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A B S T R A C T

With the progress in intelligent transportation systems, a great interest has been directed towards traffic sensors
information for flow estimation problems. Nevertheless, there is a great challenge to locate such traffic sensors
on a network to attain the maximum benefits from them. Considering the O/D matrix estimation problem, all
traffic sensors location models depend crucially on the reliability of the estimated matrix compared with a priori
flow information. Thus, the required sensors number (cost) and locations for a network vary according to the
estimation technique (e.g. least square, minimizing entropy, maximum likelihood, etc.) as well as the reliability
of the priori information. Alternatively, this study presents a robust traffic sensor location model, which pro-
duces different trade-offs between the potential accuracy of the estimated O/D matrix and the cost of sensors’
installation in a polynomial time complexity. The proposed approach searches for the number and locations of
sensors that minimize the boundary of the maximum possible relative error for the estimated O/D matrix. The
traffic sensor location problem is formulated as a set covering problem, then a multi-criteria meta-heuristics
algorithm is adopted. The pioneer of this work is that it targets the maximum possible relative error directly in
the multi-objective design process, which is considered a robust criterion for evaluating a solution set. Moreover,
the proposed approach is extended to incorporate the screen line problem in a straightforward manner. For the
purpose of validating the feasibility and the effectiveness of the proposed approach, two real networks are used.
The results show the capability of producing the Pareto optimal (near optimal) solutions for any network.

Abbreviations

TSLP Traffic Sensor Location Problem
TRE True Relative Error
TOF Total Observed Flow
SCP Set Cover Problem
RaPS Randomized Priority Search
RF Replication Factor
PRV Preference Value
PI Priority Index
NOF Net Observed Flow
MPRE Maximum Possible Relative Error

1. Introduction

Quantifying traffic flow information has received great attention
over the last decade. This substantial attention arises from its practical

applications in transportation planning, traffic management, and tra-
veler information systems [9]. Traffic sensors with their various types
(e.g., inductive loops, video cameras, and radio frequency transpon-
ders) play a crucial role in estimating such information. However, the
full installation of traffic sensors on all network's links is not a cheap
process. In this context, the problem of seeking the optimal number and
locations of traffic sensors on a network according to some objectives is
known as Traffic Sensor Location Problem (TSLP) [53].

Along with the literature, the TSLP can be classified according to the
aim of deploying the sensors into two-fold problems: sensor location
flow-estimation problem and sensor location flow-observability pro-
blem [32]. The first fold problem identifies the sensors optimum loca-
tions on a network associated with high-quality target estimates (e.g.,
O/D matrix estimation, Path Flow Estimation (PFE), travel times esti-
mation, etc.). The second fold problem identifies the sensors optimum
locations on a network associated with the unique determination of the
unobserved flow. While the sensor location for flow-estimation
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problems requires a priori information about the network's flows, the
sensor location for flow observability problems relies crucially on the
network's topological properties.

The majority of the attention is given for locating sensors in the
attempt of estimating the O/D matrix. The dilemma here is to locate the
minimum number of traffic sensors on a network which can result in
the most accurate estimated O/D matrix. After observing some links
flow, the process becomes reversible to the traffic assignment problem
[57]. If there is an O/D matrix, the links flow can be obtained after an
assignment process by any known assignment technique. However,
reversing this process is not a trivial problem. A certain vector of links
flow for a network could be obtained from an unlimited number of O/D
matrices. Besides observing all links as mentioned before is not a
practical action [2,42].

The PFE is considered as an alternative approach for the O/D esti-
mation problem. It aims to infer all paths flow from traffic counting on
links and consequently the O/D matrix. This alternative approach turns
the O/D matrix estimation into a bi-level problem. The upper level is
the PFE model whereas the lower level is a traffic assignment model
concerned with maintaining the network at traffic equilibrium [4,17].

The flow observability problem shares the same importance as the
estimation problems. It simply searches for the minimum number and
locations of traffic sensors to observe all links flow through nodes
conservation equation (inflow = outflow). For one origin centroid
network, this trend stipulates that the number of unobserved links is
equal to the number of (nodes – 1) [26,41]. Alternatively, in [6,27], the
minimum number of sensors is searched to be installed in nodes (in-
stead of arcs). It helps in observing the traffic turning ratios at nodes
which are used for the full network observability problem.

This classification is very general since there are many related as-
pects. Optimizing the sensor placement on a link is an art itself.
Questions such as what is the type of sensor to locate [28], where to
locate the device on the link [21], what is the best time interval to
choose and how to filter the data from the errors [22,23,43]. All these
subjects are separate investigation matters.

For counting purpose, two main types of sensors could be identified,
namely: passive and active sensors. In the passive mode of counting,
only arcs flow are observed. Alternatively, in the active mode, other
information would be obtained like; vehicle type (image sensors), path

information (path-ID sensors) and vehicle observation time (vehicle
identification sensors) [27].

This variety of traffic sensor types has added new dimensions to the
conventional TSLP. Path-ID sensors are located to uniquely identify the
paths flow on a network [13,14]. In [30], it has been proved that fewer
vehicle identification sensors are required for the same path flow pro-
blem. Locating a mix of passive and active sensors (heterogeneous lo-
cation problem) is also investigated in [24,33,35].

