
Sheikha, Shaya; Komakib, G. M.; Kayvanfarc, Vahid; Teymourian, Ehsan

Article

Multi-Stage assembly flow shop with setup time and
release time

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Sheikha, Shaya; Komakib, G. M.; Kayvanfarc, Vahid; Teymourian, Ehsan
(2019) : Multi-Stage assembly flow shop with setup time and release time, Operations Research
Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 6, pp. 1-15,
https://doi.org/10.1016/j.orp.2019.100111

This Version is available at:
https://hdl.handle.net/10419/246383

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc-nd/4.0

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2019.100111%0A
https://hdl.handle.net/10419/246383
https://creativecommons.org/licenses/by-nc-nd/4.0
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Multi-Stage assembly flow shop with setup time and release time
Shaya Sheikha,⁎, G.M. Komakib, Vahid Kayvanfarc, Ehsan Teymouriand
a Assistant Professor of Operations Management, School of Management, New York Institute of Technology, 1855 Broadway, New York, NY 10023, United States
bAssistant Professor of Business Analytics, Department of Marketing and Business Analytics, College of Business, Texas A&M Uni-Commerce, 2200 Campbell St,
Commerce, TX 75428, USA
c Department of Industrial Engineering, Amirkabir University of Technology, 424 Hafez Ave., 15875-4413, Tehran, Iran
dDepartment of Management Science and Information Systems, Rutgers, the state university of New Jersey, Newark & New Brunswick, NJ, USA

A R T I C L E I N F O

Keywords:
Scheduling
Assembly flow shop
Makespan
Completion time

A B S T R A C T

This article addresses multi-stage assembly flow shop for the first time. We propose several industrial applica-
tions of this system in which the opening stage has m parallel machines and the following stages (e.g. assembly,
transportation, painting, packaging, etc.) complete and prepare products for delivery. We develop a mixed
binary linear optimization model and a constraint-free mathematical presentation for this problem. We explore
performance measures of makespan and total completion time and derive polynomial optimal solutions for
special cases that are likely to occur in industry. We also propose lower bounds as well as nine efficient heuristics
for solving the problem with the objective of minimizing makespan. The results reveal that the proposed lower
bounds is tight enough. Moreover, the optimization models and derived polynomial algorithms can be applied to
assembly flow shops without setup or release time. Finally, we implement General Variable Neighborhood
Search (GVNS) and Grey Wolf Optimizer to improve the heuristic solutions. Comparison of employed algorithms
on randomly generated instances indicates that GVNS outperforms other heuristics. The performance of pro-
posed heuristics and meta-heuristics are confirmed with detailed statistical analysis.

1. Introduction

During the last three decades, global competition and market de-
mand for diverse range of products have increased the application of
modular design and assembly flow shops. Researchers have explored
assembly flow shops with two or three stages with a variety of perfor-
mance measures under realistic assumptions. In practice, an assembly
flow shop may have more than one post-processing operations after the
assembly stage. These stages include but not limited to painting, fin-
ishing, polishing, inspection, packaging, etc. Given significant trans-
portation time between stages, we can treat transportation time as a
separate stage. Consideration of post-processing operations lead us to a
new scheduling problem, called the multi-stage assembly flowshop
(MSAF), which is the focus of this paper. Fig. 1 illustrates a schematic of
multi-stage assembly flowshop. One practical example of these systems
are complete knock-down kits or semi-knock-down kits that are popular
in automotive, electronics, and furniture industry. These kits are
shipped from suppliers that are usually located overseas and are as-
sembled in an assembly plant close to customers’ location. MSAF can
also be utilized in production systems with multi-plant facilities where
each plant is dedicated for processing of one or a set of components.

The main processed components (a.k.a. subassemblies) are then
shipped to the assembly and post-processing plant before delivery to the
customer or warehouse. The processing times can be considered fixed
with reasonable accuracy as majority of these processes are performed
by robots. We use the average processing time for processes that are run
by human (e.g. quality control inspections).

One industrial application of MSAF, which is the motivation of this
paper, is the production and assembly of medical equipment such as
dental chair, autoclave, and light cure. Dental chairs are sold in a
variety of models with different features that addresses the needs of
medical centers and dentists. The wide range of these features impacts
the production time for each dental chair. The main components of a
dental chair are made of aluminum, steel, and plastic. These compo-
nents, together with dental tools (e.g. headpiece), and circuit boards
need to be either produced in-house through casting, extrusion, ma-
chining, etc., or to be outsourced. Production of these components are
achieved simultaneously in the first stage of MSAF. In the second stage,
all components are assembled to make a dental chair. For simplicity, we
consider one assembly stage in which all sub-assemblies such as arm
system, light system, and unit stand are assembled together. Right after
the assembly, dental chair goes through a series of post-processing

https://doi.org/10.1016/j.orp.2019.100111
Received 4 March 2018; Received in revised form 25 February 2019; Accepted 7 April 2019

⁎ Corresponding author.
E-mail addresses: Ssheik11@nyit.edu (S. Sheikh), v.kayvanfar@aut.ac.ir (V. Kayvanfar), ehsan.teymourian@rutgers.edu (E. Teymourian).

Operations Research Perspectives 6 (2019) 100111

Available online 17 April 2019
2214-7160/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2019.100111
https://doi.org/10.1016/j.orp.2019.100111
mailto:Ssheik11@nyit.edu
mailto:v.kayvanfar@aut.ac.ir
mailto:ehsan.teymourian@rutgers.edu
https://doi.org/10.1016/j.orp.2019.100111
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2019.100111&domain=pdf

stages including balancing instrument suspensions, quality inspection,
and shipping preparations such as disassembly of arm and unit stand,
wrapping, and packaging.

