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A B S T R A C T

The automatic generation of behavioural models for intelligent agents in military simulation and experi-
mentation remains a challenge. Genetic Algorithms are a global optimization approach which is suitable for
addressing complex problems where locating the global optimum is a difficult task. Unlike traditional optimi-
sation techniques such as hill-climbing or derivatives-based methods, Genetic Algorithms are robust for ad-
dressing highly multi-modal and discontinuous search landscapes. In this paper, we outline a simheuristic GA-
based approach for automatic generation of finite state machine based behavioural models of intelligent agents,
where the aim is the identification of novel combat tactics. Rather than evolving states, the proposed approach
evolves a sequence of transitions. We also discuss workable starting points for the use of Genetic Algorithms for
such scenarios, shedding some light on the associated design and implementation difficulties.

1. Introduction

Computational simulation is increasingly employed to support de-
cision-making in real-world problems, from smart cities to military and
transportation logistics. Simulations incorporating Computer Generated
Forces (CGFs), play an increasingly vital role in military training, in-
telligence analysis and exploration of combat tactics. Typically, these
simulations incorporate intelligent agents that capture individual and
team decision-making, for a variety of reasons including the exploration
and assessment of tactics for combat. CGFs (or agents)1 with associated
behavioural models typically take on roles such as an ally or an ad-
versary. However, the development of these agent-based behavioural
models in military simulation and experimentation remains a challenge
[1]. Existing approaches can be classified into two main classes, namely
manual and those incorporating some form of Artificial Intelligence
(AI). The manual process of scripting these behavioural models is la-
bour intensive, costly, requires domain expertise and may or may not
involve the use of dedicated CGF behaviour authoring tools (e.g. Smart
Bandits [2]). Commercial-Off-The-Shelf CGF (COTS-CGF) packages
have commonly been used in the development of behavioural models
for military training simulations. Many of these COTS-CGF incorporate
some rudimentary form of AI and according to Toubman et al.[3], these
packages do not support behaviour modelling through adaptive pro-
cesses incorporating AI. They found even large COTS-CGF packages still

rely on forms of scripting to drive agent behaviour, with some pro-
viding graphical interfaces to make it easier for users. They conclude
that existing COTS-CGF packages have undesirably high complexity in
terms of use and lacking AI techniques that would be beneficial for
modelling agent behaviour and exploration of novel combat strategies.

Traditionally simulation and optimization were considered distinct
approaches in operations research. The marriage between these two
areas emerged around 2000 when the use of the term simulation op-
timization became more widespread and commercial discrete-event
simulation software included some form of optimization modules in-
stead of just statistical estimation modules. In recent years, the di-
chotomy between these two approaches is decreasing. With the ex-
ponential growth in computational power, it is now increasingly viable
to do simulation optimization - simultaneously combining the ex-
ploration of details provided by simulations with the ability of opti-
misation techniques. The term Simheuristics was coined in 2015 [4] to
represent a category of optimization algorithm that incorporates si-
mulation to solve complex stochastic NP-hard combinatorial optimi-
zation problems. Juan et al.[5] have also argued that simheuristics be
considered as a first-resort approach for solving real-world optimization
problems; a class of problems typically characterised as being NP-hard,
large-scaled, with a high degree of dynamism and uncertainty.

Simheuristics incorporating metaheuristics such as Simulated
Annealing and Genetic Algorithms (GA) have increasingly been used to
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solve optimisation problems in the area of operations research. While
traditional simulated annealing explores the solution space sequen-
tially, GA operates on a population of individuals (solutions) where it
uses a survival of the fittest principle to guide its search for the near-
optimal solution. The applications of GA to solve optimisation problems
include: task scheduling [6], Travelling Salesman [7], Portfolio selec-
tion [8], timetabling [9], and behavior modeling for air combat simu-
lations [10,11]. GA is a global optimization approach, most applicable
for complex non-linear models where locating the global optimum is a
difficult task. Unlike traditional optimisation techniques such as hill-
climbing or derivative-based methods, this technique is robust and
suitable for addressing highly multi-modal and discontinuous search
landscapes [12]. It should also be noted that there is a body of work
that attempts to introduce the benefits of a population-based search to
standard metaheuristic algorithms. For example, Shaabani and Kama-
labadi [13] introduced a population-based version of simulated an-
nealing applied to an inventory routing problem. In another work,
Panadero et al. [14] introduce an agent-based framework, where a
population of heterogenous search algorithm agents with shared
memory can traverse a search space in parallel.

Optimisation algorithms found in commercial simulation software
are mostly based on metaheuristics and predominantly GA [15,16].
Figueira et al.[17] also stated that optimization modules in discrete-
event simulation software are predominantly metaheuristic methods
owing to the flexibility of these techniques to tackle different types of
search space and achieve good (near-optimal) solutions. A point to note
is that optimization modules for commercial simulation software are
black box in nature as exemplified by the GA-based methods both in
SimRunner and in Siemen’s PLM. A survey of research papers associated
with simheuristics also showed that GA is a commonly used optimiza-
tion method [18,19]. Similar to many other optimisation methods, GA-
based approaches require a number of decisions to be made as their
efficiency depends on many parameters, such as representation of the
solution, the initial population, selection strategy, and recombination
operators. The choice of a good combination of values for these para-
meters has a significant impact on the performance of the GA. Owing to
the large number of combinatorial possibilities [20,21], finding a sui-
table set of values for these parameters is a challenge. However, in most
existing work, a discussion is typically presented about the importance
of determining appropriate parameters values and then followed by a
sets of values employed in the study. Some guidance or rationale from
an implementation perspective would be helpful to shed some light on
the design and implementation difficulties associated with using GA
and promote a wider discussion and uptake of metaheuristics in simu-
lation-optimization. Using feedback from simulation can guide the
search for better solutions as well as a better understanding of the
system overall.