In this research, we focus on the TSLP for the O/D matrix estimation
using the passive error-free sensors. In all reviewed design methods,
although the selection procedure is clearly subjective, there is no
quality guarantee of the estimated O/D matrix after the real deploy-
ment of sensors on the network. In addition, there is a blatant conflict
between the required accuracy and the sensors installation cost.
However, few studies dealt with the multi-objective term explicitly
[18,56,58]. Therefore, the multi-objective approach is promoted since
it has received little attention in the literature. We add to these studies
by using a novel multi-objective meta-heuristic algorithm, besides a
different perspective in the objective function.

The proposed design is based on a robust measure of the potential
accuracy for O/D matrix estimation problem with respect to the number
of used sensors. The problem of selecting the sensors is formulated as a
Set Covering Problem (SCP). An innovative multi-criteria meta-heur-
istics algorithm is adapted for the problem. The structure of the paper is
as follows. Section 2 presents the state of art for the TSLP. Section 3
provides the problem formulation and basic input data. Section 4 il-
lustrates the proposed methodology. In Section 5, real case studies are
used to evaluate the proposed methodology. Section 6 presents the
conclusion.

2. Literature review

Considering the O/D matrix estimation, the accuracy term plays a
pivotal rule in judging the effectiveness of the number of traffic sensors
distributed on a network. In the literature, statistical measures are often
used to quantify the quality of O/D estimates. Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) are popular examples of
these statistical measures. They indicate the closeness between the
observed (true) and estimated values, which could be links or O/D

Symbols

V set of network vertices (nodes)
L the network links set L= {l1, l2, ……,ln}
Ti the historical demand per each O/D pair i
T i the estimated demand per each O/D pair i
T*i the true (unknown) demand per each O/D pair i
λi the relative error per each O/D pair i
W the set of all O/D pairs W= {1, 2, …, i, j …, w}
w the number of network O/D pairs ∣W∣ =w
n the number of network links
i,j subscripts for O/D pairs. i, j ∈ W
a subscript for links, a ∈ L
pai portion of node pair i demand passes link a
za dummy variable = 1 if sensor is located on link (a), 0

otherwise
ca cost of installing traffic counter per link a, $/l
va link (a)flow
L̄ the set of links equipped with traffic counters
η no. of links equipped with traffic counters, ∣L̄∣ = η
H the set of all generated paths H= {h11, h21,…, hmi,…, hkw}
Hi the set of paths with the same O/D pair i, Hi = {h1i, h2i,…,

hmi,., hki}
m subscript for paths connecting an O/D pair i

k no. of generated paths connecting node pair i
u subscript for a candidate link to be in L̄
s subscript for a chosen link to be in L̄

mi
a dummy variable = 1 if path hmi contains link la, 0 other-

wise
θ depression factor
qa the link travel time as a function of link flow
qa

0 the initial time associated with free flow condition
λmi the travel time of path (m) connecting node pair (i)
Qa the link (a) capacity
α, χ calibration parameters
β multi-objective weight factor
ξ search control factor
Λ no. of iterations

Vectors

C the set covering matrix made by (k×w) rows× n columns
T the historical demand node pairs vector of size w
T̄ the estimated demand node pairs vector of size w
V the reference link flows vector of size η
V* the observed/real link flows vector of size η
ΣT, Σv are weight matrices of sizes w×w & η× η
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flows [17]. In [37], to determine the priority of a link to be chosen for
the O/D matrix estimation problem, the link flow and covering number
of the O/D pairs are used. It is assumed that the true matrix is available.
However, it may not be sufficient to quantify the quality of chosen links
since the true information is often unknown in real life and conse-
quently the true error of predicted flows is impossible to be estimated.

Therefore, extra information as priori information about either, the
O/D matrix, links flow or paths flow is needed [16,35]. As an example,
the historical O/D matrix was employed by Yim and Lam [61]. Con-
sequently, the design process (locating the traffic sensors) based on
such measurement tools is questionable (depends on the quality of the
used matrix).

The pioneer work, which opened the gate to most of the TSLP art, is
found in an analysis of the estimated O/D reliability from traffic
counting in [55]. It presents a theoretical investigation of the reliability
of an estimated O/D trip matrix employing the concept of Maximum
Possible Relative Error (MPRE).

The MPRE represents the maximum possible relative deviation of
the estimated O/D matrix from the true (unknown) one. It indicates the
amount of space allowed by traffic counts for a particular fitted O/D
matrix when this basis is measured based on the maximum value of a
quadratic index [55].

To simplify the concept, let us imagine a solution search space made
by all problem constraints constituting a sphere, see Fig. 1. If the esti-
mated solution, for example, lies at the center of the sphere, one may
realize that the MPRE of that solution is the sphere diameter. In other
words, the maximum error comes when the worst case of the unknown
true solution lies on the circumference (the farthest point).

For a network with O/D matrix made of (w) entries and (η) observed
links, the MPRE mathematically is represented as follows;

=
Maximize w/

i

w

i
1

2

i (1)

s.t

= T T
T

i W
*

*i
i i

i (2)

=
=

p T l L0
i

w

ai i i a
1 (3)

= p T
p Tj

i i j
w

ai i

aj j

1,

(4)

The objective function in Eq. (1) aims to maximize the possible error
from the base (estimated) O/D matrix by maximizing the relative error
λ all over the matrix entries. Eq. (2) denotes λ. Eq. (3) draws the fea-
sible solution space made by all O/D matrices that produce the same
link flow over the number of observed links (η). It reveals that the place
and the number of chosen links (L̄) are the factors that draw the solu-
tion search space (determine MPRE value). Inequality (4) reflects the
fact that λ is always ≥−1 [55].