Another application of MSAF systems is in autoclave manufacturing.
Autoclave is made of pressure vessel, frame, and control subassemblies.
These three subassemblies are manufactured simultaneously using
guillotine for cutting steel and producing panels, CNC lathe, and
bending machines for punching holes and shaping corners, and welding
machine for welding frames. In the second stage, the door and closure
fittings are assembled to the pressure vessel to make it water tight and
ready for pressure testing. Next, the pressure vessel goes under pressure
testing in order to check the integrity of the welds. The amount and
length of pressure varies based on the size and specific application of
autoclave. The microprocessor control board is fitted along with the
wiring loom to the autoclave during the assembly. In the next stage,
control panel of autoclaves are set for different licensing needs. Next,
the autoclave is given a full operational test where it is inspected
against a checklist. Different customizations are also checked at this
stage. Finally, the last stage is dedicated to packaging and making the
product ready for shipping and delivery.

Majority of assembly flow shop (AF) articles assume that setup time
is negligible. However, setup times could take considerable amount of
time in real applications. In this article, set-up times for all stages are
assumed to be separate from processing times and are sequence in-
dependent (i.e. it depends only on the processing job). MSAF systems
are mainly made of multi-purpose machines that require specific setup
times for preparations and fixture changes. Even though, combining
these setup times with processing time may seem reasonable in the first
place, the aggregate value may lead to increase in completion times and
therefore, affects the productivity measure. Hence, we treat setup times
separately from processing time. Importance and application of sche-
duling models with explicit setup times have been discussed in different
studies, see Allahverdi et al. [1–5] and Komaki et al. [19].

We also consider release times for components. This is a realistic
assumption as many outsourced components and raw material are
provided by suppliers that are located in different geographical loca-
tions. Therefore, components are likely to be ready for production at
different times.

Multi-stage assembly problems are introduced in this article for the
very first time. We briefly discuss the literature review in Section 2.
Problem definition and special cases are explained in Section 3. Authors
would like to highlight that the derived optimal polynomial solutions in
this section can be generalized for as many stages and jobs, with or
without setup or release times. Proposed lower bounds are discussed in
Section 4. Finally, Section 5 concludes the paper.

2. Literature review

We adopt Graham et al. [11] triple notation, α|β|γ, to represent the
characteristics of the proposed problem. Accordingly, the MSAF with
release and setup time is denoted as AFb|rj,sj|γ where b > 2. Koulamas
and Kyparisis [20] considered a three-stage AF model with intermediate
stage for transporting components from production stage to assembly
stage. Considering transportation stage in AF model is specifically cri-
tical for multi-plant AF facilities. AF(m,1,1) with objectives of make-
span or total completion time has been explored by researchers such as
Koulamas & Kyparisis [20], Komaki et al. [17], Andrés and Hatami [6],
and Maleki et al. [23,24]. In all these systems, the second stage is re-
sponsible for collecting the processed components from the machining
stage and shipping them to the third stage where components are as-
sembled by one assembly machine. Here, we explain the methods that
have been practiced by theses researchers for solving the three stage AF
problem.

Hatami et al. [12] proposed a three stage AF with objectives of
mean flow time and maximum tardiness and sequence dependent setup
times and transfer times. Authors proposed simulated annealing and
tabu search as the solution procedures. Andrés and Hatami [6] pro-
posed two mathematical models for three-stage AF with sequence de-
pendent setup times on the first and third stages and the objective of
minimizing total completion time. Koulamas and Kyarisis [20] in-
vestigated three-stage AF with the objective of minimizing makespan.
They proposed heuristics based on Johnson rule with ratio and absolute
performance guarantees. Maleki et al. [24] studied a three stage AF
with sequence dependent setups at the first stage and blocking time
between stages. The objective was to minimize weighted mean com-
pletion time and makespan. Authors proposed a simulated annealing to
generate efficient results. Maleki et al. [23] used Taguchi technique to
tune the parameters of simulated annealing and variable neighborhood
search techniques. Shoaardebili and Fattahi [30] presented a three
stage AF model with machine availability constraint and objectives of
minimizing weighted completion times and sum of weighted tardiness
and earliness. Authors applied NSGAII and multi-objective simulated
annealing to solve this problem in a reasonable time.

Tajbakhsh et al. [31] proposed a mixed integer program with the
objective of minimizing makespan and sum of earliness and tardiness
for a three stage AF with machining, assembly, and batch processing
stages. Authors utilized a hybrid algorithm that embeds advantages of
genetic algorithm and particle swarm optimization. Komaki et al. [17]
proposed an improved discrete cuckoo optimization algorithm for the
same problem. Authors performed extensive comparisons with nine
other heuristics and conclude that their proposed approach outperforms

. . . .

Manufacturing Assembly

Machine 1

Machine 2

Machine m

.

.

.

Job
1

Job
2

Job
n

m
Components

.

.

.

Coating Painting Finishing

b stages

Fig. 1. Schematic presentation of multi-stage assembly flowshop problem.

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

2

other heuristics. Yokoyama and Santos [34] presented a three stage AF
(1,1,1) model with one manufacturing machine in each of the first two
stages and an assembly machine in the third stage. The objective is to
minimize the weighted sum of completion times. Authors used branch
and bound technique and analyzed some special cases for the presented
problem. Yokoyama and Santos [34] addressed three-stage assembly
flowshop scheduling problem that minimizes total completion time of
products.

Another variation of multi-stage assembly flowshops is distributed
assembly flowshops, DAF, with several factories at different locations
and with the goal of finding the best sequence of jobs at each factory.
Hatami et al. [13] presented a family of constructive heuristics and
variable neighborhood descend algorithms for DAF(m,1) where the
latter technique outperforms the former. Later, Hatami et al. [14] ex-
tended their model in Hatami et al. [13] by considering setup times in
both machining and assembly stages. They proposed four high perfor-
mance constructive heuristics as the solution procedure. The heuristic
algorithms find the sequence of products and then use the rules de-
veloped by Naderi and Ruiz [27] to assign jobs to the factories. Lin et al.
[22] offered back tracking search hyper heuristics as the solution pro-
cedure for DAF(m,1)||Cmax. Gonzalez et al. [10] proposed permutation
DAF(m,1) with the objective of minimizing expected makespan and
with stochastic processing and assembly times. Authors offered a hybrid
algorithm and a simulation technique with competitive results. Zhang
et al. [36] developed DAF(m,1)||Cmax with flexible assembly and setup
times and offered hybrid variable neighborhood search, and hybrid
particle swarm optimization to find efficient schedules. Li et al. [38]
proposed a hybrid iterated local search with simulated annealing for
distributed assembly permutation flowshop with multiple assembly
factories and no-waiting time in the processing stage. Fig. 2 shows the
relationship between our proposed multi-stage AF model and other AF
models in the literature. In Fig. 2, PDm represents customer order
scheduling problem presented by Framinan and Gonzalez [8].

