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A B S T R A C T

RESTART is a widely applicable accelerated simulation technique that allows the evaluation of extremely low
probabilities. In this method a number of retrials (or paths) are made when the process reaches certain
thresholds of a function of the system state, called the importance function. In RESTART with prolonged retrials,
all but one path are cut when they drop several thresholds (rather than when they down-cross the threshold that
they started from). The only path that continues collects the weight of the cut paths to keep the estimator
unbiased.

In this paper a theoretical analysis of this version of the method is made. First the variances of RESTART with
prolonged retrials for different degrees of prolongation are compared. Then, formulas for the computational
costs of these variants are derived. It is shown that by prolonging the retrials by one or two thresholds, a
significant reduction of variance with respect to RESTART is obtained in models where many thresholds can be
set (for example, in communication network models). This is attained with a similar or small additional com-
putational cost per sample, so that the gain obtained may even exceed 50%. This gain, which is achieved with no
additional effort, illustrates the interest of applying these variants. Greater degrees of prolongation are not
advisable because, as the formulas show, any additional reduction of variance is small and does not compensate
the additional cost per sample. This would explain the bad behaviour of standard Splitting compared with
RESTART.

1. Introduction

The estimation of extremely small but important probabilities is of
great interest in many fields. In most of the rare event problems, the
estimation based on the mathematical model cannot be made analyti-
cally due to the complexity of the model. Although simulation is an
effective means of studying such systems, variance reduction techni-
ques are necessary because standard discrete event simulations require
prohibitive runtimes for the accurate estimation of very low prob-
abilities.

Importance Sampling and RESTART/Splitting are the two main
groups of methods for rare event simulation. Standard splitting (from
now on simply “Splitting”) was described in Kahn and Harris [10]
without deriving the parameters of the method. Villén-Altamirano and
Villén-Altamirano [16] proposed RESTART (Repetitive Simulation
Trials After Reaching Thresholds) with one threshold and made a the-
oretical analysis that yields the variance of the estimator and the op-
timal number of retrials. The method was extended to multiple
thresholds in Villén-Altamirano et al. [15]. A rigorous analysis of
multiple thresholds was made by Villén-Altamirano and Villén-

Altamirano [18] and optimal values for thresholds and the number of
retrials that maximize the gain obtained were derived. RESTART/
Splitting is increasingly used in a variety of fields and has been studied
extensively in the last two decades. Examples of recent applications are:
loss probabilities in queuing networks, (e.g., [9,14]), failure prob-
abilities in ultra-reliable systems, (e.g., [12, 21], probability of a pro-
cess escaping from a neighbourhood of a metastable state, (e.g., [4,11]),
probabilities of potential wake encounters in air traffic management
(e.g., [20]), etc. Many methods that have appeared in the literature
could be considered variants of RESTART or Splitting: Subset Simula-
tion with Splitting in mechanical engineering [6], Forward Flux Sam-
pling in biochemical networks [1], Path Sampling [11], Adaptive
multilevel splitting [2,5], Generalized multilevel splitting [3], genea-
logical particle analysis [7], etc.

In Splitting and RESTART a more frequent occurrence of a formerly
rare event is achieved by performing a number of simulation retrials (or
paths) when the process enters regions of the state space where the
importance is greater, i.e., regions where the chance of occurrence of
the rare event is higher. These regions are defined by comparing the
value taken by a function of the system state, the importance function,
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with certain thresholds. In RESTART all but one path are cut when they
down-cross the threshold where they were generated and new sets of
retrials are made if the trial that continues up-crosses again that
threshold. In Splitting [10], all the paths continue until the end-of-si-
mulation condition is fulfilled but retrials are not performed if one of
these trials up-crosses the threshold where the trial was generated. In
RESTART with prolonged retrials, all but one the paths are cut when
they drop several thresholds (instead of being cut when they down-
cross the threshold that they started from), [14]. New sets of retrials are
made if the only path that continues after the down-cross, then up-
crosses the threshold where it was generated. This variant is studied
because RESTART has greater variance than Splitting since the number
of paths that reach a given level is more variable and the retrials are
slightly more positively correlated since they are shorter. This corre-
lation, due to the common history that the retrials share, decreases as
their lengths increase. However, the computational cost is much greater
with Splitting because much time is wasted simulating unpromising
trials, and the product between variance and computational cost is also
greater. If the retrials of RESTART are prolonged, the variance of the
estimator decreases and the computational cost increases after a certain
degree of prolongation, and so it is interesting to study the optimal
degree of prolongation.

This variant of RESTART was introduced in Villén-Altamirano and
Villén-Altamirano [17], where it was called RESTART with Hysteresis
and an analysis of the computational cost was made for the case of only
one intermediate threshold. In Villén-Altamirano et al. [15], the
method was extended to multiple thresholds without further analysis.
In Garvels [8] it was called RESTART with truncation, but no theore-
tical analysis was made. In the simulation study of Villén-Altamirano
[14], a better behaviour of RESTART with some degree of prolonged
retrials with respect to RESTART was observed in some systems. The
need of a theoretical analysis that allows optimizing the degree of
prolongation of the paths, as well as the type of systems to which it can
be applied, motivated this article. In this paper we calculate both the
variance of the estimators and the computational costs and compare the
product between variance and computational cost of RESTART with
different degrees of prolonged retrials.

The paper is organized as follows: Section 2 presents a review of the
methods. Sections 3 and 4 provide a comparison of variances and costs,
respectively. Section 5 describes a simulation example and Section 6
states the conclusions.

2. Description of RESTART and RESTART with prolonged retrials

RESTART has been described in detail in several papers (e.g., [18]
and [13,19] and [14]). Nevertheless it is described here in order to
make this paper more self-contained. This paper also describes the
version involving prolonged retrials.

Let Ω denote the state space of a process X(t) and A the rare set
whose probability must be estimated. A nested sequence of sets of states
Ci, (C1⊃C2⊃, , ⊃Cm) is defined, which determines the partitioning of
the state space Ω into regions Ci −Ci+1; the higher the value of i, the
greater the importance of the region Ci −Ci+1. The sets Ci are defined
by means of a function, Φ:Ω→ℜ, called the importance function.
Thresholds Ti, 1≤ i≤M of Φ are defined so that each set Ci is asso-
ciated with Φ≥ Ti. Two events, Bi and Di, are defined as follows:

Bi: event at which Φ≥ Ti having been Φ< Ti at the previous event,
that is, the event at which the process enters set Ci (up-crossing
threshold Ti). This definition is only valid for RESTART.