The MPRE is a robust way to check the accuracy of the observations
coming from a link set with installed sensors. However and to the best
of our knowledge, there is no study found in the literature that selects
the sensors’ location directly based on the MPRE value. Instead, in [57],
the MPRE is decomposed into four heuristics rules to help in de-
termining the best locations of sensors aiming to achieve the least
MPRE. The rules are as follows:

Rule 1: intercept at least one path for each O/D pair.
Rule 2: maximize the portion of observed traffic from each node pair.
Rule 3: maximize the total flow observed by each link.
Rule 4: maximize the net flow observed by links.

Each rule is named to reflect the purpose of it. Rule 1 (coverage

rule) addresses a partial interception to each O/D pair flow which is a
stipulation to acquire a finite value for the MPRE. Rule 2 (maximal flow
fraction rule) aims to maximize the information obtained about each O/
D pair, Rule 3 (maximal flow intercepting rule) targets the maximum
flow to be observed through the network. Rule 4 (link independence
rule) attempts to minimize the replicated traffic counting.

Interestingly, in [56], each rule is formulated as a separate objective
function with its constraints. Hence, there is one solution for each rule,
but there is no global solution that satisfies all the rules simultaneously.
In other words, they are conflicting rules. Unfortunately, the resulted
formulations of the rules are difficult to be solved with exact methods,
especially for large size networks, therefore heuristic methods become a
need. This conflict comes from the existence of two main objectives;
first is minimizing the MPRE value (maximizing the potential accu-
racy). Second is minimizing the number of observed links (cost).

In [54], a reformulation is made to cover each demand pair flow.
Trips between a particular O/D pair are considered to be fully observed
if and only if there is no path that is able to bypass the selected traffic
counting locations. The problem is a mathematical formulation of
drawing the screen line problem (i.e. to observe every vehicle in the
network once at least). Fortunately, we could also extend the proposed
algorithm to solve that intrinsically.

Recently, the Compressed Sensing (CS) framework is used as a novel
method to solve the stated problem [59]. Whereas, in [25], a new two-
stage stochastic programming strategy is developed for the location
problem to solve the path reconstruction problem with demand un-
certainty. In [36], the TSLP is addressed by a graph-theoretic frame-
work. It aims to monitor traffic emissions by a vehicle emission remote
sensing system so that each vehicle should be monitored once through
the network. The problem resembles the screen line problem. In [44],
the number and locations of the sensors were optimized for the travel
time estimation problem on a single road section. The state of the art is
reviewed extensively in [5,12,26,27].

Regarding the multi-objective nature of the problem, there are two
main approaches to handle this problem: the preference-based ap-
proach and the generating approach. The former approach simply
converts the multiple objectives into a single objective, according to the
preference structure (weight factors) supplied by the decision makers.
This requires a good knowledge of the problem. Using improper weight
factors will lead to the domination of one objective over the others
[46]. The latter approach adopts the concept of Pareto optimality. The

Fig. 1. Maximum possible relative error interpretation.
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solution is "Pareto optimal" or "non-dominated" if there are no other
feasible solutions that could improve some objectives without wor-
sening at least one other objective. A set of non-dominated solutions
generally forms the so-called "Pareto front" or "efficient frontier", which
represents the relationship (trade-offs) among multiple objectives. This
approach relies on changing the structure (values) of weight factors to
produce the different solution sets.

To highlight the relevant previous work to this study, Table 1
summarizes the studies that tackled the TSLP for the O/D matrix esti-
mation. From Table 1, we could conclude the contributions of this study
to the literature in considering the following points simultaneously;

• Targeting the MPRE directly in the design process, which is con-
sidered a robust criterion for evaluating a solution set.

• Tackling the multi-objective nature of the problem to produce the
Pareto (near) optimal solution.

• Providing an effective Meta-heuristic for the problem with a poly-
nomial execution time that simplifies solving the real case networks.

• Extending the methodology to incorporate the screen line problem.

3. Problem formulation

3.1. Input data

Consider a given directed road network, G = (V, L), where V is the
set of vertices which are connected by the set of links L. Each link is
weighted with its travel time. A historical O/D matrix is also assumed
given as a guide to the search process. The existence of such matrix is a
common assumption in the literature [7,13–15,40,51,63,64].

The network path enumeration is a requirement for the developed
sensor location model. The k-shortest path is used to generate all pos-
sible paths between each node pair. When it comes to the models that
depend on path enumeration. For even a small network, a large number
of paths could be generated for each node pair. Certainly, this would
lead to a combinatorial problem for any methodology. Fortunately, it is
common that 3 or 4 paths to carry the majority of the O/D flow, and
rarely that more than 6 or 7 routes are utilized [8,31]. So, Hi has the
maximum limit of paths k= 7. Also, paths with more than 1.5 the
shortest path time are considered circuitous for travellers [49]. For each
demand node pair (i) all hki paths are stored in the set Hi. At last, a link-
path incidence matrix is generated.