This paper considers the use of GA for evolving agent-based beha-
viour models associated with novel combat tactics. This problem is one
involving a co-adaptive environment where the individual CFG and the
others are one part of a dynamic environment (e.g. simulation). The
formulation of fitness function for assessing behaviour models via some
form of mathematical equations is challenging and in some instances,
impossible. To address this, our approach is simheuristics, with the GA
interacting with an environment (simulation) which provides utility-
related feedback (in the form of a measurement of performance related
to some time-varying state of the environment). In this paper we first
examine GA concepts, design and experimental considerations in terms
of their applications for automatic generation of agent-based beha-
vioural models, specifically in terms of manoeuver optimization where
the aim is the exploration and identification of novel combat tactics. A
within visual range combat manoeuver, the Stern Conversion as out-
lined in Shaw [22], will be used here as the running example tactical
manoeuver to illustrate considerations associated with the use this
evolutionary approach. The contribution of this paper is two fold;
namely we outlined a simheuristics GA-based approach for exploration

of novel combat tactics associated with CGFs and we identify design
considerations and implementation decisions as well as share insights
where a researcher starting to work with GA in simheuristics may find
such information constructive.

The following section describes associated preliminaries, namely
components of GA and Section 3 outlines the Stern Conversion man-
oeuver and its corresponding behaviour model (in the form of finite
state machine (DSTG-AT)). Section 4 discusses concepts and steps as-
sociated with our GA-based approach as well as GA-based design con-
siderations for exploration of novel combat tactics associated with
CGFs. Lastly, discussion and conclusion are found in Section 5.

2. Genetic algorithms (GA)

The GA is a general purpose search algorithm which was introduced
by Holland [23]. It is biologically inspired and is based on Darwin’s
theory of survival of the fittest. Basically, the approach involves
maintaining a population of individuals (chromosomes) that represent
candidate solutions to the actual problem. The population evolves over
time through a competitive process and controlled variations. Although
there are different variations of GA, they all have a number of common
elements: representation, fitness function and population management.
The GA terminates when the stopping criteria is satisfied.

2.1. Representation

A problem-specific component which is also a key component in the
development of a GA-based approach is the representation or encoding
of the solution for the specific problem. With direct manipulations of
the encoding by the GA-based approach, a specific encoding schema
can severely limit the universe by which the GA based approach per-
ceives its world. Traditionally, fixed-length and binary string encodings
have been the dominating encoding; with sequences of 0’s and 1’s
where the position of the digit correlates to some aspect of the solution.
Instead of binary strings, a similar approach that supports greater
precision and complexity involved integers or real number encoding
[24]. Specifically, a solution or chromosome is a vector of real numbers
in a real-coded GA. However a point to note here is that it is also
possible to have encodings that are not fixed-length and fixed-order
binary encoding. These include many-value encoding [25], messy ge-
netic algorithms [26] and delta encoding [27].

2.2. Fitness function

The second problem-specific component is associated with evalua-
tion of the goodness of an individual with respect to the problem under
consideration. The goodness of a chromosome can either be represented
by some function that will be optimised or is some form of a perfor-
mance measurement obtained via the interaction of the GA with some
time-varying state of the environment. The terms, Fitness function and
Objective function, have often been used synonymously. The objective
function is a type of phenotype, a characteristic associated with the
specific problem. The fitness function is a monotonic function of the
objective function and determines probabilistically how the individual
will be subsequently used (discarded or reproduced) in the algorithm.
Better solutions for the problem under consideration are given higher
fitness values. It is vital that the fitness function is designed appro-
priately; otherwise the GA will either have great difficulty in conver-
ging or it will converge to an inappropriate solution. The design of the
appropriate fitness function is often not a straightforward task and in
many instances, this task may be achieved using human evaluation
(interactive GA) or using simulations.

2.3. Population management

GAs work with a population of candidate solutions (chromosomes)
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encoded in some manner. The components of the chromosome are
known as genes and the possible values associated with each gene are
called alleles (e.g. genes in a binary string have 2 alleles: 0 and 1). GAs
start with an initial population which is usually randomly generated
[28]. This population is evolved iteratively until some stopping cri-
terion is met, whereby the final population will contain solutions with
high fitness. At the core of the GA process, are crossover and mutation
operations that works on individuals in a population(t) to create a po-
pulation( +t 1) with an increased overall fitness. Commonly, a GA
works on a static size population and three operators are at work in
each generation to generate population( +t 1) from population(t).
These three genetic operators are selection, crossover and mutation.
They play an important role; the selection and reproduction process
support exploitation where the GA can conduct local search of pro-
mising regions and the crossover and mutation operators support ex-
ploration of untested regions of the solution space. The crossover op-
eration produces two offspring by combining parts from a pair of
parents [29] and the mutation operator changes a gene based on the
mutation probability, typically a very small number [30,31].

There are two different population management models, namely
generational or steady-state. In the generational model, the set of par-
ents in each generation is totally replaced by the offspring whereas in
the steady-state model, p members of the population are replaced by p
offspring in each consecutive generation. Elitist selection guaranteed
that the fittest individuals are included in the next generation (either
the best or a few of the best individuals). In terms of the selection
methods used to select parents for reproduction, these include:
Stochastic Universal Sampling, Roulette-wheel selection, Tournament
selection and Rank selection [32].

3. Running example: tactical manoeuver: stern conversion

To have a better appreciation for the discussions and the results
presented here, we believe that some basic understanding of the em-
ployed aircraft combat manoeuver is required. The Stern Conversion
[22] is a one-vs-one within visual range combat scenario where two
aircraft are within visual range and initially flying towards each other
(Fig. 2: time step a).The aim of the blue aircraft (Interceptor) is to
achieve a position where it is behind the red (Target) aircraft and fol-
lowing it. In this position, the blue aircraft can maintain a sensor lock
on red, while being safe from red’s observation.

In executing this manoeuvre, the blue aircraft will first turn away
from the red aircraft in time step b to achieve the Required
Displacement between the two aircraft. Next, the blue aircraft will
continue to fly parallel to red until it is within Conversion Range (Fig. 2:
time step c). Lastly, the blue aircraft turns to position itself behind the
red aircraft (Fig. 2: time step d).

4. A simheuristic GA-based approach and design considerations
for exploration of novel combat tactics

We examine GA concepts, design and experimental considerations
in terms of its applications for automatic generation of agent-based
behavioural models, specifically in terms of manoeuver optimization
where the aim is the exploration and identification of novel combat
manoeuvres. Specifically we use the Stern Conversion manoeuvre as a
reference point to illustrate design considerations and for discussions. A
researcher wanting to develop a simheurisitc GA-based approach for
the exploration and identification of novel combat manoeuvres for
CGFs would need to carry out the following:

1. First, we need to consider appropriate models that can capture the
behaviour of CGFs for specific combat manoeuvres. At this point we
also need to identify a suitable combat simulator that supports the
interactions between the Blue and Red agent.

