or immediate picking can be done
with it. While the operation of the robot is cyclic the flow of the in-
ventory units through the system starts at a replenishment station (by
storing a replenishment order) and exits at a pick station (by fulfilling a
pick order). However, in contrast to other systems there is quite some
overhead inventory movement, because all contained units, not only
needed ones, are moved when a pod is brought to a station. The same
happens during replenishment operations, if non-empty pods are
moved to a replenishment station.

Robots navigate their paths through the warehouse using a way-
point system, which is laid out as a grid. A path is a sequence of con-
nected waypoints and all robots have to be guided concurrently along
their paths while avoiding collisions and deadlocks. Robots that are not
carrying a pod can move underneath stationary pods and hence take
other paths than robots that do carry pods. The system layout is de-
picted in Fig. 2 and consists of a storage area where the pods are stored,
pick and replenishment stations grouped around the storage area,
maneuvering areas between the storage area and the workstations, and
per workstation a buffer area. A robot carries a pod from the storage
area, via the maneuvering area, to the buffer area of the destination
workstation. Pods are picked or replenished one at a time per station.
Workers at the replenishment stations replenish the pods with new
inventory. In contrast, workers at the pick stations pick product units to
fulfill orders. A picker picks for multiple unfinished/incomplete pick
orders at the same time. For both operations the robots need to stop
with a pod at a waypoint representing the access point of the respective
station. In the buffer area next to each workstation, robots carrying
pods can wait for their turn. In the middle of the layout a number of
waypoints is used as possible storage locations where pods can be put
when they are not used. Every storage location is directly reachable
from an aisle and access to a storage location cannot be blocked by
stored pods. Travel in the aisles is single-directional to avoid gridlock

2 replenishment [l 1 pick order ﬂ
orders received B8 completed
/;tovage tri> Retrieval mp
=]) o (T
[
M ln
[. . O I_|
Replenishment \ m /" Inventory "\ m Order picking

[1B
ol
60

Storage trip

(b) The internal storage / retrieval process in RMFSs (red:
robot & pod movement

Fig. 1. The essential elements of an RMFS.

https://github.com/merschformann/RAWSim-O
https://github.com/merschformann/RAWSim-O

M. Merschformann, et al.

Operations Research Perspectives 6 (2019) 100128

HEREH

i&%ﬁi‘i

,,,,,,,, = buffer area paths
waypoint

—— storage area paths

-———= maneuvering area paths

O replenishment station

’ pick station

. robot
. pod

Fig. 2. A top view of an RMFS layout. The lines indicate the directed graph used for robot navigation.

and reduce congestion.

The system has the ability to adapt to changing demand conditions.
E.g., if order arrival rates of some SKUs drop, pods containing those
SKUs can be relocated further away from the pick stations. This re-
location frees up storage locations near the pick stations for pods con-
taining SKUs with high order arrival rates. Pods can be relocated when
returning from a workstation, hence the inventory can be continually
sorted in response to changing demand.

3. Related work

To this date no detailed discrete event simulation based research on
control topics has been done for RMFS. Moreover, most research on
RMFSs to date uses queueing networks to study design questions on the
strategic level. This work aims to close the gap by delivering insights
about RMFS using a very detailed simulation framework that integrates
most dynamic effects an operator faces. Next, we first outline the
queuing network based research and close this section with simulation
based work.

Nigam et al. [14] create queueing networks similar to earlier
queueing networks used for autonomous vehicle storage and retrieval
systems (AVS/RS) and automated storage and retrieval systems (AS/RS)
(see [8] and [17]). Their queueing networks capture both pick and
replenishment operations but cannot model robot movement realisti-
cally. They estimate the order throughput time for single-line orders.
Lamballais et al. [10] create a different queueing network for both
single- and multi-line orders, with and without zoning in the storage
area, that captures only the pick operations, but that does include
realistic robot movement. Their model can accurately estimate the ex-
pected order cycle time, workstation utilization and robot utilization.
Lamballais et al. [10] determine how the storage area dimensions and
the workstation placement around the storage area affect the maximum
order throughput, by evaluating a large number of possible designs.
Lamballais et al. [11] develop a queueing network that addresses pro-
blems on a tactical level. They show the effect of the number of pods per
SKU and of the replenishment level of a pod on order throughput, and
they show what the optimal ratio of the number of pick stations to the
number of replenishment stations is. They find that it is better to re-
plenish pods before they are entirely empty, even with multiple pods
per SKU. Zou et al. [20] use semi-open queueing networks to analyze
the policy for assigning robots to pick stations. The authors find that the
random policy is significantly outperformed by the proposed handling-
speeds-based assignment rule when facing varying service rates of the
pickers. Zou et al. [21] build a semi-open queueing network for eval-
uating the effects of battery management in RMFS. The strategies of

battery swapping, automated plug-in charging and inductive charging
at the pick station are compared. The authors come to the conclusion
that battery swapping is generally more expensive than plug-in char-
ging while inductive charging outperforms both in throughput and
costs, if robot prices and retrieval times are low.

Enright and Wurman [5] and Wurman et al. [19] mention several
decision problems on the operational level that they encountered in
practice. One of the few studies that address decision problems on the
operational level is by Boysen et al. [2]. They provide methods for
optimally batching the pick orders and sequencing both the pick orders
and the pods transported to the stations. They show that an optimized
pick order processing requires only half the number of robots that a
pick order process based on simple decision rules would need. Bozer
and Aldarondo [3] devise a simulation study to compare the RMFS to a
miniload order picking system. The authors find that for the assumed
scenarios and parameters a miniload system with four aisles and one
conveyor loop yields approximately the same performance as an RMFS
with 50 AGVs. In the experiments one fixed control logic is used. Guan
and Li [6] focus on scattered storage assignment in RMFS, i.e., assigning
products to multiple pods. The main objective is to distribute inventory,
such that the number of pods needed to fulfill a given set of orders is
minimized. Since the set of orders is unknown at the time of replen-
ishment, product similarity (based on association rules) is used to de-
termine the pods contents. The authors formulate a MIP model and
solve it in two-stages using a genetic algorithm. In the conducted ex-
periments the method reduces the number of pods significantly over a
random storage assignment. The authors do not validate the results
with a simulation model or similar technique. Guan and Li [7] propose
a zoning-based approach for positioning pods in an RMFS based on
their content. The authors devise a MIP model and solve it in a three-
stage algorithm design. The results suggest shorter order completion
and travel time when compared to the reference data of the case study.
The exact reference method is not described in detail. Roodbergen et al.
[16] utilize a simulation based approach in order to optimize the
warehouse layout of a manual order picking system for an industrial
partner. The authors devise an integrated approach taking on certain
design decisions as well as selecting control policies. The simulation is
thereby used “as a solution tool and an evaluation system” (see [16]).
Ribino et al. [15] devise a simulation model to emulate and study an
AGV-based sortation system for in- and outbound activities. Using this
methodology, the authors were able to recommend effective layouts,
number of AGV and other aspects. Chen et al. [4] use a simulation
based approach for evaluating the performance of policy sets for
manual order picking systems. The authors make use of DEA as a tool
for obtaining a comparable performance indicator among the policy

M. Merschformann, et al.

sets. Beckschifer et al. [1] use a discrete event simulation approach
similar to this work for assessing storage policies for Automated Grid-
based Storage systems. The authors find that even simple strategies
improve the system efficiency, which encourages research on more
complex strategies. Lamballais et al. [9] develop a Markow decision
process (MDP) model for addressing the resource reallocation problem,
i.e., the problem of deciding how many workers and robots to allocate
to the pick process and replenishment process continually throughout
time. The assumptions related to replenishment differ strongly across
the papers mentioned above, and the number of approaches to re-
plenishment in practical applications is diverse as well.

4. Decision problems

This section introduces the decision problems considered in this
paper and places them within the context of other decision problems in
an RMFS. Requests to the system occur via pick orders or replenishment
orders. Upon receipt, pallets are broken up into smaller parts consisting
of multiple units of one SKU. A replenishment order is a request to place
one such part, i.e. a number of units of one specific product, on a pod.

We structure the decisions at the operational level in four steps: (1)
Order Assignment (OA), the assignment of pick or replenishment orders
to workstations, (2) Task Creation (TC), the creation of tasks for the
robots, (3) Task Allocation (TA), the allocation of tasks to robots, and
(4) Path Planning (PP), the creation of paths along which the robots will
move. There are two kinds of Order Assignment decisions: the assign-
ment of pick orders to pick stations, called the Pick Order Assignment
(POA) problem, and the assignment of replenishment orders to re-
plenishment stations, called the Replenishment Order Assignment
(ROA) problem. In the second step, a task is defined as transporting a
specific pod to a specific workstation and back to a specific storage
location. Therefore, for each workstation, the Task Creation decision
problem includes the two subproblems of (2.1) deciding which pod to
select for transportation, the Pod Selection (PS) decision problem, and
(2.2) deciding at which storage location to return the pod, the Pod
Storage Assignment (PSA) decision problem. The Pod Selection (PS)
decision problem differs for the pick and replenishment process, be-
cause for the pick process the due times of the pick orders is important
in selecting a pod. Pod selection in the pick process is called Pick Pod
Selection (PPS) and pod selection in the replenishment process is called
Replenishment Pod Selection (RPS). The storage capacity of the pods is
modeled in one-dimensional manner. Task Creation uses the pick order
and replenishment order assignments to select suitable pods and sub-
sequently converts the requests for the selected pods into tasks for pod
transportation between the workstations and the storage area. Task
Allocation creates a trip by building a sequence of tasks for the robots to
execute. These sequenced tasks implicitly define trips and serve as input
for the Path Planning algorithms, where a path is generated for a robot
to follow.