This article extends the two-stage assembly problem AF(m,1) by
adding the post-assembly stages. AFb also extends the flowshop sche-
duling problem by allowing concurrent operations at the first stage, see
Komaki et al. [19]. It is known that F3||Cmax [9] and AF||Cmax [21] are
NP-Hard. AFb is the generalization of these problems with more com-
plexity in terms of number of stages. Thus, the addressed problem is
also NP-hard in strong sense. A summary of three stage AF models in
the literature is shown in Table 1.

3. Problem description

The addressed problem in this study, AFb|rj,sj|γ, consists of m non-
identical parallel machines at the first stage followed by b −1 post-
processing stages with one machine per stage. The assembly stage can
be any one of these b−1 post-processing stages. There are n jobs, each
with m components and m+ b-1 operations where the first m opera-
tions are processed in the first stage, simultaneously, and the b-1 op-
erations in the post-processing stages with one operation at each stage.
The assembly operation starts only after all components are processed
in the first stage.

3.1. Assumptions and notations

We consider the following assumptions for the proposed AFb|rj,sj|γ
problem:

1) Preemption is not allowed on any machine, that is, once processing
a component or product is started, it cannot be interrupted.

2) Components may not be available at time zero (non-zero release
time).

3) Assembly or post processing stages begin right after all previous
production processes are completed.

4) Each machine can work on one job at a time.
5) There is unlimited buffer for the jobs waiting to be processed on any
machine.

6) Processing times are fixed. Alternatively, average processing times
can be considered with reasonable accuracy for processes with
limited variations in processing times.

Optimal solution for AF2||Cmax has a special property in which se-
quence of jobs is the same for both production and assembly stages, i.e.,
permutation schedule is an optimal schedule for this model, see Potts
et al. [28]. However, this conclusion does not necessarily hold for AF
(m,1) with setup and release times. Tozkapan et al. [39] proved that
permutation schedules generate superior result for AF(m,1,1) problems
with minimizing total completion time and their proof can be gen-
eralized to AF(m,1,1) problems with makespan objectives. In this paper,
we show that permutation schedule optimizes performance measures of
AFb given that the first stage machines have no-idle condition.

Table 2 represents notations used in this article. Using the triple
notation, the proposed problems in this paper are AFb|rj,sj|Cmax, and
AFb|rj,sj|TC where rj and sj denote the existence of positive release times
and setup times. Let j=1, 2,.., n be the job index and tkj be the pro-
cessing time of component k=1,2,..,m of job j in the first stage.

3.2. Optimization models and special cases

The following mixed binary linear optimization model is the mod-
ified form of the AF(m,1)|sj|Cmax model presented Deng et al. [37]
model.

Minimize Cmax

= = =
=

x j n l b1 1, , ; 1, ,
i i j

n

i j l
0,

[, ,]
(1)

= =
=

x i n l b1 1, , ; 1, ,
j j i

n

i j l
0,

[, ,]
(2)

+ = … > = …x x i n j i l b1 1, , 1; ; 1, ,i j l j i l[, ,] [, ,] (3)

+ +

= … = … = …

A A s t O x i

n j n j i k m

(1)

0, , ; 1, , ; ; 1, ,
k j k i k j k j i j l[,] [,] [,] [,] [, ,]

(4)

+ + = … = …A r s t j n k m1, , ; 1, ,k j k j k j k j[,] [,] [,] [,] (5)

+ + = =

=

C C sa q O x i n j n j

i l n

(1) 0, , ; 1, , ;

; 2, ,

l j l i l j l j i j l[,] [,] [,] [,] [, ,]

(6)

+ = … = …C C q i n l b1, , ; 3, ,l i l i l i[,] [1,] [,] (7)

+ = … = …C A q i n k m1, , ; 1, ,i k i i[2,] [,] [2,] (8)

= …C C i n1, ,max b i[,] (9)

= … = …X i j n l b{0, 1} , 0, , ; 2, ,i j l[, ,] (10)

= … = …C A j n k m1, , ; 1, ,l j k j[,], [,] (11)

AF(m,1) 2-stage Flowshop
m = 1

qj = 0 � j

PDm Hybrid Flowshop

Negligible Transportation Time

3-stage Flowshop
m = 1

AF(m,1,1)

No Assembly

b = 3

Fig. 2. Relationship between assembly flow shops.

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

3

= … = …C A k m l b, 1, , ; 2, ,l k[,0] [,0] (12)

Constraints (1) in above model ensure that each job has only one
predecessor in every stage. Since the precedence relationship of jobs in
different stages could change, we need to consider l as index for binary
variable x[j, i, l]. Constraints (2) indicate that each job has at most one
succeeding job. Constraints (3) guarantee that a job cannot be both a
predecessor and a successor of another job simultaneously. Constraints
(4,5) indicate the job processing precedence relationships in the first
stage. Constraints (6,7) indicate the post-processing precedence re-
lationships. Constraints (8) shows that each job cannot be assembled
before all its components are completed in the first stage.

Obtaining a feasible solution for this NP-hard, large-sized optimi-
zation problem in reasonable time is extremely difficult. For instance,
the smallest problem instance in Section 6 will have more than 2300
mixed integer binary or integer constraints using the above optimiza-
tion model. As a result, we introduce a constraint-free format of AFb
model and derive special polynomial optimal cases together with effi-
cient heuristics for this alternative presentation.