2. Second, from the perspectives of the GA-based approach, we need to

examine the way in which the combat manoeuvre has been mod-
elled and how it fits into the GA framework, definition of solution
space, solution representation as chromosomes and different mea-
sures of effectiveness and their contributions in the formulation of
the fitness function.

3. Third, we need to decide on the various parameters of the GA-based
approach, including those associated with population management
and termination conditions.

4. Evaluation considerations given the stochastic nature of a GA-based
approach.

4.1. Step 1: agent-based behaviour model for stern conversion

Typically, models capturing behaviour associated with CGFs are in
the form of if-then-else rules which have been manually scripted.
However Finite State Machines (FSM) and behaviour trees have also
been used in work involving the use of machine learning for automatic
generation of behaviour models of CGFs. The behaviour model for Stern
Conversion used here is a finite state machine and is described in the
following section.

4.2. DSTG-AT: DSTG agent incorporating kinematic knowledge for the stern
conversion manoeuvre

The Australian Defence Science and Technology Group (DST Group)
have developed an air-to-air combat simulator, ACE Zero [33] and an
aircraft controller agent in the form of FSM for enacting the above Stern
Conversion manoeuvre. Each state in this FSM corresponds to a parti-
cular section of the manoeuvre, with transitions occurring once the
aircraft achieves the desired position and orientation as defined by
Shaw (1985). A description of the states from this FSM is provided in
Table 1. Whilst in each of these states, the blue aircraft also tries to
match the altitude of the red aircraft.

Previously, we have proposed a generic FSM model for which
transition can be evolved [11]. The FSM we use here is one instantia-
tion of this generic model, shown in Fig. 3. This is a modified version of
the DSTG aircraft controller FSM, which we refer to as DSTG-AT (All
Transitions), where we have kept the original state actions from the
DST model but have removed the prescriptive set of transitions, instead
making transitions between all states possible. Transition conditions of
DSTG-AT are determined using the kinematic properties of the two
aircraft (Blue and Red), namely, the position (p), velocity (v) and ac-
celeration (a) along three Cartesian components (i.e. the x, y and z
axis). These kinematic properties are are easy to obtain from the si-
mulation environment that is used to calculate the fitness, as they form
an integral part of the simulation. When seeking to instantiate an op-
timized solution in real combat, the velocity (and acceleration) of the
opponent can be estimated by taking differences (and differences of
differences) of observed position. These kinematic parameters are cal-
culated using the relative components of red aircraft to blue and are
defined below.

• Relative Distance as:
= =p p p p p p p p pp ( , , ) ( , , )x y z xRed xBlue yRed yBlue zRed zBlue

Table 1
States and transitions for the FSM stern conversion agent.

State Action

(a) Pure pursuit Point the aircraft at and fly directly towards the red
aircraft.

(b) Fly relative bearing Turn by turn angle and fly straight on that bearing.
(c) Flying offset Fly parallel to red
(d) Converting Turn to match red’s heading whilst remaining behind

it, not coming closer than no closer range.
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• Relative Velocity as:
= =v v v v v v v v vv ( , , ) ( , , )x y z xRed xBlue yRed yBlue zRed zBlue

• And Relative Acceleration as:
= =a a a a a a a a aa ( , , ) ( , , )x y z xRed xBlue yRed yBlue zRed zBlue

This transformation to relative values allows us to consider beha-
viour of the red aircraft in terms of where it is and where it is going
relative to the blue aircraft, how the blue and red aircraft are increasing
or decreasing their separation and bearing.

To determine if a transition of a specific state is to be triggered, each
possible transition from that specific state is checked whether the
Relative Position, Velocity and Acceleration (separately for each of
their Cartesian components) is within a respective minimum and
maximum bound for that transition to occur. Evaluation for the tran-
sition between these two states, i and j, are made against 18 constants
(denoted by A B C D R, , ,ij ij ij ij ij). As an example, Table 2 shows the
conditions that must all be satisfied for a transition from FlyingOffset to
FlyRelativeBearing.

Since it is possible to go from each state to three other states, there
are 3 × 18 = 54 parameters to check within each state. As there are 4
states in DSTG-AT, the total number of parameters is 216. The para-
meters for each of the 12 transitions between states are listed in Table 3.

If the conditions for only one transition from the FSMs current state
are met, that transition is taken. If conditions for more than one tran-
sition are met, one of these transitions is taken at random. The fol-
lowing original Tactical Parameters for DST Agent are still utilised in
DSTG-AT:

• TURN_ANGLE for the FlyRelativeBearing state, set to the default
15.0∘.
• NO_CLOSER_RANGE for the Converting state, set to the default 2.0
nautical miles.

4.3. Step 2: GA considerations in practice

The first consideration in the development of a GA-based approach
is the representation or encoding of the solution for the specific

problem. This is illustrated in the following section using our running
example, the Stern Conversion manoeuvre and its associated behaviour
model DSTG-AT. The generic steps associated with a GA-based ap-
proach are shown in Fig. 1. Chromosome encoding is associated with
the step Generate Initial Population.

4.4. Chromosome encoding

The aim is to evolve a sequence of transitions between states in
DSTG-AT such that a stern conversion manoeuvre is successfully exe-
cuted by the Blue Agent (DSTG-AT) against a Red Agent. Thus the
chromosome represents the set of all possible transitions in DSTG-AT,
each transition with its respective conditions that must be met for the
transition to be triggered. The optimal solution encodes the transitions
and their respective conditions which culminates in the Blue agent
executing a successful stern conversion against the Red agent.

Fig. 4 shows the proposed chromosome representation. Each gene is
a real number in the range of [0.0–1.0]. Table 2 provides the details for
these genes, for example, gene A and gene B is the minimum and
maximum bound associated with Δpx respectively. These gene values
are associated with the size of a simulated environment. The length of
this chromosome is 216, representing the bounds associated with each
of the 12 transitions in DSTG-AT.