Di: event at which Φ< Ti having been Φ≥ Ti at the previous event,
that is, event at which the process leaves set Ci (down-crossing
threshold Ti).

RESTART works as follows:

• A simulation path, called the main trial, is performed as if it were a
crude simulation. It lasts until it reaches a predefined “end-of-

simulation” condition.

• Each time an event B1 occurs in the main trial, the system state is
saved and R1 − 1 retrials of level 1 are performed. Each retrial of
level 1 is a simulation path that starts with the state saved at B1 and
finishes when an event D1 occurs.

• After the R1 − 1 retrials of level 1 have been performed, the main
trial continues from the state saved at B1. Note that the total number
of simulated paths [B1, D1), including the portion [B1, D1) of the
main trial, is R1. Each of these R1 paths is called a trial [B1, D1). The
main trial, which continues after D1, leads to new sets of retrials of
level 1 if new events B1 occur.

• Ri trials [Bi, Di) (1≤ i≤M) are performed each time an event Bi

occurs in a trial [Bi-1, Di-1). The number Ri is constant for each value
of i.

In RESTART with prolonged retrials of depth (or degree) j,
RESTART-Pj, each of the Ri − 1 retrials of level i is a simulation path
[Bi, Di−j) that also starts with the state saved at Bi but finishes when it
leaves set Ci−j; that is, it continues until it down-crosses the threshold
i− j. If one of these trials again up-crosses the threshold where it was
generated (or any other between i− j+1 and i) a new set of retrials is
not performed and that event is not considered an event Bi. If j≥ i, the
retrials are cut when they reach the threshold 0. The main trial, which
continues after leaving set Ci−j, potentially leads to new events Bi and
so, to new sets of retrials, if it up-crosses threshold Ti after having left
set Ci−j. If the main trial reaches the threshold 0, it collects the weight
of all the retrials (which has been cut at that threshold) and thus, new
sets of retrials of level 1 are performed next time the main trial up-
crosses threshold T1. Note that RESTART and Splitting could be con-
sidered as particular cases of RESTART with prolonged retrials of depth
j, for j=0 and j=M, respectively.

Fig. 1 illustrates a RESTART-P1 simulation with M=2, R1 = 3,
R2 = 2, in which the chosen importance function Φ also defines set A as
Φ ≥ L.

Some more notation: ([18] and [19])

• = ∏ ≤ ≤=r R i M, 1i j
i

j1 : accumulative number of trials;

• R0 = 1, r0 = 1, C0 = Ω, CM+1=A;

• ≤ ≤ ≤ +P i h M(0 1)h i/ : probability of set Ch, knowing that the
system is in a state of set Ci. As Ch ⊂ Ci, =P C CPr{ }/Pr{ }h i h i/ ;

• = +P PA i M i/ 1/ ;

• = = =+P P P APr{ }M A1/0 /0 ;

• NA: total number of events A that occur in the simulation (in the
main trial or in any retrial);

• ≤ ≤N i M(1 )i
0 : number of events Bi that occur in the main trial;

• N: number of events simulated in the main trial;

• ai (1≤ i≤M): expected number of events in a trial [Bi, Di);

• Xi (1≤ i≤M): random variable indicating the state of the system at

Fig. 1. Simulation with RESTART-P1.
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an event Bi;

• Ωi (1≤ i≤M): set of possible system states at an event Bi;

• ≤ ≤P i M* (1 )A X/ i : importance of state Xi, defined as the expected
number of events A in a trial [Bi, Di) when the system state at Bi is Xi.
Note that P*A X/ i is also a random variable which takes the va-
lue P*A x/ iwhen Xi = xi;

• ≤ ≤P i M* (1 )A i/ : expected importance of an event Bi:

∫= =[ ]P E P P dF x* * * ( ),A i A X A x i/ / Ω /i i i

where F(xi) is the distribution function of Xi. Note that: =P a P* ·A i i A i/ / ;

• ≤ ≤( )V P i M* (1 ):A X/ i variance of the importance of an event Bi:

= −( ) [ ( ) ]V P E P P* * *A X A X A i/ / /
2

i i

Set A is defined as Φ ≥ L for the remainder of the work. The esti-
mator of P is given by:

=P N
N r

^
·

A

M

3. Comparison of the variance of the estimators

As =P a P* ·A i i A i/ / , the variance of P̂ in a RESTART simulation with M
thresholds derived in Villén-Altamirano and Villén-Altamirano [18] can
be written as:

∑= ⎛

⎝
⎜ +

− ⎞

⎠
⎟

=

V P K P
N r

s P R
r

( ^) 1 * ( 1)
,A

M i

M
i A i i

i1

/

(1)

with

⎜ ⎟= ⎛
⎝

′ + ⎞
⎠

≤ ≤s
K

K
V P

P
γ i M1 ( * )

( * )
(1 ),i

A
i

A X

A i
i

/

/
2
i

(2)

where ′ =K V N E N( )/ [ ]i i i
0 0 . The formula for si used in this work differs

from that in Villén-Altamirano and Villén-Altamirano [18] precisely by
the factor ai.

As mentioned in the above paper, factor ′Ki is a measure of the
autocorrelation of the process of the occurrence of events Bi in the main
trial. If the process is uncorrelated, ′Ki is close to 1. In most applications,
the process has a weak positive autocorrelation. As shown in Villén-
Altamirano and Villén-Altamirano [17], ′Ki decreases slightly as the
prolongation of the retrials increases, because the distance between
events Bi is greater since there are fewer Bi events. KA is the same as ′Ki
but related to events A and it is not affected by the prolongation of the
retrials because the expected number of events A is the same for any
degree of prolongation of the retrials. Factor γi is a measure of the
dependence of the importance of the system states Xi on events Bi oc-
curring in the main trial. There may be some dependence between
system states of close events Bi but this dependence is negligible for
distant events Bi. γi is usually close to 1 and decreases very slightly as
the retrials are prolonged, for the same reason given for ′Ki . First we
will compare the variances of the estimators of P with RESTART and
RESTART-P1, then the variances with RESTART-P1 and RESTART-P2
and so on. In Section 4, the computational costs of the methods will be
compared.