Koulamas and Kyparisis [20] presented the makespan formula for a
given sequence of products, Л, for AF(m,1,1). Nevertheless, expanding

their equations to more than three stages considering setup and release
times does not lead to a relatively compact structure. Thus, we extend
the AF(m,1)|rj|Cmax model presented by Komaki and Keyvanfar [16]
and Sheikh et al. [29] in order to derive makespan and total completion
times for AFb|rj,sj|γ with b≥3:

= … + +

+ + + + … + +

C r A t s C

sa q C sa q C sa q

max{ max{max{max {max{ , } },

} , } , }
j k k j k j k j k j j

j j j j j b j b j b j

[] [,] [, 1] [,] [,] [2, 1]

[2,] [2,] [3, 1] [3,] [3,] [, 1] [,] [,]

(13)

= + + = …

= … =

A r A t s k m j

n A

max{ , } 1, , &

2, , & 0
k j k j k j k j k j

k

[, 1] [, 1] [, 2] [, 1] [, 1]

[,0] (14)

= + + = …

= … =

C C C sa q l b j

n C

max{ , } 2, , 1&

2, , & 0

l j l j l j l j l j

l

[, 1] [1, 1] [, 2] [, 1] [, 1]

[,0] (15)

The performance measures are Cmax= C[n] and TC= = Cj
n

j1 [].
For l=2, Eq. (15) is written as

= + +C A C sa qmax{max { }, }j k k j j j j[2, 1] [, 1] [2, 2] [2, 1] [2, 1]. In Eq. (13),
C[l,j-1]+ sa[l,j] is compared with + +r A t smax {max{ , } }k k j k j k j k j[,] [, 1] [,] [,] .

Table 1
AF publications with three stages.

Problem Type Reference Model Remarks Solution Method(s)

AF(1,m1, m2)| Setup Time |Cmax Zhang et l. [35] MILP Hybrid genetic algorithm
AF(m,1,1)||Cmax Koulamas & Kyparisis [20] – Heuristic
AF(m,1,1)||Cmax Komaki et al. [17] – Improved discrete cuckoo optimization
AF(m1, m2,1)||Cmax Morizava [26] – List based squeezing branch and bound
AF(m,1,1)| Setup Time |∑wiCi Andrés & Hatami [6] MILP CPLEX
AF(m,1,1)| Setup Time |∑wiCi Maleki et al. [24] – Simulated annealing
AF(m1,1, m2)||∑ wiCi Xiong et al. [33] MILP Heuristics based on shortest processing time, Hybrid genetic algorithms

and variable neighborhood search
AF(2,1,1)|| Tardiness Tharumarajah et al. [32] MILP Heuristic
AF(m,1,1)| Setup Time | Tardiness Campos et al. [7] – Generalized variable neighborhood search
AF(m,1,1)| Setup Time |(∑wiCi, Tmax) Hatami et al. [12] MO-MILP

Initial solution with EDD,
SPT

Simulated annealing and tabu search

AF(m,1,1)| Setup Time |(Cmax, ∑wiCi) Maleki et al. [23] – Variable neighborhood search
AF(m,1,1)||(Cmax, Earliness, Tardiness) Tajbakhsh et al. [31] MO-MINLP Hybrid particle swarm optimizer and genetic algorithm
AF(m,1,1)||(∑wiCi, Earliness, Tardiness) Shoaardebili & Fattahi [30] MOeNLP

machine availability
constraint
semi-resumable operations

Non-dominated sorting genetic algorithm and
Multi-objective simulated annealing

Table 2
Notation for AFb|rj, sj|γ.

Index
i, j: Index of jobs where i and j=1,2,…,n
k: Index of components where k=1,2,…,m
l: Index of assembly and post processing stages where l=1,…, b
Parameters
m: No. of machines at stage one
n: No. of jobs
r[k,j]: Release time of component k of job in position j
t[k,j]: Processing time of component k of job in position j in stage 1
tk,j: Processing time of component k of job j in stage 1
q[l, j]: Processing time of job in position j in stage l where l > 1
s[k,j]: Setup time of component k of job in position j
sa[l,j]: Setup time of job in position j in stage l where l > 1
O: A very large positive number
ql,min: min{q[l, j]} ∀j and l > 1
ql,max: max{q[l,j]} ∀j and l > 1
rk,max: max{r[k,j]} ∀j
rk,min: min{r[k,j]} ∀ j
t k,min: max{t[k,j]} ∀ j
tmin: min {t[k,j]} ∀ k, j
tmax: max {t[k,j]} ∀ k, j

samin, j: min{sal, j} ∀ l > 1
smax, j: max{sk, j} ∀ k
samax, j: max{sal, j} ∀ l > 1
smin, j: min{sk, j} ∀ k
Variables
C[j]: Completion time of job in position j in the last stage
Cmax: Completion time of the last job in the last stage (makespan)
T[j]: Tardiness of job in position j in the last stage
A[k,j]: Completion time of component k of job in position
j in stage 1
Amax,j: max{A[k,j]} ∀k
C[l,j]: Completion time of job in position j in stage l where l=2,…, b
R [l,j]: Starting time of job j in stage l where l >1
L [l,j]: Release time of job j in stage l where l >1
TC: Total completion time
X [i,j,l]: Binary variable; 1 if job in position j is processed immediately after job i in stage l, 0 otherwise.
Scheduling Notations
Л: A complete schedule
Л*: Optimal schedule
Mk,1: Machine k in stage 1
Ml: Machine in stage l
J[1],J[2],…,J[n]: Jobs’ sequence

Note: Index j can be used instead of i in above parameters, both referring to job position.

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

4

This is due to the fact that if job j-1 leaves stage l before job j becomes
available at this stage, the resulting idle time is used to set up stage l for
job j. The same analogy also holds for Eq. (15) where C[l −1, j-1] is
compared with C[l,j-2] + sa[l,j-1]. According to the definition, sa[l, j] and
q[l, j] are equal to zero for l=1.

