
Al-Salamah, Muhammad

Article

Economic production quantity in an imperfect
manufacturing process with synchronous and
asynchronous flexible rework rates

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Al-Salamah, Muhammad (2019) : Economic production quantity in an imperfect
manufacturing process with synchronous and asynchronous flexible rework rates, Operations
Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 6, pp. 1-11,
https://doi.org/10.1016/j.orp.2019.100103

This Version is available at:
https://hdl.handle.net/10419/246391

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2019.100103%0A
https://hdl.handle.net/10419/246391
https://creativecommons.org/licenses/by-nc-nd/4.0
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Economic production quantity in an imperfect manufacturing process with
synchronous and asynchronous flexible rework rates

Muhammad Al-Salamah⁎

Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Saudi Arabia

A R T I C L E I N F O

Keywords:
Inventory
Economic production quantity
Backorder
Imperfect quality
Flexible rework

A B S T R A C T

We present inventory models to schedule an imperfect manufacturing process where a proportion of the items
are defective. The proportion is known; and the production is followed by a 100% inspection. The manufacturer
implements a rework strategy to rectify the defective items. Since the rework can be implemented on a number
of plans, a flexible rework rate is presented. The flexible rework offers the manufacturer the selection of the
rework rate, which can be different from the production rate, and also the selection of the rework process itself,
which can be asynchronous and synchronous. Under the asynchronous rework, the defective items are kept until
the completion of the production lot; while, under the synchronous rework, the defective items are reworked as
soon as they are produced. A linear rework cost function of the rework rate is assumed. The objective of this
paper is to develop mathematical models to determine the optimal lot sizes and backorders for different as-
sumptions about the rework rate and the rework process. It has been proven that the rework strategy and the
rework rate influence the lot size and the backorder, especially for large values of the defective proportion.

1. Introduction

In production scheduling, the Economic Production Quantity (EPQ)
has been one important tool in regulating production so that the
manufacturer knows when to stop the production and utilize the items
stacked up in the inventory to meet the continuous demand. For the
plans to be utilized, irregularity in the manufacturing operations has to
be taken into consideration when planning for the production. For in-
stance, the imperfect quality of items is common in manufacturing.
Defective items are caused by many factors, such as machine failure,
wide tolerances, human errors, mishandling, and incorrect specifica-
tions for the raw materials. The economic production quantity models
and the economic order quantity (EOQ) models share a number of
common assumptions about, for example, the nature of the demand, the
quality of the items, the inspection and related errors, and the item
deterioration. However, the EPQ models and the EOQ models can serve
different purposes. As stated previously, the EPQ models are utilized by
the manufacturer to plan the production; while the EOQ models are
implemented to schedule supplies, such as raw materials or end pro-
ducts to be integrated into further complex products. EPQ models with
imperfect quality items have been proposed in the literature; and these
models address different manufacturing planning requirements and
restrictions.

Rosenblatt and Lee [1] consider an EPQ model in which the man-
ufacturing process can produce defective items at a rate that is either
constant, linear, exponential, or multistate. Lee et al. [2] determine the
optimal production lot size in a multistage manufacturing. Items that
deviate from the target value are defective items, and they are scraped.
Applying a different strategy, Chan et al. [3] suggest that defective
items are better sold, which can lower the costs to the manufacturer.
Huang [4] determines the optimal lot size, containing a fraction of
defective items, for the deteriorating just-in-time manufacturing, con-
sidering both of inventory of the manufacturer and the inventory of the
buyer into a single model. Tsai [5] introduces an EPQ model with
learning effect and defective items scraped. Hsu and Hsu [6] present a
model in which the fraction of the defective items is a random variable.
All of these models employ a strategy of discarding the defective items
once they are identified.

