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A B S T R A C T

We define a novel information acquisition model that accounts explicitly for the influence of positive and ne-
gative anticipated emotions in the evaluation and selection incentives of decision makers (DMs). The model
focuses on the value assigned by the DMs to the information being acquired and its capacity to prevent re-
grettable decisions within a forward-looking sequential environment. We introduce a novel definition of value of
information accounting for the two main uses that DMs can derive from it, namely, verifying the optimality or
suboptimality of a potential decision and preventing the regret that may arise from a suboptimal decision. In
particular, DMs would regret a decision whenever rejecting [accepting] an alternative that should have actually
been accepted [rejected]. Our formal information acquisition model allows to account for the subjective relative
importance assigned by the DMs to the verification and regret value of information. Moreover, we illustrate how
the incentives defining the sequential information retrieval process of DMs are determined by the relative width
of the domains on which the different characteristics describing the alternatives are defined.

1. Motivation

Beyond individual choice problems, which constitute the main focus
of the current paper, the consistency of decision-making processes is
essential for the performance of businesses, with information playing a
fundamental role [9]. In particular, the quantity and quality of the in-
formation available have a direct effect on the quality of the decisions
made in an organization [46]. At the same time, project managers tend
to overestimate their decision-making capabilities, which prevents
them from considering quality improvements in their information se-
lection and choice processes [22,42]. This bias may result in potentially
wrong judgments that could be prevented if managers were to modify
their information acquisition criteria. Moreover, the process of in-
formation retrieval is inherently strategic [36,67], with managers se-
lecting the information that they deem to be more useful from the large
amounts available [45,64]. In this regard, Joho et al. [28] concluded
that accounting for future realizations in advance is a fundamental task
of information acquisition processes that should be incorporated in

formal models. Therefore, dynamically consistent information retrieval
processes should aim at selecting the most valuable information while
preventing regrettable choices on the side of managers/consumers/
decision makers (DMs).

2. Literature review

When undertaking a search process, DMs generally aim at de-
creasing the uncertainty implicit in the purchase of a product or eva-
luation of an alternative [33]. The literature has identified three main
sources of uncertainty inherent to any search process, namely, the un-
certainty following from the distribution of product characteristics
[32], the uncertainty associated with the credibility and communica-
tion abilities of the information providers [16], and the one triggered
by the limited cognitive capabilities of the DMs [35]. Intuitively, the
first type of uncertainty gives place to the search process, the second
relates to the potential utility or regret that may arise from considering
the advice of third parties, and the third type relates to the limited
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capacity of the DMs to acquire and assimilate information. In this re-
gard, selecting products or services in online settings implies facing a
higher level of uncertainty given the complexities inherent to their
evaluation. This is particularly the case when selecting experience
products, since consumption is required for the DMs to provide an
evaluation [30].

Nowadays, DMs face an overload of cheap information together
with limited assimilation capacities and time constraints, both of which
have important effects on their information acquisition and choice be-
haviour [11,54]. Beyond their cognitive constraints, the limited capa-
city of DMs to evaluate and compare alternatives through their char-
acterizing categories is also related to the fact that time constraints
shorten the information evaluation process [66] and force DMs to
concentrate on a subset of the information available [40]. For instance.
Cleveland and Ellis [12] reviewed multiple knowledge management
studies and highlighted time constraints on the side of the information
seekers and trust on the contributors as important factors determining
knowledge transmission. Zimmer and Henry [71] focused on re-
commender systems and the acquisition of information from others,
with information quality becoming essential when considering inter-
personal sources.

Incrementing the amount of information available about the char-
acteristics of an alternative increases the precision of the decisions
while imposing a larger demand on the cognitive capacities of the DMs
[17]. In dealing with this type of complexity, the literature has followed
the guidelines of bounded rationality and introduced heuristic satisfi-
cing rules as a direct alternative to the formal requirements of expected
utility theory [6,56]. These rules are introduced to balance the cogni-
tive effort required on the side of the DMs and the accuracy of the
decisions being made [20,31,49]. In this regard, Woudstra et al. [65]
found empirical support for the application of a cost-benefit model of
information retrieval under time pressure, determined by the accessi-
bility and quality of the information source. Similarly, Janssen et al.
[26] emphasized that the retrieval of big data from sources with het-
erogeneous qualities requires governance mechanisms to ensure a basic
level of quality and prevent regrettable decisions.

These time and quality restrictions become particularly relevant in
the case of organizational management. For example, Schulz et al. [53]
developed a framework to identify and select relevant reports while
noting that consumers, chief executives, CIOs, and CEOs generally deal
with information based on a limited number of characteristics selected
and categorized to determine their final choices. Moreover, given the
strategic condition of the decisions made by project managers and their
reliance on the information available, Eweje et al. [18] emphasized the
substantial importance that the confidence of managers has for the
decisions taken. These authors found that the extent to which project
managers feel in control determines the amount and quality of the in-
formation retrieved, which, at the same time, may lead to potentially
regrettable decisions. This is particularly important when evaluating
projects at their early stages, where dynamically consistent evaluation
criteria should be defined – and preserved throughout the entire project
so as to increase its likelihood of success [50].

It should be noted that the information retrieval model introduced
in the current paper can be adapted to incorporate a quality variable so
as to differentiate across information sources [59,61]. However, we will
focus on the value assigned by the DM to the information acquired and
its capacity to prevent regrettable decisions within a forward-looking
sequential environment.

2.1. On cognitive constraints and subjective emotions

An immediate conclusion derived from the literature described
above is that a substantial amount of factors can be considered when
analyzing the reasons for DMs to regret a given decision, including their
limited capacity to observe all potential information sources and as-
similate the one acquired. In this regard, Fig. 1 focuses on the

relationship arising between time allocation and the value of the pro-
ducts involved in the decisions being made. The data – retrieved in
2017 – illustrate that when purchasing products online DMs worldwide
do not spend a considerable amount of time acquiring information,
thought the time spent on a decision increases with the value of the
product being purchased.

Moreover, when considering recent data from the U.S. population,
we observe in Fig. 2 that a substantial percentage of purchases are
bought on impulse across all age groups. This result serves as a com-
plement to the percentages described in Table 1, where half the U.S.
consumers consulted in 2014 regretted their impulse purchases. The
fundamental role played by emotions when purchasing a product on
impulse is evident in Fig. 3 where divergent states of mind such as
excitement, boredom and sadness are shown to govern the impulsive
behavior of U.S. consumers.