Let us use αi to denote ≤ ≤P i M* (1 )A X/ i , that is, the importance of
state Xi, defined as the expected number of events A in a trial [Bi, Di)
when the system state at Bi is Xi. Let βi, γi and δi denote the expected
number of events A when the system state at Bi is Xi, but in trials [Bi,
Di−1), [Bi, Di−2) and [Bi, Di−3) respectively.

The variance of P̂ in a RESTART-P1 simulation is also given by

Eq. (1) but changing =s P s E α* [ ]i A i i i/ by s1iE[βi], with

⎜ ⎟= ⎛
⎝

′ + ⎞
⎠

≤ ≤s
K

K
V β
E β

γ i M1 ( )
( [ ])

(1 ),i
A

i
i

i
i1 1 2 1

where ′ =K V N E N( )/ [ ]i i i1
0 0 . Note that formulas of ′K i1 and γ1i are the

same as those for ′Ki and γi, respectively, but their values are different
because Ni

0, the number of events Bi that occur in the main trial, is
lower with RESTART-P1 than with RESTART.

The variance of P̂ in a RESTART-Pj simulation, for j > 1, is defined
analogously.

3.1. Comparison of the variances with RESTART and RESTART-P1

In most cases the dependence of the system states at two con-
secutive events Bi is very weak. Although it is possible to find some
cases with significant dependence (e.g., systems that exhibit multi-
modal behaviour), we will consider for the analysis that they are in-
dependent. If a trial down-crosses threshold Ti and then up-crosses the
same threshold, before down-crossing threshold Ti−1, a new event Bi

occurs (observe that it is an event Bi of RESTART, but not of RESTART-
P1) and the expected number of events A in the new [Bi, Di) interval is
P*A i/ because we will assume that the system state of Bi can be any state
of Ωi (1≤ i≤M). With this assumption, as βi denotes the expected
number of events A in trials [Bi, Di−1) when the system state at Bi is Xi,
βi is αi plus the expected number of events A in the new [Bi, Di) inter-
vals: = + −β α m P( 1) *i i X A i/i , where mXidenotes the expected number of
[Bi, Di) intervals in a [Bi, Di−1) interval when the system state of the
starting event Bi is Xi; Thus:

= + − =
= − + − ≃

E β E α m P m P
V β E α P m m P V P

[ ] [ ( 1) * ] *
( ) [( * ( ) * ) ] ( * )

.i i X A i i A i

i i A i X i A i A X

/ /

/ /
2

/

i

i i (3)

Note that mXi is a random variable because it depends on the system
state Xi at the starting event Bi and =m E m[ ]i Xi . As this dependence is
very weak, all the values mXi are similar and the approximation
(mXi = mi) made in Eq. (3) is accurate, as we will see below. If the
importance function is well chosen, all the system states Xi have similar
importance, that is, the expected number of events A in a [Bi, Di) in-
terval is similar for the possible system states Xi at Bi. In this case, the
expected number of events Bi+1 in a [Bi, Di) interval is even more si-
milar because the expected number of events A in different [Bi, Di)
intervals is even more similar than the expected number of events A.
This is because in a [Bi+1, Di) interval, the latter is (similar but) not the
same for all posible system states Xi+1 at Bi+1. Following analogous
reasoning, the expected number of events Bi in a [Bi, Di−1) interval is
more similar than the expected number of events A in that interval. This
means that −m m( )X ii is lower than −α P( * )i A i/ in Eq. (3). As −m m( )X ii
is multiplied by P*A i/ , a number less than one (much smaller than one if
the threshold Ti is not close to the threshold L), the product

−m m P( ) *X i A i/i is negligible compared to −α P( * )i A i/ . The above rea-
soning is also valid if the importance function is poorly chosen, but the
approximation made in Eq. (3) may even be more accurate. For ex-
ample, for any Jackson network the few system states for which mXi is
different are those states for which one or more queues (except the
target) are empty. If the network has many nodes, mXi is significative
different only if several queues are empty. In the two-queue tandem
network example of Section 5, the only system state with different value
of mXi is the state (0, Tk) for which mXi is smaller than mi. It is not
necessary that states Xi have similar importance. In that tandem queue
of Section 5 if a very bad importance function, =φ q2 is chosen, the
states (100, 20) and (3, 20), for example, are in the same importance
region though the first one has much more importance than the second.
However, the value of mXiis the same for both states. Also, the only
system state with different value of mXi is the state (0, 20). In these
systems −α P( * )i A i/ is very large and −m m P( ) *X i A i/i very small. The
previous analysis can be extended to most non-Jackson networks, but it
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is difficult to ensure that the approximation is so much accurate for any
system if the importance function is poorly chosen. In systems that
exhibit multimodal behaviour the approximation may be less accurate.

We compare the products s P*i A i/ and s1iE[βi] with RESTART and
RESTART-P1, respectively because the other terms of Eq. (1) are the
same in both methods.

=
′ +

′ +
=

′ +

′ +

s P
s E β

K γ

m K γ
m

K γ

m K γ

*
[ ]

.i A i

i i

i
V P

P i

i i
V P

m P i

i

i
V P

P i

i i
V P

P i

/

1

( * )

( * )

1
( * )

( * ) 1

( * )

( * )

2
1

( * )

( * ) 1

A Xi

A i

A Xi
i A i

A Xi

A i

A Xi

A i

/

/
2

/

/
2

/

/
2

/

/
2 (4)

If there is only one system state at each Bi or if all the system states
at each Bi have the same importance, then =V P( * ) 0A X/ i and

=
′

′
s P

s E β
K

K m
*
[ ]

i A i

i i

i

i i

/

1 1 (5)

As mentioned above, factor ′Ki decreases slightly as the prolongation
of the retrials increases. This implies that ′ < ′K Ki i1 . This inequality can
also be proved in the following way: For each event Bi with RESTART-
P1, there are

⊥
mi events Bi with RESTART, where

⊥
mi is the random

variable “number of [Bi, Di) intervals with RESTART in a [Bi, Di−1)
interval”. Let us use here N i1

0 to denote Ni
0 with RESTART-P1. So, we

have =
⊥

N N m·i i i
0

1
0 and =E N E N m[ ] [ ]·i i i

0
1
0 , because N i1

0 and
⊥

mi can be
considered independent random variables.