4.5. Fitness evaluation of individuals in population

Fitness evaluation is the step following population initialisation in a
GA (ref. Fig. 1). The evaluation method employed to assess the good-
ness of individual solution is another critical design consideration in a
GA-based approach. For the optimal solution to be meaningful, it is
vital to develop functional performance metric that captures the ef-
fectiveness of strategies used by the individual (e.g. Blue agent) against
its opponents (Red agent). In the case of learning tactical combat
strategies involving stochastic-based behaviour models it is computa-
tionally infeasible to objectively assess the quality of a strategy using
some form of mathematical equation; though it is relatively easy to let
the respective Agents (Blue vs Red) interact via an air-to-air combat
simulator. The fitness of the chromosome (Blue agent) is then a

Table 2
An example of the transition logic that must all be satisfied for a change of state
from FlyingOffset to FlyRelativeBearing. The transition parameters (A to R) act
as thresholds for the relative position (Δp), velocity (Δv) and acceleration (Δa)
in each transition.

Aij < Δpx < Bij Gij < Δvx < Hij Mij < Δax < Nij

Cij < Δpy < Dij Iij < Δvy < Jij Oij < Δay < Pij
Eij < Δpz < Fij Kij < Δvz < Lij Qij < Δaz < Rij

Table 3
The transition parameters for the Stern Conversion FSM (DSTG-AT).

Current state

Pure pursuit Fly
relative
bearing

Flying offset Converting

Next state Pure pursuit A R21 21 A R31 31 A R41 41
Fly relative
bearing

A R12 12 A R32 32 A R42 42

Flying offset A R13 13 A R23 23 A R43 43
Converting A R31 31 A R24 24 A R34 34

Fig. 1. Steps in a basic genetic algorithm.
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performance measurement from the interactions of the Blue agent
against the Red agent in terms of successfully completing the specific
task, in this instance, using some measures of success for stern con-
version. In our specific example, the air-to-air combat simulator used is
Ace Zero and the specific tasks here are: (1) determining a set success
measure and (2) a method to use the success measure to calculate the
fitness value of an individual.

4.6. Measure of stern conversion success

To measure stern conversion success of the blue agent (DSTG-AT)
we consider the blue aircraft to have succeeded if during the simulation
run the following criteria have been met:

1. The range (distance) between the two aircraft is between 500 feet
and 3000 feet.

2. The target aircraft (Red) is within 30∘ of the attacking aircraft’s
(Blue) nose.

3. The attacking aircraft (Blue) is within 30∘ of the threat aircraft’s
(Red) tail.

4. The separation in altitude between the two aircraft is less than 500
feet.

5. The difference in velocity is less than 100 knots.

4.7. Calculation of fitness of a chromosome

The objective is to maximize the fitness score for the chromosome.
To calculate the fitness, the individual chromosome being evaluated is
used to instantiate the blue agent in Ace-Zero. Similarly, the red agent is
instantiated with values for the specific agent being employed as the
adversary. The Ace-Zero simulation is then run for 250 s. The fitness of
a blue agent is initialised to 0 at the start of the simulation. During the
simulation, each of the five conditions listed above are checked at in-
tervals of 1 s (in terms of simulated time). In addition, to provide a less
specific fitness factor, a sixth condition was introduced, that the at-
tacker (Blue) is behind the opponent (Red). Though this condition is
subsumed by a combination of conditions 2 and 3, it helps guide the
evolution during the early phases towards more viable solutions. For
each condition that is true at the particular point in time we add 1 to
the fitness score. Thus, the more conditions that are true at a particular

Fig. 2. Blue Interceptor performing a Stern Conversion on Red
Target. Aircraft positions at time steps 1–4 shown.
Reproduced from Shaw [22]. The figure also shows the set of
states (a–d) and tactical parameters used in the finite state
machine model (DSTG-AT) for enacting the Stern Conversion
manoeuvre (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of
this article.).

Fig. 3. DSTG-AT: modified DSTG finite state machine that implemented the stern conversion manoeuvre.

Fig. 4. Chromosome representation for evolving FSM transitions.
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time, the higher the fitness for that time interval. Fitness score is
summed across time intervals, so that a higher fitness results the longer
a condition is true.

A point to consider in the calculation of the fitness score is the
stochastic nature of the underlying behaviour model, where if the
conditions for more than one transition to occur are met, one of the
transitions is taken at random. This means that subsequent simulation
runs of the same scenario with the same agent models may result in a
different outcome. To demonstrate this, we set up the following:

• Sim 1: 50 evaluations, each consisting of calculation of fitness value
using 1, 5 and 10 simulation runs involving an identical Blue Agent
(DSTG-AT) versus Red Agent flying in a straight line respectively
• Sim 2: 50 evaluations, each consisting of calculation of fitness value
using 1, 5 and 10 simulation runs involving an identical Blue Agent
(DSTG-AT) versus Red Agent being the default stern conversion
agent

Note that each evaluation run uses the same initial Blue and Red
agent and we examine the fitness score of the Blue agent over 50
evaluations.

Figs. 5 and 6 shows the results for Sim 1 and Sim 2 respectively,
where the fitness score associated with a single simulation (blue line)
showed quite a bit of variability across the 50 simulations. This means
that we might lose a potentially good solution as the specific individual
did not perform well by chance or we might take a poor solution into
future generations as it performed really well by chance. To address this
sort of situation, one approach is to calculate each fitness score of an
individual as an average performance from a repeated number of si-
mulation runs using the same individual. The orange plot in both fig-
ures shows fitness value plots calculated using the average of 5 simu-
lations per run and the green colour plot where fitness value was
calculated from an average fitness of 10 simulations per run. This
showed the fitness score of the same individual having less variability
when calculated as an average across 5 and 10 repeats of the simulation
respectively. Calculating the fitness values as an average of a number of
simulation runs increases the computation time for the approach and
determining how many to use is clearly a trade-off between obtaining a
more reliable value for fitness of an individual and the computation
resources. From the set of empirical analysis carried out, it can be seen
that the variances between using 5 or 10 is not very big, thus a suitable
measure of fitness can be calculated as an average of 5 runs.