The resources of the manufacturing process can be better utilized if
the defective items are repaired to continue meeting the demand or
reentered into manufacturing as raw materials. Gupta and Chakraborty
[7] develop an EPQ model for a multistage production system with the
possibility that defective items are accumulated over the stages of the
manufacturing. Instead of scraping them, defective items are recycled
again using them as raw materials. The EPQ model of Liu and Yang [8]
assumes the imperfect manufacturing system can produce reworkable
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defective items and nonreworkable defective items which are dis-
carded. Hayek and Salameh [9] determine the production lot size when
the fraction of defective items is a random variable with a known
probability distribution function. In this model, shortages are per-
mitted. Chiu [10] presents an EPQ inventory model that considers a
random defective rate; by evaluating the severity of the defect, this
model assumes that some defective items can be reworked and other
defective items cannot be fixed and, therefore, are scrapped. In a similar
consideration of the defective items, the model by Pasandideh et al.
[11] assumes that the defective items are classified in accordance with
the severity of the item's defect. Jamal et al. [12] and Sarker et al. [13]
determine the lot size in a single-stage system and multi-stage system,
respectively, with the possibility that the rework of defective items is
performed either within the same cycle or they are accumulated over a
number of cycles and then reworked. Cárdenas-Barrón [14] and Sarkar
et al.[15] extend the model by Jamal et al. [12] to account for the
possibility of the backorder and the rework performed in the same
cycle. A finite horizon and time varying demand rate case for Jamal
et al. [12] is considered by Benkherouf and Omar [16]. Liao et al. [17]
and Liao and Sheu [18] determine the economic production quantity
and the optimal preventive maintenance schedule for an imperfect
manufacturing process, with the rework of the defective items. Wi-
dyadana and Wee [19] propose a model for a perfect manufacturing
process, in which there are multiple machine setups; items deteriorate
and they are reworked at the end of the cycle. Tai [20] and Shukla et al.
[21] consider an EPQ model in which defective items are reworked and
the nondefective items can deteriorate before shipment; deteriorated
items are discarded. The model by Pal et al. [22] assumes the manu-
facturing system produces defective items, which are reworkable, only
when it goes out of control. Taleizadeh et al. [23] extend the EPQ model
with the possibility of an imperfect rework process; unreworkable items
are scraped. Based on the same assumptions, multi-product EPQ models
have been proposed by Taleizadeh et al. [24], Taleizadeh et al. [25],
and Taleizadeh et al. [26]. Implementing similar assumptions, an EPQ
model with a random number of defective items and an imperfect re-
work is proposed by Noorollahi et al. [27]. In addition, a random de-
fective rate is assumed by Chiu and Chiu [28]. A slower inspection rate
than the production is assumed by Wee et al. [29] in a model that
determines the optimal time intervals, rather than the lot size and the
backorder. Li et al. [30] determine the EPQ when there is an increasing
defective rate during certain time intervals. A nontrivial inspection time
is assumed in the model by Moussawi-Haidar et al. [31]; the corrected
mathematical expressions in this model are found in [32]. Mokhtari
[33] combines both EPQ and EOQ in a single model; at the end of each
production run in a cycle (the number of production runs is a decision
variable), a single batch from a supplier is received and added to the
inventory. The defective items are identified after the end of the pro-
duction and then are reworked. Production planning can exert its
challenges for specific production requirements. For instance, the de-
mand under imperfect manufacturing may vary with the level of stock;
this situation is modeled and analyzed in [34].

The identification of defective items relies on the inspection of all
items. Statistical tools have been integrated into the EPQ models to
account for the discrepancy of the outcomes of the inspection. Yoo et al.
[35] entertain the probabilistic outcomes of an imperfect inspection,
and they propose considering misclassifications of items due to type 1
and type 2 errors; true defective items are reworked. Mohammadi et al.
[36] assume two defective rates and inspection errors. Al-Salamah [37]
introduces the single acceptance sampling methodology to the EPQ
model, where items are manufactured in batches and the inventory is
the work-in-process. Owning to the difficulty in estimating the prob-
ability distribution for the inspection errors, Bhuiya and Chakraborty
[38] develop an EPQ model for fuzzy inspection errors as well as fuzzy
defective rates.

In this article, the strategy of a flexible rework in an imperfect
manufacturing environment is investigated for the planning of the

production, where the planning is limited to the determination of the
lot size and the backorder. There are two main arrangements for the
rework process: synchronous and asynchronous. The asynchronous re-
work is the most common assumption in the literature for the imperfect
process with rework. This article proposes the synchronous rework,
which is another arrangement for the rework process that permits the
rework of the defective items as soon as they are produced; this ar-
rangement reduces the accumulation of the defective items awaiting the
rework. In addition to the configuration of the rework process, this
article proposes a flexible rework rate, a decision available to the
manufacturer, which is omitted in the literature and will be shown, in
this article, to be of a significant influence on both the lot size and the
backorder. When considering the flexible rework rate, two cases
emerge; either the rework rate is greater than the demand or the rework
rate is less than the demand. Towards this end, the mathematical
models necessary for planning the production with the flexible rework
are developed and the theoretical analysis and proofs are presented in
the sections of this article.

2. Theoretical development of EPQ models

Consider an imperfect manufacturing process and assume that the
process produces a single product in a batch size of Q. The manu-
facturing process operates at a finite production rate. A 100% inspec-
tion is implemented to identify the defective items. The demand for the
nondefective items is continuous with D units per unit time. The process
can go from in-control to out-of-control; during the out-of-control state,
the defective items are produced at a rate of r per unit of time. The
nondefective items are stacked up to satisfy the immediate demand. The
defective items are reworked using a separate process at a constant rate
PR items per unit of time. The rework process is perfect; hence, re-
worked items are kept in the inventory of the nondefective items. In this
article, we will assume the rework rate is flexible in that the rework rate
is different from the production rate and the rework process can be
either synchronous or asynchronous. This article proposes EPQ models
with backorders permitted to plan the manufacturing operations of an
imperfect manufacturing process. Below are the assumptions and the
notations used in the development of the mathematical models.