Fig. 3 shows an overview of the decision problems at the strategic,
tactical and operational level in an RMFS, with the problems addressed
in this paper in bold. As can be seen in Fig. 3, this paper focuses on
decision problems at the operational level. We use the term “decision
rule” to refer to a fairly simple method to solve a decision problem. The
aim of this paper is to evaluate several decision rules per decision
problem. Some decision rules may closely resemble common best
practices, whereas others may be more specific to RMFS. The Task
Allocation decision problem is intertwined with the Path Planning de-
cision problem, which has been addressed by Merschformann et al.
[12]. Therefore we do not consider the Task Allocation and Path
Planning decision problems. We do address Pick Order Assignment
(POA), Replenishment Order Assignment (ROA), Pick Pod Selection
(PPS), Replenishment Pod Selection (RPS), and Pod Storage Assignment
(PSA). For Pick Order Assignment, we assume there is a constant
backlog, and the pick stations are always filled to full capacity with pick
orders. Whenever a pick order is fulfilled and leaves its pick station, a

Operations Research Perspectives 6 (2019) 100128

Strategic Level - Decisions at time of warehouse construction
Workstation Placement
Storage Area Dimensioning

Tactical Level - Decisions at start workweek, workday or shift
Number of Pods per SKU
Ratio of No. of pick and No. of replenishment stations
Replenishment level

Resource Reallocation

Operational Level - Decisions in real-time
(1) Order Assignment (OA)
Pick Order Assignment (POA)
Replenishment Order Assignment (ROA)
(2) Task Creation (TC))
(2.1) Pod Selection (PS)
Pick Pod Selection (PPS)
Replenishment Pod Selection (RPS)
(2.2) Pod Storage Assignment (PSA))
(3) Task Allocation (TA)
(4) Path Planning (PP))

Fig. 3. Hierarchical overview of the decision problems and their relations.

pick order has to be selected from the backlog and assigned to the pick
station. For replenishment orders, we assume that the sequence of re-
plenishment orders inbound to the system cannot be altered anymore.
This assumption resembles the situation in conventional conveyor-
based material handling components that do not allow sequence mod-
ification but only load routing. Moreover, we aim to avoid taking de-
cision problems outside of the system’s boundaries into account, e.g.,
different dispatching rules of preceding systems. The replenishment
stations have a finite capacity, which is modeled as a one-dimensional
storage capacity (like for the pods) in order to emulate buffer char-
acteristics of the station. If a replenishment order arrives and multiple
replenishment stations have capacity left, the ROA decision rule de-
termines to which replenishment station the replenishment order is
assigned. If no station is available, replenishment orders are put in a
replenishment order backlog. When a replenishment order is fulfilled at
one of the replenishment stations, a new replenishment order is chosen
from the replenishment order backlog according to the FCFS rule.
Table 1 summarizes the decision problems addressed in this paper.

At this point we also introduce the concept of “pile-on” (sometimes
also called “hit-rate”). Pile-on as a concept refers to the average number
of units that are picked from a pod every time a pod is presented to a
picker at a pick station. Pile-on as a metric measures the number of
units (across all SKUs) picked from a pod when presented to a picker at
a pick station, averaged across every visit of a pod to a pick station
during the entire time horizon. In other words, pile-on is measured in
“units picked per pod visit to a pick station”. The higher the pile-on is,
the fewer pods need to be transported between the pick stations and the
storage area, which may reduce the number of robots needed.

5. Decision rules

To solve the operational problems, we define several decision rules
per decision problem that are evaluated in a realistic simulation.
Several Path Planning algorithms for the RMFS are compared in [12],
therefore this decision problem will not be addressed in this paper.
Thus, we selected WHCAY, one of the best performing algorithms from
the paper, as the path planning engine for this work. Additionally, we
fix the Task Allocation algorithm to a simple method that first assigns
two-thirds of the robots to pick operations and the rest to replenishment
operations. Then, it aims to equally distribute the robots across the
respective stations. This means a robot will only do tasks related to the
station it is assigned to. This section will therefore only describe deci-
sion rules for the Pick Order Assignment, Replenishment Order

M. Merschformann, et al. Operations Research Perspectives 6 (2019) 100128

Table 1
Decision problems.

Abb. Name Description Trigger

POA Pick Order Assignment Choosing a pick order from the backlog When another pick order is fulfilled, creating room for the next one to be assigned

ROA Replenishment Order Selecting the replenishment station for the When a replenishment order arrives at the system and one or more replenishment stations

Assignment next replenishment order have capacity left and after RPS assignment (latter depends on the active ROA rule)
PPS Pick Pod Selection Selecting a pod to transport to a pick station ~ When a robot working for a pick station needs a new task
RPS Replenishment Pod Selection Select a pod for the next replenishment When a replenishment order arrives at the system and a pod has sufficient capacity left and
order after ROA assignment (latter depends on the active RPS rule)

PSA Pod Storage Assignment Choosing a storage location for a pod When a pod leaves a workstation
Assignment, Pick Pod Selection, Replenishment Pod Selection and Pod “Random”, “FCFS”, “Due-Time”, “Fast-Lane”, “Common-Lines” and
Storage Assignment decision problems. “Pod-Match”:

While replenishment and pick operations are similar in the sense
that high throughput should be achieved with few resources, the main Random The Random rule randomly selects a next pick order from
asymmetry between both is that for the former the goal is to fill the the backlog and is used as a benchmark.
inventory as quickly as possible and for the latter to empty it as quickly FCFS The FCFS rule assigns the pick order that was first received.
as possible. This means that for replenishment operations we aim to The rationale behind this is to keep pick order throughput times
replenish pods fast to have them available for pick operations early short.
while preparing pod content such that it allows for a high pile-on Due-Time The Due-Time rule selects the pick order with the earliest
during pick operations. For pick operations we aim to achieve a high due time from the backlog and assigns it to a station. This is a greedy
pile-on and keep trips short to fulfill as many orders as possible while approach aiming to finish the pick orders before their deadline.
also considering due times of the pick orders. Furthermore, we do not Fast-Lane The Fast-Lane rule randomly selects a pick order from the
allow the sequence of replenishment orders to be modified. In contrast, backlog like the Random rule, but keeps one slot at each pick station
for pick orders we allow to arbitrarily choose one order from the open for immediately completable pick orders. I.e., only pick orders
backlog. Lastly, pick orders have due times. All of this leads to different (0), for whom all lines and all units of inventory are available on the
strategies we focus on per decision problem, instead of fully symmetric next pod (p,) will be assigned to this station’s “fast-lane” order slot
rules between pick and replenishment decision problems. (see Eq. (1)). Thus, orders assigned to the “fast-lane” slot are pro-
For a more precise description of some of the rules we introduce the cessed shortly after assignment. The next pod of the station is either

notation shown in Table 2. a not completely processed pod the picker is currently working on or

the next pod in the station’s queue, if no such pod is available. In
cases where no pod reached the station’s queue yet, we consider the
pod with the shortest remaining path to estimate the next pod.
When facing multiple options we use a random tie-breaker. Note
that this rule can be combined with any other proposed POA rule.
The reason we combine it with random selection is to better assess
the impact of the idea itself.

5.1. Pick order assignment rules

A pick station has to be chosen for every pick order submitted to the
system and the pick order itself has to be chosen from the order
backlog. In this work, we consider a pick order backlog of constant size,
i.e., as soon as an order is removed from the backlog a new one is
generated to replace it. This and the immediate replacement of orders VieI: Lo, i) < C(p,, i) (@)
completed at a station lead to only one option available to assign any
pick order to: the slot of the just completed order. Hence, the choice of
station is not a degree of freedom in this work. The rare occasions of
multiple orders to be completed at the same time are handled by as-
signing the orders to the pick stations randomly. Hence, we only in-
vestigate rules for selecting the next pick order from the backlog to fill
the only open slot at a station. We devise six rules to solve this problem:

Common-Lines The Common-Lines rule compares the station’s (s)
currently assigned pick orders with all orders from the backlog and
selects the one with most lines in common for assignment (see
Eq. (2)). The rationale behind this is to increase pile-on by ex-
ploiting synergies among the pick orders. When facing multiple
options we use a random tie-breaker.

Table 2 Z Z h _J1 L@, i)>0AL(,)>0
Overview of the symbols used in the rule descriptions. argngx Yoot WI Yooy = 0 otherwise
0€0% yeof ier
Symbol Explanation @
P Set of all pods p
wr Set of unused storage location waypoints w Pod-Match The Pod-Match rule selects the pick order from the
f

P Set of pods hea‘?‘“g to station s backlog that matches best the pods heading to the station (s) at the
1 Set of al_l SKUs i . moment of assignment best. I.e., the more units of the pick order are
0B Set of pick orders o currently in backlog R .