4.8. Step 3: genetic operators and parameter tuning

The discussion in the following sections pertains to the following

steps of Fig. 1: Select individuals for reproduction, Select genetic op-
erators, Crossover and Mutation.

Parameter tuning is considered here to be a specific case of algo-
rithm design as it normally includes all decisions associated with its
implementation. The efficiency of a GA-based approach is very much
dependent on carefully choosing values for its various parameters.
These include parameters associated with the use of crossover, muta-
tion, type of selection and replacement strategies associated with po-
pulation management as well as the termination conditions. Parameter
tuning is defined as finding the best values for a set of parameters for
running a GA. There are two typical approaches: use one of the
Standard parameter settings or customise the parameter settings for
your specific problem. While historical parameter settings from the
literature may not be the most optimal solution, they are a good starting
point. Table 4 shows common recommended Standard parameter set-
tings obtained from the literature and these include those of Dejong
[34], Grefenstette [20] Goldberg [35] and Alander [36].

Using Dejong’s values for population size, crossover and mutation
probability in conjunction with the remaining parameters in Table 6,
we apply our GA-based approach to the running example where the
Blue Agent (DSTG-AT) is attempting to complete a stern conversion
against a Red Agent flying in a straight line (Sim 1). The best fitness
individual at the end of 300 generations has a fitness score of 925. Fig. 7
shows the fitness plot of the best individual and the average fitness of
the population across 300 generations. From these plots, it can be seen
that there was a substantial amount of time associated with exploration
and exploitation before the plot plateaued out with small oscillations.
The evolution process has not completely converged as evident from the
oscillations associated with the two plots toward the 300th generation.
Further improvement may be obtained by running the GA longer. The
resulting trajectory plot of the best individual at the end of 300 gen-
erations is shown in Fig. 8, demonstrating the Blue agent completing a
stern conversion against the red agent. For completeness, the trajectory
plot of the best individual using the same evolution parameters but
evolved against the stern conversion agent is shown in Fig. 9. Here the
blue aircraft also positions itself behind and following the red, suc-
cessfully completing a stern conversion. From these trajectories, it can
be seen that a reasonable result is achievable using standard parameter

Fig. 5. Plot of fitness values from 50 evaluation runs, each consisting of cal-
culation of fitness value using 1, 5 and 10 simulation runs respectively. The
Blue Agent uses a DSTG-AT model against a Red Agent flying in a straight line
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).

Fig. 6. Plot of fitness values from 50 evaluations, each consisting of calculation
of fitness value using 1, 5 and 10 simulation runs respectively. The Blue Agent
using a DSTG-AT model against a Red Agent is the default stern conversion
agent (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.).

Table 4
Standard parameter settings from the literature.

Dejong Grefensette Goldberg Alander

Population size 50 30 30 50
Crossover probability Pc 0.6 0.9 0.6 0.5
Mutation probability Pm 0.001 0.01 0.033 0.002
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settings from the literature.
Customising the parameter settings could be labour intensive as it

involves using heuristics from the literature and running many em-
pirical experiments to systematically work out a set of appropriate
values for the specific problem. Table 5 shows potential parameters and
some of their associated options that need to be considered in the
customisation process. Given that the set of parameters usually consists
of a combination of real and integer values, exhaustive enumeration of
the parameter space in the customisation process would not be possible.
In practice, the approach taken in most studies is limited, usually using
a fixed representation scheme and a chosen set of genetic operators
associated with selection, crossover and mutation. Customisation typi-
cally involves only three parameters, namely population size, crossover
probability and mutation probability. While some studies have explored
approaches for parameter tuning, for example, in population sizing
[37–39], the most common approach is the empirical method whereby
customisation involves trying various values (in step-wise increments)
for a specific parameter and the one that produces the best results is
then used subsequently. Examining historical parameter settings from
the literature again can serve as a guide to researchers as to possible
initial values to start the customisation process.

Table 6 shows the chosen set of genetic operators associated with
selection, crossover and mutation as well as the different values asso-
ciated with population size, crossover probability and mutation prob-
ability which we will use to demonstrate parameter tuning of these
three quantitative parameters. The first of the three parameters that we
will discuss in terms of customisation is population size and its asso-
ciated trade-offs; where choosing a small population may result in
failing to adequately cover the solution space versus a large population
resulting in a heavy computation load as well as a slow progression
towards the optimal solution. The general consensus is that the more
complex the problem, the larger the population size with some studies
stating that it should be at least the equal to the length of the chro-
mosome [40]. Another example of a Rule of Thumb for determining
population size in the literature that is based on the work of Goldberg
Deb & Clark [37] is given by Carroll [41], depending on the cardinality
of the chromosome encoding, length of the chromosome and the
number of combinations of gene values for the chromosome (schema
size).

The second parameter typically tuned in the customisation process
is the mutation probability (Pm). Mutation is a way of introducing
variations associated with the value of the genes and promoting

Fig. 7. Fitness plot associated with Dejong’s parameter values for population size, crossover and mutation probability. Table 6 lists the remaining parameters used.

Fig. 8. Trajectory of the Blue Agent vs Red Agent from Sim 1 with the highest
fitness upon termination of the GA using Dejong’s parameter values for popu-
lation size, crossover and mutation probability. The figure shows the initial
starting positions of the two aircraft as dots, with the dashed line representing
the trajectory of the red aircraft, terminating at the X symbol and the full line
showing the trajectory of the blue aircraft, terminating at the arrow symbol.
The figure shows a successful stern conversion has been made by the blue
aircraft. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. Trajectory of the Blue Agent vs Red Agent from Sim 2 with the highest
fitness upon termination of the GA using Dejong’s parameter values for popu-
lation size, crossover and mutation probability. This shows a successful stern
conversion by the blue aircraft, which achieves a position behind and following
the red aircraft. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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diversity into the population. Examples of different mutation operator
are shown in Table 5. The type of mutation operator used is usually
problem/representation dependent. A change in gene value will occur
with a probability of Pm and no change will be introduced with a
probability of 1 - Pm. Pm is normally assigned a small value so that the
mutation operation introduces small changes to the existing solutions
without destroying good solutions. Pm is typically a very small value
with some studies calculating its value as 1/l, where l is the length of
the chromosome. A mutation probability of 1 would imply the whole
chromosome undergoes mutation leading to a random search. Similar
to population size, Pm can also be determined empirically.