The satisfaction derived from a purchase together with the effect
from the subsequent increment or decrement in utility relative to its
expected value have been regularly analyzed in the psychology litera-
ture [2]. These authors illustrated how whenever quality is below the
value expected it has a larger effect on satisfaction than the one ob-
tained when expectations are exceeded. In this regard, Lauraéus et al.
[34] showed that the satisfaction derived from a purchase is determined
by several factors, including the commitment of the DM to the search
and the uncertainties tackled.

Psychologists have consistently emphasized the importance that
subjective emotions and, in particular, regret have for the behavior of
DMs [25,35,47,54]. The behavioral consequences that follow from the
capacity of DMs to anticipate regrettable choices have been consistently
highlighted in the related literature [19,62,68]. This branch of the
psychology literature focuses on the materialization of the outcomes
derived from a decision, which are themselves a source of emotion that
may vary from surprise and happiness to disappointment and regret
[35,44,69,70]. Consequently, the subsequent evaluation of the out-
comes is conditioned by these emotions.

The importance placed on the subjective perception of DMs when
evaluating the characteristics of potential choices has led cognitive
sciences to the forefront of the current research on decision making
[5,10]. This literature generally focuses on the effect that the char-
acteristics of DMs have when determining their perception of the dif-
ferent alternatives [3,57]. For instance, personality traits have been
recently shown to determine the information acquisition behavior of
DMs [1]. However, despite the substantial amount of evidence pre-
sented by cognitive scientists, decision theoretical counterparts for-
malizing the process of information retrieval and its effects on the po-
tential choices of DMs remain mainly unstudied in the literature [51].

The approach followed in the current paper considers an informa-
tion acquisition process where DMs value information insomuch as it
prevents them from making a suboptimal choice that they may regret
afterwards. In this regard, the intuition for the expected utility model
determining the information acquisition behavior of DMs can be related
to the classical economic approach to regret [39]. The standard regret
theoretical model in economics considers a utility function modified to
account for the expected satisfaction obtained when choosing a given
alternative, A, and rejecting another, B. In this case, denoting by x and y
the consequences derived from choosing alternative A and B, respec-
tively, the DM is endowed with the following utility function

= +u x y v x R v x v y( , ) ( ) ( ( ) ( )) (1)

where v(x) stands for the utility derived from choosing alternative A
absent any consideration about B. R v x v y( ( ) ( )) accounts for any po-
tential regret or utility gain derived from choosing A, with the ex-
pression v x v y( ) ( ) representing the utility difference from having
chosen A instead of B. As is generally the case in economic theory, the
function R satisfies R′( · ) > 0 and R″( · ) < 0.

We extend this approach beyond the unique characteristic defining
each alternative and design a sequential structure accounting for the
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relative importance assigned to the different types of regret and ver-
ification outcomes disclosed by information. The behavior that follows
from this dynamic structure is determined by the value of information
when used to prevent regret or validate the utility derived from a given
potential choice.

3. Contribution

The model introduced in the current paper complements and ex-
tends the psychological approach of Bagozzi et al. [4], who performed
four empirical studies to illustrate the influence of both positive and
negative anticipated emotions (AEs) in the purchase and non-purchase
decisions of DMs. These authors suggested that research should be

Fig. 1. Average time online consumers spend between intention and purchase by product value. Source: KPMG online survey conducted worldwide (51 countries) in
2017. The sample consisted of 18,430 respondents 15 to 70 years old. Consumers made at least one online purchase in the previous 12 months and were within the
top 65% of income earners.

Fig. 2. Share of purchases bought on impulse in the United States as of 2018 by age group. Source: Thredup. The sample consisted of 2000 respondents18 years and
older.

Table 1
Share of U.S. consumers regretting an impulse purchase
in 2014.
Source: CreditCards.com. Survey conducted in the
United States from November 6 to 9, 2014 via tele-
phone interview. The sample consisted of 1000 re-
spondents18 years and older.

Gender Share of respondents

Female 52
Male 46
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conducted to understand the role of forward-looking emotions in de-
cision processes, while providing an empirical justification for this
statement. In particular, they clustered the AEs of DMs in two different
categories:

• AEs motivating purchase:
○ positive AEs derived from an expected pleasing purchase
○ negative AEs derived from the missed opportunities of a non-pur-

chase decision
• AEs motivating non-purchase:

○ negative AEs derived from a disappointing purchase

○ positive AEs derived from the goodness resulting from a non-pur-
chase decision

We define a formal information acquisition model that incorporates
these four effects into the evaluation and decision framework of DMs.
To do so, we introduce a novel definition of value of information ac-
counting for the two main uses that can be derived from it by a DM:
verifying the optimality of a potential decision and preventing the re-
gret that may arise from a suboptimal decision [29,52]. Therefore, in-
formation will be considered valuable by a DM if it

Fig. 3. State of mind in which U.S. consumers make impulse purchases.
Source: CreditCards.com. Survey conducted in the United States from November 6 to 9, 2014 via telephone interview. The sample consisted of 1000 respondents 18
years and older.

Fig. 4. The proposed information acquisition setting accounting for positive and negative anticipated emotions.
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• verifies the optimality of a given alternative/potential choice
• prevents the DM from rejecting an optimal alternative/potential

choice
• verifies the suboptimality of a given alternative
• prevents the DM from selecting a suboptimal alternative

That is, information is valuable if it either allows the DM to verify
the optimality or suboptimality of a partially observed alternative or
prevents the DM from regretting the rejection or selection of a partially
observed alternative. In this regard, the DM would regret a decision
whenever rejecting [accepting] an alternative that should have actually
been accepted [rejected].

The DM uses the information acquired either to continue observing
additional characteristics from a partially observed alternative con-
stituting a potential choice or to start observing characteristics from a
new alternative. When continuing, the reference alternative is defined
by the certainty equivalent (CE) value of the corresponding character-
istics. When starting, the reference alternative is the highest between
the previous partially observed one and the CE value.

Fig. 4 merges the fourfold AE setting described in Fig. 4 of Bagozzi
et al. [4] with the information acquisition environment introduced in
the current paper. In particular, our continuation incentives embed the
AE framework described by Bagozzi et al. [4], which is extended
through the incorporation of the starting incentives considered by the
DM. Note that both types of incentives must be defined when acquiring
information before the DM makes any decision.

Our formal information acquisition model allows to account for the
subjective relative importance assigned by the DM to the verification
and regret value of information. Moreover, we will illustrate how the
incentives defining the sequential information retrieval process of the
DM are determined by the relative width of the domains on which the
different characteristics describing the alternatives are defined.

The remainder of the paper proceeds as follows. Section 4 provides
background definitions and concepts. Section 5 introduces the proposed
information acquisition selection problem. Section 6 defines the re-
ference utility functions together with some of their properties.
Section 7 introduces the value of information as a tool to avoid re-
grettable choices. Section 8 provides several numerical simulations il-
lustrating the main results. Matlab has been used to perform all the
numerical simulations analyzed throughout this section. Section 9
concludes and suggests potential extensions.