)) . already available in the pods the better the match (see Eq. (3)).
03s Set of pick orders assigned to station s R X ! R

> . . When facing multiple options we use a random tie-breaker.
Wi(e) Current waypoint/location w of element e
Cp, 1) Number of units of SKU i contained in pod p : . .
argmax min(C(p, i), D(o, i
L(o, 0) Required units necessary to fulfill line i of order o ogg B Zp I lEZI (((p) ()) 3)
D(o, 1) Remaining units necessary to fulfill line i of order o PePs
T(wy, ws) Expected travel time from waypoints w; to wy
Class(e) The class of element e for class-based rules (e is storage location or
pod) . .

P Due time of order o 5.2. Replenishment order assignment rules
5 Time of assignment to the station of order o
¢ Time of decision rule invocation (moment of decision) As a result of the assumptions that replenishment orders arrive in a

fixed sequence, we investigate only two different approaches for

M. Merschformann, et al.

assigning replenishment orders to the stations, i.e., immediate Random
assignment and batching of customer orders that go on the same pod.
Hence, we construct two rules for replenishment assignment: “Random”
and “Pod-Batch”:

Random The Random rule randomly selects a next station with
sufficient remaining capacity to allocate incoming replenishment
orders to. If no such station is available, the order will wait until one
becomes available again. This rule can operate independently of the
chosen Replenishment Pod Selection rule.

Pod-Batch The Pod-Batch rule tries to use a pod already selected to
go to a replenishment station for assigning the next replenishment
order. In other words, the Pod-Batch rule first waits for the
Replenishment Pod Selection (Section 5.4) rule to decide which
orders are assigned to which pod, and then uses the same replen-
ishment station for the orders of one pod. If the replenishment or-
ders do not fit one station, they wait until a station with sufficient
capacity becomes available. Note that, during this time all con-
secutive orders are also blocked, because the sequence cannot be
altered.

5.3. Pick pod selection rules

Every time a robot working for a pick station s requests a next task, a
pod suitable for picking at pick station s must be selected. We require
for all rules that at least one unit can be picked from the pod. This
means that no pod is brought to a station completely in vain and ad-
ditionally it implies a pile-on of at least 1. The six PPS rules used in this
paper are the “Random”, “Nearest”, “Pile-on”, “Demand”, “Lateness”,
and “Age” rules:

Random The Random rule randomly selects a pod that offers at
least one useful unit for picking.

Nearest The Nearest rule selects the pod which has the least esti-
mated path time towards the station according to the path planning
algorithm and that offers at least one useful unit for picking.
Pile-on The Pile-on rule selects the pod that offers most units ne-
cessary to fulfill the orders at the station (see Eq. (4)). Ties are
broken by favoring pods with which more orders can be completed.
If ties still persist, they are broken randomly.

argnax), Y. (min(C(p, i), D(o, i)))

PEP el 0e0f (€))

Demand The Demand rule selects the pod whose content is most
demanded considering the current pick order backlog situation, i.e.
the pod with most units demanded in the backlog is chosen (see
Eq. (5)). Ties are broken randomly.

argmax E Z min(C (p, i), D(o, i))

PEP el oeOB ()

Lateness The Lateness rule aims to finish late pick orders by se-
lecting a pod that offers units needed to fulfill open order lines with
most lateness at the station, i.e., for one order the time the order is
late is summed as fractions of the open picks (see Eq. (6)). If no
order is late, the resulting ties are broken by using the same metric
but replacing max(t — t2, 0) with t2, thus, selecting pods for orders
whose due times are most imminent.

min(C (p, i), D(o, i)) D
aremax - max(t — t,, 0)
PN

Age The Age rule aims to finish the oldest pick orders of a station by
selecting a pod that offers units needed to fulfill the oldest open

Operations Research Perspectives 6 (2019) 100128

order lines, i.e. for one order the time the order spent assigned to the
station is summed as fractions of the open picks (see Eq. (7))

argnax 35 (min(C(p, i), D(o, i))(t_[os)]

.y
PEP iel oe0f§ Zi'ef Do,)

)

5.4. Replenishment pod selection rules

For every replenishment order, a suitable pod with sufficient re-
maining storage capacity needs to be chosen. The decision is taken right
before the replenishment order is assigned to a replenishment station.
Depending on the selected ROA and RPS rules both are either invoked
simultaneously or, if there is a dependency between the two, one after
the other. An example for the latter case is the combination of the Pod-
Batch ROA rule with the Emptiest RPS rule, because the Pod-Batch rule
relies on an already selected pod for the replenishment order. Since
Replenishment Pod Selection determines the composition of the pods, it
offers many possibilities to create pods with different features, e.g. high
frequency pods that combine frequently ordered products, or family-
based pods combining products that are often ordered together. If all
replenishment orders assigned to the same pod are assigned to the same
replenishment station, only one trip is necessary to place all replen-
ishment orders on the pod, which reduces the number of robot move-
ments.

The five RPS rules used in this paper are the “Random”, “Emptiest”,
“Nearest”, “Least-Demand” and “Class” rules:

Random The Random rule selects a random pod with sufficient
remaining capacity.

Emptiest The Emptiest rule assigns replenishment orders to the
emptiest pod and reuses the same pod for subsequent replenishment
orders until it is full or used at a station.

Nearest The Nearest rule assigns an incoming replenishment order
to the nearest pod with sufficient remaining capacity. This rule
needs to await the ROA assignment first to make a decision.
Least-Demand With the Least-Demand rule an incoming replen-
ishment order is assigned to the pod currently offering the least
demanded inventory, i.e. the pod with the least units offered when
compared to the aggregated demand by assigned and backlogged
pick orders is selected. Thus, this pod is not useful for pick-opera-
tions at the time of selection and by this it is not disadvantageous to
block it for replenishment operations.

Class The Class rule assigns incoming replenishment orders to a pod
of the same class as the replenishment order, i.e. fast moving SKUs
to pods with other fast moving SKUs. The classes are built by a
background mechanism for which the cumulative relative amount of
pods per class are given. For this work we use “0.1, 0.3, 1.0”, i.e.,
three classes where the first class holds 10% of the pods for the
highest frequency SKUs, the second class holds 20% and the last
class holds the remaining ones, which are the ones with the lowest
frequency SKUs. To assign a replenishment order of SKU s of a
certain class, the emptiest pod is selected from the pods of that
particular class (see Eq. (8)). Similar to the Emptiest rule, a selected
pod is used for the subsequent incoming replenishment orders of the
same class until no more replenishment orders fit the pod or until
the respective pod completes its visit to a replenishment station.

argmin C(p, i)
{peP|Class(p)=Class(s)}\ ic1 (8)

M. Merschformann, et al.

5.5. Pod storage assignment rules

For each pod an unoccupied storage location has to be selected,
every time after visiting a pick or replenishment station. PSA is an
important aspect of the RMFS, because being able to change the storage
location of pods after every visit to a workstation is what makes con-
tinuous automatic sorting possible. For PSA, five decision rules are
examined, namely the “Random”, “Fixed”, “Nearest”, “Station-Based”
and “Class” rules.

Random The Random rule chooses a random free storage location.
Fixed The Fixed rule maintains the initially assigned storage loca-
tion for all pods.

Nearest The Nearest rule stores pods at the nearest unoccupied
storage location in terms of shortest estimated path time. This path
time is determined using an A* algorithm that takes the time needed
for turning the robot (with or without pod) into account.
Station-Based The Station-based rule is a variant on the Nearest
rule, i.e. instead of bringing the pod to a storage location that is
nearest to the robot’s position the storage location with shortest path
time to a pick station is selected. The greatest difference with the
Nearest rule is in the storage locations chosen for pods returning
from a visit to a replenishment station.

Class The Class rule brings pods back to storage locations of the
same class, where classes are constructed in a similar fashion as in
the RPS decision problem, but based on the shortest path time to a
pick station. Within a class, a storage location for a pod is selected
analogously to the Nearest rule (see Eq. (9)).

argmin (T(W (p), w))
(weWL|Class (w)=Class (p)} (©)]

Table 3 provides an overview of the decision rules per decision
problem and shows how the decision rules are labeled across decision
problems. Note that choosing a rule for one decision problem may
jeopardize strategies chosen for others. For example, a random Pick
Order Assignment may have a negative impact on a Class-based ap-
proach for assigning replenishment orders to storage locations, because
it does not respect the units currently positioned near the pick station
while assigning orders to it. Hence, a selection respecting mutual in-
fluences has to be done to provide an efficient compilation of rules that
is able to adequately overcome the planning problems in such a system.

6. Evaluation framework

This section describes the evaluation framework used to carry out
the research in this paper. Two central concepts to the evaluation fra-
mework are the Rule Configuration (RC) and the Warehouse Scenario
(WS). The RC specifies for each decision problem, which decision rule is
used. The WS specifies the warehouse layout, number of robots, number
of workstations, number of SKUs, whether or not return orders are part
of the operations of the warehouse, and pick order size. During one
simulation run the RC and WS do not change, so they can be seen as an
input to a simulation run.

Table 3
Overview of the decision rules per decision problem.