= = + +⊥ ⊥ ⊥V N V N m V N m V m E N V N V m( ) ( · ) ( ) ( )( [ ] ) ( )· ( )i i i i i i i i i
0

1
0

1
0 2

1
0 2

1
0

Thus,

′ = ′ + +⊥ ⊥K K m V m E N m V N V m E N m· ( )· [ ]/ ( )· ( )/ [ · ]i i i i i i i i i i1 1
0

1
0

1
0

As mi > 1 and the other summands of the equation are positive, it is
proven that ′ < ′K Ki i1 .

As the variance in the number of retrials is lower with RESTART-P1
than with RESTART, the ratio (5) is expected to be greater than 1. In
several simulations made with the M/M/1 queue taking thresholds as
close as possible, this ratio was around 1.05. However, in the example
of the M/M/1 queue shown in Villén-Altamirano [14] the ratio was
1.14 due to the greater distance between thresholds. So, ′ < ′m K Ki i i1 but

′m Ki i
2

1 will probably be greater than ′Ki (slightly greater if mi is small).
Although γiis very slightly greater than γ1i, the ratio of s P*i A i/ to s1iE[βi]
in Eq. (4) will almost certainly be smaller than mi, and it will be closer
to mi as mi becomes closer to 1. Due to the term 1/rM in Eq. (1), which is
of the same order of magnitude as the other summands of the equation,
the ratio between the variances of the estimators (RESTART/RESTART-
P1) is slightly smaller than the ratio given in (4).

To gain insight into the possible values of mi, we define the fol-
lowing probability: “If a trial enters a region Ci−1− Ci, after down-
crossing threshold Ti we define pi as the expected probability of down-
crossing threshold Ti−1 before up-crossing threshold Ti”. Actually, the
probability of down-crossing depends on the entrance state to the re-
gion Ci−1− Ci, and so pi is defined as the expected probability.

Let us now take a look at the distribution of
⊥

mi = number of [Bi, Di)

intervals in a [Bi, Di−1) interval. The random variable
⊥

mi takes the

values 1, 2,… with probabilities: Pr(
⊥

mi = 1) =pi,…, Pr

(
⊥

mi = n) = (1− pi)n−1 pi. As
⊥

mi follows a geometric distribution,

= =⊥m E m
p

[ ] 1 .i i
i (6)

3.2. Comparison of the variances with RESTART-P1 and RESTART-P2

As in the previous section, we shall denote the expected number of
[Bi, Di−1) intervals in a [Bi, Di−2) interval, when the system state of the
starting event Bi is Xi, as m X1 i.

= + − =

= − + − ≃
( )

( )
E γ E β m E β m E β

V γ E β E β m m E β V β

[ ] [ 1 [ ]] [ ]

( ) [ [ ] [ ]] ( )
.i i X i i i

i i i X i i i

1 1

1 1
2

i

i

As before, m X1 i is a random variable because it depends on the
system state Xi in the starting event Bi and = [ ]m E mi X1 1 i . Giving the
terms s2i, ′K i2 and γ2i to denote factors si, ′Ki and γi corresponding to
RESTART-P2, we have:

=
′ +

′ +

s E β
s E γ

m
K γ
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V β
E β i

i i
V β
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1

2
1

1
( )

( [ ]) 1

1
2

2
( )

( [ ]) 2

i

i

i

i

2

2

In several simulations made with the M/M/1 queue taking thresh-
olds that are as close as possible, and also in the example of Villén-
Altamirano [14], this ratio was around 1.04. As before, the ratio of
variances of the estimators with RESTART-P1 and RESTART-P2 will be
close to m1i, and almost certainly slightly smaller.

To simplify the notation, henceforth we will assume that pi = p,
mi = m and m1i = m1 for all the regions Ci− Ci+1. This assumption is
used to calculate m1 as a function of p and does not affect the results of
the comparison. The random variable ⊥m1 = number of [Bi, Di−1) in-
tervals in a [Bi, Di−2) interval has the following distribution:

= = + − + − + ⋯=⊥
− +

m p p p p pPr( 1) (1 ) (1 ) p
p p1

2 2 3
1 2 . Analogously:

= =⊥ −
− +

mPr( 2) p p
p p1

(1 )
(1 )

2

2 2 ,…, = =⊥ −
− +

−
m nPr( ) p p

p p1
(1 )
(1 )

n

n

2( 1)

2 . ⊥m1 thus also fol-
lows a geometric distribution but with parameter p/(1− p+ p2), so:

= =
− +⊥m E m

p p
p

[ ]
1

.1 1

2

(7)

In Eq. (7) it is assumed that p is the expected probability of down-
crossing threshold Ti−1 before up-crossing threshold Ti, not only when a
trial enters a region Ci−1− Ci, after down-crossing threshold Ti but also
when they enter that region after up-crossing threshold Ti−1. If we
define p’ as the expected probability of the latter case,

= = + − ′ + − ′ + =⊥
− ′ + ′m p p p p p p pPr( 1) (1 ) (1 ) ( ) ... p

p pp1
2 2

1 ,… and:

= =
− ′ + ′⊥m E m

p pp
p

[ ]
1

.1 1 (8)

3.3. Comparison of the variances with RESTART-P2, RESTART-P3 and
RESTART-P4

As before, the ratio between variances with RESTART-P2 and
RESTART-P3 is close to m2, which is defined as the expected number of
[Bi, Di−2) intervals in a [Bi, Di−3) interval when the system state of the
starting event Bi is Xi. Such number of intervals also follows a geometric
distribution and:

=
− ′ + ′ + ′ − ′ + ′

− ′ + ′
m

p pp p p p p p
p pp p p

1 2 ( ) ( )
.2

2 2 2

2 (9)

If p= p’:

=
− +
− +

m
p p

p p p
1 2 2

.2

2

2 3 (10)

Analogously, the ratio between variances with RESTART-P3 and
RESTART-P4 is close to:

=

− ′ + ′ + ′ − ′ + ′ − ′ − ′

+ ′ + ′
− ′ + ′ + ′ − ′ + ′

m

p pp p p p p p p p p

p p p p
p pp p p p p p p p p

1 3 3( ) 2 ( ) ( ) ( )

( )
2 ( ) ( )

.3

2 2 2 2 2 3

3 3

2 2 2 2 3 (11)

If p= p’:

=
− + − +

− +
m

p p p p
p p p

1 3 4 2
2 2

.3

2 3 4

2 3 (12)

We can see the numerical values of m, m1, m2 and m3 in two prac-
tical cases. The first one corresponds to applications in which there are
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no restrictions to setting as many thresholds as possible, as is usual in
the study of communication networks. This setting is the optimal one
and leads to relatively high values of (1− p). For example in a M/M/1
queue with arrival rate equal to 1, service rate equal to 2 and thresholds
at 1,2, 3,…, L−1, the values of p and p’ are 2/3 and the values of m, m1,
m2 and m3 are 1.50, 1.17, 1.07 and 1.03, respectively. The second case
corresponds to applications in which it is not possible to set many
thresholds. If p=0.99, the value of m is 1.01 and the rest are greater
than one only by fractions on the order of 10−4 and lower. The second
case is common in reliability studies, such as the study of the Highly
Reliable Markovian System (HRMS) made in Villén-Altamirano [14].
This model is often used to represent the evolution of multi-component
systems in reliability settings. In the HRMS model, the system has c
types of component, with ni identical components of type i. The system
works if at least ri components of each type i work. In the simplest case,
c=1, the importance function is φ (t) = Number of components failed
at time t. As the thresholds are associated to failures of components, the
maximum number of thresholds that can be set are n − r. In the first
example of that paper two cases were studied, n=5, r=1 and n=10,
r=1 and the unavailabilities obtained were of the order of E-13 and E-
24, respectively. As we can set only 4 thresholds if n=5 and 9
thresholds if n=10, the distances between thresholds, Pi/i−1, are much
lower than 0.01 for all i, and so p is greater than 0.99. If c > 1, the
importance function is: φ (t) = MaxI {Number of components of type i
failed at time t /(ni − ri + 1)}. In the mentioned paper, an example
with c=6 was also studied and only 8 thresholds could be set to es-
timate a probability of the order of E-20, and so the value of p was also
greater than 0.99.

In the first case, if we set as many thresholds as possible, the “dis-
tance” between two consecutive thresholds is Pi/i−1= 0.5, and the
optimal number of retrials is Ri = 1/Pi/i−1= 2, for all i. As Ri has to be
an integer number, Pi/i−1 must be 0.5 or lower. As Pi/i−1 decreases, p
and p’ increase and we observe in Eqs. (7)–(12) that the reduction of
variances decreases. For example if the service rate equal to 3 in this
queue, and the arrival rate and thresholds do not change, then Pi/
i−1= 1/3, Ri = 3 and p= p’ = ¾. The values of m, m1, m2 and m3 are
1.33, 1.08, 1.03 and 1.01, respectively, which are 11%, 8%, 4% and
2%, respectively, lower than before. In the reliability case, Pi/i−1 is
much smaller, so, R and p are much greater and all the methods have
similar variance.

We also observe that in the first case the reduction of variance of the
estimators is significant between RESTART and RESTART-P1, is lower
between RESTART-P1 and RESTART-P2 and decreases as the depth of
prolongation increases, becoming insignificant if we prolong the retrials
more than 3 or 4 thresholds. As Splitting can be defined as RESTART-
PM, the reduction of variance between Splitting and RESTART-P4 is
insignificant, as was observed in some examples of the simulation study
made in [14].

4. Comparison of the simulation costs of each method

Let X, Y denote the expected computational costs of simulating the
interval [Bi, Di−1) by applying RESTART and RESTART-P1, respectively
but only taking into account the costs of the region Ci−1− Ci+1. The
total expected computation costs of the methods are approximately M
times these values. Let c denote the expected computation cost of a trial
from when it enters a region Ci− Ci+1 until it leaves it. This cost c,
which is proportional to the expected number of events that occur in
that region, is assumed to be the same for all regions. This assumption
simplifies the comparison without affecting the results because it does
not favour or penalize any of the methods. Let XS, YS denote this type of
cost in the region Ci−1− Ci+1, and XR, YR the restoration costs, that is,
the costs associated with saving the system state when an event Bi oc-
curs and with restoring the system state and rescheduling the scheduled
events at each retrial. So, X=Xs+Xr; Y=Ys+Yr. To compare the
methods with deeper prolongation retrials, the expected costs of

simulating the intervals [Bi, Di−j), with j > 1 will be calculated.

4.1. Comparison of the simulation costs with RESTART and RESTART-P1

We calculate the expected cost of the R trials in the [Bi, Di−1) in-
terval. = + + + − + + −

+ ⋯= + ∑ −=
∞ −

X Rc c p Rc c p p Rc c p p

Rc c n p p

( ) 2( )(1 ) 3( )(1 )

( ) (1 )
s

n
n

2

1
1

.

= +X Rc c
p

( )
s

Note that each of the R trials counts c only once in the region
Ci− Ci+1 (term Rc), since if one of them hits threshold i+1, the cost c
which is accounted for is the cost of ascent, because the cost of descent
(after Di+1 occurs) is accounted for in the cost of the [Bi+1, Di) interval.
The term c of the first summand corresponds to the only trial that
continues after Di and this trial finishes with probability p if an event
Di−1 occurs. The product by the summation weighs these counts by
their corresponding probability of occurrence, accounting for the pos-
sibility that the main trial from Ci−1− Ci enters region Ci− Ci+1 again
by up-crossing threshold Ti. Analogously:

∑= + + − =
=

∞

Y Rc Rcp n p Rc
p

(2 1)(1 ) 2 .s
n

n

0 (13)

In this case the stochastic behaviour of the R trials is the same since
all of them continue after Di occurs. For each of the R trials an event
Di−1 occurs with probability p and there is a cost c of descent; with
probability (1− p) the trial enters the region Ci− Ci+1 and there is a
cost c of ascent to that region and a cost c of descent from it. This
process can occur infinite times before event Di−1 occurs with the
probabilities given in Eq. (13). Note that 2c/p is the expected simula-
tion cost of each trial.