4. Background definitions and concepts

Let P be a nonempty set. A preference relation ≿ on P is a binary
relation on P satisfying reflexivity, completeness and transitivity. A
utility function representing a preference relation on P is a function U:
P → R such that:

p p P p p U p U p, ( ) ( ) (2)

where the symbol ≥ denotes the standard partial order on the reals.
Henceforth, D will denote a generic DM and Γ a given set of alter-

natives.
Following Di Caprio et al. [15] and Tavana et al. [60], we assume

that each alternative is described by two categories of characteristics,
that is, two sets of characteristics in which all the characteristics of the
alternatives are partitioned. Note that adding further categories to the
analysis would require considering an additional dimension per cate-
gory through which the DM should generate potential combinations
defining the resulting value of information. Representing these objects
and performing comparisons to determine the behavior of DMs would
require adding further restrictions so as to focus on the two main ca-
tegories assumed to be the main determinants of his behavior.

At the same time, the partition of all the characteristics in a first and
second category is assumed to reflect the order of dominance among
characteristics assigned by D, that is, the values taken by the

characteristics in the first category are more important to D than those
taken by the characteristics in the second. To simplify the presentation,
we will write first and/or second characteristic in place of first and/or
second category.

We let X and Y be the sets of all possible values that can be taken by
the first and second characteristic, respectively, and identify each al-
ternative in Γ with a pair (x, y) belonging to the Cartesian product
X × Y.

In this kind of identification, the factor spaces are usually assumed
to be compact, connected and separable spaces, endowed with a pre-
ference relation represented by utility functions which are continuous
with respect to the assigned topology. See, among others, Debreu [13]
and Di Caprio and Santos-Arteaga [14].

Following the classical economic approach to consumer information
demand [63], we restrict our attention to the case where each factor
space is a closed and bounded (hence, compact and connected) non-
degenerate subinterval of +[0, ). Thus, we let:

= =X x x Y y y[ , ] and [ , ]m M m M (3)

with xm, xM, ym, yM ∈ R, xm ≠ xM, ym ≠ yM, and assume both endowed
with the Euclidean topology. Moreover, in line with the classical ap-
proach of the theory of choice under uncertainty [21,41], D defines

• the standard linear order < on R as his preference relation on both
X and Y;

• two strictly increasing continuous utility functions u: X → R and v:
Y → R to represent his preferences on X and Y, respectively;

• the following relation +u v as his preference relation of on
= ×X Y :

× +

+
+x y x y X Y x y x y u x v y

u x v y

( , ), ( , ) , ( , ) ( , ) ( ) ( )

( ) ( );
u v

def
1 1 2 2 1 1 2 2 1 1

2 2 (4)

• two independent continuous probability density functions μ: X →
[0, 1] and η: Y → [0, 1] to express his subjective “beliefs” that an
element in X or in Y is the value of the first or second characteristic,
respectively, of a randomly selected alternative;

• the CE values =c u E( )X X
1 and =c v E( )Y Y

1 as the values to assign
to the unknown first and second characteristic of an alternative,
respectively, where:

= =E µ x u x dx E y v y dy( ) ( ) and ( ) ( ) .X
X

Y
Y (5)

Finally, in line with Simon [55], we assume that D is allowed to
check a limited number of characteristics of a fixed subset of alter-
natives, ¯ .
Remark 1. (a) Without loss of generality, we can assume that

=Support µ X( ) and =Support Y( ) , that is, the support of the
probability density functions coincide with the set of actually
available values for the characteristics.

(b) The CE value cX is the element of X whose utility u(cX) equals the
expected utility value induced by μ, i.e., EX. Similarly, cY is the elements
of Y whose utility v(cY) equals the expected utility value induced by η,
i.e., EY. In our framework, both cX and cY exist and are unique due to the
continuity and strict increasingness of u and v, respectively.

(c) Note that +E EX Y is the utility value that D associates to any
randomly chosen alternative and also the main reference value against
which to compare an alternative whose characteristics are either
completely or partially known. ■

Henceforth, Ā will denote the reference alternative delivering the
expected utility value +E EX Y , that is, a random alternative in Γ whose
characteristics are both unknown.
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The main notations introduced in this sections and those that will be
introduced in the following ones are summarized in Table 2.

5. Proposed information acquisition selection problem

We consider the problem of a DM, D, who must decide on which one
of two alternatives in Γ to focus when acquiring information sequen-
tially.

Due to the dominance of the first characteristic over the second (see
Section 2), the first piece of information to be acquired by D is the value
of the first characteristic of any of the two given alternatives. After-
wards, D has to decide whether to check the second characteristic of the
same alternative, or to check the first characteristic of the other alter-
native. This is formalized as follows.

Let A1 and A2 denote the two alternatives indexed in the order they
are checked by D. That is, = A A¯ { , }1 2 . Clearly, this order is purely
random since there is no reason for any of the two alternatives to be
checked before the other. Moreover, for =i 1, 2, let xi and yi be the
values of the first and second characteristic of Ai, respectively. Thus,
once the value x1 has been observed, D has the following two options:

Option (I). Continuing with A1: check the value y1 of the 2nd char-
acteristic of A1

Option (II). Starting with A2: check the value x2 of the 1st char-
acteristic of A2

Assume that D’s problem is exactly to establish which of these two
options is the best one. Whether D chooses A1, A2 or any random al-
ternative Ā will be clear after the information corresponding to the best
of the options above has been acquired. Indeed, after acquiring the
second piece of information, D can choose the alternative that presents
the higher total utility (if both its characteristics are known) or ex-
pected utility (if only one of its characteristics is known).

In other words, we do not worry about what D will choose at the
end, but about how D needs to use the information so as to avoid a
regrettable final choice. Fig. 5 presents a graphical representation of the

information acquisition selection problem faced by D and the potential
choices that each of the two options would lead to in a utility max-
imization setting.

6. Reference utility values and cut-off values for the
characteristics

As explained in the previous sections (see, in particular,
Remark 1(c)), D considers +E EX Y as the reference utility value against
which to compare an alternative whose characteristics are either
completely or partially known.

Thus, the value of the information that D will acquire selecting ei-
ther Option (I) or Option (II) relates to the possibility that there exists a
value of the second characteristic of A1 such that D is indifferent be-
tween A1 and Ā, that is, a value y ∈ Y such that + = +u x v y E E( ) ( ) X Y1 .