Here, we introduce some special cases for single objective AFb|rj,
sj|γ. We show that there are exact methods with polynomial solutions
for some of these cases. We later utilize properties for these special
cases to generate efficient initial solutions for the general AFb|rj, sj|γ
model.

Here, we introduce some special cases for single objective AFb|rj,
sj|γ. We also derive exact methods with polynomial solutions for these
special cases. We later utilize properties of these special cases to gen-
erate efficient initial solutions for the general AFb model.
Theorem 1. Given rk,max− rk,min≤ t k,min ∀k, ql,max≤ {tmin, ql-1,min}
∀l = 2,…,b, and samax, j≤ smin,j ∀j, makespan and total completion times
can be expressed as:

= + + +
= = =

r t s qC max k k
i

n

k i
i

n

k i
l

b

l nmax [,1]
1

[,]
1

[,]
2

[,]
(16)

= + + +
= = = = =

r t s qTC max
j

n

k k
i

j

k i
i

j

k i
j

n

l

b

l j
1

[,1]
1

[,]
1

[,]
1 2

[,]
(17)

Proof. is given in Appendix-I. Let us decode the meaning of the first
condition in Theorem 1. rk,max− rk,min≤ t k,min (or rk,max≤ t
k,min+ rk,min) ∀k ensures no machine is idle in the first stage as
release times, rk,max, are not greater than job completion times, t
k,min+ rk,min, in the first stage. This is equivalent to no-idle condition
in stage 1 where release times, except for the first job, r[k,1], have no
impact on makespan and total completion time according to Eqs. (16)
and (17). Corollary 1 explains how the first condition of Theorem 1
reduces the search space to permutation schedules. Condition,
ql,max≤ tmin, enforces the processing time in the first stage, tmin, to be
greater than or equal to processing time of product in downstream
stages, ql,max. The third condition, samax, j≤ smin,j, denotes that setup
times in stage 1 is larger than setups in post-processing stages. As a
result, the second and third conditions lead us to first stage bottleneck
condition. Moreover, it is clear that in the absence of release time and
setup times, conditions rk,max− rk,min≤ t k,min and ql-1,min≥ ql, max

becomes trivial which simplifies Eqs. (16) and (17). This special case
can occur frequently in industry, as the production process in the first
stage can take significantly longer time than other post-processing
stage. Another important result is that Eqs. (16) and (17) are
independent from setups times in post processing stages.

Corollary 1. If ∀k rk,max− rk,min≤ t k,min, the optimal schedule for AF
(m,1)|rj,sj|Cmax is a permutation schedule.

Proof is given in Appendix-II. Corollary 2 derives a polynomial
optimal algorithm for AFb|rj,sj|Cmax under the conditions of Theorem 1.

Corollary 2. The optimal solution for AFb|rj,sj|Cmax under the
conditions of Theorem 1 is given through the following procedure:

Step 1: Find the job that minimizes the maximum of {rk,i+
+= =t si

n
k i i

n
k i1 , 1 , }∀k. Assign it as the current first job in the sequence,

curr J[1].
Step 2: Find the job with minimum total post-processing times in

stages 2 through b, = ql
b

l j2 , . Assign it as the current last job in the
sequence, curr J[n]. Given this job is different than curr J[1], optimal
schedule is found where J[1]= curr J[1], J[n] = curr J[n], and jobs in
between can be in any order. If the job with minimum = ql

b
l j2 , is the

same as curr J[1], then;
Step 3:

3.1) Find the job with the second least summation of post-processing

times and assign it as curr* J[n]. Find the value of Cmax from
Eq. (16) for curr J[1] and curr* J[n].

3.2) Find the job with the second least summation of max∀k{r[k,1]
+ += =t s }i

n
k i i

n
k i1 [,] 1 [,] and assign it as curr* J[1]. Find the value

of Cmax from Eq. (16) for curr* J[1] and curr J[n]. The schedule with
minimum Cmax value in steps 3.1 and 3.2 represents the optimal
schedule.

It is clear that the term += =t si
n

k i i
n

k i1 [,] 1 [,] in Eq. (15) is in-
dependent of the order of jobs which leads us to another interesting
property. That is, the sequence of jobs J[2] through J[n-1] can be
shuffled without impacting Cmax value. Hence, this problem has (n-
2)! sequence with optimal makespan. Steps 1 through 3 in above
corollary requires mn, n(b-1), and mn+ n(b-1) calculations in the
worst case scenario, respectively. Hence complexity is O(n(b+m)).

There is no polynomial algorithm that provide optimal solution for
AFb|rj,sj|TC under the stated condition of Theorem 1. Consequently, we
rely on heuristics to find efficient solutions for it.

Theorem 2 presents another special case with polynomial solutions.
Theorem 2. If rk,max - rk,min ≤ t k,min ∀k, ql,max ≤ q l-1,min ∀l=2,…,b,
Amax,j< sal, j ≤ sal j1, ∀j,l, then makespan and total completion times are
expressed as:

= + +
= = =

sa q j q l nC [2,] [,]max
j

n

j
j

n

l b

b

1
[2,]

1 1 (18)

= + + +
= = =

n j sa q qTC (1)()
j

n

j j
j

n

l b

b

l j
1

[2,] [2,]
1 1

[,]
(19)

Proof. is given in Appendix-III. Stated conditions in Theorem II imply
that the second stage is the bottleneck in this system. Fortunately, there
exist polynomial optimal algorithms for AFb| rj,sj| Cmax and AFb|rj,sj|TC
under the conditions of Theorem 2.

Corollary 3. The optimal solution for AFb|rj,sj|Cmax under the
conditions of Theorem 2 is given through the following procedure:

Step 1: Find the job that minimizes the maximum of
{rk,i+ +t sk i k i, , } ∀k. Assign it as the first job in the sequence, J[1].

Step 2: Find the job that has the minimum summation of post-
processing times (stages 3 through b), = ql

b
l j3 , . If this job is different

than J[1], assign it as the last job in the sequence, J[n], otherwise, find
the job with the second least summation of post-processing times and
assign it as J[n].