The assumptions made to construct the models are as follows:

1 The demand rate is constant and known over the planning horizon;
2 The production rate is constant and known over the planning hor-
izon;

3 To make the planning for the manufacturing nontrivial, the pro-
duction rate is greater than the demand rate;

4 The proportion of defective items is known;
5 All manufactured items go through a screening stage and items are
classified as either defective or nondefective;

6 The rework process is perfect;
7 Backorders are strategically permitted to manage the production;
8 The model considers one type of manufactured items; and
9 The planning horizon is infinite.

Apart from the assumptions made above, it is assumed that the rate
of rework PR is independent of the production rate P. Subcontracting
the rework of defective items or the dedication of more precise ma-
chines for the rework of the defective items are two of the cases where
the rework rate can be different from the production rate.

The notations used in the model are as follows:

D demand rate (items per time)
P production rate (items per time, P> D)
r proportion of the defective items (0< r<1)
PR rework rate (items per time)
k production setup cost
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c manufacturing and inspection cost of an item
m rework cost of a defective item (linear function of PR)
h inventory carrying cost of nondefective items per item per

unit of time
f Inventory cost of defective items per item per unit of time
w backorder cost per unit per unit of time
g backorder cost per item
Q lot size (items)
B backorder (items)
T cycle length
ATC(Q, B; PR) average total cost per unit of time

3. EPQ models with asynchronous rework

Consider a manufacturer who operates an imperfect manufacturing
process. The defective items are accumulated and reworked at the
completion of the production quantity; therefore, the rework process is
not synchronized with the manufacturing stage. Defective items are
stored separately from nondefective items. Available to the manu-
facturer a flexible rework scheme; whereby the rework cost is a linear
function of the rework rate. The manufacturer can permit shortage
items to be backordered. The aim of developing the mathematical
model is to plan the production by finding the optimal quantity Q and
maximum backorder B that both minimize the total cost of the system
per production cycle. Since the rework is flexible and can vary as de-
termined by the manufacturer, there are two cases which need to be
investigated. If the rework rate is greater than the demand, there will be
a buildup of items in the inventory of nondefective items during the
rework period and, hence, the inventory curve has a positive slope.
However, if the rework rate is less than the demand, there is a constant
decline in the inventory of the nondefective items during the rework
period; hence, the inventory curve of the nondefective items has a ne-
gative slope. In the following subsections, we will consider each case
individually and develop the optimal lot size and backorder.

3.1. The rework rate is greater than the demand (PR>D)

Fig. 1 shows the inventory curves of the nondefective items in a

cycle with the planned backorders and asynchronous rework carried
out on the same inventory cycle. Fig. 2 shows the inventory curves of
the defective items.

If we define b1(t) to be the backorder curve during T1, we can use
the integral calculus, along with the initial and terminal conditions

=b (0) 01 and =b T B( )1 1 , to write = − −b t r P D t( ) ((1 ) )1 . Hence, it
follows that the time to cover the shortage amount is:

=
− −

T B
r P D(1 )1

(1)

The total of the backorder quantities during T1 is given by:

∫ ∫

⎜ ⎟

= = − −

= − − ⎛
⎝ − −

⎞
⎠

=
− −

− −

b t dt r P D tdt

r P D B
r P D r P D

B

A ( ) ((1 ) )

1
2

((1 ) )
(1 )

1
2((1 ) )

T

0
1

0
2

2

B
r P D1 (1 )

(2)

The quantity Q is exclusively produced during the period +T T1 2.
That is, + =T T P Q( )1 2 . Hence, since of the value of T1 has been defined,
we can write:

= − = −
− −

T Q
P

T Q
P

B
r P D(1 )2 1

(3)

Similarly, we can use the integral calculus to write the inventory
curve during T2 as = − −I t r P D t( ) ((1 ) )1 . The total of the inventory
during the period T2 is given by:

∫

⎜ ⎟

= = − −

= − − ⎛
⎝

−
− −

⎞
⎠

I t dt r P D T

r P D Q
P

B
r P D

Γ ( ) 1
2

((1 ) )

1
2

((1 ) )
(1 )

T

0
1 2

2

2

2

(4)

The period T3 is the time required to rework rQ defective items.
Since the rework rate is PR, we can write:

=T rQ
PR

3 (5)

Knowing the initial condition is = = − −I I T r P D T(0) ( ) ((1 ) )2 1 2 2,

Fig. 1. Inventory curves of nondefective items with asynchronous rework and PR> D.
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the inventory curve during T3 can be shown to be
= − + − −I t P D t r P D T( ) ( ) ((1 ) )R2 2. The total inventory during T3 is:

∫

⎜ ⎟⎜ ⎟ ⎜ ⎟

= = − + − −

= − ⎛
⎝

⎞
⎠

+ − − ⎛
⎝

−
− −

⎞
⎠

⎛
⎝

⎞
⎠

I t dt P D T r P D T T

P D rQ
P

r P D Q
P

B
r P D

rQ
P

Δ ( ) 1
2

( ) ((1 ) )