More in general, we need to consider the set of all values x for which
there exists yx such that + = +u x v y E E( ) ( )x X Y , that is:

= = +S x X y v y E E u x{ : such that ( ) ( )}.def
x x X Y

Note that S ≠ ∅, since cX ∈ S. Also, it is not difficult to see that S
does not necessarily coincide with X, that is, it might exist x such that
for all y ∈ Y, + +u x v y E E( ) ( ) X Y . Furthermore, we have the fol-
lowing results.
Proposition 1. S is a closed subinterval of X, that is, ∃sm, sM ∈ X such
that =S s s[ , ]m M .

Proof. Let x′, x″ be two elements of S and consider x′ < x < x″. Then,
u(x′) < u(x) < u(x″), from which it follows that y y Y,x x such
that

= + < + < + =v y E E u x E E u x E E u x v y( ) ( ) ( ) ( ) ( )x X Y X Y X Y x
. Since the range of v is connected, ∃y such that = +v y E E u x( ) ( )X Y .
Hence, x ∈ S. By the arbitrary choice of x it follows that S is an interval.
To show that S is also closed, consider a sequence {xn}n ∈ N in S
converging to an element x. It suffices to show that x ∈ S. Since u is
continuous, the sequence {u(xn)}n ∈ N converges to u(x). Thus,

+E E u x{ ( )}X Y n n N converges to +E E u x( )X Y . At the same time,
for each xn there exists yxn such that = +v y E E u x( ) ( )x X Y nn . Hence,

Table 2
Main notations.

D Decision maker (DM)

Γ Set of all the alternatives
= A A¯ { , }1 2 Set of alternatives checked by D; A1 and A2 are the first and second alternative checked by D
=X x x[ , ]m M Set of all possible values that can be assigned to the 1st characteristic
=Y y y[ , ]m M Set of all possible values that can be assigned to the 2nd characteristic

u, v Strictly increasing continuous utility functions on X and Y, respectively
+u v Preference relation on X × Y induced by +u v

μ, η Subjective “beliefs” of D on X and Y, respectively
cX, cY Certainty equivalent value induced by (μ, u) and (η, v), respectively

=E u c( )X X , =E v c( )Y Y Expected utility value induced by μ and η, respectively
xi Value of the 1st characteristic of Ai; =i 1, 2
yi Value of the 2nd characteristic of Ai; =i 1, 2
Ā Any random alternative; the utility of Ā is +E EX Y
yx Unique value that the 2nd characteristic of an alternative with 1st characteristic x must take to deliver a total utility value +E EX Y ;

= +v y E E u x( ) ( )x X Y .
Option (I) Continuing with A1: check the value y1 of the 2nd characteristic of A1

Option (II) Starting with A2: check the value x2 of the 1st characteristic of A2

α Regret level fixed by D; α ∈ [0, 1]
EV x( , )total

I
1 ,EV x( , )total

II
1 Total expected information value relative to Option (I) and Option (II) at regret level α

regret
prevent

EV x( )I 1 , regret
prevent

EV x( )II 1 Regret-preventing value expected to be delivered by Option (I) and Option (II)

choice
confirm

EV x( )I 1 , choice
confirm

EV x( )II 1 Choice-confirming value expected to be delivered by Option (I) and Option (II)

+P x( )1 , P x( )1 Intervals of integration used to define regret
prevent

EV x( )I 1 and choice
confirm

EV x( )I 1

+Q x( )1 , Q x( )1 Intervals of integration used to define regret
prevent

EV x( )II 1 and choice
confirm

EV x( )II 1
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we have a sequence in Y whose image v y{ ( )}x n Nn converges to
+E E u x( )X Y . By the continuity of v, y Y^ such that y{ }x n Nn

converges to ŷ and = +v y E E u x(^) ( )X Y . Therefore, x ∈ S. ■

Proposition 2. For every x ∈ S, there exists a unique yx ∈ Y such that
= +v y E E u x( ) ( )x X Y .

Proof. If follows from u and v being strictly increasing. ■

Let φ: X → Y be the function defined as follows:

=x
y x x s
y x S
y x s x

( )
if [ , )
if
if ( , ]

M m m

x

m M M (6)

By Proposition 2, the function φ is well-defined. This function as-
sociates to each value of the first characteristic of an alternative the
unique value that the second characteristic should take for the alter-
native to be “equivalent” to Ā. Note that the function φ is decreasing
since higher values of x1 require lower realizations of y to achieve the
utility level provided by Ā.

Thus, given the observed value x1 ∈ X, φ(x1) works as a cut-off value
that can be used to partition Y into two subsets +P x( )1 and P x( )1
containing all the values y of the second characteristic that must be
associated to x1 to obtain a total utility +u x v y( ) ( )1 respectively higher
or lower than +E EX Y . In symbols:

= + ++P x y Y u x v y E E( ) { : ( ) ( ) }def
X Y1 1 (7)

and

= + < +P x y Y u x v y E E( ) { : ( ) ( ) }.def
X Y1 1 (8)

By Eqs. (6)–(8), it follows that:

= =

=

+P x y Y v y v x x y
x x s

y y x S
y y x s x

( ) { : ( ) ( ( ))} [ ( ), ]
if [ , )

[ , ] if
[ , ] if ( , ]

M

m m

x M

m M M M

1 1 1

1

1

1

1

(9)

= < =

=

P x y Y v y v x y x
y y x x s
y y x S

x s x

( ) { : ( ) ( ( ))} [ , ( ))
[ , ) if [ , )
[ , ) if

if ( , ]

m

m M m m

m x

M M

1 1 1

1

1

1

1

(10)

Given x1 ∈ X, the counterpart of the value φ(x1) when considering
the set X is naturally given by max {x1, cX}. Indeed, if x1 < cX, then all
the values x > cX deliver a utility higher than EX while all the values
x < cX provide less utility than EX. Similarly, if x1 > cX, then all the
values x > x1 deliver a utility higher than u(x1) while all the values
x < x1 provide less utility than u(x1). Thus, we can partition X into
two subsets, +Q x( )1 and Q x( )1 , containing all the values of the first
characteristic that deliver a utility respectively higher or lower than
max {u(x1), EX}. In symbols:

Fig. 5. Information acquisition and alternative selection problem faced by the DM.
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= =
=

+Q x x X u x u x E x X x x c
x c x

( ) { : ( ) max{ ( ), }} { : max{ , }}
[max{ , }, ]

def
X X

X M

1 1 1

1 (11)

and

= < = <
=

Q x x X u x u x E x X x x c
x x c

( ) { : ( ) max{ ( ), }} { : max{ , }}
[ , max{ , }).

def
X X

m X

1 1 1

1 (12)