= qj
n

j1 [2,] in Eq. (18) is independent of the order of jobs. Also, the
sequence of jobs J[2] through J[n-1] can be shuffled without impacting
Cmax value. Hence, this problem has (n-2)! sequence with optimal ma-
kespan. Steps 1 and 2 in above corollary requires 2n and n(b-2) calcu-
lations in the worst case scenario, respectively. Hence complexity is O
(nb). As stated earlier, the first condition in Theorem 2 establishes no-
idle condition for machines in stage 1 which limits the search space to
permutation schedules.
Corollary 4. The optimal solution of AFb| rj,sj|TC under condition of
Theorem 2 is given by sorting all jobs in non-decreasing order of

+sa q .j j[2,] [2,] The last term in Eq. (19), = = qj
n

l b
b

l j1 1 [,], has no impact
on the optimal sequence. SPT rule ensures that the first term of the
objective function (+ += n j sa q(1)()j

n
j j1 [2,] [2,] stays minimum. The

optimal solution in Corollary 4 can be found using above polynomial
algorithm in O(n) time.

Corollary 5. Given the bottleneck condition for stage u (ql, max ≤ q
u,min, Amax,j< sal, j ≤ sau, j∀j and ∀l & u =2,…,b where ∀l≠ u) and no-
idle condition for stage 1 (rk,max - rk,min ≤ t k,min ∀k), the makespan and
total completion times are expressed as:

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

5

= + +
= = =

sa q qC
j

n

u j
j

n

u j
l b

b

l nmax
1

[,]
1

[,]
1

[,]
(20)

= + + +
= = =

n j sa q qTC (1)()
j

n

u j u j
j

n

l b

b

l j
1

[,] [,]
1 1

[,]
(21)

The proof is straight forward as it can be derived directly by
changing bottleneck condition of Theorem 2 for any post-processing
stage. According to Eq. (20), only processing and setup times for stage u
together with processing time of the last job in the last two stage is
accountable for makespan. The optimal solutions for makespan and
total completion times are obtained by simple modification of poly-
nomial algorithms in Corollary (4) and (5).
Theorem 3. If rk,max - rk,min ≤ t k,min ∀k and {tmax, ql-1,max} ≤ ql, min
∀l=2,…,b, and smax,j< sal j1, < sal, j<Amin,j ∀j,l, then makespan and
total completion times can be expressed as:

= + + +
= =

A q q saC max { }k k
l

b

l
j

n

b j b nmax [,1]
2

1

[,1]
1

[,] [,]
(22)

= + + + +
= = =

n A n q n j q saTC max { } (1)k k
l

b

l
j

n

b j
j

n

b j[,1]
2

1

[,1]
1

[,]
1

[,]

(23)

Proof. is given in Appendix-IV. Note that for any AFb without setup and
release times, conditions 1 and 3 become trivial. The optimal solution
for AFb|rj,sj|Cmax under the conditions of Theorem 3 is obtained
through the following Corollary:

Corollary 6. The optimal solution for AFb|rj,sj|Cmax under the
conditions of Theorem 3 is given through the following procedure:

Step 1: Find the job that minimizes the max ∀k{A[k,1]}+ = ql
b

l2
1

[,1].
Assign it as the current first job in the sequence, curr J[1].

Step 2: Find the job that has the minimum setup time sal,j in stages 2
through b.

Step 3: If the job in Step 2 is different than curr J[1], then:
Step 3.1: Assign it as the last job in the sequence, J[n] and J[1]:=

curr J[1]. Otherwise, find the job with the second least summation of
minimum setup time sal,j and temporarily assign it as J[n,α].

Step 3.2: Find the job with the second least summation in Step 1
and temporarily assign it as J[1,α]. Assign the job found it Step 2 as J[n]
and find the value of Eq. (22) for this assignment. The minimum value
of Eq. (22) for steps 3.1 and 3.2 represents the optimal schedule.

Corollary 7. The optimal solution of AFb| rj,sj|TC under condition of
Theorem 3 is given by the following algorithm:

Step 1: Sort all jobs in non-decreasing order of q[b, j]. The sequence
is shown as =best: SPT and Best= = Cj

est

n j1 []
b

:= = Cj

PT

n j1 []
S

. This

sequence ensures that the second term of the objective function
(+= n j q(1))j

n
b j1 [,] is minimum.

Step 2: For all jobs j=2,…, n, generate a candidate sequence by
switching J[j] to J[1]. Call it current and set curr:= = Cj

current

n j1 []

Step 3: If curr<Best, set Best= curr and best : = current .

The optimal solution in Corollary 5 can be found using above
polynomial algorithm in O(n log n) time.

Table 3 summarizes optimal algorithms for special cases of AFb|
rj,sj| γ that are developed in this article.

3.2.1. Numerical example
Example 1. Consider the following example with four jobs and four
stages and two machines in the first stage. The goal is to minimize the

makespan. The release, processing, setup, and assembly times of jobs
are given in Table 4. Two tuple format represent the release, processing,
or setup times of the first and the second component of jobs in stage
one, or processing and setup times in other stages. The condition of
Corollary 1 holds for this example as rk,max− rk,min≤ t k,min, ∀k.
Therefore, the optimal solution is a permutation schedule. Besides,
Theorem 3 can be applied to this example as all the corresponding
conditions holds. According to Corollary 6, Job 3 minimizes the
maximum of max ∀k{rk,j +tk, j}+ = ql

b
l j2

1
, =39 and should be

scheduled first. Also job 2 has minimum sab,j. Thus, it will be
scheduled as the last job. As a result, two optimal schedule exist for
this example: =*1 {J3,J4,J1,J2} and =*2 {J3,J1,J4,J2} is an optimal
schedule with makespan of 39+69+6=114.