To calculate the restoration costs Xr and Yr of the R retrials in the
interval [Bi, Di−1), let r denote the cost associated with saving/restoring
the system state and rescheduling the scheduled events at each retrial.
So:

∑= − =
=

∞
−X Rr n p p Rr

p
(1 ) .r

n

n

1

1

=Y Rrr , because new retrials of level i are not made with RESTART-
P1 although one of the trials hits threshold Ti after event Di occurs.
Thus:

=
+

+ +
Y
X

R Rp

R R

2

( 1)

c
r

c
r (14)

This ratio can be greater or smaller than one, depending on the
values of R, c, p and r. Moreover Y/X increases as c/r increases and if
r << c, the cost with RESTART-P1 is greater than with RESTART since
Y/X is close to 2R/(R+1). Y= X if c/r= R(1− p)/(R− 1). If r >> c,
Y/X is close to p and so the cost with RESTART-P1 is lower than with
RESTART. The value of r is smaller in Markovian than in non-
Markovian systems. The greater the number of thresholds set, the lower
the values of p, c and R. All these values will be estimated in the net-
work example of Section 5.

4.2. Comparison of the simulation costs with RESTART-P1 and RESTART-
P2

Let Y’, Z define the expected computational costs of simulating the
interval [Bi, Di−2) applying RESTART-P1 and RESTART-P2, respec-
tively. As in the previous section, Y’= Y’s + Y’r; Z= Zs + Zr, where the
indexes s and r refer to simulation and restoration costs, respectively.

To calculate Y’s and Zs, we use Eq. (13) of the simulation costs of the
interval [Bi, Di−1), calculated in the previous section.
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Observe that the only trial that continues after down-crossing
threshold i− 1, may up-cross the same threshold again with probability
(1− p) and then up-cross threshold i with probability (1− p’) (gen-
erating R retrials with a cost YS) or down-cross threshold i− 1 with
probability p’. Both cases give rise to an additional cost of 2c. If a given
trial has up-crossed threshold i− 1 n times, then n(1− p’) is the ex-
pected number of times that the trial will also up-cross threshold i.

Analogously:
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To calculate the expected restoration cost ′ = ′⊥[ ]Y E Yr r , we use:
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As ′⊥Yr follows a geometric distribution, ′ = − ′ + ′Y Rrr
p pp

p
1 .

These restoration costs could also be obtained using Markov chains.
We define four states of the chain A, B, C and D which correspond to
system states of the process in regions Ci, Ci−1− Ci, Ci−2− Ci−1 and
Ci−3− Ci−2, respectively. The state D is absorbent because the re-
storation costs are considered in the interval [Bi, Di−2). The transition
matrix is given by:

⎡

⎣

⎢
⎢
⎢

− ′ ′
−

⎤

⎦

⎥
⎥
⎥

p p
p p

0 0 1 0
1 0 0

0 1 0
0 0 0 1

The transition probability from state A to state C is one because if
the process returns to A visiting only state B, there are no new re-
storation costs, since no new event Bi occurs. According to Markov
chains theory, the average number of times that the process starting in
state A visits this state is given by:

− ′ + ′p pp
p

1 . So, ′Yr is obtained by multiplying this quantity by Rr.

If p= p’ then: ′ = − +Y Rrr
p p
p

1 2
.

This methodology will also be followed to obtain the restoration
costs in the following section. However it cannot be applied to calculate
the simulation costs Y’s because if the process returns to state A after
visiting state B the simulation costs will depend on the previous states
of the process. If the process has previously visited state C, retrials will
be made and so the simulation costs will be R times greater than if the
process had not visited C. Hence the process is not Markovian.

The restoration costs of RESTART-P2 are: =Z Rrr . Thus:

′
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+ +

+ +
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If p= p’ the same formula is obtained but replacing

− ′ + ′ − +p pp p p(1 ) by(1 )2 .

4.3. Comparison of the simulation costs with RESTART-P2 and RESTART-
P3

Let Z’ and T define the expected computational costs of simulating
the interval [Bi, Di−3) applying RESTART-P2 and RESTART-P3, re-
spectively. As in previous sections, ′ = ′ + ′Z Z Zs r ; T= Ts+ Tr. The for-
mulas of T and Z’ will be obtained for the case p= p’.

Let W denote the expected simulation costs from when a trial enters
region Ci−2− Ci−1 (up-crossing threshold i − 2 or down-crossing
threshold i − 1) until it down-crosses threshold i− 2. Then:

= + − − + +W c p Z p Wp c(1 )( (1 ) )s , where ZS is given by

Eq. (15). Thus: = − + −
− +

W Z p c p
p p

(1 ) (2 )
1

s 2

2 .

∑′ = + + + −

=
− + + − +

− +

=

∞

Z c n W c p p

Z p p c p p
p p p

(Z ) ( )(1 )

(1 2 2 ) (3 4 2 )
.

s s
n

n

s

1
2 2

2 3

Observe that the only trial that continues after down-crossing
threshold i − 2, may up-cross the same threshold with probability
(1− p) and that each time carries out such an up-crossing, the addi-
tional simulation cost is W.

Analogously:

=
− + + − +

− +
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Z p p Rc p p
p p p
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The restoration costs ′Zr are calculated using the methodology of
Markov chains, as explained in a previous section. In this case a new
state E which corresponds to system states of the process in region
Ci−4− Ci−3 is defined. This state is absorbent and state D is transient.
The transition matrix is given by:
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The restoration costs ′Zr are Rr multiplied by the average number of
times the process starting in state A visits that state:
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The restoration costs of RESTART-P3 are: =T Rrr . Thus:
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(17)

The formula of T/Z’ has not been obtained for the case p ≠ p’ but as
will be seen in the numerical example of Section 5, the results of Z/Y’
are similar whether p= p’ or whether p is 10 or 20% smaller than p’.

We can see the numerical values of the above ratios in the M/M/1
queue described at the end of Section 3.3, where p= p’=2/3 and
R=2. The value of Y/X is (4c/r+4/3)/(3c/r+2), the value of Z/Y’ is
(11c/r+2)/(9c/r+7/3) and the value of T/Z’ is (8.556c/r+1.037)/
(7.333c/r+1.111). If c= r, Y/X=1.07, Z/Y’= 1.15 and T/Z’= 1.14.
If c=2r, Y/X=1.17, Z/Y’ = 1.18 and T/Z’ = 1.15. If c=0.5r, Y/
X=0.95, Z/Y’ = 1.10 and T/Z’ = 1.11. Since c decreases as the
thresholds become closer to each other, the last case is the most realistic
one when many thresholds can be set. In this queue only one event
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(arrival or end of service) occurs in each region Ci− Ci+1 and so, c < r.
In the second case of this queue where p= p’ = 3/4 and R=3, if
c=0.5r, Y/X=1.05, Z/Y’ = 1.17 and T/Z’ = 1.16.