Fig. 6 shows both the partition +Q x Q x{ ( ), ( )}1 1 of X and the parti-
tion +P x P x{ ( ), ( )}1 1 of Y in the case when x1 < cX (Fig. 6(a)) and when
x1 > cX (Fig. 6(b)). An equivalent presentation of the sets +P x( )1 ,
P x( )1 , +Q x( )1 and Q x( )1 is provided by Di Caprio et al. [15] while
Santos-Arteaga et al. [51] propose an extension to the multidimensional
setting.
Remark 2. Note that the evaluation framework described, with the

Fig. 6. Partition +Q x Q x{ ( ), ( )}1 1 of X and partition +P x P x{ ( ), ( )}1 1 of Y.
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characteristics of the CE alternative defining the reference values to
improve upon, applies directly to situations where the DM short-lists a
set of fully or partially observed alternatives among which to choose. In
other words, the DM is assumed to have a given set of standards in mind
and use the information acquisition process to select a group of
alternatives that provide a utility higher than a random choice. This
scenario fits particularly well with the sequential information
acquisition processes applied in online search environments,
characterized by the time pressure faced by DMs when browsing
through large amounts of information available at negligible costs
[7,38]. The potential regret defining the tradeoffs between two
sequentially observed alternatives can be used to determine the
dynamic structure of the resulting decision model [24,54]. Fig. 4 can
now be revisited as a summary of the decision framework
characterizing the information acquisition model described in the
following sections. ■

7. Introducing the value of information as a tool to avoid
regrettable choices

In order to define a sound selection criterion that D can use to
identify the best option between Option (I) and Option (II), we need to
formalize the concept of “valuable information” and introduce a sui-
table evaluation method capable to assess the value of acquiring a new
piece of information.

To establish whether or not a piece of information is valuable and
measure its value we build on the criterion introduced by Santos-
Arteaga et al. [51]. According to this criterion, a new information has a
value only if, by acquiring it, D changes the decision that he would have
taken without it.
Definition 1. (Assumption 5 in [51]) A new piece of information is
valuable if it induces a reversal in D’s potential final choice.

We introduce the following extension of Definition 1.

Definition 2. A new piece of information is valuable if it either allows D to
make a non-regrettable choice or prevents a regrettable one, or both.

Intuitively, information is considered valuable if it helps D selecting
the alternative providing the highest utility, while preventing him from
either choosing an alternative that turns out to be worse than Ā, or
rejecting an alternative that turns out to be better than Ā.

In other words, information is valuable if either one or both of the
following conditions are satisfied:

• Choice-confirming: information allows D to confirm that a given
alternative provides a utility higher or lower than +E EX Y . The
verification quality of information described within Fig. 4 in terms
of the value of the first observation relative to the reference CE al-
ternative accounts for its choice-confirming value.

• Regret-preventing: information prevents D from either choosing an
alternative whose utility turns out to be less than +E EX Y , or re-
jecting an alternative whose utility turns out to be more than

+E EX Y . In this case, the regret entries introduced within Fig. 4–
also in terms of the value of the first observation relative to the
reference CE alternative – are the ones accounting for the regret-
preventing value of information.

Note that verification together with regret determine the evaluation
of the continuing and starting options described in Fig. 4, emphasizing
the important role played by both information qualities when defining
the subsequent behaviour of D.

To complete Definition 2, we introduce a parameter α that is in-
tended to reflect the relative value that D derives from the information
when it allows him to reverse his originally intended choice (regret-
preventing information). Clearly, the value of (1 ) will correspond
to the relative importance assigned to the choice-confirming role of the

information.
Definition 3. We define the “regret level” of DM D as the value α ∈ [0, 1]
subjectively assigned by D to weight the importance that he gives to the
information satisfying the regret-preventing condition. At the same time, the
value (1 ) weights the importance that D assigns to confirming a non-
regrettable choice and will be called “confirmation level”.

As can be inferred from the description of the main characteristics
highlighted in the literature review section, the confidence of DMs on
the information providers constitutes one of the main features de-
termining their search incentives. In particular, consumers have been
shown to rely on word of mouth advice when provided by a credible
information source [37]. The same intuition applies to online en-
vironments through the use of online reviews. In both cases, informa-
tion is acquired so as to improve the outcome from the decisions being
made [23], with the sources selected determining the evaluations per-
formed and decisions made by the DMs [48].

Thus, the value of α could be assumed to behave as a proxy for the
subjective level of trust placed by the DM on the information source,
with a low level leading to a higher weight being assigned to the po-
tentially regrettable outcomes derived from the decision. In this regard,
a considerable amount of surveys has been conducted describing the
behavior of DMs relative to the expectations generated on the potential
outcomes obtained from the search process. Figs. 7 and 8 illustrate how
when purchasing products online U.S. consumers rely considerably on
the information retrieved from online reviews. Moreover, as described
in Fig. 9, the opinions of friends, family and other consumers generate
larger trust than those of independent reviewers, highlighting the
substantial role played by subjectivity and emotions when evaluating
the products being purchased.

We focus now on the value to assign to valuable information. In our
setting, D needs to evaluate Option (I) and Option (II), that is, to assess
the expected value of the information that would be provided by each
of these options if selected by D.

7.1. Expected information value of option (I)

To compute the expected value of the information corresponding to
Option (I), that is, the expected value of checking the second char-
acteristic y1 of the alternative A1, we reason as follows.
Case (I.a): Suppose that x1 < cX.
If the second characteristic y1 of A1 is such that

+ > +u x v y E E( ) ( ) X Y1 1 , then rejecting A1 would be regrettable since it
provides a utility higher than +E EX Y . That is, choosing A1 would be
better than choosing Ā.

Thus, we can compute the regret-preventing value that D expects to
derive from selecting Option (I) as follows:

= +
+

EV x y u x v y E E dy( ) ( )( ( ) ( ) ) .I

P x
X Y1

( )
1regret

prevent
1 (13)

If the second characteristic y1 of A1 is such that
+ < +u x v y E E( ) ( ) X Y1 1 , then A1 would be confirmed to be a suboptimal

choice providing a lower utility than Ā. That is, D would prefer a
random alternative Ā to the completely observed alternative A1.

Therefore, we can compute the choice-confirming value that D ex-
pects to derive from selecting Option (I) as follows:

= +EV x y E E u x v y dy( ) ( )( ( ) ( )) .I

P x
X Y1

( )
1choice

confirm
1 (14)

Case (I.b): Suppose that x1 ≥ cX.
If the second characteristic y1 of A1 is such that

+ > +u x v y E E( ) ( ) X Y1 1 , then A1 is confirmed as a non-regrettable
choice, which implies that choosing A1 would be better than choosing
Ā.