The third and last parameter considered in the customisation pro-
cess is the crossover probability (Pc). Crossover is a genetic operator
that reproduce offspring by recombining building blocks from selected
parents. Types of crossover operators are shown in Table 5. In One
Point Crossover, a random crossover point is selected and the tails of
the two selected parents are exchanged to produce two new off-spring.
This operator can be generalised to a multipoint (e.g. 2) operator,
where q randomly generated crossover points are used. The crossover
operator is dependent on the representation of the individual (chro-
mosome), otherwise invalid offspring may be produced. For instance in
the case of a Travelling Salesman Problem with its representation being
a graph, if care is not taken some offspring will be invalid – a result
from crossover operations that produced offspring with some

duplicated/missing cities. A crossover probability, Pc, defines how often
the crossover operator is applied. Examining the Standard parameter
settings, it can be seen that there is no single commonly acceptable
value. Dejong [34] suggested a value of 0.6, Grefenstette [20] suggested
0.95 and Alander [36] proposed a value of 0.5. Similar to population
size, Pc can also be determined empirically.

In the following section, we discuss some salient points associated
with tuning the three parameters discussed above using our running
example. In our empirical approach to tune the three parameters, we
will use 3 values (50, 100 and 200) for population size, 4 values for
crossover (Pc= 0.2, 0.4, 0.6, 0.8) and 4 values for mutation probability
(Pm = 0.001, 0.01, 0.1, 0.2); incorporating some values from the lit-
erature (values shown in bold – being taken from Dejong (1990)) as
part of the tuning process. It can be seen that to fully tune the three
parameters empirically would be a combinatorial exercise, requiring 48
(3 × 4 × 4) experiments. The set of remaining parameters used is
outlined in Table 6. The scenario used here involved the Blue Agent
(DSTG-AT) attempting to complete a stern conversion against a Red
Agent flying in a straight line. Figs. 10 and 11 are associated with
empirical experiments for tuning for population size.

Fig. 10 shows the fitness plot for the best individual and the average
fitness of the population across the 300 generations for an initial po-
pulation size of 200. It found a very good individual early and that
individual dominated until approximately generation 140th before a
better individual was obtained. At this stage, it is showing that the
exploration of the search space is rather limited as a high fitness in-
dividual from early on in the evolution process dominated for more
than 100 generations. Fig. 11 (a)–(c) compare the trajectory associated
with the manoeuvres for the highest fitness Blue agent (Blue line) upon
termination of the GA process for initial population size of 50, 100 and
200 respectively. The red agent is flying in a straight line. The highest
fitness value associated with the Blue agent is 913, 928 and 941 for
population size of 50, 100 and 200 respectively. It can be seen that the
trajectory of the Blue agent associated with initial population size of
200 is smoother that the other two. From these runs, it can be seen that
an initial population size of 200 should be ultimately used.

Fig. 12 shows an instance associated with tuning mutation rate for
our running example, evolving against the straight-line agent. This
specific plot is associated with the following parameter values: popu-
lation size = 50, Pc = 0.6, and the remaining parameters as shown in
Table 6. Pm is varied, taking values from 0.001, 0.01. 0.1 or 0.2. Notice
the plot associated with Pm = 0.001, the exploration process is taking
much longer, with a lot more oscillations in the fitness values between
generations early on in the evolution process as well as finally obtaining
the individual with highest fitness value from the four different muta-
tion rates. Notice the plots with mutation probability of 0.1 and 0.2
plateaued very early with a much lower fitness value for its best in-
dividual.

Fig. 13 shows an instance associated with tuning crossover prob-
ability for our running example, evolving against the straight-line
agent. This specific plot is associated with the following parameter

Table 5
Summarizes different types of parameters for GA.

Quantitative parameters • Population size
• Crossover probability
• Mutation probability
• Offspring population size

Qualitative parameters Examples of associated options
Crossover (Recombination) • Single point crossover

• Two point crossover
• Arithmetic crossover
• Uniform crossover

Mutation • Gaussian
• Bit-flip
• Cauchy
• Uniform

Parent selection • Fitness proportionate:
· Roulette-wheel
· Stochastic universal sampling
• Rank-based:
· Linear ranking
· Tournament selection

Survivor strategy • Generational
• Replacement (Steady-state)
• Elitist

Representation • Binary encoding
• Gray encoding
• Value encoding
• Permutation encoding

Table 6
Set of genetic operators and associated parameters values involved in the customisation of population size, Pc and Pm.

Parameter Value

Population Size P = 50, 100 or 200
Maximum Generations 300
Simulations per individual 5
Selection operator Stochastic universal sampling
Crossover operator One point crossover
Crossover probability (Pc) 0.2, 0.4, 0.6 or 0.8
Mutation operator Gaussian mutation
Mutation probability (Pm) 0.001, 0.01, 0.1 or 0.2
Elitism Single best carried over
Termination If the best chromosome fitness minus the average chromosome fitness is less than 10 3 for 10 consecutive runs OR if the chromosome best fitness

doesn’t change for 100 generations OR if maximum generations has been reached
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values: population size = 50, Pm = 0.001, and the remaining para-
meters as shown in Table 6. Pc takes on a value from the following: 0.2,
0.4, 0.6 or 0.8. Notice the plot associated with Pc= 0.8, the plot for the
fitness value of the best individual oscillates quite wildly for the
duration of the 300 generations. With such a high crossover rate, it is
evident that good solutions are being broken up at a higher rate and the
recombination has resulted in an individual with poorer fitness value.
Another point of interest can be found in the plot associated with Pc =
0.4. Note the spike in the plot very early on in the evolution process

where a good solution with a fitness value greater than 900 was ob-
tained. This solution was subsequently destroyed in the following
generation; with the fitness of the best individual falling to a value close
to 800. As the evolution progressed, an even better individual was
produced. Subsequently, a further improved individual was obtained
after 163 generations. In terms of the plot associated with Pc = 0.6,
notice that there is a slight oscillation (very much smaller than those
associated with Pc = 0.8) in the plot throughout the 300 generations.