3.2. TSLP objective function

Mathematically the considered objective function would be re-
presented as follows;

+
= =

Minimize Max w c z/
z i

w

i
a

n

a a1
1

2
2

1a i (5)

s.t

= =
z i W1,

m

k

a

n

mi
a

a
1 1 (6)

=
=

p T z l L0
i

w

ai i i a a
1 (7)

i W1,i (8)

In the formulated objective function (5), it is aimed to incorporate
the MPRE directly in the design of sensors' number and locations. It is to
minimize the number of observed links (za) needed while the maximum
possible error in estimating the O/D matrix by the chosen set is to be
minimum. It reflects the multi-objective nature of the problem because
the more accuracy is required (low value for the first term), the more
links are to be observed (increasing sensors installation cost). The only
decision variable in (5) is za, however, the formulation is very complex
to be solved with standard integer solvers. To show the model com-
plexity, it is sufficient to mention that the presence of inequality (6)
turns the integer optimization into NP-hard problem [19]. Besides, the
first part constitutes a min-max problem in which the decision variable
za does not appear explicitly. The square root is omitted from the first
term (MPRE) because it is not affecting the optimization results.

β denotes the relative importance of different terms in the objective
function. Inequality (6) represents the partial coverage rule (Rule 1) in
which it is necessary to select links to intercept one path in each set Hi.
In other words, it is required to find the number of observed links to
intercept a portion of all network demand pairs flow; this also guar-
antees a finite MPRE value. Eq. (7) determines the link selection effect
on the MPRE value, whereas (8) is a relaxation to the inequality (4)
[55].

It is obvious that the stated problem in Eqs. (5)–(8) is multi-objec-
tive which adds much more complexity. The direct approach is to ca-
librate the β1 & β2 based on the designer's preferences to obtain a single
optimal solution. However, based on the multi-criteria analysis, it is
aimed to produce a set of non- dominated solutions. A solution is re-
cognized as non- dominated (Pareto optimal) if it is better when com-
pared with each other solution in the set, at least, in one objective
value. To achieve the Pareto optimal, the structure of β1 & β2 can be
continuously changed to create a vast number of diverse solutions [45].
Generally, we would not resort to both approaches here because the
proposed algorithm would diverse the search to obtain different solu-
tions. These solutions would be filtered (ranked) to produce the Pareto-

Table 1
Traffic Sensors’ location studies for O/D matrix estimation.

Author Year Objective function Solution methodology Evaluation method Screen line problem

Yang and Zhou 1998 Single Heuristic Greedy The four rules a —— b

Yang et al. 2001 Single Genetic Algorithm The four rules √
Chootinan et al. 2005 Multi c Distance based Genetic Algorithm Maximum flow captured ——
Yang et al. 2006 Single Genetic Algorithm + Heuristic Greedy The four rules ——
Chootinan et al. 2007 Single Modified Path Flow Estimator + Genetic Algorithm O/D coverage rule √
Li and Ouyang 2011 Single Lagrangian relaxation + Greedy algorithm O/D coverage rule ——
Simonelli et al. 2012 Multi Sequential heuristic Variability of the posterior demand ——
Wang and Mirchandani 2013 Single Greedy algorithm Bayesian statistical procedure ——
Liu and Zhu 2014 Multi Distance-based Genetic Algorithm The four rules ——
Ye and Wen 2017 Single Compressed Sensing The four rules ——
This study 2018 Multi Meta-RaPSd MPRE e √

a The four location rules proposed in [57].
b Not tackled.
c Multi-objective.
d Meta-heuristics based on Random Priority Selection.
e Maximum Possible Relative Error.
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set as will be shown next in the methodology section.

3.3. Screen line problem extension

The TSLP could be expanded to intercept the whole demand pairs
flow. That problem is named as screen line problem. The links are
chosen to cover all the generated paths. Mathematically, the problem is
represented as follows:

=
Minimize z

z a

n

a
1a (9)

s.t

=
z m H i W1, ,

a

n

mi
a

a i
1 (10)

3.4. Solution approach

It is obvious from the formulated problem that there is no exact
solution could tackle large size networks. Therefore, a meta-heuristic
becomes a need. The key to the solution methodology is that the two
stated problems Eqs. (5)–(10) could be viewed as a Set Covering Pro-
blem (SCP), see Fig. 2. The link (column) selection procedure should
cover the rows made of all network paths either partially or fully. Meta-
heuristics with perturbation operators would be introduced for the SCP
to generate a variety of solutions. One of the major advantages of
viewing the problem as a SCP is the constant preserving of Rule 1.
Consequently, all resulted solutions will have a finite MPRE value.
These solutions would have a better performance rather than the so-
lution sets which result in infinite MPRE. Any solution set (number of
sensors distributed on a network) with infinite MPRE cannot be judged
until it is deployed on the network, then used in estimating the O/D
matrix and finally compared with the true (unknown) one.