Example 2. Consider the following example with four jobs and four
stages and two machines in the first stage. The goal is to minimize the
makespan. The release, processing, setup, and assembly times of jobs
are given in Table 5. The condition of Corollary 1 holds for this example
as rk,max− rk,min≤ t k,min, ∀k. Therefore, the optimal solution is a
permutation schedule. Besides, Theorem 1 can be applied to this
example as all the corresponding conditions holds. According to

Table 3
Proposed Polynomial Optimal Algorithms with their Conditions for AFb| rj,sj| γ

Conditions Optimal Algorithm for Minimizing Cmax

rk,max - rk,min ≤ t k,min ∀k
ql,max ≤ {tmin, ql-1,min} ∀l=2,…,b
samax, j≤ smin,j ∀j

Corollary 2

rk,max - rk,min ≤ t k,min ∀k
ql,max ≤ q l-1,min ∀l=2,…,b
Amax,j < sal, j ≤ sal j1, ∀j,l

Corollary 3

rk,max - rk,min ≤ t k,min ∀k
{tmax, ql-1,max} ≤ ql, min ∀l=2,…,b,
smax,j < sal j1, < sal, j< Amin,j ∀j,l

Corollary 6

Conditions Optimal Algorithm for Minimizing TC
rk,max - rk,min ≤ t k,min ∀k

ql,max ≤ q l-1,min ∀l=2,…,b
Amax,j < sal, j ≤ sal j1, ∀j,l

Corollary 4

rk,max - rk,min ≤ t k,min ∀k
{tmax, ql-1,max} ≤ ql, min ∀l=2,…,b,
smax,j < sal j1, < sal, j< Amin,j ∀j,l

Corollary 7

Table 4
Release, processing, setup, and assembly times of jobs.

Job 1 2 3 4

rk,j (Stage 1) {7,8} {9,2} {5,4} {4,3}
tk,j (Stage 1) {5,7} {8,6} {7,10} {5,9}
sk,j (Stage 1) {4,4} {3,3} {6,6} {2,2}
{q2,j, sa2,j} (Stage 2) {11,5} {12,4} {11,7} {13,3}
{q3,j, sa3,j} (Stage 3) {14,6} {13,4} {14,8} {15,5}
{q4,j, sa4,j} (Stage 4) {15,8} {18,6} {19,9} {17,10}

Table 5
Release, processing, assembly, and setup times of jobs.

Job 1 2 3 4

rk,j (Stage 1) {7,8} {9,2} {4,3} {5,6}
tk,j (Stage 1) {5,7} {8,6} {7,10} {5,9}
sk,j (Stage 1) {6,4} {3,5} {5,6} {7,3}
{q2,j, sa2,j} (Stage 2) {4,4} {4,3} {5,4} {3,2}
{q3,j, sa3,j} (Stage 3) {4,3} {3,2} {4,1} {2,3}
{q4,j, sa4,j} (Stage 4) {2,2} {1,2} {3,5} {2,1}

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

6

Corollary 2, Job 3 minimizes the maximum of {rk+ += =t si
n

k i i
n

k i1 , 1 , }

∀k=53. Also job 4 minimizes == q 7l l j2
4

, . Thus, Jobs 3 and 4 are
scheduled as the first and the last jobs, respectively. Two optimal
schedule exist for this example: =*1 {J3,J1,J2,J4} and =*2 {J3,J2,J1,J4}
is an optimal schedule with makespan of 53+7=60.

If the first stage is dominant, Corollary 2 gives the optimal result for
Cmax. If the second stage is dominant, Corollary 3 and 4 gives a poly-
nomial algorithm for Cmax and TC and if the last stage is dominant,
Corollary 6 and 7 gives a polynomial algorithm for Cmax and TC.

4. Proposed lower bounds for cmax

We propose the following lower bounds for AFb|rj, sj|Cmax which is
the modification of lower bounds proposed by Komaki and Keyvanfar
[16].

4.1. When the first stage is bottleneck

Under this condition, the first job has the minimum release time.
After processing all jobs in the first stage, this stage will be idle and the
last job is the job with minimum summation of post-processing times.

= + +

+ +

= =

=

C r t s

q sa

LB () min max

min { }

k j k j k
j

n

k j
j

n

k j

j
l

b

l j l j

1 max , [,]
1

[,]
1

[,]

2
[,] [,]

4.2. When stage u is bottleneck (u= 2,…, b)

When stage u (u= 2,…, b) is bottleneck, the starting time to
process the first job at stage u is
min∀j{ + + + +=r t s q samax { } ()k k j k j k j l

u
l j l j[,] [,] [,] 2

1
[,] [,] }. Thereafter, the

machine at stage uwill be busy until all jobs are processed. After all jobs
are processed in stage u, this stage will be idle and the last job is the job
with minimum summation of post-processing times for stages u+1
through b. LBu shows the extreme situations where stage (u=2,.., b) is
bottleneck.

= + + + +

+ + + +

=

= = +

r t s q sa

q sa q sa

LB (C) min max { } ()

() min { }

u j k k j k j k j
l

u

l j l j

j

n

u j u j j
l u

b

l j l j

max [,] [,] [,]
2

1

[,] [,]

1
[,] [,]

1
[,] [,]

=LB(C) max{LB , LB , , LB }bmax 1 2

= + +

+ + + +

+ +

=

= = =

= = +

r t s

q sa n q sa

q sa

LB (C) min max { }

() ()

min { }

l
j

n

j k k j k j k j

j

n

l

u

l j l j
j

n

u j u j

j

n

j
l u

b

l j l j

max
1

[,] [,] [,]

1 2

1

[,] [,]
1

[,] [,]

1 1
[,] [,]

= …LB max{LB , LB , , LB }bC max 1 2

5. Solution algorithms

In this section, we develop solution algorithms for AF2b|rj, sj|Cmax
and leave further analysis of AF2b|rj, sj|TC for future studies. This helps
us to analyze Cmax problem in more depth as Cmax analysis can shed the
light for researchers who explore solution algorithms for TC due to
close relation between Cmax and TC. The NP-hardness of AF2b|rj, sj|γ,

prompt us to apply metaheuristics in order to generate promising so-
lutions. In this section, we first develop simple heuristics for the ad-
dressed problem. These heuristics will be used to generate the initial
solutions for metaheuristics that will be presented later in this section.
We will also provide comprehensive comparison of the presented
heuristics.