At the end of our tuning process involving the three parameters

Fig. 10. Fitness plot associated with tuning population size: parameter settings involved: Population size = 200, Pc= 0.2, and Pm= 0.01. Table 6 lists the remaining
parameters used.

Fig. 11. Tuning Population size: trajectories of the Blue Agent with the highest fitness upon termination of the GA where the population size is 50 (a), 100 (b) and
200 (c). Pc = 0.2, and Pm = 0.01. Table 6 lists the remaining parameters used (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).

Fig. 12. Tuning Mutation Probability (Sim 1): plot for best fitness from each generation for each mutation probability.
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above, the results are analysed to identify the set of tuned parameters
associated with the task which involved the Blue Agent (DSTG-AT)
attempting to complete a stern conversion against a Red Agent flying in
a straight line. In our case study, these values include: population size
= 200; mutation probability = 0.001 and crossover probability = 0.6.
The optimal individual has a fitness value of 946. Fig. 14 shows the
trajectory of the Blue Agent with the highest fitness upon termination of
the GA using these parameter values for population size, crossover and
mutation probability.

The change of states associated with the Blue agent in (14) is shown
below:

• Pure Pursuit state from 0 to 10.2 s
• Fly Relative Bearing state from 10.3 s to 44.5 s
• Flying Offset state from 44.6 s to 94.6 s
• Fly Relative Bearing state from 94.7 to 94.7 s (immediate change out
of the state)
• Pure Pursuit state from 94.8 s to 250 s (the end of the simulation)

For comparison, the resulting optimal trajectory for a blue agent
evolved against a red agent attempting to perform a stern conversion,
using the evolution parameters that were tuned against the straight-line
agent is shown in Fig. 15. This solution corresponds to a fitness value of
955 and results in a successful stern conversion.

To provide a point of comparison for the evolved exemplars to a
more traditional search technique, Iterated Local Search (ILS) was also

Fig. 13. Tuning Crossover probability (Sim 1): plot for best fitness from each generation for each crossover probability.

Fig. 14. Trajectory of the Blue Agent vs Red Agent from Sim 1 with the highest
fitness upon termination of the GA using the tuned parameter values for po-
pulation size(200), crossover (0.6) and mutation probability(0.001) (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.).

Fig. 15. Trajectory of the Blue Agent vs Red Agent from Sim 2 with the highest
fitness upon termination of the GA using the tuned parameter values for po-
pulation size(200), crossover (0.6) and mutation probability(0.001) (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.).

Fig. 16. Trajectory of the Blue Agent vs Red Agent from Sim 1 with the highest
fitness upon termination of the ILS for 60,000 iterations (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.).
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applied to the Sim 1 and Sim 2 scenarios. To make for a fair compar-
ison, the number of local search iterations and algorithm iterations
were set so as to result in the same total number of simulation-based
evaluations as a run of the evolutionary process (60,000). For com-
parison and reproducibility, the parameters for both the evolutionary
approach and ILS are provided in (7). Trajectories corresponding to the
best solution found by ILS for Sim 1 and Sim 2 are shown in (16) and
(17) respectively. For Sim 1 (16) it can be seen that the solution found
by ILS is sub-optimal, the blue aircraft ending up behind the red, as
intented, but flying at an offset distance. For Sim 2 (17) a stern con-
version manouvre was found by ILS. Due to the stochastic nature of
both evolution and ILS, five runs of each, on both Sim 1 and Sim 2 were
undertaken. The numeric results are presented in (8), indicating the
fitness achieved by the optimal solution in each run, along with the

number of evaluations (60,000 in each case). To given an indication of
concrete computing resources required for these runs, on an Intel i7 -
based CPU with 16MB of RAM one run of Sim 1 optimisation is in the
range of 350 s, and for Sim 2 in the range of 400 s. This is irrespective of
whether evolution or ILS is used, as the bulk of the processing resources
are used in the simulation-based evaluation of the individual solutions.

Other GA design considerations to be addressed as part of the tuning
process are strategies for parent selection and replacement. As shown in
Table 5, there are two categories of parent selection strategies to ensure
survival of the fittest individuals, namely fitness proportionate and
rank-based selection. A point to note here is that fitness proportionate
selection methods are susceptible to both premature convergence and
stalled evolution [42]. Rank-based selection methods are designed to
address these shortcomings. Probability associated with parent selec-
tion and replacement strategy impact on the trade-off between ex-
ploration and exploitation. Exploration is enhanced with using smaller
values (for both) owing to a slower convergence while bigger values
will encourage exploitation. Typically, a smaller value for both is pre-
ferred, allowing for more exploration and hopefully avoiding premature
convergence leading to a suboptimal solution, even though the time to
convergence will take much longer. However, encouraging exploration
increases the probability of losing good solutions in the current pool of
solutions and a mechanism to counteract this situation is to incorporate
elitism – a method for that prevents random destruction (by crossover
or mutation) and ensures that the best individuals are preserved in the
population from one generation to the next and their building blocks
being passed on to subsequent generations. The number of elite in-
dividuals should not be too big, otherwise the population will likely
deteriorate.

Lastly, the termination criterion is another consideration for the GA
process. Typical criteria for terminating the cycle of evolution include:

• The GA has reached a pre-defined maximum number of generations
• Maximum allocated resources (computation time) have been used
• The population has converged to an optimum, as determined using:
• Change in fitness value between two consecutive generations is less
than δ which is a very small number (e.g. 0.001)
• Approach proposed by Srinivas and Patnaik [43]. This involved
checking that the difference between the average fitness (favg) and
maximum fitness value (fmax) of two consecutive generations is
smaller than a very small number, δ.
• Combinations of the above
4.9. Step 4 evaluation considerations: repeatability and reproducibility of
GA-based approach

As mentioned earlier, GA is stochastic algorithm and thus care must
be taken in algorithm design and evaluation to ensure repeatability and
reproducibility. The repeatability of a GA-based algorithm is defined as
the consistency of the algorithm to produce very similar results under a
set of the same experimental conditions (i.e. same input and using the
same set of parameter settings, fitness evaluation and representation)
from repeated runs. Unlike a deterministic algorithm that will produce
the same exact result given the same input, there will be some small
variations from each execution of a GA-based algorithm. The first point
in a GA-based approach with randomness is associated with the gen-
eration of the initial population – typically done randomly for every
gene associated with each individual in the population. For repeat-
ability, we need the same initial population for each repeated execution
of the algorithm. Typically the approach taken here is to pass the same
seed to the random number generator in the module for initialisation of
the initial population. The seed ensures the same set of random num-
bers are generated – resulting in exact replicas of individuals in the
initial population.