4. Methodology

Now, the TSLP solution is viewed as solving the SCP which is de-
fined as the problem of covering all the rows of a matrix made of k×w
rows, n-columns, zero-one elements ( mi

a ) by a subset of the columns at
the minimum cost [1]. The SCP could be solved exactly by any existing
integer solver, however, it is not profitable to our problem. This stems
from two basic reasons; 1) it is classified as NP-hard, so it is difficult
(impossible) to be solved for real scale networks (our target) [19,38]. 2)
The SCP always addresses a single objective, unlike the stated objective
function in Eq. (5). In other words, the optimal solution for the SCP
does not imply the optimal solution for the TSLP. Therefore, we develop

a Meta-heuristic to control the solution process and direct it to the
aimed multi-objective analysis.

An effective meta-heuristic procedure is presented in [46] for the
SCP. It depends on a randomized priority search (Meta-RaPS). It is
accordingly modified to suit the proposed formulation of the problem as
follows;

The pseudo-code of the proposed algorithm:

Input: All generated path sets (Hi), All network links (L), Neighbor_search_magnitude,
Tolerance%, No. of iterations (Λ).

1. Build Set covering matrix (C)
2. Set the solutions set to be empty: S=Ø
3. Set theL set to be empty: L =Ø
4. Set I to be set of the currently uncovered rows: I= k×w
5. Let C*:= C
6. Let L* (new_set) =Ø
7. For iter.= 1 to Λ do
8. Randomly remove links from L*, the maximum number of links to be rem-

oved equals to: │L*│ × (100- Neighbor_search_magnitude)
9. While I ≠ Ø do
10. Calculate PImax =max PIa, a L/ L*
11. Construct Candidate List (CL) = {u: u L/ L* and PIu≤ [PImin× (1 - toler-

ance% /100)]}
12. Randomly select ls from CL and add it to L*
13. Mark each path group hmi with mi

a = 1 as ready for deletion
14. Mark each path in a group Hi containing a marked path as ready for del-

etion
15. Delete all marked paths (covered rows by ls)
16. Delete empty columns
17. Update I
18. end while
19. L = L*
20. add L to S
21. end for
22. for each L S Calculate MPRE and η
23. sort and filter the solutions to produce Pareto solutions
24. End_of_Algorithm

The algorithm's operators are used to diverse the search process
aiming to reach the near optimal Pareto solutions. The basic concept of
the used algorithm is illustrated, in a very simple and generalized way,
in Fig. 3. To give more insight into the proposed algorithm and its di-
versity operators, see the numerical example in Appendix A.

4.1. Link priority index

The core of the proposed algorithm is the selection of columns
(links) in a stepwise manner according to a link Priority Index (PIa),
represented in Eq. (11). It reflects the potentiality of selecting each link
(a) to the final solution set (L̄).

= + + +
= =

PI c PRVa a
m

k

i

w

mi
a

a a1 2
1 1

3
(11)

where; mi
a is dummy variable = 1 if path hmi contains link la, 0 other-

wise, ca is the cost of installing traffic counter per link a, $/l. The first
term is the total link flow which comes from the historical O/D matrix
data. It represents how much traffic information could be conveyed by
this link selection. The second term denotes the number of unobserved
paths passing through the link which depends on network structure.
That term makes it more likely to cover all O/D pairs with a fewer
number of links. The third term manages to incorporate different sensor
installation cost for each link. PRVa represents designer preference
value in which he/she may direct the algorithm to choose particular
links (e.g. links already equipped with sensors) in every solution by
using a very large value. ξ controls the search direction. Different
structures of ξ are used to create the required diversity of the final
solutions set.

The link PIa indicates that the links potentiality to be incorporatedFig. 2. The TSLP reformulation as a set covering problem.
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in the final solution is expressed in terms of the flow information ob-
tained by this link. Therefore, after each link selection, the covered
rows and observed demand are deleted. Then, the links’ PIa are updated
accordingly. Hence, there is a guarantee that every next selection would
contribute to MPRE value.

4.2. Traffic assignment step

In (11), it is apparent that a link flow (νa) is an important element to
determine the link priority to be selected. To find the flows over a given
network an O/D matrix and an assignment method must be defined.
The historical O/D matrix can substitute the real matrix since the link
flow values are only reflection to the links importance in the network.
However, the flows seem to be more sensitive to the used traffic as-
signment model.

In the strategic stage, the assignment problem has been traditionally
treated mainly with two different methods: the user equilibrium (UE)
model and the stochastic user equilibrium (SUE) model. In this study,
the SUE approach is adopted, since the UE can be considered a special
case of the SUE when users have perfect knowledge of their expected
travel time. The SUE assignment is selected as an example however the
assignment model should reflect the traffic condition for the network
under study.

In [20], the concept of SUE is defined for the first time. Several
versions are used as simple multinomial logit (MNL) model or multi-
nomial probit (MNP) model. The SUE method considers paths travel
time perceived by drivers as random variables. Therefore, there would
be a variation in drivers’ preferences for the real shortest path. Since all
these items are considered random, the users make the appropriate
choice of routes in a random manner [48]. The SUE based on the MNL
choice solves the following;

= +Minimize Z T

v q v q d

log exp( )

( ) ( )
v

SUE i W i i W m H mi

a A a a a a A
v

a

1

0

i

a
(12)

s.t

= +q v q v
Q

( ) 1a a a a
a

a

0
a

(13)

= q v( )mi
a A

a a mi
a

(14)

where θ is a parameter that reflects the knowledge of users. The link
delay volume function is given by the well-known Bureau of Public
Roads (BPR) formula in Eq. (13) [50]. α, χ are calibration parameters
defining how the cost increases with traffic flow. The assignment model
is solved based on the Method of Successive Averages (MSA) [47]. At
each iteration, a search direction is found by carrying out a stochastic
loading based on travel costs calculated from the current link flows.