1
2

( ) ((1 ) )
(1 )

T

R

R
R R

0
2 3

2
2 3

2

3

(6)

During the period T4, it can be shown that the inventory curve is
=I t Dt( )3 , with the terminal value I3
= = − + − −T I T P D T r P D T( ) ( ) ( ) ((1 ) )R4 2 3 3 2. From the terminal value,

it can be written:

= − − + − = − − −T r P D T P D T
D

Q
D

B
D

Q
P

rQ
P

((1 ) ) ( )R

R
4

2 3

(7)

The total inventory during T4 is:

∫ ⎜ ⎟= = = ⎛
⎝

− − − ⎞
⎠

I t dt DT D Q
D

B
D

Q
P

rQ
P

E ( ) 1
2

1
2

T

R0
3 4

2
24

(8)

The function of the backorder curve during the period T5 is
=b t Dt( )2 . The terminal value is =I T B( )4 5 . It follows that the period T5

is:

=T B
D5 (9)

The cumulative backorder quantities during T5 is:

∫= = =b t dt DT B
D

Z ( ) 1
2

1
2

T

0
2 5

2
25

(10)

Now we consider the inventory curves of the defective items with
asynchronous rework illustrated in Fig. 2. Again, using the integral
calculus, the inventory curve of the defective items during the period

+T T1 2 can be shown to be =J t rPt( )1 . The terminal value is
+ =J T T rQ( ) .1 1 2 Since + =T T Q

P1 2 , the total inventory of the defective
items during the period +T T1 2 can be found to be:

∫= = ⎛
⎝

⎞
⎠

=J t dt rP Q
P

r
P

QΘ ( ) 1
2 2

0
1

2
2

Q
P

(11)

The inventory curve of the defective items during T3 is =J t P t( ) R2 .
The total inventory of defective items during T3 is:

∫ ⎜ ⎟= = ⎛
⎝

⎞
⎠

=J t dt P rQ
P

r
P

QΛ ( ) 1
2 2

T

R
R R0

2

2 2
2

3

(12)

The model's objective function is to minimize the associated costs:
production setup cost, production cost, inventory costs of nondefective
and defective items, shortage cost, and rework cost. Since the rework of
the defective items can be subcontracted by the manufacturer, we
propose that the rework rate is a decision variable, where a higher
rework rate is assumed to cost more than a lower rework rate does. This
assumption is consistent with the industrial protocols, that dictate fast
deliveries of manufactured products require more expenditure in terms
of resources and therefore higher costs.

First, define the following:

= − −α r P D(1 )
= +β D c m r( )
= + +γ h w(1 )( )D

α
1
2

=δ D g
=η D k
= + + − + − + +

+ +

θ h D α D α D

f

( ((( ) 1) (( 1) ( ) ) ) )

( )
P P

r
P

r
P

rD
P

r
P

1
2

1
2

1
2

1

2
1

R

R

.

The average total cost in one inventory cycle is:

=
+ + + + + + + + + +

= − + + + +

ATC Q B P
k cQ mrQ h w gB f

T

β hB γ B
Q

δ B
Q

η
Q

θQ

( , ; )
(Γ Δ E) (A Z) (Θ Λ)

1

R1

2

(13)

Before we can find the optimal lot size and the backorder, we need
to prove ATC1(Q, B; PR) is strictly convex. To do that, we present the
following theorem.

Fig. 2. Inventory curves of the defective items with asynchronous rework.
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Theorem 1. Any bivariate rational function = + +f x y( , ) y
x

y
x x

12
a b c ,

for x>0 and y>0, is strictly convex if > 0a , > 0b , > 0c , and
>4 2ac b .

Proof. For f(x, y) to be strictly convex, the Hessian must be positive
definite. Firstly, we find the first partial derivatives f(x, y), which are:

∂
∂

= − − −
f x y

x
y
x

y
x x

( , ) 12

2 2 2a b c (14)

∂
∂

= +
f x y

y
y
x x

( , )
2 1
a b

(15)

The Hessian contains the second derivatives. The diagonal elements
of the Hessian are:

∂
∂

= + +
f x y

x
y
x

y
x x

( , )
2 2 2 12

2

2

3 3 3a b c
(16)

∂
∂

=
f x y

y x
( , )

2 12

2 a
(17)

The element of the Hessian in Eq. (16) is always positive if > 0a ,
> 0b , and > 0c . The element in Eq. (17) is positive if > 0a .
The off-diagonal elements of the Hessian are:

∂
∂ ∂

= − −
f x y

x y
y y

x x
( , )

2 12

2 2a b
(18)

The determinant of the Hessian is:

⎜ ⎟

∂
∂

∂
∂

− ⎛
⎝

∂
∂ ∂

⎞
⎠

= −
f x y

x
f x y

y
f x y

x y x
( , ) ( , ) ( , )

(4 ) 12

2

2

2

2 2
2

4ac b
(19)

The determinant in Eq. (19) is positive if >4 2ac b . Hence, f(x, y) is
strictly convex if > 0a , > 0b , > 0c , and >4 2ac b .▪

Now considering again the average total cost function ATC1(Q, B;
PR), we can observe that γ>0, δ>0, and η>0. To clarify the map-
ping from f(x, y) to ATC1(Q, B; PR), it ought to be noted that x≡Q and
y≡ B. We also observe that Q and B can only be positive numbers.
Therefore, by Theorem 1, ATC1(Q, B; PR) is a strictly convex function if
4γη> δ2. Here, we need to ignore the linear terms in ATC1(Q, B; PR)
because they do not influence the convexity conditions.