Reproducibility is associated with the ability of the algorithm to get
the similar results under a set of different experimental conditions (e.g.

Fig. 17. Trajectory of the Blue Agent vs Red Agent from Sim 2 with the highest
fitness upon termination of the ILS for 60,000 iterations (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.).

Table 7
Associated parameters values used in Figs. 14–17 .

Algorithm Parameter Value

GA Population size 200
Maximum generations 300
Selection operator Stochastic universal sampling
Crossover operator One point crossover
Crossover probability (Pc) 0.6
Mutation operator Gaussian mutation
Mutation probability (Pm) 0.001
Elitism Single best carried over

ILS Local search iterations 300
Algorithm iterations 200
Local neighbour step strength 0.01
Perturbation strength 0.1

Table 8
The transition parameters for the Stern Conversion FSM (DSTG-AT).

Problem GA ILS
Fitness Evaluations Fitness Evaluations

Sim 1 946 60,000 818 60,000
943 60,000 813 60,000
940 60,000 810 60,000
930 60,000 809 60,000
926 60,000 808 60,000

Sim 2 955 60,000 948 60,000
949 60,000 948 60,000
948 60,000 948 60,000
948 60,000 948 60,000
948 60,000 948 60,000
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– a different initial population). To evaluate the GA-based approach
here, the approach must be evaluated over several different sets of
random numbers to guarantee the robustness of the approach. By using
a different seed, we can ensure that each execution run of the algorithm
uses a set of different individuals. Reproducibility can then by ex-
amined in a quantitative manner – in terms of the statistical dispersion
of the results.

5. Discussion

In this study, the agent-based behaviour model is captured using
FSMs, consisting of states and transitions. The GA-based approach is to
evolve a sequence of transitions between states in DSTG-AT such that a
stern conversion manoeuvre is successfully executed by the Blue Agent
(DSTG-AT) against a Red Agent. Note that the chromosome we de-
signed represents the set of all possible transitions in DSTG-AT where
transition conditions are captured in terms of kinematic properties of
the two aircraft (Blue and Red), namely, the position (p), velocity (v)
and acceleration (a). Only low level simplistic information has been
captured, yet through the evolution process, the final solution captured
the sequence of transitions for successfully completing a stern conver-
sion, hence demonstrating the potential of such approaches for ex-
ploring automatic generation of behaviour models of CGFs where
constructing any realistic model would be a huge task. These sort of
findings have also been shown in work of other researchers, hence
demonstrating the potential of GA in terms of generating emerging or
unexpected behaviours. Ranjeet, Hingston, Lam & Masek [44] showed
that more complex strategies can emerge from a GA-based approach
with chromosome representations comprising of simplistic information
in their study associated with analysis of key installation protection
involving MANA - cellular automaton combat simulator from the New
Zealand Defence technology agency. Using a GA-based approach,
Hamblin & Hurd [45] applied GA to the Sir Philip Sidney game, a simple
model of biological signalling and found an unexpected solution with
higher pay-offs at equilibrium; namely a solution whereby individuals
would never send out a signal at all.

Even though in practice, GA can perform robustly under a range of
values for its parameters, it is important to tune the parameter values to
some extent; bearing in mind that there is a trade-off between the effort
needed to tune versus the quality of solutions and the performance of
the GA-based algorithm. Owing to the unknown non-linear de-
pendencies which commonly exist between these parameters, the effect
of adjusting parameters associated with the algorithm is not fully un-
derstood. Given the difficulties in determining these parameter values,
this task is of much research interest; with work investigating the use of
self-adaptive parameters to address this problem. Finally, a point to
bear in mind is that we must be careful in terms of generalizing the
performance of parameters across problem instances, problem domains,
and the length of the chromosome of the representation chosen. For
example, considering the probability of changing a gene, Pm, the more
genes in a chromosome, the less likely that it will make it into the next
generation without mutation, up to a point where good solutions may
be lost.

Potential limitations with GA-based approaches in this problem
domain include premature convergence with the final solution being a
local optimal and that there may be a better solution out there but your
evolutionary process has not found it yet (i.e. the current best is the
best-so-far). Given that most complex problems are multi-modal, the
question is how important is being able to find the global optimal. Is
there value in a sub-optimal solution (local optimal) which may still be
useful from the perspective of exploring and identifying novel combat
tactics for the blue agent? On the other hand, given the right set of
parameters, representation, fitness evaluation for the problem and
sufficient run time, theoretically it is possible to obtain the global op-
timal.

6. Conclusion

The problem associated with evolving agent-based behaviour
models associated with novel combat tactics in military operations is a
multi-criteria and a multi-modal problem. It also involves a co-adaptive
environment with individuals making tactical moves and their oppo-
nents making counter moves, forming one part of a dynamic environ-
ment. With such problems, no one knows exactly what the optimal
solution looks like, there is very little heuristic information to guide
researchers to analytically and systematically develop solutions and, as
the search space is infinitely large, brute forced searches are not viable
options. The application of a GA-based approach is particularly suitable
in the first instance to address the task of automatically evolving novel
combat tactics for CGFs as this task is complex, mathematically in-
tractable and bears close similarities with generating models associated
with evolutionary game theory. Investigations involving Multi-objec-
tive and Co-evolutionary algorithms are natural subsequent research
directions to be undertaken to study this domain.

In summary, we have discussed our GA-based approach and de-
monstrated its potential to evolve behaviour models for CGFs, in
comparison to more traditional approaches such as ILS. We also have
attempted to shed light on some of the methodological difficulties as-
sociated with using GA to evolve combat tactical models of CGFs as well
as providing workable starting points for researchers intending to use
GA in their own attempts in this problem domain. GA can be a powerful
approach if used properly, and is one of the best ways to find possible
solutions to problems where no one knows exactly what the optimal
solution looks like and with very little heuristic information to guide
researchers to analytically and systematically develop solutions.
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