4.3. Diversity operators

The key elements in the methodology are the perturbation opera-
tors. They are the tools that help in discovering new areas of the so-
lution search space. Two main operators are tackled, namely: tolerance
percentage and neighbor search magnitude. Tolerance percentage al-
lows the algorithm to select a link that is neighbor to the highest
priority one. It allows for continuously changing the solution structure
at each iteration. Increasing its value makes the algorithm much more
randomized. Neighbor Search Magnitude is a percentage of links to be
moved from the current iteration to the next as part of the new solution.
It helps the algorithm to touch new regions of the solution search space
and to not get stuck in local optima. Like any Meta-heuristic procedure
based on a stochastic mechanism, increasing the number of iterations
may help in finding better solutions.

The methodology could be extended to incorporate the screen line
problem stated in Eqs. (9), (10). The coverage steps 13–15 are re-
sponsible for this extension. It is sufficient to delete step. 14. Then, the
algorithm searches how to locate the sensors to intercept all the paths
and consequently the total demand flow.

In step. 22, the MPRE model presented in Eqs. (1)–(4) are calculated
using the null-space active-set method [29]. It yields significant ad-
vantages in the computational effort and the storage requirements. The
time complexity of the methodology for the overall procedure is O
[k×w+ Λ = = =m

k
i
w

a
n

mi
a

1 1 1 ].

4.4. Validation indicator

For a given link set installed with sensors, the Generalized Least
Square (GLS) could be applied to estimate the O/D matrix from the
counting on the equipped links [11]. GLS stipulates the estimated ma-
trix to produce the same flows on the equipped links (flows obtained
from real counting on the network) as follows [3]:

+Minimize T T T T

V V V V

( ) ( )

( *) ( *)
T

t
T

t
V

1

1 (15)

s.t

= =
= =

p T p T v a L* ,
i

w

ai i
i

w

ai i a
1 1 (16)

T i W0i (17)

where; T is the historical demand node pairs vector, T̄ is the estimated
demand node pairs vector, Vis the vector of the reference link flows, V*
is the vector of the observed/real link flows (real link flow related to the
true target demand), ,T V are weight matrices represents the re-
lative confidence between the reference demand and the observed flow.

The dilemma here is that we do not have any counting data at the
design stage. If the real O/D matrix is assumed to be known (for vali-
dation purpose), we could consider the links flow come from the as-
signment of the true matrix as the real counted flow. The real O/D
matrix existence also gives the opportunity to validate the obtained
solutions against the True Relative Error (TRE). The TRE is calculated
as follows;

Fig. 3. The proposed algorithm general frame-work.
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(18)
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i i
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5. Experimental study

To validate the proposed methodology, two real networks are
adopted; Sioux Falls network and Ciudad network. The algorithm was
written in Matlab, and was run on a workstation with two Intel® Xeon®

Processor E5530, 2.40 GHz, 12 GB RAM. Preliminary runs were con-
ducted to adjust the parameters. The number of maximum iterations is
100. The percentage of tolerance and neighbor search magnitude take
the values (0, 0.25, and 0.5). The structure of ξ is continuously changed
during the iterations to produce different trade-offs of the solutions. ξ3
and PRVa are set to zero. For both networks and for each O/D pair,
paths are generated depending on k shortest path presented in [60].

The link flows are generated by assigning travel demands from the
prior O/D matrix of each network according to the SUE presented in
Section 4.2 with a dispersion parameter ( = 0.01).

5.1. Sioux Falls Network

It is first introduced for the TSLP problem by Yang and Zhou [57]. It
is considered a benchmark problem for most of the TSLP literature
[17,24,30,32,34,39,52–54,57,62]. The network consists of 182 O/D
pairs, 76 links, and 24 vertices. Fig. 4 depicts the Sioux Falls network.
The shaded nodes represent both trip origins and destinations.

5.1.1. Results and discussions
The results summary is presented in Table 2. Fourteen non-domi-

nated solutions are obtained. Each solution is characterized by the
number of selected links (included the distribution of these links
through the network), the MPRE percentage, Total Observed Flow
(TOF) and Net Observed Flow (NOF).

Fig. 5 portrays the inherent conflict between the MPRE value (po-
tential accuracy) and the number of links to be equipped (total cost). It
shows the multi-objective nature of the problem that precludes finding
a unique optimal solution. Two extremely biased solutions (either to the
accuracy or to the cost) could be obtained and other solutions are al-
ternatives for various trade-offs. The structures are shown in Table 3. It
is worth noting that we attained a finite MPRE (Rule1) at only 10
sensors, which is lower than other studies in the literature for the Sioux
Falls network [18,54,56]. It is worth noting again that the number of
obtained sensors is sensitive to the number of enumerated paths per
each O/D pair and the applied traffic assignments model. Therefore,
they should reflect the real traffic conditions for the network under
study.

Also, this lower bound is attained when solving the formulated SCP
considering only minimizing the number of sensors, Eqs. (9) and (10),

Fig. 4. Sioux Falls Network.