To find the optimal lot size and the backorder, we find the first
partial derivatives of ATC1(Q, B; PR):

∂
∂

= − − −ATC Q B P
Q

θ γ B
Q

δ B
Q

η
Q

( , ; ) 1R1
2

2 2 2 (20)

∂
∂

= + −ATC Q B P
B

γ B
Q

δ
Q

h( , ; ) 2 1R1

(21)

The critical points of ATC1(Q, B; PR) are found by equating the first
partial derivatives to zero and solving for Q and B. The critical points
are:

=
−
−

Q
γη δ
γθ h

4
41

2

2 (22)

= −B h
γ

Q δ
γ2 21

(23)

These values represent the optimal lot size and the backorder that
minimize the average total cost per cycle.

3.2. The rework rate is less than the demand (PR<D)

If PR<D, the retrieval of nondefective items from in the inventory
occurs at a rate faster than the procurement rate; this situation causes a
drop in the inventory during the rework period, and hence, the in-
ventory curve has a negative slope. The inventory curves under this
case is shown in Fig. 3. The inventory curves of defective items have

still the same shape as shown in Fig. 2.
The functions of the total inventory and total backorder for the

nondefective items in the periods T1, T2, T4, and T5, defined in Eqs. (2),
(4), (8), and (10), and the functions of the total inventory of defective
items during T3, defined in Eqs. (11) and (12), are still applicable under
the case that PR<D; this is because these values do not change by any
assumption about PR. The inventory curve during T3 has a negative
slope if PR<D. Therefore, I2(t) has to be redefined for this reason.

The inventory curve during the rework period T3 is
= − + − − −I t D P t D( ) ( ) ( )R

Q
D

B
D

Q
P

rQ
P2 R

, with the initial value

= = − − −I I T D(0) ( ) ( )Q
D

B
D

Q
P

rQ
P3 3 4 R

. Because =T rQ
PR

3 , we can find the

total inventory of nondefective items during T3 as:

∫ ⎜ ⎟ ⎜ ⎟⎜ ⎟= = − ⎛
⎝

⎞
⎠

+ ⎛
⎝

− − − ⎞
⎠

⎛
⎝

⎞
⎠

I t dt D P rQ
P

D Q
D

B
D

Q
P

rQ
P

rQ
P

N ( ) 1
2

( )
T

R
R R R0

2

23

(24)

Let = + − + + + −ϵ h D h
P

Dh
P

Dfr
P

Dhα
P

Dfr
P

Dhr
P2 2 2 2 2 2R R

2
2 2

2 2
. The average total

cost in a cycle for PR< D is given by:

=
+ + + + + + + + + +

= − + + + +

ATC Q B P
k cQ mrQ h w gB f

T

β hB δ B
Q

γ B
Q

η
Q

Q

( , ; )
(Γ N E) (A Z) (Θ Λ)

1 ϵ

R2

2

(25)

This function has the same coefficients as ATC1(Q, B; PR), except for
the coefficient of the linear term ϵ. Because the coefficients of nonlinear
terms in ATC2(Q, B; PR) are all positive (the same coefficients in
ATC1(Q, B; PR)) and that Q>0 and B>0, then, by Theorem 1,
ATC2(Q, B; PR) is strictly convex.

To find the optimal lot size and the backorder when PR< D, we find
the first partial derivatives:

∂
∂

= − − −ATC Q B P
Q

γ B
Q

δ B
Q

η
Q

( , ; ) ϵ 1R2
2

2 2 2 (26)

∂
∂

= + −ATC Q B P
B

γ B
Q

δ
Q

h( , ; ) 2 1R2

(27)

The optimal lot size and the optimal backorder are found by setting
the first derivatives to zero and solving for Q and B; and they are:

=
−
−

Q
γη δ
γ h

4
4 ϵ2

2

2 (28)

= −B h
γ

Q δ
γ2 22

(29)

4. EPQ model with synchronous rework

A plan for the manufacturing with synchronous rework offers the
advantage of lowering the inventory of the defective items and also it
can make it possible to fulfill the backorders quicker. There are two
cases that need to be investigated. During the rework period T3, the
inventory curve of the nondefective items can be positive or negative
depending on whether PR> D or PR<D, respectively. We will an in-
ventory model for each case in the following subsections.