Decision problem Decision rules

POA Random, FCFS, Due-Time, Fast-Lane, Common-Lines, Pod-
Match

ROA Random, Pod-Batch

PPS Random, Nearest, Pile-on, Demand, Lateness, Age

RPS Random, Emptiest, Nearest, Least-Demand, Class

PSA Random, Fixed, Nearest, Station-Based, Class

Operations Research Perspectives 6 (2019) 100128

The evaluation framework consists of two phases, one varying the
RCs, the other varying the WSs. Phase 1 evaluates all 1620 possible RCs
on one WS. For phase 1, we compare eight performance measures: (1)
Unit throughput rate, (2) pick order throughput rate, (3) order turnover
time, (4) distance traveled per robot, (5) order offset, (6) fraction of
orders that are late, (7) pile-on (8) the pick station idle time. Unit
throughput rate is the number of picked units of all SKUs per hour. Pick
order throughput rate is the number of pick orders fulfilled per hour.
Order turnover time is the average time between submitting a pick
order to the backlog and fulfilling it. Order offset is the average time
between the due time and the completion time of the pick orders. Thus,
a value smaller than zero shows how much in advance pick orders are
completed. The rationale behind this is that follow-up processes at the
distribution center are not deterministic, hence, pick orders completed
earlier may improve the overall service level. The pick station idle time
is measured as an average across all pick stations in the system.

Phase 1 selects the RCs with the highest unit throughput rate.
However, among these selected best RCs, the variety in the decision
rules may be low. For a particular decision problem, all of the selected
RCs may use the same decision rule. To ensure more diversity in the RCs
in phase 2, we define 6 so-called “benchmark RCs”, see Table 4. The
benchmark RCs were chosen such, that all decision rules across all
decision problems appear in at least one of the benchmark RCs. Each
benchmark RC has been given a name that reflects a characteristic that
the decision rules have most in common.

Phase 2 evaluates the selected RCs from phase 1 and the benchmark
RCs, while varying the warehouse scenarios. Since we are specifically
interested in efficiency of RCs we neglect layout decisions for this work.
Thus, we choose one specific layout, using the style described in
Section 2. The concrete layout instance comprises 1149 pods and 1352
storage locations (85% filled) and is shown in Fig. 4. When varying the
number of pick stations during phase 2 we add workstations in the
order given in Fig. 4.

6.1. Parameters

In the following we describe the used parameters in more detail. The
parameters shared for both phases are outlined in Table 5. We set a
continuous simulation horizon of 48 h in order to decrease the impact
of side effects like recurring replenishment overflows, which cause re-
plenishment pauses described previously. Within a duration of 48 h we
observe sufficient repetitions of such patterns to achieve a reasonable
mitigation of these side effects.

Furthermore, for each RC and WS combination in phase 1 and in
phase 2 we conduct 10 runs to lessen the effect of randomness. To keep
the system under continuous pressure, like described above, we keep a
constant pick and replenishment order backlog of 200 orders each. At
simulation start inventory is generated until 70% overall storage utili-
zation to avoid cold starting the system. This is done using the same
process used for generating replenishment orders during simulation and
using assignment rules suiting the respective RPS rule in place. The
storage capacity of a pod is set to 500 slots while the storage

Table 4

Benchmark RCs.
Benchmark RC POA ROA PPS RPS PSA
Demand Due-Time Pod-Batch Demand Least- Fixed

Demand
Speed Fast-Lane Pod-Batch Lateness Emptiest Nearest
Nearest FCFS Random Nearest Nearest Nearest
Class Common- Pod-Batch Age Class Class
Lines
Greedy Pod-Match Pod-Batch Pile-on Emptiest Station-
Based

Random Random Random Random Random Random

M. Merschformann, et al.

Operations Research Perspectives 6 (2019) 100128

5a
3=
1e
2=
4=
6=

Fig. 4. Top view of the layout, including pick station indices, with the storage area in the middle, replenishment stations to the left, and pick stations to the right.

Table 5
Parameters shared across all simulations.
Parameter Value
Simulation
Simulated duration of warehouse 48 h
operations

Number of simulation repetitions
Size of pick order backlog

Size of repl. order backlog
Layout

10 repetitions

200 pick orders

200 repl. orders

1149 pods, 1352 storage locations in 2 X 4

blocks, 12 aisles and 12 cross-aisles

Orders

Number of units per repl. order

Amount of priority orders in pick
orders

Priority pick order due time

Normal pick order due time

Threshold when pick order
generation starts

Threshold when pick order
generation stops

Threshold when repl. order
generation starts

Threshold when repl. order
generation stops

Inventory

Initial inventory in the storage
area

Space on a pod

SKU frequency / popularity

uniform distribution between 4 and 12
20%

backlog submission time + 30 min.
backlog submission time + 120 min.
60% of inventory capacity

10% of inventory capacity

65% of inventory capacity

85% of inventory capacity

70% of inventory capacity

500 slots
Exponential distribution, 1 = %

SKU size (in slots) uniform distribution between 2 and 8

Robot movement

Robot acceleration/deceleration 0'522
5
Robot maximum velocity 1.5™
s
Time needed for a full turn of a 2.5s
robot
Time needed for lifting and storing 3s
a pod
Time needed for picking a unit 8s
Time needed for handling a unit at 15s
a pick station
Time needed for putting a repl. 20s

order on a pod
Stations
Repl. station capacity
Pick station capacity

two times pod capacity
8 pick orders

consumption of one SKU unit is drawn from a uniform distribution
between 2 and 8 slots, thus, a full pod contains 100 units in average.
The popularity of the SKUs is determined by drawing a value from an
exponential distribution with parameter 1 = % for each SKU to emulate
a typical ABC curve in e-commerce. This popularity is the relative fre-
quency parameter between all SKUs, thus, the frequency (if divided by
the sum of all frequencies) is the probability of choosing a particular

SKU when generating an order line for both replenishment and pick
orders. One replenishment order restocks between 4 and 12 units of one
SKU following a uniform distribution. To emulate due times we dis-
tinguish between priority and normal orders that have to be completed
in 30 minutes respectively 120 min. This reflects the need for preferring
important orders.

The movement behavior of the robots is emulated by using a max-
imum velocity of 1.5" with acceleration and deceleration rates of 0.57.

We set the rotational speed to %n%, i.e., 2.5s for a full turn. Turning
takes the same amount of time regardless of whether a robot is carrying
a pod. The time for lifting and setting down a pod is set to 3s. This
should reflect the capabilities of mobile robots used in similar industry
applications reasonably close. These values are based on observations
of similar systems in operation and discussions with a supplier of such
systems. For the actual pick operation of one unit at a pick station we
assume a constant time of 8 s. The complete time for handling one unit
including additional operations, like putting the product unit in the
correct pick order tote, is set to 15s. This distinction is considered to
allow for an early release of the robot, such that no unnecessary robot
waiting times are caused. This is not distinguished for replenishment
operations, since we assume that a robot can only leave after fully
completing the put operation to the pod. The time of a put operation of
one replenishment order is set to 20s.

The parameters in Table 5 are shared across all conducted experi-
ments, while the parameters in Table 6 depend on phase and scenario.
For the first phase we assess all possible RCs for one fixed warehouse
scenario. Note that the RPS rule Nearest and the ROA rule Pod-Batch
rely on each others assignments for taking their decisions (since they
are using them as inputs), which leads to no decision at all. Hence, the
combination of these rules is forbidden. For the fixed warehouse sce-
nario we set the number of robots to 4 per pick station, i.e. 8 robots in

Table 6
Varied parameters for the phases (distributions as: (mean, std.dev., min, max)).

Parameter Phase 1 values Phase 2 values

Rule configurations 1620 RCs 6 Benchmark RCs

(RCs) + 4 best RCs from phase 1

pick stations 2 1,2,3,4,56

Robots per pick station 4 2,3,4,5,6

SKUs 1000 1000, 10,000

Return orders 0% 0%, 30%

Pick order size Mixed - line & Small - line & unit dist.: (—,—,1, 1)
unit dist.: & (—,—,1, 1) Mixed - line & unit
(1,1,1,4) & dist.: (1,1,1,4) & (1,0.3,1,3) Large -
(1,0.3,1,3) line & unit dist.: (1,1,2,4) &

(1,0.3,2,3)

RC 1620 10

WS 1 360

RC x WS 1620 3600

simulation runs 16,200 36000

M. Merschformann, et al.

the system at whole. Furthermore, we set the number of pick stations to
2, the number of SKUs to 1000 and exclude the processing of return
orders. The order setting is set to Mixed. This means the number of lines
per pick order and the number of units per order line are generated
following truncated normal distributions with parameters shown in
Table 6. This is done to resemble e-commerce pick order characteristics
of generally small orders with occasional larger ones in between. The
full set of RCs analyzed in phase 1 is given by the full set of allowed
combinations of all given decision rules. This results in 1620 RCs, and
since phase 1 has 1 WS and 10 runs are conducted per RC and WS
combination, this results in 16,200 simulation runs for phase 1.

For phase 2 we limit the RCs to the 6 benchmark RCs and the 4 best
ones from phase 1, i.e.,, the 4 RCs with highest throughput rate.
Moreover, we vary the number of pick stations from 1 through 6 and
the number of robots per pick station from 2 through 6. This leads to a
range from 2 robots in the system to 36 robots across all WSs. In ad-
dition to WSs with 1000 SKU, we also assess WSs with 10,000 SKUs
stored in the system. For the order size we define two additional set-
tings of small and large orders. For the Small pick order size, only single
line / single unit pick orders are generated. For the Large pick order
size, the distributions from the Mixed order setting are used but the min
parameter for both is set to 2. Lastly, in WSs where we emulate the
processing of return orders, 30% of the generated replenishment orders
are single unit. The total number of RC and WS combinations for the
phase 2 is therefore 3600 (10 RCs, 360 WSs), which leads to 36,000
simulation runs.