This allows us to compute the choice-confirming value that D ex-
pects to derive from selecting Option (I) as follows:
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= +
+

EV x y u x v y E E dy( ) ( )( ( ) ( ) ) .I

P x
X Y1

( )
1choice

confirm
1 (15)

If the second characteristic y1 of A1 is such that
+ < +u x v y E E( ) ( ) X Y1 1 , then rejecting Ā to choose A1 is a regrettable

choice; choosing A1 would be worse than selecting Ā, and is a sub-
optimal choice prevented by the new information.

Hence, we can compute the regret-preventing value that D expects
to derive from selecting Option (I):

= +EV x y E E u x v y dy( ) ( )( ( ) ( )) .I

P x
X Y1

( )
1regret

prevent
1 (16)

Given Definitions 2 and 3, Cases (I.a) and (I.b) above yield the
following proposition.
Proposition 3. Let x1 be the value observed by D for the first characteristic
of A1. Acquiring the information described by Option (I) is valuable from
both a regret-preventing and choice-confirming viewpoint. Furthermore,
given a regret level α ∈ [0, 1], the expected information value that D
associates to Option (I) is the weighted sum of the corresponding regret-
preventing and choice-confirming values, that is:

= +EV x EV x EV x( , ) · ( ) (1 )· ( )total
I I I1 1 1regret

prevent
choice
confirm (17)

where:

Fig. 7. When looking for a new product, how frequently do you read online reviews before purchasing the product? Source: Worldpay; Socratic Technologies. Survey
conducted online in the United States on April 2017. The sample consisted of 501 respondents 25 years and older.

Fig. 8. When looking for a new product, how important are the online reviews before deciding to purchase the product? Source: Worldpay; Socratic Technologies.
Survey conducted online in the United States on April 2017. The sample consisted of 501 respondents 25 years and older.
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=
+ <

+
+

EV x
y u x v y E E dy x c

y E E u x v y dy x c
( )

( )( ( ) ( ) ) , if

( )( ( ) ( )) , if
I P x

X Y X

P x
X Y X

1
( )

1 1

( )
1 1

regret
prevent

1

1

(18)

=
+ <

+
+

EV x
y E E u x v y dy x c

y u x v y E E dy x c
( )

( )( ( ) ( )) , if

( )( ( ) ( ) ) , if
I P x

X Y X

P x
X Y X

1
( )

1 1

( )
1 1

choice
confirm

1

1

(19)

7.2. Expected information value of option (II)

To compute the expected value of the information corresponding to
Option (II), that is, the expected value of checking the first character-
istic x2 of the alternative A2, we reason as follows.
Case (II.a): Suppose that x1 < cX.
If the first characteristic x2 of A2 is such that u(x2) > EX, then A2

would be a better choice than both Ā and A1. Hence, rejecting A2 would
be regrettable.

Thus, the regret-preventing value that D expects to derive from se-
lecting Option (II) can be computed as follows:

=
+

EV x µ x u x E dx( ) ( )( ( ) ) .II

Q x
X1

( )
regret
prevent

1 (20)

If the first characteristic x2 of A2 is such that u(x2) < EX, then A2

would be a suboptimal choice confirming Ā as the optimal one.
This means that the choice-confirming value that D expects to derive

from selecting Option (II) is as follows:

=EV x µ x E u x dx( ) ( )( ( )) .II

Q x
X1

( )
choice
confirm

1 (21)

Case (II.b): Suppose that x1 ≥ cX.
If the first characteristic x2 of A2 is such that u(x2) > u(x1), then A2

is a better choice than A1 and Ā. Hence, A1, corresponding to D’s choice
absent the new information, would be a regrettable choice.

Thus, we can compute the regret-preventing value that D expects to
derive from selecting Option (II) as follows:

=
+

EV x µ x u x u x dx( ) ( )( ( ) ( )) .II

Q x
1

( )
1regret

prevent
1 (22)

The fact that the first characteristic x2 of A2 is such that u(x2) < u
(x1) does not constitute valuable information regarding the complete
verification of any of the products. Indeed, the fact that u(x2) < u(x1)
does not suffice to state that A1 is a non-regrettable choice, since the
second characteristic of A1 could still transform A1 in a regrettable
option with respect to Ā. Similarly, A2 could be an optimal product for
a sufficiently high realization of the second characteristic. The im-
mediate value of the information follows from the partial confirmation
of A1 as the best potential alternative.

This leads to the following expression for the choice-confirming
value that D expects to derive from selecting Option (II):

=EV x µ x u x u x dx( ) ( )( ( ) ( )) .II

Q x
1

( )
1choice

confirm
1 (23)

Together with Definitions 2 and 3, Cases (II.a) and (II.b) above yield
the following proposition.
Proposition 4. Let x1 be the value observed by D for the first characteristic
of A1. Acquiring the information described by Option (II) is valuable from
both a regret-preventing and choice-confirming viewpoint. Furthermore,
given a regret level α ∈ [0, 1], the expected information value that D
associates to Option (II) is the weighted sum of the corresponding regret-
preventing and choice-confirming values, that is:

= +EV x EV x EV x( , ) · ( ) (1 )· ( )total
II II II1 1 1regret

prevent
choice
confirm (24)

where:

=
<

+

+

EV x
µ x u x E dx x c

µ x u x u x dx x c
( )

( )( ( ) ) , if

( )( ( ) ( )) , if
II Q x

X X

Q x
X

1
( )

1

( )
1 1

regret
prevent

1

1 (25)

Fig. 9. Whose recommendations are you most likely to trust when you have to choose between different products? Source: Statista Survey conducted online in the
United States from April 12 to 14, 2017. The sample consisted of 1052 respondents 18 years and older. Shop online at least once per year. Multiple answers were
possible.
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=
<

EV x
µ x E u x dx x c

µ x u x u x dx x c
( )

( )( ( )) , if

( )( ( ) ( )) , if
II Q x

X X

Q x
X

1
( )

1

( )
1 1

choice
confirm

1

1 (26)

7.3. Deciding between option (I) and option (II)

Letting the value x1 vary in X, +P x( )1 , P x( )1 , +Q x( )1 and Q x( )1 can
be interpreted as set-valued functions of the observed value x1.
Similarly, given a regret level α ∈ [0, 1], EV x( , )total

I
1 and EV x( , )total

II
1

define two expected information value functions that we will refer to as
“continuation” and “starting” functions subject to the regret level α.