4.1. The rework rate is greater than the demand (PR>D)

Fig. 4 shows the inventory curves of the nondefective items under
the assumption of a synchronous rework. During the period of manu-
facturing +T T1 2, the inventory curve has a slope of − + −r P P D(1 ) R .
This is because nondefective items arrive from the rework process at a
rate of PR. Here, it is assumed that PR< rP to avoid interruption in the
rework process. During T3, the slope of the inventory curve is
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guaranteed positive because PR>D. The inventory curves of the de-
fective items are shown in Fig. 5.

Without going through the details of the proofs, we find the total
amounts of the backorder and inventory for the nondefective items
during the segments of the cycle as follows:

1 During = − + −T B
r P P D1 (1 ) R

, the total backorder is:

=
− + −r P P D

BΞ 1
2

1
(1 ) R

2

(30)

2 During = − − + −T Q
P

B
r P P D2 (1 ) R

, the total inventory is:

Fig. 3. Inventory curves of nondefective items with asynchronous rework and PR< D.

Fig. 4. Inventory curves of nondefective items with synchronous rework.
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⎜ ⎟=
− + −

⎛
⎝

−
− + −

⎞
⎠r P P D

Q
P

B
r P P D

Π 1
2

1
(1 ) (1 )R R

2

(31)

3 During = −T rQ
P

Q
P3 R
, the total inventory is:

⎜

⎟

⎜ ⎟

⎜ ⎟

= − ⎛
⎝

− ⎞
⎠

+ − + − ⎛
⎝

−
− + −

⎞
⎠

⎛
⎝

− ⎞
⎠

P D rQ
P

Q
P

r P P D Q
P

B
r P P D

rQ
P

Q
P

Y 1
2

( ) ((1 ) )

(1 )

R
R

R

R R

2

(32)

4 During = − −T Q
D

B
D

rQ
P4 R
, the total inventory is:

⎜ ⎟= ⎛
⎝

− − ⎞
⎠

D Q
D

B
D

rQ
P

Φ 1
2 R

2

(33)

5 During =T B
D5 , the total backorder is:

= B
D

X 1
2

2

(34)

The total amounts of the inventory of the defective items can be
written as:

1 During +T T1 2, the total inventory is:

= −rP P
P

QΨ 1
2

R
2

2
(35)

2 During T3, the total inventory is:

= −rP P
P P

QΩ 1
2

( )R

R

2

2
2

(36)

Now, the average total cost under the manufacturing configuration
of synchronous rework is given by:

=
+ + + + + + + + + +

ATC Q B P
k cQ mrQ h w gB f

T

( , ; )
(Π Y Φ) (Ξ X) (Ψ Ω)

A3

(37)

Define:

= − + −ξ r P P D(1 ) R

= + +( )τ h w1 ( )D
ζ

1
2

= − − − − − + + + +

+

ϕ h D h
P

Dfr
P

Dhr
P

Dhζ
P

Dhr
P

D hr
PP

Dfr
P

Dhr
P

Dhrζ
PP

DhP
P

2 2 2 2 2 2

2

R R R R R

R

2
2 2

2 2 2

2

.

Now, the average total cost per cycle can be written as:

= − + + + +ATC Q B P β hB τ B
Q

δ B
Q

η
Q

ϕQ( , ; ) 1
A3

2

(38)

Since τ>0, δ>0, and η>0 and for Q>0 and B>0, then, based on
Theorem 1, ATC3(Q, B; PA) is strictly convex if 4ητ> δ2.

To find the optimal lot size and the optimal backorder, we first find
the first partial derivatives of ATC3(Q, B; PA):

∂
∂

= − − −ATC Q B P
Q

ϕ τ B
Q

δ B
Q

η
Q

( , ; ) 1R3
2

2 2 2 (39)

∂
∂

= + −ATC Q B P
B

τ B
Q

δ
Q

h( , ; ) 2 1R3

(40)

After setting these two equations to zero and solving for Q and B, we
get the optimal values:

=
−
−

Q
ητ δ
τϕ h

4
43

2

2 (41)

= −B h
τ

Q δ
τ2 23 (42)

4.2. The rework rate is less than the demand (PR<D)

When PR< D, the slope of the inventory curve of the nondefective

Fig. 5. Inventory curves of defective items with synchronous rework.
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items during the rework period is negative. The inventory curves of the
nondefective items are shown in Fig. 6. The inventory curves of the
defective items have the same functional forms as those of the defective
items when PR> D, presented in Fig. 5.