7. Computational results

This section shows the results from phase 1 and phase 2 of the
evaluation framework. Throughout this section, the unit throughput
rate is presented as a percentage of the upper bound on the unit
throughput rate. The unit throughput rate is presented in this way to
facilitate interpretation and comparison of results across experiments.
Moreover, the RMFS is supposed to have high pick rates as it eliminates
the need of walking for the workers, while the robots are supposed to
supply the pickers with a constant stream of pods to pick from.
Presenting the unit throughput rate as a percentage shows clearly to
what extent these aims are achieved. The upper bound is discussed in
more detail in the appendix. The length of the confidence intervals is
always less than 1% of the mean, based on 10 runs per RC and WS
combination, and therefore does not add much information. Based on
10 runs per RC and WS combination, we observe only small standard
deviation in unit throughput rate. For the first phase, it is less than
1.32% for all combinations and less than 0.61% for 95% of them. In the
second phase, it is less than 0.57% for all combinations and less than
0.17% for 95% of them. Therefore, we consider the results sufficiently
stable for the experiments conducted in this work. The repetition count
and simulation horizon are large enough to mitigate random effects.

7.1. Phase 1

The first phase aims to investigate throughput performance and the
impact per decision problem of decision rules on throughput.
Furthermore, we assess the behavior of the different output measures
depending on decision rule selection. For this, Table 7 shows how
across these simulations the eight previously introduced performance
measures correlate with each other. At first, we can observe that as the
unit throughput rate score improves, the other performance measures
improve as well. As the unit throughput rate score increases, pick order
throughput rate and pile-on increase as well, whereas the order turn-
over time, the distance that robots travel, the order offset, the fraction
of orders that miss their due time, and the station idle time decreases.
Although it is not clear what the exact causal relationships are, the
correlations suggest that pile-on and the distance traveled by the robots
are the main drivers behind these improvements. With higher pile-on,

Operations Research Perspectives 6 (2019) 100128

more units are picked per pod, so order lines are fulfilled more quickly
and fewer trips are needed to fulfill the pick orders. This also causes
longer processing times for each pod at the pick station, which in turn
increases the time for the next robot to queue and become ready at the
station. In other words: a more continuous input of inventory at the
pick station is achieved. Additionally, fewer trips for the pick process
free up robots to do more replenishment tasks. With less distance tra-
veled by the robots we expect pods to be presented at the pick stations
more continuously. Similar to the pile-on this effect enables more
continuous picking, which in turn increases the overall unit throughput
rate. Both measures, pile-on and the traveled distance, are intermediate
measures affected by the choice of strategy for the different decision
problems, i.e., a better score in both decrease the idle time at the sta-
tions, which in turn increase the throughput. An increased throughput,
in the constant pick order backlog setting of this work, also decreases
the turnover time of pick orders and the due time offset. Only the
number of orders being late is not strongly correlated with the two main
throughput drivers. The two main throughput drivers can also be ob-
served when looking at a scatter plot of all simulation runs of the first
phase (see Fig. 5). Here we can see the best results in unit throughput
rate score are achieved with a high pile-on and less distance traveled
per robot. The group of simulation runs with least distance traveled per
bot and a pile-on around 4 are RCs involving the Nearest PPS rule,
while the simulation runs with highest pile-on (greater 5) at the top of
the plot are RCs involving the Demand PPS rule. In both groups we find
runs with the highest unit throughput rate score, hence, a higher
throughput is not only achieved by a high pile-on. In particular within
the top ten RCs in terms of unit throughput rate score the pile-on ranges
between 3.84 and 6.36, while the distance traveled per bot ranges be-
tween 68.04 km to 80.36 km. Hence, pile-on and the traveled distance
enable higher throughput, but may also compensate for each other. This
is particularly interesting, because both come at operational costs. For
traveled distance this is energy consumption and robot wear, while for
pile-on it may be costs arising from potentially more complex replen-
ishment processes. Furthermore, within both groups better results are
obtained with RCs also involving the Pod-Match POA rule, which
causes an additional boost in pile-on.

In Fig. 5 we also observe a ’cutoff’ of simulation runs in the upper
right and bottom left areas. This can be explained by the longer
handling time at the station resulting from a higher pile-on. ILe., the
longer a robot needs to wait at a station for the picking to finish the less
it can travel in the meantime. Thus, rules increasing pile-on may help
reducing the necessary travel distance, and by this also robot wear and
energy consumption.

The pick order throughput rate is neglected completely in the re-
mainder of this work, because it almost completely aligns with the unit
throughput rate score. The reason for this is the constant backlog of 200
pick orders over 48 h: With a pick order throughput rate of 241.963
completed orders per hour in average, omitting certain pick orders is
almost impossible. Hence, we cannot observe a potential temporary
throughput gain by preferring smaller or larger orders. In order to in-
vestigate the trade-off between picking many units and completing
more pick orders an experiment with a fixed set of backlogged pick
orders over a fixed period of time should be devised. For this, the
possibly tedious processing of leftover pick orders, which are pre-
sumably harder to pick quickly, needs to be investigated. We leave this
work for future research.

Table 8 shows for each decision problem the unit throughput rate
score for each of the decision rules, averaged across all simulations in
phase 1. We calculate the multiplier by dividing the highest unit
throughput rate by the lowest. As the multiplier in unit throughput
rates is rather large for the POA decision problem, system integrators
and RMFS suppliers may benefit from carefully selecting a POA decision
rule and from investigating better decision rules for this decision pro-
blem. The multiplier for the Replenishment Order Assignment is near 1,
indicating that using a different decision rule does not offer much

M. Merschformann, et al.

Table 7
Correlations between the different performance measures for first phase.

Operations Research Perspectives 6 (2019) 100128

) " e
R\ 5 ¥ e
PRORO RO £ a@® NG s
SOV T Q & Q¢ A
&’30 e S ,@,&\Q A e O o
G oY % O % Y oW o y o
Unit throughput - - - - - - - 0.556 0.189
Order throughput |1.0000 - - - - - - 241.963 82.234

Order turnover time
Distance traveled
Order offset

Late orders

Pile-on

Station idle time

0.880 - - - -
1.000 0.880 - - -
-0.590 -0.591 0.685 0.549 0.684 - -
0.899 0.899 -0.802-0.796 -0.802 -0.448 -

1,000 -1.000 0.950 0.952 0.950 0.591 -0.899

3549.625 1220.445
122598.768 19433.860
-2565.458 1224.985

0.187 0.115
2.438 1.450
0.450 0.186

7 T T

Pile-on

T T T
Simulation runs X
” 90

‘ 100

Unit throughput score (in %)

1 I I I I
60 70 80 90 100

110

120

Distance traveled per robot (in km)

Fig. 5. Scatter plot for pile-on vs. traveled distance per robot colored by the achieved throughput rate score for all simulation runs of the first phase.

performance improvements. However, we note that we keep the se-
quence of incoming replenishment orders fixed at all times in this work,
which limits improvement potential. Nevertheless, we expect limited
degrees-of-freedom in replenishment operations to be more realistic,
because the sequence will typically be a result of preceding operations
or systems. Moreover, the limited number of replenishment stations
diminishes the impact of ROA decision rules even more. Furthermore,
the impact of the Pod Storage Assignment selection rule seems to be
fairly low. This may be a reason of the quite small layout. We expect the
impact of PSA decision rules to increase with the size of the instance
layout, because the effect on the traveled distance would grow by a
large amount.

In the following we analyze the achieved throughput performance
per decision rule. For this, Fig. 6 shows the box-plots of unit throughput
rate scores for each decision rule colored per decision problem. The

Table 8

boundaries of the boxes are determined by the upper and lower quartile
while the line in the middle indicates the median value. The whiskers
extend from the boxes to the minimum and maximum values. The first
observation is that throughput performance of the RMFS is most sen-
sitive to the choice of POA decision rule among the defined decision
rules. This aligns with the previously observed correlations, because the
choice of POA immediately affects the pile-on, which is identified as a
major performance driver. The best performing POA strategies are Fast-
Lane and Pod-Match, which both look at the incoming pods at a pick
station when assigning new pick orders from the backlog. This suggests
that a strategy aligning pick orders with the content of incoming pods
seems most promising for throughput efficiency. This backs up the
findings of Boysen et al. [2]. Although the Common-Lines rule exploits
a similar greedy strategy, it achieves substantially less throughput.
Hence, only matching pick orders to each other but not to the content of

Average unit throughput rates as percentages of the upper bound for all rules, together with the best / worst performance multiplier per decision problem.

Mult. (best)

worst

POA Common-Lines Due-Time Fast-Lane
50.93% 41.93% 76.13%
ROA Random Pod-Batch
53.71% 57.99%
PPS Age Demand Lateness
61.50% 52.70% 48.63%
RPS Class Nearest Emptiest
56.16% 58.42% 59.63%
PSA Class Fixed Nearest
55.91% 54.08% 58.79%

FCFS Pod-Match Random

41.81% 81.18% 41.71% 1.946
1.080

Nearest Pile-on Random

62.16% 59.82% 48.88% 1.278

Least-Demand Random

57.71% 47 .56% 1.254

Random Station-Based

53.60% 55.70% 1.097

M. Merschformann, et al.

PPS 1 RPS 1 PSA

Operations Research Perspectives 6 (2019) 100128

ROA C—IPOA [

100 %

90 % - .
o
S 80% | .
(2]
£ 70%f -
2 60% - .
ey
el 1114
g 50% | A .
£
E 40% —
=}

30% .