Table 2
Summary of the methodology results.

η MPRE TOF NOF

10 4.85 48.25 33.57
11 4.52 42.47 32.53
17 3.72 79.97 54.23
18 3.62 77.17 53.67
19 3.11 84.51 54.85
20 2.79 89.51 56.80
27 2.69 108.94 63.48
30 2.63 134.30 71.61
38 2.32 145.09 69.24
49 2.27 209.38 80.77
50 2.26 214.25 80.77
52 2.24 211.41 80.25
53 2.14 216.88 80.17
58 2.09 226.95 80.77

Fig. 5. The MPRE vs number of equipped links (η) for Sioux Falls Network (near
Pareto optimal solutions).
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with the branch and bound technique [10]. This match gives more
validity to the algorithm when it is used in solving large networks for
which the exact methods are not applicable.

Economically, it is better to know the marginal benefit of increasing
the cost by deploying a new unit in your system. Fig. 6 depicts the
reduction in MPRE corresponding to the increase in the number of used
sensors. It could be noticed that the critical point is at 20 sensors. The
rate of reduction before it is about 17.5% per installed sensor, and after
it, is about 1.7% per sensor. Therefore, if the available budget manages
to equip a number of links ranges from 10 to 30 sensors, 20 sensors
would be the most economical choice. However, if there is an accuracy

stipulation, we would return to the multi-objective balance.
In the literature, there is a great concern given to place traffic

sensors to intercept as maximum as possible of the net traffic flow. It
aims to increase the information gained by the sensors. However, the
results show that duplicating flow counting decreases the MPRE value.
In Fig. 7, the relation between the observed flow Replication Factor
(RF) and the MPRE value is drawn. RF is equal to the TOF divided by
the NOF. For RF = 2 (i.e. observing each vehicle twice on average), the
MPRE decreases by 65%. This supports the decision to prioritize each
link according to its total flow in Eq. (11) rather than its net observed
flow.

5.1.2. The screen line problem
Table 4 shows the location and the number of sensors in a com-

parison with the only two studies that reported their results considering
the full flow interception problem. This study achieved the lowest
number of sensors to fully separate all O/D pairs.

5.2. Ciudad Real Network

This subsection is provided to illustrate the application of the pro-
posed methodology on a large real-size network. The Ciudad Real
network consists of 380 O/D pairs, 218 links, and 105 vertices, see
Fig. 9. The real O/D matrix and historical O/D matrix are reported in
[13]. The paradox of sensors location design discussed earlier as for the
O/D matrix estimation is that the estimation techniques depend on
finding the matrix which reproduces the same flow on the observed

Table 3
Link set structure for the two extreme solutions.

Solution I (η = 10) Solution II (η = 58)
Links: Links:

9, 10, 11, 12, 14, 15, 37, 39, 59, 73 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 22, 23, 25, 26, 27, 28, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 51, 53, 55,
56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,73, 74, 75, 76

Fig. 6. The marginal effect of deploying traffic sensors for Sioux Falls Network.

Fig. 7. Maximum possible relative error vs the replication factor.

Table 4
Link set structure comparison.

[7] [56] This study
η = 55 η = 48 η = 45
Links: Links: Links:

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46,
49, 51, 52, 53, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 74, 75, 76

1, 2, 3, 4,8,9,10, 11, 12, 13, 26, 27, 28, 31, 32, 34, 35, 36,
37, 39, 40, 41, 43, 44, 45, 46, 47, 50, 53, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76

1, 3, 4, 5, 6, 9, 10, 11, 13, 14, 23, 27, 28, 31, 32, 34,
36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 53, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 74, 75,
76

Fig. 8. The MPRE and TRE vs. number of equipped links (η) for Ciudad Real
network.
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links. However, in the design stage, real flow on links cannot be known
until applying the sensors on the network. Reporting the real O/D
matrix besides the historical one in [13] manages us to obtain the real
flow of network arcs by the assignment step for the real O/D matrix.

Fig. 8 plots the MPRE and the TRE variation at different sensor
numbers. The results indicate that the MPRE sets a boundary of the
estimated TRE in which the obtained solutions cannot exceed. There-
fore, the MPRE proves itself as a good criterion for the design of TSLP
regarding the accuracy of the estimated O/D matrix.

To check the robustness of the methodology, other nine different
runs were made. Each run contains 100 different iterations. The number
of resulted non-dominated solutions per each iteration is depicted in the
box plot in Fig. 10. The ANOVA test is performed to make sure if there
is a significant difference in the results. The Fcritical ratio is equal to 1.98
with 9 degrees of freedom for the numerator and 90° for the denomi-
nator at significance level = 0.05. The obtained F= 1.23 (F < Fcritical)
which means that the null hypothesis that the results are statistically
equivalent is accepted, i.e. there are no significant differences among
the different runs.