By Propositions 3 and 4, it follows that the crossing points between
the graphs of the continuation and starting functions work as thresholds
defining the “optimal information gathering behaviour” for D. More
precisely, having fixed α ∈ [0, 1], if EV x EV x( , ) ( , )total

I
total
II

1 1 , then D
proceeds with the option delivering the highest expected value for the
information to acquire. If =EV x EV x( , ) ( , )total

I
total
II

1 1 , then D is actually
indifferent between Option (I) and Option (II); however, without loss of
generality, we can assume that D prefers Option (I) to Option (II). In
other words, D implements the following selection criterion.
Proposition 5. (Selection Criterion) Letα ∈ [0, 1] be the regret level
fixed by D. If x1 is the value observed by D for the first characteristic of A1,
then:

(a) EV x EV x D( , ) ( , ) selects Option (I)total
I

total
II

1 1
(b) <EV x EV x D( , ) ( , ) selects Option (II)total

I
total
II

1 1

Remark 3. In the case when = 1, EV x( , )total
I

1 and EV x( , )total
II

1
coincide with the expected information value functions defined by
Santos-Arteaga et al. [51]. Thus, the selection criterion presented by
Santos-Arteaga et al. [51] constitutes a particular case of Proposition 5,
that is, the case when D gives no importance to the choice-confirming
value of the information. ■

8. Numerical examples

Consider, as the basic reference case, the behavior of a risk neutral
DM when facing complete initial uncertainty, i.e. maximum informa-
tion entropy [58]. We will therefore assume throughout the numerical
examples presented in this section that D defines linear utility functions
and uniform probability densities both on X and Y. That is,

= =

= =

x X u x x µ x

y Y v y y y

, ( ) and ( ) ;

( ) and ( ) .
x x

y y

1

1
M m

M m

Recall that the regret value α ∈ [0, 1] is fixed by D and expresses the
relative importance that D assigns to the choice-confirming and regret-
preventing values that he expects from acquiring a new piece of in-
formation. Moreover, we should note that while risk neutrality con-
stitutes a plausible assumption in the standard decision models dealing
with regret, our formal framework allows for the inclusion of risk
averse and risk seeking DMs, an extension that could be based on
several of the many different factors affecting the behavior of D, ran-
ging from the amount of money being spent on a product to the trust
placed in the different sources of information.
Example 1. Fig. 10 shows the case where =X [0, 10] and =Y [0, 5],
which yield =c 5X and =c 2.5Y , respectively. In particular, Fig. 10(a)
provides a general perspective of the functions EV x( , )total

I
1 and

EV x( , )total
II

1 for different values of α and x1. Fig. 10(b) shows the
graphs of the continuation and starting functions when = 0 whose
intersection point is given by =x 3.96451 . Fig. 10(c) shows the graphs in
the case when = 0.5 with an intersection point at =x 2.51 . Fig. 10(d)
illustrates the graphs in the case when = 1: in this case, there is no

intersection point. ■

Note that as the value of α increases, i.e. as the subjective im-
portance assigned to the regret-preventing capacity of the information
increases, the continuation area vanishes. That is, observing the second
characteristic of an alternative does not provide as much value as
starting observing a new one when D assigns a relatively higher value to
prevent a regrettable choice. If, on the other hand, confirming a choice
gains relative importance for D, continuation becomes a reliable option,
particularly for lower realizations of the first characteristic so as to
verify whether the alternative considered should be discarded.

Additional intuition justifying this result can be obtained when
considering the spread of the interval on which the second character-
istic is defined relative to that of the first one. That is, in addition to the
value of α, the relative spread of the domains on which the character-
istics are defined determines the relative value of the information, as we
will illustrate through the following example.
Example 2. Fig. 11 shows the case where =X [0, 10] and =Y [0, 10],
which yield =c 5X and =c 5Y , respectively. In particular, Fig. 11(a)
provides a general perspective of the functions EV x( , )total

I
1 and

EV x( , )total
II

1 for different values of α and x1. Fig. 11(b), (c) and (d)
show the cases where = 0, = 0.5 and = 1, respectively. Note that
in all the three cases, the functions intersect at =x 51 , that is, the CE
reference value of the first characteristic. For realizations of the first
characteristic above cX both functions overlap. ■

The difference between the settings considered in the two examples
above is the increase in the spread of the second characteristic, leading
to a higher potential value of the continuation function. Note that the
starting function is identical in both settings, since the domain of X
remains unchanged. Thus, the value of information derived from
starting is the same in both cases. However, the higher spread defined
in the latter case leads to a larger continuation area for low values of α
and to indecision when the realization of x1 is above the CE value.

More in detail, the increase in the domain leads to a higher spread of
the continuation realizations through Y relative to the CE alternative. In
Example 1, the CE value equals + =c c 7.5X Y and the lowest and
highest potential realizations of an alternative are given by + =x y 0m m
and + =x y 15M M , respectively. This spread leads to a potential value
gain of 7.5 for the continuation function ( + + =x y c c( ) 7.5M M X Y
and + + =c c x y( ) 7.5X Y m m ). On the other hand, the value gain for
the starting function is equal to 5 ( =x c 5M X and =c x 5X m ).

Example 2 shows that an increase in the domain of the second
characteristic leads to an increase in the potential information value
obtained from continuing. That is, the new spread of Y leads to a po-
tential value gain of 10 for the continuation function, i.e.

+ + = =x y c c( ) 20 10 10M M X Y and + + =c c x y( )X Y m m
=10 0 10 . On the other hand, the domain of the first characteristic

defining the potential value gain derived from the starting function
remains unchanged. Thus, the increment in the relative value gain
derived from continuing determines the shift of the corresponding
function in Fig. 11.
Example 3. Fig. 12 validates the previous results by describing the case
where =X [0, 10] and =Y [0, 20], which yield =c 5X and =c 10Y ,
respectively. In this case, the spread of Y leads to a potential value gain
of 15 for the continuation function, i.e.

+ + = =x y c c( ) 30 15 15M M X Y and + + =c c x y( )X Y m m
=15 0 15 . Note how continuation dominates starting throughout

the whole set of figures, with Fig. 12(d) illustrating the intersection
point between both functions at =x 2.07111 when = 1. ■

All in all, the incentives of the DMs in terms of value of information
have been shown to be directly determined by the subjective im-
portance assigned to the choice-confirming and regret-preventing ca-
pacity of the information together with the spread of the potential
realizations of the characteristics defining the alternatives. Note also
that, Example 2, where =X [0, 10] and =Y [0, 10], displays a
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considerable area of indecision arising from the selection criterion. This
result can be used to explain the incapacity of DMs to make actual real
life choices when the realizations observed are above the reference
values [59].