20 0/0 |

o X < X ') X &
FEFCE CEF FEFESSFE &€
& o s

Fig. 6. Unit throughput rate performance of all runs involving the given rule.

the pods squanders throughput capabilities of the system. All other POA
decision rules achieve similar throughput performance, since they do
not consider order characteristics that would affect pile-on or traveled
distance.

When looking at the PPS rule box-plots the average best throughput
performance with least variance is achieved by the Age, Nearest and
Pile-on rules. All of them focus either on maximizing the pile-on or
minimizing the traveled distance. Although the Age rule does only in-
directly maximize pile-on, it achieves a higher average pile-on of 2.92
among all RCs containing it than the actual Pile-on rule, which achieves
an average pile-on of 2.79. The Demand rule has the highest spread
across PPS rules with a very low median, but also provides some top
performing RCs (see Table 9). This suggests that the throughput per-
formance of the rule has a higher dependency on the selection of other
rules.

Although the variation among the ROA decision rules is small, we
observe a slightly better throughput performance by the Pod-Batch rule.
This is a reason of the smaller number of trips necessary when batching
replenishment orders.

Many of the top performing RCs contain the Emptiest or Nearest
RPS decision rule. The main reason for the good throughput perfor-
mance again seems to rely on fewer and shorter trips. The Emptiest rule
decreases the number of trips, because more replenishment orders are
stored in pods at once until it is full. E.g., only 31.03% pods need to be
brought to replenishment stations in average when compared to the
Random rule. The Nearest rule benefits from a similar effect since the
same (nearest) pod is used for further replenishment orders even while
it is already approaching. Furthermore, Nearest decreases the distance
per replenishment trip, because nearer pods are used. The Random rule
performs worst for RPS. The main reason for this is that too many trips
are caused by randomly selecting pods while only storing few replen-
ishment orders per trip.

Among the PSA decision rules we observe the best throughput
performance for the Nearest strategy. This is again mainly caused by the
shorter trips for the robots. When comparing the Nearest and the

Table 9
RCs with best throughput score selected from first phase (performance is unit
throughput rate score).

RC rank POA ROA PPS RPS PSA performance

1 Pod-Match Pod-Batch Demand Emptiest Nearest 94.81%

2 Pod-Match Pod-Batch Demand Emptiest Station- 94.63%
Based

3 Pod-Match Pod-Batch Nearest Emptiest Nearest 94.43%

4 Pod-Match Pod-Batch Demand Emptiest Class 94.00%

11

Station-based rule we see the benefit from shorter trips for replenish-
ment operations increasing throughput of pick operations. However,
this depends on the queue length at stations and the distribution of
robots between replenishment and picking. Le., if longer queue times
are expected at replenishment stations than in our devised scenarios,
moving pods nearer to the pick stations when returning them to the
inventory may improve overall throughput performance. The Fixed and
Random decision rules differ little in their performance. The main
reason for this is that the storage location per pod in the Fixed rule is
randomly selected. Thus, leading to a very similar behavior.

Due to the large sample sizes, the results of ANOVA and Tukey’s
range tests rejected the hypotheses that the means were equals at the
0.05 significance level within groups and pair-wise, with five excep-
tions. The null hypothesis of equal means was not rejected at the 0.05
significance level for POA rules FCFS and Due-Time, for Random and
Due-Time, and for Random and FCFS. Furthermore, for PPS rules
Random and Lateness the hypothesis of equal means could not be re-
jected, and for PSA rules Station-Based and Class.

7.2. Phase 2

From the 1620 RCs in phase 1, the four with the highest unit
throughput rate (see Table 9) together with the benchmark RCs form
the set of ten RCs used in phase 2. The main purpose of phase 2 is to
examine how well the RCs perform under different circumstances. In
the following we analyze the results obtained for the 12 warehouse
scenarios and 30 resource settings described before (see Section 6.1).

Table 10 shows the results, with the entries being the unit
throughput rate as a percentage of the upper bound. In each cell the
result of the best performing RC for the respective scenario and station /
robot configuration is shown. The unit throughput rate scales well
when adding more pick stations, the scaling is (almost) completely
independent of the scenario characteristics. However, the necessary
number of robots to achieve a given unit throughput rate greatly de-
pends on the scenario characteristics, e.g., for more SKUs more robots
are necessary to achieve a high unit throughput rate. The number of
SKUs, does have a major impact on performance overall, where the
main reason is that pile-on is considerably lower for the 10,000 SKU
scenarios. A reason for this is the lower likeliness to have a pod with a
good combination of SKUs matching the orders of the pick stations
available. Thereby, if larger orders have to be processed with the
system, this helps mitigating the negative effect of handling lots of
SKUs. The main reason for this are the larger number of order lines
active at a station when picking larger orders. I.e., more open order
lines increase the likeliness of having a well matching pod available for
the inventory required at a pick station. Processing return orders has an

M. Merschformann, et al.

Table 10

Operations Research Perspectives 6 (2019) 100128

Best unit throughput rate score for all scenarios, robots per pick station and numbers of pick stations. Scenario abbreviations: [SKU count: 1000 (1K), 10,000 (10K)]-

[Order size: Small (S), Medium (M), Large (L)]-[Return orders: yes (R), no (N)].

1 2 3 4
4 4 4 4

Stations

Robots | 2 5 6| 2

(=]

2

1K-S-N
1K-S-R
1K-M-N
1K-M-R
1K-L-N
1K-L-R
10K-S-N
10K-S-R
10K-M-N|
10K-M-R|
10K-L-N
10K-L-R

44
46
45
45
54
50
21
20
23
21
36
30

82
82
83
82
83
80
39
40
41
41
63
52

59
59
60
59
66
64
27|
27
28]
28
44
37

91 94 95 93
92 94 95 93
92 95 95 93
92 95 96 93
93 97 96 94
92 96 97 94
55 59 61 59
56 61 62 61
58 61 64 61
59 63 65 63
84 89 87 83
76 81 83 76

97
97
97
97
99
99
68
70
71
73
94
89

ol
97
98
98
99
99
78
80
81
83
98
96

89
89
90
89
90
88
44
45
46
48
71
62

97
97
98
98
99
99
72
74
75
76
96
92

98
98
98
98
99
99
81
82
84
85
99
97

64
63
64
63
68
65
28
29
29
30
46
40

90
90
90
91
91
90
46
47
48
49
73
64

9798
9798
98 98
98 98
99 99
99 99
7380
7482
7683
7784
9498
9196

60
61
60
62
67
67
29
30
30
31
47
41

87
88
88
89
88
88
47
48
49
50
69
64

Ol
97
98
98
99
99
69
70
71
72
92
87

98
98
98]
98
99
99
7
78
80,
81
97|
94

57
56
57
56
63
62
30
31
31
32
46
42

87
87
88
88
86
86
47
48
48
49
67
61

93
93
94
94
94
93
57
58
60
60
84
74

97
97
98
98
98
98
68
67
71
70
91
84

98
98
98
98
99
99
T
76
80
79
97
93

59
55
59
56
63
62
31
31
32
32
45
41

87
86
88
87
87
84
45
46
47
47
68
59

94
93
94
94
94
94
58
57
60
59
83
73

97
97
98
98
99
98
68
66
71
69
91
84

increased negative effect, if the order size of customer orders is large.
However, in general, whether return orders are processed has a lesser
effect on throughput performance than the other warehouse scenario
variations. The reason behind this may be that even though approxi-
mately 19.76% more time is spent on replenishment operations by the
robots when compared to the scenarios without return order proces-
sing, replenishment operations are overall quick enough to mitigate the
effect. Replenishment operations only consume 20.29% out of the
overall time consumed by the robots in average across all phase 2 si-
mulation runs. Furthermore, we can conclude that with 1000 SKUs, the
unit throughput rates are close to their theoretical maximum even with
relatively few robots per stations.

Table 11 shows the unit throughput rate score for the RCs for all
combinations of number of robots (n,) and number of stations (n,),
averaged across WSs and presented as whole percentages. From
Table 11 we can see that the Ranked RCs from phase 1 perform simi-
larly and better than the benchmark RCs. Among the benchmark RCs,
the Greedy benchmark outperforms the others consistently across all
settings and is the only one whose unit throughput rate scores ap-
proached those of the ranked RCs.

7.3. Managerial insights

In the following, we briefly outline high-level findings for practi-
tioners. First, in our experiments RMFS demonstrates excellent scal-
ability characteristics. The throughput scales almost linearly with the
number of stations for all studied scenarios. The number of robots
shows similar behavior while few robots are used, but reaches a

Table 11
Unit throughput rate scores for the RCs in phase 2 (green

best, red = worst).

saturation point when approaching the maximal throughput of the
stations. In connection with the prior, it should be noted that the
number of robots necessary is highly dependent on the warehouse
scenario a system is facing (e.g., number of SKUs, customer order
characteristics, etc.). As a rule-of-thumb, anything decreasing the
handling time per pod presentation (e.g., pile-on) will increase the
number of robots required to get high throughput performance of the
stations.