6. Conclusion

This study presents a new multi-objective sensor location metho-
dology considering the O/D matrix estimation, which depends on ro-
bust measurements of accuracy. It measures the maximum possible
deviation that could be obtained by the worst estimated solution.
Different trade-offs between potential accuracy of the estimated O/D
matrix and the number of sensors are generated. The benefit of using
the MPRE directly in the multi-objective design is shown for the first
time. The polynomial time complexity of the proposed methodology
manages to tackle real size networks. The results using two real net-
works show the generality and effectiveness of the proposed sensor
location methodology. The obtained sensors number is plotted against
the true relative error (TRE), which is bounded by the MPRE value. This
ensures the reliability of any solution set when it is deployed on the
network. The robustness of the methodology is measured by the
ANOVA test which ensured the reliability of obtained solutions.
Moreover, the methodology allows using the installation cost of sensors.
This manages to choose the most suitable solution for a predetermined
budget. The methodology is also extended to determine the minimum
number of sensors required to solve the screen line problem. For future
work, the proposed methodology can be developed to solve the location
problem in terms of dynamic O/D matrix estimation using the time
expanded network representation in which nodes and links are repeated
through time slots. The heuristic nature of the methodology would help
in dealing with this network expansion. The challenge would be how to
determine the link priority to be selected over time and how to define
the MPRE in terms of both dynamic O/D matrix entries and the ex-
panded network.
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Appendix A

In this section, it is considered the small network represented in Table A.1 which consists of 7 links and three demand node pairs. The historical
O/D matrix resulted in the given link flows and the maximum number of paths for each node pair is limited to 3. The algorithm settings and the ξ
structures is given in the Table 1.

Let us now go through 3 different iterations step by step:
Iter. no. 1:

1 use ξ str. 1 to calculate the PIa for each link (input step)*
2 construct the CL based on the PI4 (links in the vicinity of 15% for l4 Priority Index) CL = {l4, l3}. (steps 1 to 6)
3 choose link randomly from the CL to be in the solution set L*={l3}. Steps (7–12)
4 node pairs (2&3) are covered so delete rows 4 to 9. (steps 13–17)

Fig. 9. Ciudad Real Network structure.

Fig. 10. Box plot draw for different ten runs.

M. Owais et al. Operations Research Perspectives 6 (2019) 100100

9



5 construct the CL based on new best PIa, see Table A.2, CL = {l1, l2}. (rerun in the loop to step 12)
6 choose link randomly from the CL to be in the solution set L*={l1, l3}.
7 node pair (1) is covered so delete rows 1 to 3.
8 the matrix is empty then produce the final solution set:

L*={l1, l3} then estimate these link set performance [η = 2 & MPRE = 1.25] (steps 18 −23)
*the corresponding algorithm steps in page 6
Iter. no. 2:

1 from the previous iteration keep randomly the half of the solution set (Neighbor_search_magnitude = 0.5), L*={l1}.
2 node pairs (1&2&3) are covered so delete rows 1 to 9.
3 the matrix is empty then produce the final solution set: L*={l1}, [η = 1 & MPRE = 2.22].

Iter. no. 3:

1 from the previous iteration keep randomly the half of the solution set (Neighbor_search_magnitude = 0.5) L*={Ø}.
2 use ξ str. 3 to calculate the PIa for each link
3 construct the CL based on the PI3 (links in the vicinity of 15% for l3 Priority Index) CL = {l3, l4}.
4 choose link randomly from the CL to be in the solution set L*={l4}.
5 node pairs (1&3) are covered so delete rows 1 to 3 and 4 to 9.
6 construct the CL based on new best PIa, see Table A.3, CL = {l3, l5}.
7 choose link randomly from the CL to be in the solution set L*={l4, l5}
8 node pair (2) is covered so delete rows 4 to 6.
9 the matrix is empty then produce the final solution set: L*={l4, l5}, [η = 2 & MPRE = 1.12]

Table A.1
The small network structure and basic data.

Row no. l1 l2 l3 l4 l5 l6 l7

1 Node pair 1 h11 1 1 0 1 0 1 0
2 h21 0 1 0 0 0 0 1
3 h31 1 0 0 0 1 0 0
4 Node pair 2 h12 1 1 1 0 1 0 0
5 h22 1 0 0 0 0 1 0
6 h32 0 0 1 0 1 0 1
7 Node pair 3 h13 1 0 1 1 0 1 0
8 h23 0 1 1 1 1 0 1
9 h33 1 1 1 1 0 1 0
Covered paths sum. 6 5 5 4 4 4 3
Link volume va 20 40 120 150 60 70 30
PIa ξ1 = 1
(ξ str. 1) ξ2 = 20 140 140 220 230 140 150 90
PIa ξ1 = 0.8
(ξ str. 2) ξ2 = 22 148 142 206 208 136 144 90
PIa ξ1 = 0.6
(ξ str. 3) ξ2 = 25 162 149 197 190 136 142 93
.
.
.
.
PIa
(ξ str. Λ)

Algorithm settings: Tolerance%=15 Neighbor_search_magnitude = 0.5.
L*={ l4, l5}, [η = 2 & MPRE = 1.12].

Table A.2
The updated matrix after first selection in iter. 1.

Row no. l1 l2 l3 l4 l5 l6 l7

1 Node pair 1 h11 1 1 0 1 0 1 0
2 h21 0 1 0 0 0 0 1
3 h31 1 0 0 0 1 0 0
Covered paths sum. 2 2 0 1 1 1 1
Link volume va 15 10 0 10 5 8 6
PIa ξ1 = 1 55 50 0 30 25 28 26
(ξ str. 1) ξ2 = 20
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