As can be seen, the ratio of the computational costs between
RESTART-Pi + 1 and RESTART-Pi increases as i increases, for realistic
values of the ratio c/r. This is an expected result because the higher the
value of i, the greater the possibility that the process will up and down
cross thresholds many times before all the paths (except one) are cut.
Hence, the ratio of the simulation costs (which is greater than 1) in-
creases. The ratio of the restoration costs (which is lower than 1) also
increases because the restoration costs significantly decrease when the
retrials are prolonged by one threshold; however, as more thresholds
are prolonged, the restoration costs decrease more slowly.

The gain obtained by RESTART-Pj with respect to RESTART is de-
fined as the ratio of the products between variance and computational
cost of RESTART and RESTART-Pj. It is interesting to study how the
gain changes with respect to the significant parameters of the method.
The figures of Table 1 are obtained with Eqs. (6), (7), (10), (14), (16),
and (17).

It is seen that the smaller the ratio c/r, the greater the gain when the
retrials are prolonged. This is because, as indicated above, if the retrials
are prolonged, the simulation costs increase and restoration costs are
reduced because there are fewer Bi events. Therefore, the greater the
costs of restoration in relation to those of simulation, the greater the
gain. With Markovian systems the restoration costs are lower than with
non-Markovian systems because the rescheduling is straightforward.
Hence, the gain obtained when the retrials are prolonged is greater with
non-Markovian systems.

By increasing R the gain decreases when the retrials are prolonged
since, as can be observed in the Eqs. (6), (7), (10), (14), (16), and (17),
the cost ratios between RESTART-Pi + 1 and RESTART-Pi increase
while the variances do not change. This decrease will be more sig-
nificant the longer the retrials last.

The value of p depends on both the system being simulated and the
distance between thresholds. Since p and Pi/i−1 are negatively corre-
lated, the increase in p produces the same effect as a decrease in Pi/i−1:
the gain decreases when the retrials are prolonged because the simu-
lation costs increase more than the restoration costs.

5. Application example

Consider the two-queue Jackson tandem network shown in Fig. 2.
Messages with Poisson arrival enter the first queue and, after being
served, enter the second one. The mean arrival rate is λ = 1 and the
service time is exponentially distributed in each queue with service
rates of µ1 = 2 and µ2 = 3, respectively. The buffer space at each queue

is assumed to be infinite. This model has received considerable atten-
tion in the rare event literature, see e.g., Villén-Altamirano and Villén-
Altamirano [19] and 11 references therein. The difficulty of applying
accelerated simulation techniques arises when the first queue is the
bottleneck and the rare set definition is related to the value of Q2. So,
the rare set A is defined as Q2 ≥ L, with L=30.

For this model we will estimate the variances and the simulation
costs of the different variants applying the formulas obtained in pre-
vious sections, comparing them with the simulation results.

To estimate the values of p and p’, we use the importance funtion
derived in Villén-Altamirano [13]: = + = +Q Q Q QΦ 0.63ρ

ρ
ln
ln 1 2 1 2

1

2
(ρ1

and ρ2 are the loads of the nodes), setting the thresholds at every integer
number. This is the optimal setting, because the thresholds are as close
as possible and it is not possible to cross more than one threshold in one
step. Note that when a message leaves node 2, the importance function
decreases by one unit and the process down-crosses a threshold. If the
process down-crosses thresholds Ti entering region Ci−1− Ci, we as-
sume that the value X of the importance function follows a uniform
distribution in the interval [Ti−1, Ti) of length 1, because the only in-
formation available is that X is in that interval. With this assumption we
calculate the expected probability of down-crossing thresholds Ti−1:
px = 29/36 if x c [Ti−1, Ti−1+ 0.26), px = 27/36 if x c [Ti−1+ 0.26,
Ti−1+ 0.37), px = 24/36 if x c [Ti−1+ 0.37, Ti−1+ 0.63), and
px = 18/36 if x c [Ti−1+ 0.63, Ti−1+ 1). So the expected value is
p=0.65 and the standard deviation 0.14. However, if the process has
entered region Ci−1− Ci, by up-crossing thresholds Ti−1, it is due to a
new arrival with a probability of 0.46 or to an end of service at node 1
with a probability of 0.54. In the first case we assume that the value X of
the importance function follows a uniform distribution in the interval
[Ti−1, Ti−1+ 0.63), and in the second case in the interval [Ti−1,
Ti−1+ 0.37). The expected probability of down-crossing thresholds
Ti−1 is p’ = 0.77 and the standard deviation 0.05.

According to Eqs. (6), (7), (10), and (12) derived in Section 3, that is
assuming p= p’ = 0.65: m=1.54, m1= 1.19, m2= 1.09, m3= 1.04.
According to Eqs. (8), (9), and (11), that is assuming p=0.65,
p’ = 0.77: m1= 1.12, m2= 1.04, m3 = 1.01. The value of m does not
change if p≠ p’ Remember that m should be close to the ratio between
the variances with RESTART and RESTART-P1, and mi should be close
to this ratio between RESTART-Pi and RESTART-Pi + 1, for i=1, 2, 3.

According to Eqs. (14), (16), and (17), the ratio of the simulation
costs for p= p’=0.65 and R=3 are: Y/X= (6c/r+1.95)/(4c/r+3),
Z/Y’= (17.20c/r+3)/(13.05c/r+3.57) and T/Z’=(13.11c/
r+1.51)/(10.62c/r+1.63). If c= r, Y/X=1.14, Z/Y’ = 1.22 and T/
Z’ = 1.19. If c/r=0.5, Y/X=0.99, Z/Y’ = 1.15 and T/Z’ = 1.16. If c/
r=0.3, Y/X=0.89, Z/Y’ = 1.09 and T/Z’ = 1.13. Assuming p=0.65
and p’ = 0.77, Y/X does not change, Z/Y’= (16.60c/r+3)/(12.45c/
r+3.37) while T/Z’ has not been calculated. If c= r, Z/Y’ = 1.24, if c/
r=0.5, Z/Y’ = 1.18 and if c/r=0.3, Z/Y’ = 1.12.