Next, we want to emphasize the importance of smart decision logic
and algorithms for attaining high throughput with few resources (i.e.,
pickers, robots). In our experiments we observe a substantial perfor-
mance dispersion exclusively caused by the selection of decision rules.
Thus, there should be a strong focus on decision logic implementation
when designing an RMFS. In particular, decision rules specifically tai-
lored to RMFS should be considered (e.g. Pod-Match). In other words,
the better the control logic the less equipment is needed, which in turn
reduces the total-cost of ownership of the system (mobile robots,
maintenance, support, etc.).

Finally, the effect of compensating inefficient decision logic with
more robots will be exhausted when congestion and other blocking
effects increase. Specifically, in scenarios with many SKUs and small
orders (e.g.: e-commerce) this saturation point will be reached earlier.

8. Conclusion

In this work we studied the throughput performance of decision
rules for multiple decision problems occurring in the control of RMFS.
By analyzing a total of eight output measures for a total of 1620 RCs, we

1 2 3
4 4 4 5

4
4

Stations

Robots 3

w

5 2

3

RC #1
RC #2
RC #3
RC #4

31
29
33
29

61
59
61
58

7 81 8289
76 80 8188
76 81 8288
() 79 7987

87
86
86
85

9243
9141
9144
9040

68
67
69
65

89
89
88
87

93
93
93
91

45
44
47
42

70
69
70
67

93
92
92
91

46
44
47
43

69
68
69
66

79
78
79
77

87
86
86
85

91
91
91
90

4468
42 66
45 68
41 65

78
T
78
75

86
85
85
83

91
90
90
89

44
42
46
41

67
65
67
64

78
76
78
75

86
85
85
83

14
24
19
26

25
40
34
43
57
23

37 41 4253
57 63 6576
49 56 5769
56 59 6170
72 77 7785
23 29 3241

48
70
62
67
82
34

5818
8029
7326
7532
8843
4512

29
48
41
47
64
23

52
75
68
69
85
37

62
83
78
7
89
47

20
32
28
33
44
15

31
51
43
48
66
23

62
83
78
76
89
51

20
34
29
34
45
15

32
52
44
50
65
24

42
64
57
60
75
34

52
74
67
68
83
44

60
81
75
75
88
93

Demand
Speed
Nearest
Class
Greedy
Random

12

2132
3552
3044
3549
4463
1525

41
63
55
59
74
35

50
72
64
67
81
45

58
80
72
73
87
54

21
35
30
35
43
16

31
51
43
48
62
26

40
63
54
58
73
36

49
72
63
66
81
45

12

M. Merschformann, et al.

found strong correlations between these. Most interestingly a high pile-
on and a short distance traveled by the robots together almost im-
mediately account for the success of a decision rule applied to RMFS.
Hence, we propose using these two output measures as the key tactics
when designing decision strategies for RMFS that aim to achieve high
throughput. In the investigated high pressure situation further perfor-
mance measures like the turnover time of pick orders were also highly
correlated with the unit throughput rate, which is why we focused on
the throughput itself as the main metric for a successful RMFS.

Furthermore, we found that varying the decision rule used for sol-
ving the Pick Order Assignment affected the unit throughput rate the
most. The average unit throughput rate was twice as high for the best
decision rule as it was for the worst. This finding indicates that system
engineers and warehouse operators should pay most attention to the
Pick Order Assignment decision problem. Moreover, the unit
throughput rate score ranges from 25.24% for the worst RC assessed in
phase 1 to 94.81% for the best scoring RC. Hence, the right combination
of decision rules plays a crucial role when controlling an RMFS. We
propose that future research may assess how to scale beyond the
throughput performance of the merely simple decision rules in-
vestigated in this work. However, we observe some cross-dependencies
between different strategies for the core decision problems featured in
this paper, e.g., the Demand PPS rule is part of the best performing and
the worst performing RC. Thus, an integrated and realistic evaluation or
validation of new decision methods for RMFS is highly important, since
dependencies exist and side-effects should not be neglected.
Additionally, we found that the number of different SKUs in the system
has a strong impact on the unit throughput rate. This finding is prob-
ably due to a decrease in pile-on for a higher number of SKUs. This
effect is considerably less for larger orders, presumably because for
larger pick orders pile-on tends to be higher. Having to process return
orders seems to affect the unit throughput rate more, if the pick orders
are large. Moreover, we found that the performance of the “greedy”
benchmark consistently came close to the best ranked configurations of
decision rules.

This paper has studied solutions to several operational problems,
which lead towards promising directions for future research. Each de-
cision rule in this study has looked at an operational problem in iso-
lation, but heuristics that try to integrate multiple operational problems
and optimize these problems jointly may achieve substantial increases

Appendix A. Simulation Framework

Operations Research Perspectives 6 (2019) 100128

in order throughput or reductions in resources used. Investigating rules
and heuristics that increase pile-on, i.e. the number of picks per handled
pod, would also be of great use to practitioners.

While many decision rules and parameters were varied to deliver
insightful results we expect even more insight when varying the layout
itself. For example, we expect a larger impact of the PSA rule selection
when facing huge layout instances. This was not done in this work in
order to keep a certain focus and to keep computational resource uti-
lization for the conducted experiments tractable.

Another aspect to focus future research on is the order process de-
sign around the RMFS. In this work, we assumed a constant backlog of
orders to compare throughput performance in continuous operation.
While it is noteworthy that simply varying the size of the order backlog
may already affect the performance, another typical approach is to
evaluate the time it takes to process a batch of orders, to handle order
waves or to face hybrids of the prior. Since this work has shown the
high impact of related processes like POA, we see high potential for
performance improvements in this area. We would like to see future
research in these directions.

RMFSs are a new category of automated systems and concepts
specific to RMFSs have not received much scholarly attention. An ex-
ample would be cache zoning / priority zoning, that is the im-
plementation of special zones near the workstations where pods are
stored that will be needed in the near future. Another example would be
a study of automatic sorting of the system without explicit zones. Since
pods can be relocated to another storage location each time they are
transported to and from a workstation, the inventory can be sorted
automatically to some degree during operations. It is not clear at which
speed automatic sorting takes place or how much performance benefits
from it. Automatic sorting is a unique feature of RMFSs, but as with so
many other aspects of RMFSs, it remains to be explored.

Acknowledgements

We would like to thank the Paderborn Center for Parallel
Computing (PC?) for the use of their HPC systems for conducting the
experiments. Marius Merschformann is funded by the International
Graduate School - Dynamic Intelligent Systems, University of
Paderborn.

In this work we use the simulation framework “RAWSim-O”. A more detailed description of it can be found in [13] while the source code is
available at https://github.com/merschformann/RAWSim-O. “RAWSim-O” is an agent-based and event-driven simulation focusing at a detailed
view of an RMFS. The basic simulation process is managed by the core simulator instance (see Fig. A.7a), which is responsible for obtaining the next
event and updating the agents. Agents can either represent real entities like robots and stations or virtual entities like process managers, e.g. for
emulating order processes. Every decision that has to be made is passed to the corresponding controller. The controller can either immediately decide
or can buffer multiple requests in order to optimize and release the decision later on. However, in this work we only consider ad hoc decision rules

S
ey
N
2,

@Wioq
i S a— =
ller

A

Render

|

|

|

|

|

Simulator Output results |
N |
|

o |
Visualizer |

|

(a) Overview of the simulation process.

(b) Visualization screenshot

Fig. A1. RAWSim-O simulation framework.

13

https://github.com/merschformann/RAWSim-O

M. Merschformann, et al. Operations Research Perspectives 6 (2019) 100128

with the former approach. To allow visual feedback, the ongoing simulation can optionally be rendered in 2D and 3D. The implementation was done
in C#.

The level of detail of the simulation is especially high for the simulated movement behavior of the robots. We consider the robot’s momentum by
emulating acceleration and deceleration behavior, collision avoidance and turning speed (see Table 5). The emulation employs a continuous time-
horizon. The times for activities other than robot movement, e.g. lifting or storing a pod, or picking one unit at a pick station, are constant (see
Table 5). Robots that do not carry a pod can traverse underneath stored pods by using the waypoints at which the pods are stored. Furthermore, in
the buffers of the workstations, robots can take short-cuts if the buffer is (partially) empty.

Information about the system’s state is tracked in a high level of detail, because some decision rules differ with regard to the information they
require. For example, all pods and all units on all pods are tracked exactly. All of the decision rules proposed in this work differ in their compu-
tational complexity and therefore also in the computational time they require to reach a decision. They are, however, simple enough to be considered
as ad hoc decisions even for large system sizes.