The inventory curve of the nondefective items during T3
= − + − −I t D P t D( ) ( ) ( )R

Q
D

B
D

rQ
P2 R

, with the initial value

= − −I D(0) ( )Q
D

B
D

rQ
P2 R

. Since = −T rQ
P

Q
P3 R
, the total inventory is:

∫ ⎜ ⎟ ⎜ ⎟⎜

⎟

= = − ⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− − ⎞
⎠

⎛
⎝

− ⎞
⎠

I t dt D P rQ
P

Q
P

D Q
D

B
D

rQ
P

rQ
P

Q
P

M ( ) 1
2

( )
T

R
R R R0

2

23

(43)

Now, the average total cost per inventory cycle for the synchronous
rework and PR< D is:

=
+ + + + + + + + + +

ATC Q B P
k cQ mrQ h w gB f

T

( , ; )
(Π M Φ) (Ξ X) (Ψ Ω)

A4

(44)

Define:

= + −κ h Dh
Pξ

Dh
P2

= + + +ν h w Dh
ξ

Dw
ξ2 2 2 23

= + − − + + + − −χ h D h
P

Dh
P

Dfr
P

Dhr
P

Dh
P ξ

Dfr
P

Dhr
P

DhP
P2 2 2 2 2 2 2R R

R2
2 2

2 2
2 .

Now ATC4(Q, B; PA) can be written in the form:

= − + + + +ATC Q B P β κB ν B
Q

δ B
Q

η
Q

χQ( , ; ) 1
A4

2

(45)

Since ν>0, δ>0, and η>0, then, from Theorem 1, ATC4(Q, B; PA)
is strictly convex if 4ην> δ2. To find the optimal lot size and the op-
timal backorder, we find the first partial derivatives of ATC4(Q, B; PA):

∂
∂

= − − −ATC Q B P
Q

χ δ B
Q

η
Q

ν B
Q

( , ; ) 1A4
2 2

2

2 (46)

∂
∂

= + −ATC Q B P
B

ν B
Q

δ
Q

κ( , ; ) 2 1A4

(47)

Setting the first partial derivatives to zero and solving for Q and B
leads to:

=
−
−

Q
ην δ
νχ κ

4
44

2

2 (48)

= −B κ
ν

Q δ
ν2 24 (49)

These values represent the optimal lot size and the optimal back-
order when the rework is synchronized with the manufacturing and the
rework rate is less than the demand.

5. Numerical example and sensitivity analysis

5.1. Asynchronous rework

Consider a manufacturer that operates an imperfect process and the
rework of defective items is started after the completion of the manu-
facturing quantity. The annual demand is =D 4800 units, the annual
production rate is =P 24,000 units per year. The manufacturing setup
cost is =k $120. The unit manufacturing cost is =c $3.1. The manu-
facturing produces defective items at a fraction of =r 0.01. The in-
ventory hold cost of nondefective items is =h $0.6 per unit per year; the
inventory holding cost of defective items is =f 0.3 per unit per year.
The shortage costs are =g $0.1 per unit short and =w $14.4 per unit
short per year. The rework cost is m=$0.000125PR per unit. For all the
values selected for the model parameters, the optimality conditions
provided in Theorem 1 are satisfied. These values will be considered as
the base case for the sensitivity analysis that follows.

In what follows, we study the variation of optimal production
quantity Q1 and the optimal backordered quantity B1 with respect to

Fig. 6. Inventory curves of the nondefective items with synchronous rework and PR<D.
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two main parameters; the fraction of defectives and the rework rate. In
the first case, all the parameters are kept constant at the values given in
the base case, only the fraction of defectives r is varied to study its in-
fluence on Q1 and B1. Similarly, in the second case, the rework rate PR is
analyzed to investigate how the lot size and the backorder change for
low and high values of the rework rate.

Table 1 shows the optimal lot sizes and backorders for a range of
values for the fraction of defectives when PR is set at 40, 000 items per
year. The results indicate that when r increases, the optimal Q1 in-
creases steadily; however, B1 declines gradually as the proportion of
defectives increases. The model of Cárdenas-Barrón [14] exhibits a si-
milar behavior, except that the optimal lot size increases more rapidly
and the backorder declines slower than our model. It needs to be noted
that the model of Cárdenas-Barrón [14] does not consider the inventory
cost of defective items. The model by Jamal et al. [12] suggests lower
values for Q for low values of r, but Q increases as r increases and ex-
ceeds Q1 for >

∼r 0.15. The optimal production quantity by Taft [39] is
lower than but not too far from the three models for small r; Taft's
model does not permit backorders and assumes all items to be of perfect
quality.

Because the optimal lot size reacts positively to the increase in the
fraction of defectives, Fig. 7 investigates further the combined effects of
both r and PR on Q1. The figure shows that the optimal lot size is more
sensitive to changes in the rework rate for high values of the fraction of
defectives than when the fraction is small ( <

∼r 0.1.) Therefore, it is

concluded that Q1 declines with the increase in PR for r>0.1. A similar
conclusion is observed about the behavior of the backorder size. Fig. 8
shows that a noticeable decline in B1 occurs with the increase in PR for
values of the fraction of defectives greater than 0.1.