We now compare the above theoretical results with the results of the
simulation of this model for estimating P(Q2 ≥ 30) = 4.86 E-15, with
the different variants of RESTART. We shall denote the observed si-
mulation cost per sample of RESTART,…, RESTART-P4 as x, y, z, t, v,
respectively. Each sample finishes when all the retrials reach a given
end time, t=30,000. After each sample the relative error (half width of
the confidence interval divided by the estimate) is calculated and the
simulation finishes when the error is smaller than 0.005. To minimize
the influence of the randomness in the comparisons, five simulation
runs were performed for each case and only the results corresponding to
the median of the computational times are given in the table. All the

Table 1
Gain obtained by the variants of RESTART with respect to RESTART for dif-
ferent values of the parameters.

RESTART-P1 RESTART-P2 RESTART-P3

p=0.65,R=2,c/r=0.3 1.78 2.02 2.01
p=0.65,R=2,c/r=0.5 1.63 1.77 1.73
p=0.65,R=3,c/r=0.3 1.72 1.87 1.80
p=0.65,R=3,c/r=0.5 1.55 1.60 1.50
p=0.75,R=3,c/r=0.3 1.38 1.34 1.21
p=0.75,R=3,c/r=0.5 1.27 1.18 1.04
p=0.75,R=4,c/r=0.3 1.36 1.29 1.15
p=0.75,R=4,c/r=0.5 1.24 1.12 0.97

Fig. 2. Two-queue tandem network.
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experiments were run on a personal computer with a 3.20 GHz Intel
Core i7 processor and 16 GB RAM. The results are given in Table 2.

All the methods give estimates of P that are very close to the ana-
lytic result. As can be seen, the variance decreases as the retrials are
prolonged since a lower number of samples is needed to obtain the
same relative error as the depth of prolongation increases. However, the
decrease is small for RESTART-Pi, with i > 2. These observations agree
with the theoretical results. The observed values of m1, m2 and m3 are
close to those derived in Section 3, even if we assume that p= p’. As it is
more realistic to assume that p ≠ p’, the differences are smaller in this
case (lower than 3%). However, the observed value of m is 16% less
than the value derived in Eq. (6). As mentioned in that section, this
occurs when the value of m is much greater than one (1.54 in this case).

As regards the cost per sample, the lowest computation cost was
obtained with RESTART-P1, due to the much lower restoration costs
(Yr) than those arising from RESTART since the number of events Bi is
lower. This compensates the greater simulation costs (Ys), which in-
crease with the prolongation of the retrials. For greater depths of pro-
longation the restoration costs decrease slowly while the simulation
costs increase rapidly. So, the computational cost per sample with
RESTART-P2 is 13% greater than with RESTART-P1 and the same cost
with RESTART-P4 is 40% greater than with RESTART-P3. The observed
computational cost ratios are close to the theoretical values for c/
r=0.40.

The gain obtained with these variants of RESTART, that is, the re-
duction of cost multiplied by variance with respect to RESTART, mea-
sured as the ratio between computational times, is around 38%–39% for
RESTART-P1 and P2 and around 27% for RESTART-P3 (Table 2).

In order to validate the theoretical results obtained in this paper, we
will compare the theoretical gain of RESTART and its variants P1 and
P2 with the gain observed in four queuing networks simulated in Villén-
Altamirano [14]. In that paper it was observed that the gain obtained
with RESTART-P3 and P4 was always smaller than the gain obtained
with P1 and P2, which agrees with the theoretical results obtained in
this article, as can be seen in Table 1. Table 3 gives the results of the
four networks studied in that paper but in a different format. Jackson 3
is a three-queue Jackson tandem network with λ = 2, µ1 = 3, µ2 = 4
and µ3 = 6. Non Jackson 3 is the same network with the same loads of
the nodes but with hyper-exponential inter-arrival times and Erlang
service times. The topology and the parameters of seven node networks
are given in the paper mentioned above.

It is difficult to calculate the exact value of p and c/r in these net-
works. In Jackson 3, the load of the target queue is 1/3, the average
distance between thresholds Pi/i−1 is close to this value and so, R is
close to 3. The observed gain with RESTART-P1 almost matches the
theoretical gain for p=0.65 and c/r=0.5, which are plausible values.

The observed gain with P2 should be similar to that observed with P1,
as in the network of 2 nodes, but is a 8.5% lower. The difference can
only be explained by the random nature of the results of the simulation.
In Jackson 7, the load of the target queue is lower than 1/3, Pi/i−1 < 1/
3 and so, R > 3 and surely p> 0.65. These values of the parameters
could explain the lower gain observed in this network. The observed
gain is significantly increased by simulating the respective non-Jackson
networks with RESTART-P2, which is in accordance with the theore-
tical results since c/r is lower. A slight increase in the gain observed
with P1 was also expected, but the results are similar. Finally, the
HRMS systems discussed at the end of Section 3 were also simulated in
Villén-Altamirano [14], and slightly better results were obtained with
RESTART than with its variants, which is in accordance with the the-
oretical results since the values of R and p are very high.

6. Conclusions

Formulas for the computational time ratios and for the ratios of
variances between RESTART and its variants, with prolonged retrials,
were obtained. The observed computational cost and variance ratios
were close to the theoretical values in the classical two-queue Jackson
tandem network example and in other networks studied in Villén-
Altamirano [14].

The reduction of variance is substantial when the retrials are pro-
longed by one or two thresholds in models where many thresholds can
be set, but any further reduction is much less pronounced if the retrials
are prolonged more than two thresholds. By contrast, the computa-
tional cost is similar (or even slightly lower) when the retrials are
prolonged by one threshold but increases significantly as the degree of
prolongation increases. As a consequence, RESTART-P1 and RESTART-
P2 need smaller computational times than RESTART in these models to
obtain estimates with the same relative error. The gain obtained is
around 38%–39% in the example. This gain, which is achieved with no
additional effort, illustrates the interest of applying these variants.
However, those computational times are similar with all methods in
models where the distance between thresholds is much greater.

The very slight reduction of variance and the significant increase in
computational cost when the retrials are prolonged by more than 3
thresholds explains the poor performance of Splitting (compared with
RESTART) observed in the simulation study of Villén-Altamirano [14]
because Splitting can be considered a particular case of this method
(RESTART-PM) in which the retrials are prolonged until the first
threshold is down-crossed.
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