Some information is not completely known beforehand, but becomes available over time. This is the case for incoming pick orders and re-
plenishment orders submitted to the system over time by external processes. While each replenishment order consists of a number of physical units of
one SKU, each pick order consists of a set of order lines, each for one SKU, with corresponding units necessary to fulfill the line. We assume for both
pick and replenishment orders, that there is a constant order backlog. A constant order backlog means that when an order from the backlog is
assigned to a workstation, it is immediately replaced by a newly generated order. By keeping the order backlogs constant, we aim to analyze the
system’s behavior under constant pressure. However, it also leads to the phenomenon that the system’s storage space utilization (utilized space
divided by total space available) in the storage area is affected by the performance of the decision rules controlling it, because no further virtual
manager steers the process. E.g., if a combination of rules is leading to quick replenishment, the storage space utilization will increase. In contrast, it
will decrease, if the rules are replenishing slowly. Situations in which the storage space utilization is nearing 100%, and only few storage places for
new replenishment orders are available, lead to an inefficient replenishment process. To avoid such situations, we pause replenishment order
generation, if storage space utilization exceeds 85% and it is continued after it drops below 65% again. Analogously, we pause the pick order
generation, if storage space utilization drops below 10% and resume after it exceeds 60% again. The latter is done to avoid draining the inventory
completely. Since in both cases either the replenishment stations or the pick stations will become inactive due to no further orders to process, the
robots will be reassigned to the remaining active stations. This redistribution of robots across the active stations is done at any time a station becomes
active or inactive, i.e. at the beginning and end of order generation pauses.

If a new replenishment order is received, first the rules for ROA and RPS are responsible for choosing a replenishment station and a pod (see
Fig. A.8). The time the decision is taken depends on the active rules. The execution of the assignment can earliest be done as soon as there is sufficient
capacity on a pod and a station available. Technically, it results in an insertion request (shown as red cylinders), i.e., a request that requires a robot to
bring the pod to the workstation. Multiple of these requests are then combined to an insertion task and assigned to a robot by a TA rule. Similarly,
after the POA rule selects a pick order from the backlog and the assignment is committed to a pick station, an extraction request (shown as blue
cylinders) is generated, i.e. a request that requires bringing a suitable pod to the chosen station. Up to this point, the physical units of SKUs for
fulfilling the pick order are not yet chosen. Instead, the decision is postponed and taken right before combining different requests to extraction tasks
by PPS and assigning them to robots by TA. This allows the implemented rules to exploit more information when choosing a pod for picking. Hence,
in this work we consider PPS as a decision closely interlinked with TA. Furthermore, the system generates store requests (shown as orange cylinders)
each time a pod has to be transported to a storage location. The PSA rule only decides the storage location for a pod that is not needed anymore and
has to be returned to the storage area. If all requests are already being handled by other robots, the robot will be assigned an idle task, thus, the robot
dwells at a dwelling point until needed. Dwelling points can be used to reduce congestion effects if there are only a few active stations compared to
the number of robots, e.g. robots waiting at a storage location block others that try to pass by. For this, the robot will park at a free storage location to
avoid causing conflicts with other robots. The dwell point policy uses locations in the middle of the storage area to avoid blocking prominent storage
locations next to the stations. Another type of task would be charging, which is necessary when robots run low on battery, however, in this work we
assume the battery capacity to be infinite, so this type of task is ignored. All of the tasks result in trips (shown as green cylinders). The only exception
is when a pod can be used for another task at the same station. The trips are planned by a path planning (PP) algorithm and the resulting paths are
executed by the robots. Fig. A.8 shows an abstract overview of these dependencies.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.0rp.2019.100128.

Requests:
Y
N
Repl. order ROA 5 £ Trips:
ived 5
receive RPS -y £ -
N '
P I N o
Pick order uy g ~
ived s
receive U U,

PSA

Fig. A2. Order of decisions to be done induced by receiving pick and replenishment orders.

14

https://doi.org/10.1016/j.orp.2019.100128

M. Merschformann, et al.

References

[1]

[2]

[3

=

[4

=

[5

[}

[6]

[71

8

=

[9

—

[10]

Beckschéfer M, Malberg S, Tierney K, Weskamp C. Simulating storage policies for an
automated grid-based warehouse system. In: Bektas T, Coniglio S, Martinez-Sykora
A, VoR S, editors. Computational logistics Lecture Notes in Computer Science Cham:
Springer; 2017. p. 468-82. https://doi.org/10.1007/978-3-319-68496-3_31.
Boysen N, Briskorn D, Emde S. Parts-to-picker based order processing in a rack-
moving mobile robots environment. Eur J Oper Res 2017;262(2):550-62.

Bozer YA, Aldarondo FJ. A simulation-based comparison of two goods-to-person
order picking systems in an online retail setting. Int J Prod Res 2018;29(1):1-21.
https://doi.org/10.1080/00207543.2018.1424364.

Chen CM, Gong Y, de Koster MBM, van Nunen JAEE. A flexible evaluative frame-
work for order picking systems. Prod Oper Manage 2010;19(1):70-82.

Enright J, Wurman PR. Optimization and coordinated autonomy in mobile fulfill-
ment systems. In: Sariel-Talay S, Smith SF, Onder N, editors. Automated action
planning for autonomous mobile robots. 2011.

Guan M, Li Z. Genetic algorithm for scattered storage assignment in kiva mobile
fulfillment system. Am J Oper Res 2018;08(06):474-85. https://doi.org/10.4236/
ajor.2018.86027.

Guan M, Li Z. Pod layout problem in kiva mobile fulfillment system using syn-
chronized zoning. J Appl Math Phys 2018;06(12):2553-62. https://doi.org/10.
4236/jamp.2018.612213.

Heragu SS, Cai X, Krishnamurthy A, Malmborg CJ. Analytical models for analysis of
automated warehouse material handling systems. Int J Prod Res
2011;49(22):6833-61.

Lamballais, T., Merschformann, M., Roy, D., Suhl, L., & De Koster, M. B. M. (2017a).
Optimal policies for resource reallocation in a robotic mobile fulfillment system.
Working paper.

Lamballais T, Roy D, de Koster MBM. Estimating performance in a robotic mobile

15

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

Operations Research Perspectives 6 (2019) 100128

fulfillment system. Eur J Oper Res 2017;256:976-90.

Lamballais, T., Roy, D., & de Koster, M. B. M. (2017c¢). Inventory allocation in ro-
botic mobile fulfillment systems. Working Paper, available at SSRN.
Merschformann, M., Xie, L., & Erdmann, D. (2017). Path planning for robotic mo-
bile fulfillment systems. Working paper, available at arXivarXiv:1706.09347.
Merschformann M, Xie L, Li H. RAWSim-O: a simulation framework for robotic
mobile fulfillment systems. Logist Res 2018;11(8). https://doi.org/10.23773/
2018.8.

Nigam S, Roy D, de Koster MBM, Adan IJBF. Analysis of class-based storage stra-
tegies for the mobile shelf-based order pick system. Progress in material handling
research: 2014. 2014.

Ribino P, Cossentino M, Lodato C, Lopes S. Agent-based simulation study for im-
proving logistic warehouse performance. J Simul 2018;12(1):23-41. https://doi.
org/10.1057/541273-017-0055-z.

Roodbergen KJ, Vis IFA, Taylor GD. Simultaneous determination of warehouse
layout and control policies. Int J Prod Res 2014;53(11):3306-26. https://doi.org/
10.1080/00207543.2014.978029.

Roy D, Krishnamurthy A, Heragu SS, Malmborg CJ. Performance analysis and de-
sign trade-offs in warehouses with autonomous vehicle technology. IIE Trans
2012;44:1045-60.

Wingfield N. As amazon pushes forward with robots, workers find new roles. The
New York Times 2017. https://nyti.ms/2xUhVgM

Wurman PR, D’Andrea R, Mountz M. Coordinating hundreds of cooperative, au-
tonomous vehicles in warehouses. Al Magazine 2008;29(1):9-19.

Zou B, Gong Y, Xu X, Yuan Z. Assignment rules in robotic mobile fulfilment systems
for online retailers. Int J Prod Res 2017;55(20):6175-92.

Zou B, Xu X, Gong YY, de Koster R. Evaluating battery charging and swapping
strategies in a robotic mobile fulfillment system. Eur J Oper Res
2018;267(2):733-53.

https://doi.org/10.1007/978-3-319-68496-3_31
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0002
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0002
https://doi.org/10.1080/00207543.2018.1424364
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0004
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0004
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0005
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0005
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0005
https://doi.org/10.4236/ajor.2018.86027
https://doi.org/10.4236/ajor.2018.86027
https://doi.org/10.4236/jamp.2018.612213
https://doi.org/10.4236/jamp.2018.612213
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0008
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0008
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0008
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0009
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0009
http://arxiv.org/abs/1706.09347
https://doi.org/10.23773/2018_8
https://doi.org/10.23773/2018_8
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0011
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0011
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0011
https://doi.org/10.1057/s41273-017-0055-z
https://doi.org/10.1057/s41273-017-0055-z
https://doi.org/10.1080/00207543.2014.978029
https://doi.org/10.1080/00207543.2014.978029
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0014
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0014
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0014
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0015
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0015
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0016
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0016
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0017
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0017
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0018
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0018
http://refhub.elsevier.com/S2214-7160(19)30094-6/sbref0018

	Decision rules for robotic mobile fulfillment systems
	Introduction
	The robotic mobile fulfillment system
	Related work
	Decision problems
	Decision rules
	Pick order assignment rules
	Replenishment order assignment rules
	Pick pod selection rules
	Replenishment pod selection rules
	Pod storage assignment rules

	Evaluation framework
	Parameters

	Computational results
	Phase 1
	Phase 2
	Managerial insights

	Conclusion
	Acknowledgements
	Simulation Framework
	Supplementary material
	References