If we need to examine how the optimal lot size and the optimal
backorder behave when the assumption about the rework rate changes,
we look at Figs. 9 and 10. If =P 2500R units per year, it is observed that
when the fraction of defectives is increased, the optimal lot size Q2 for
PR<D increases at a faster rate than the optimal lot size Q1 for PR>D
does. For instance, at =r 0.4, =Q 1, 8112 items, while =Q 1, 6211
items. The optimal backorders have different reactions to the increase
in the fraction of defectives. As it has been observed before, B1 declines
with the rise in r. In contrary to this, increasing the value of r leads to an
increase in B2.

5.2. Synchronous rework

Let us consider the same manufacturer presented in the previous
subsection; but in this section, we assume the defective items are re-
worked as soon as they are produced. All defective items that are not
reworked during the production lot are reworked separately after the
completion of the lot. In order to satisfy the assumptions of the model
that PR< rP and D< PR, the demand is taken as =D 190 items per year
and the rework rate is set at =P 200R items per year.

A comparison between the synchronous and asynchronous reworks
in terms of the lot size and the backorder is shown in Table 2. We can
observe that the lot size and the backorder with synchronous rework

Table 1
Variable fraction of defective items r and asynchronous rework with PR> D.

Asynchronous
rework PR>D

Jamal
et al.,
[12]a,b,d

Cárdenas-Barrón
[14]a,d

Taft [39]b,c

Fraction of
defectives (r)

Q1 B1 Q Q B Q

0.01 1573.6 24.7 1551.1 1574.7 24.7 1549.2
0.05 1577.7 24.6 1559.5 1583.2 24.7
0.10 1583.0 24.4 1570.9 1595.0 24.7
0.15 1588.6 24.1 1583.7 1608.1 24.7
0.20 1594.5 23.8 1597.9 1622.6 24.7
0.25 1600.8 23.5 1613.5 1638.5 24.6
0.30 1607.4 23.1 1630.7 1656.0 24.5
0.35 1614.3 22.6 1649.7 1675.3 24.2
0.40 1621.5 21.9 1670.5 1696.3 23.9

a The inventory of defective items and the inspection cost are not considered.
b Backorders are not permitted.
c Items are in perfect quality.
d The rework rate is equal to the production rate.

Fig. 7. How the production quantity changes with the rate of asynchronous
rework.

Fig. 8. How the backorder changes with the rate of asynchronous rework.

Fig. 9. Optimal lot sizes vs. the fraction of defectives under the asynchronous
rework.
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are less than those with asynchronous rework; this is attributed to the
shorter cycle length recommended by the synchronous rework.

In the analysis of the effect of the fraction of the defective on both
the lot size and the backorder for PR< D, we consider Table 3. For this
analysis, the following values have been assumed: =P 4000 items per
year, =D 400 items per year, and =P 39R items per year. It needs to be
noted that the condition PR< rP is satisfied with these parameter va-
lues. From the results, the lot size under the asynchronous rework
model is slightly below the lot size under the synchronous rework
model for the range of values of r. The backorder, on the other hand,
shows to be slightly larger when the rework is asynchronous than when
it is synchronous for most values of r; but it must be noted that the
differences between the backorders are small, and for =r 0.4, the two
backorders are almost identical.

6. Conclusion

In this paper, we have developed EPQ models for the imperfect
manufacturing process and a flexible rework. Shortages are back-
ordered and defective items are reworked at the same cycle. The rework
process is perfect; that is, the rework produces only perfect quality
items. In this article, we propose two kinds of configurations for the
rework process. The asynchronous rework configuration works by let-
ting the defective items to be reworked only after the lot has been
completed. The synchronous rework configuration, on the other hand,
permits the rework of the defective items as soon as they are produced.
It has been shown through the example analysis that the lot size in-
creases and the backorder declines with the increase in the proportion
of defectives for the asynchronous rework with the rework rate greater
than the demand. Both the lot size and the backorder decline for an
increase in the asynchronous rework rate in the case that the rate is
greater than the demand. The backorder has shown sensitivity to the
assumption about the rework rate. For both asynchronous and syn-
chronous rework, the backorder increases for the increase in the pro-
portion of defectives when the rework rate is less than the demand. If
the rework rate is greater than the demand, the backorder declines as
the fraction of defectives increases for the asynchronous rework and
large values for the demand and the rework rate. The synchronous re-
work model has restrictive assumptions on the demand and the rework
rate, which can limit its applications in most manufacturing settings.

In the literature as well as in this article, the inspection of the
produced items is a negligible portion of the production time; therefore,
the inspection rate is usually neglected and left out of the modeling
approach. If in specific manufacture situations the inspection rate is
slower than the production rate, the production plan will guide the
manufacturing to a better and predictable performance if the inspection
rate is integrated into the EPQ model. In order to do that, the EPQ
model should consider three kinds of inventory: manufactured items,
nondefective items, and defective items. The replenishment rate of the
manufactured items is equal to the production rate minus the inspection
rate. The nondefective items are stacked up in the inventory at a rate
equal to the inspection rate multiplied by the fraction of the non-
defective items minus the demand rate. We propose the integration of
the inspection as one way our EPQ model can be extended.
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