Finally, inaction, namely, the decision of not acquiring any in-
formation and selecting the best alternative available, will be explicitly
considered among the potential options arising when evaluating a given
decision. In this case, the anticipated emotions associated with a given
alternative do not define a comparison between continuing acquiring
information on a product and starting acquiring information on a new
one, but between acquiring and not acquiring information. In all these
scenarios, the expected value derived from either acquiring or not ac-
quiring information is determined by the realization of x1 observed.
Proposition 6. Let x1 be the value observed by D for the first characteristic
of A1. Deciding whether to purchase the alternative observed or randomly
select a new one without acquiring any additional information delivers either
a positive gain from a correct decision or a negative loss from a regrettable
one. Furthermore, given a regret level α ∈ [0, 1], the expected value that D
associates to the inaction alternative is the weighted value from both

potential outcomes:

=EV x EV x EV x( , ) (1 )· ( ) · ( )total
Inact

1 1 1choice
utility

regret
loss (27)

where:

=
+ <

+

+
+

EV x
u x P x v y dy E E x c

E E u x P x v y dy x c
( )

( ) ( ( )) ( ) , if

( ) ( ( )) ( ) , if
P x

X Y X

X Y
P x

X
1

1
( )

1 1

1
( )

1 1
regret
loss

1

1

(28)

=
+ <

+ +
+

EV x
E E u x P x v y dy x c

u x P x v y dy E E x c
( )

( ) ( ( )) ( ) , if

( ) ( ( )) ( ) , if

X Y
P x

X

P x
X Y X

1

1
( )

1 1

1
( )

1 1
choice
utility

1

1

(29)

with =+P x( ( )) x1
1
1
, and =P x( ( )) x x1

1
M 1

, defined over the domains
of the +P x( )1 and P x( )1 sets, respectively.

Fig. 10. The expected information value functions EV x( , )total
I

1 and EV x( , )total
II

1 when =X [0, 10] and =Y [0, 5].
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The intuitive interpretation of Proposition 6 is straightforward. In
the case where x1 < cX, D selects a random alternative since it delivers
a higher expected utility than the one observed. As a result, the ex-
pected value from inaction consists of the potential gain derived from
confirming the avoidance of an inferior alternative minus the regret
from having foregone a superior one. On the other hand, if x1 ≥ cX,
then D selects the alternative observed since it delivers a higher ex-
pected utility than a randomly chosen one. As in the x1 < cX case, the
expected value from inaction consists of the potential gain from having
selected a superior alternative minus the regret from having selected an
inferior one. Note that, in both cases, the utility assigned to the partially
observed alternative is defined in expected terms, since inaction implies
that D does not acquire any additional information.

Fig. 13 presents the consequences from introducing the inaction
alternative within the =X [0, 10] and =Y [0, 10] framework. Fig. 13(a)
illustrates how the expected value of inaction decreases as the sub-
jective importance of regret increases, a result that follows intuitively
from Eq. (27). More importantly, Fig. 13(b) shows that inaction con-
stitutes a preferred alternative whenever = 0, i.e. when D does not
regard the prevention of regret as an important determinant of his

decisions. As described in Fig. 13(c) and (d), inaction is not considered
by D whenever α > 0.5. Thus, D may decide not to acquire any in-
formation when assigning a sufficiently low importance to its regret-
preventing value. In other words, if D trusts the source of information,
he may decide not to acquire any additional information when selecting
(or ignoring) a given alternative.

9. Conclusion

We have defined a novel information acquisition model that in-
corporates the influence of positive and negative anticipated emotions
in the evaluation and selection incentives of DMs. The model has been
designed to account for the subjective relative importance assigned by
the DMs to the verification and regret value of information. We have
also illustrated how the incentives defining the sequential information
retrieval process of DMs are affected by the relative width of the do-
mains on which the different characteristics describing the alternatives
are defined.

The strategic side of the model becomes evident when considering
the fact that the attitude of DMs towards receiving advice, the trust

Fig. 11. The expected information value functions EV x( , )total
I

1 and EV x( , )total
II

1 when =X [0, 10] and =Y [0, 10].
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placed in the information source and its perceived usefulness all de-
termine the intention of DMs to follow a given advice [8]. From a
purely applied perspective, it is known that a strategic component is
inherent to most rating sites and the methods they implemented to
build trust [27]. The use of biased reviews allows for the manipulation
of DMs, with the resulting consequences being substantial and mea-
surable [43].

Consider, for instance, the results obtained in the current paper
regarding the variability of the second characteristic relative to the first
one and its potential effects on the information acquisition incentives of
DMs. While not guaranteeing the final purchase of a product, exploiting
the variability of the second characteristic strategically would allow
information providers to capture the process of information acquisition
within a given subset of products.

Moreover, instead of a precise account of all the combinations ex-
isting within the domains of the different characteristics, heuristic ap-
proximations to the computations that must be performed by the DMs
could be introduced in future extensions of the current paper. This
would help highlighting the cognitive limitations of DMs and the po-
tential differences in search behavior that may arise across normative
settings.

It should be noted that, given the overload of free information faced
by DMs, we have not explicitly defined any information acquisition
cost. However, the limited capacity of DMs to assimilate information
could constrain the total amount of information expected to be ac-
quired. This constraint would modify the resulting information retrieval
incentives of DMs. A similar setting would result from endowing the
DMs with basic memory capacities through the sequential information
retrieval process. Note also that our model can account for different
attitudes towards risk on the side of the DMs and modifications in their
subjective evaluations and beliefs as information is acquired, providing
several potential scenarios to define dynamic extensions of the model.

For instance, a scenario that could be analyzed in future research is
the case where anticipated regret increases as the DM observes an al-
ternative delivering a similar level of utility to a previously observed
one taken as a reference. In this case, the value of α could be defined in
terms of the first characteristic of the (partially or fully observed) al-
ternative delivering the highest utility to the DM, x *1 . Such alternative
would be initially given by the certainty equivalent one, i.e. Ā. This will
be the case until the DM observes an alternative satisfying either

+ > +u x v y E E( *) ( *) X Y1 1 or + > +u x E E E( *) Y X Y1 . We could therefore

define =x( *) x x
x x1 *

M

M
1 1

1 1
for x x *1 1 , and =x( *) x x

x x1 *

m
m

1 1
1 1

for <x x *1 1 , with

Fig. 12. The expected information value functions EV x( , )total
I

1 and EV x( , )total
II

1 when =X [0, 10] and =Y [0, 20].
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x1 denoting the first characteristic of the alternative being observed.
Note that incorporating this modification requires defining a dynamic
evaluation process for the DM based on the set of previously observed
alternatives. More importantly, the incorporation of this type of ex-
tensions to the model would allow us to generate potential classifica-
tions of the DMs that could be implemented in real-life environments so
as to cluster them and extrapolate their behavior based, for example, on
their attitudes towards risk, learning capacities, and trust on the in-
formation sources.
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