5.1. Constructive heuristics

We propose new constructive heuristics based on the ideas discussed
in the previous section. Since AFb|rj,sj|γ has never been studied before,
the presented heuristics will be the first attempt to solve this NP-hard
problem. Eqs. (24)–(26) are derived by adding setups times to heuristics
that were proposed by Tozkapan et al. [39] and expanding them for
more than two stages. PTFij= tij represents processing times of job j on
machine i in the first stage and PTSlj=qlj shows the processing time of
job j in stage l. In this procedure, three sequences for each job are ob-
tained by sorting the jobs in non-decreasing order of following indices.
Then, the sequence with the lowest total completion time is chosen:

= + + +j t s q saI () min { } min { }k kj kj l l j l j1 , , (24)

= + + + +
= =

j m b t s q saI () 1/(1) () ()
k

m

kj kj
l

b

l j l j2
1 2

, ,
(25)

= + + +j t s q saI () max { } max { }k kj kj l l j l j3 , , (26)

I1(j), I2(j), and I3(j) are the minimum, average, and maximum pro-
cessing times of job j, respectively. In addition, Eqs. (28)–(32) are de-
rived from the dispatching rules proposed by Komaki and Kayvanfar
[16]. These indices includes release time and setup time of jobs and
expands Komaki and Kayvanfar [16]’s indices for more than two stages.
Similar to the first three groups, these indices are sorted in non-de-
creasing order.

= + + + +
=

j r t s q saI () max { } { }k k j k j k j
l

b

l j k j4 , , ,
2

, ,
(27)

= + + + +
=

j r t s m q saI () ()/ max { }
k

m

k j k j k j l l j l j5
1

, , , , ,
(28)

= + + + +
= =

j r t s m q saI () ()/ { }
k

m

k j k j k j
l

b

l j k j6
1

, , ,
2

, ,
(29)

= + + + +
=

j r t s q saI () min { } max { } { }k k j k k j k j
l

b

l j k j7 , , ,
2

, ,
(30)

= + + +
=

j r t q saI () max { } * { }k k j k j
l

b

l j k j8 , ,
2

, ,
(31)

= + + +
=

j r t s q saI () max max{ }, max{ } { }
k

k j
k

k j k j
l

b

l j k j9 , , ,
2

, ,
(32)

where k∗ in (31) is the first stage machine with maximum
= {j

n
1 tk,j + sk,j} ∀I. Note that jobs are ordered in non-decreasing or-

dering for all dispatching rules.

5.2. Metaheuristic algorithms

In this section, we present implementation of two metaheuristics,
GVNS and Grey Wolf Optimizer, on the addressed problem. These two
algorithms have been applied for solving different assembly flowshop
problems. For example, Komaki et al. [15] applied GVNS for solving
distributed permutation flowshop scheduling problem. Komaki and
Keyvanfar [16] utilized Grey Wolf optimizer to find efficient solutions
for AF(m,1)|rj| Cmax.

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

7

5.2.1. General variable neighborhood search algorithm
The quality of heuristic solutions can be improved by allowing di-

versification in the solution space. In order to achieve this goal, we
apply an extension of the Variable Neighborhood Search, called General
Variable Neighborhood Search (GVNS), which has been successfully
applied to solve various scheduling problems. The basic concept of the
VNS is using local search algorithm with systematic switches between
neighborhood structures in order to avoid local optima. The main dif-
ference between VNS and GVNS is that VNS uses a local search algo-
rithm to improve the solution while GVNS uses a Variable
Neighborhood Decent (VND) algorithm. Two main components of
GVNS algorithm are “shaking” and “local search” where the shaking
procedure perturbs the current solution to escape from the current local
optima and the local search explores the neighborhood of the current
solution in a systematic manner. We utilize GVNS due to its effective-
ness and the ability to improve the solutions generated in Section 5.1.

GVNS starts with an initial solution x generated by heuristics in
Section 5.1. Then, the shaking procedure and VND are applied to the
solution in search for a better neighborhood of the current solution. The
details of this algorithms including the intensity level of ω is decided in
the same manner as explained by Komaki and Malakooti [18]. In a
nutshell, if the solution obtained by VND algorithm outperforms the
current solution, the shaking procedure will be one the lowest pertur-
bation level (strong intensification). Otherwise, it will apply a strong
perturbation. This procedure continues until all predefined neighbor-
hoods have been explored.

5.2.2. Grey wolf optimizer algorithm
As the second metaheuristic, we utilize a swarm intelligence tech-

nique called, Grey Wolf Optimizer (GWO), to compare the quality of its
solutions with GVNS. GWO algorithm is inspired by hunting behavior of
wolves where each individual has a defined role with well-defined
hierarchical relationship in wolf pack, see Mirjalili et al. [25]. In GWO,
it is assumed that positions of leaders in a wolf pack (called alpha, beta
and delta) are saved and other wolves have to update their positions
based on the position of leaders. In this study, we use the sequence
generated by heuristics in Section 5.1 as the starting point for GWO.

We utilize two factors, A and C, to help the algorithm escape from
local minimum. Values for A are linearly decreased over the course of
the algorithm while C is not. This assures that half of the iterations
explore the space for possible superior solutions and the other half
converges to the promising solutions. We also integrate mutation to
imitate the life cycle of grey wolves.

Encircling process are modeled by Eqs. (33) and (34) where X(t) and
Xp(t) represent the position of the prey and wolf at iteration t and X
(t+1) represent the new position of the wolf.

= C X t X tD | . () ()|p (33)

+ =X t X t A D(1) () .p (34)

Vectors C and A in above equations are defined as C=2r2 and
A=2ar1-a. r1 and r2 are random vectors over [0,1] where a linearly
decreases over the range of [0,2] using a=2–2*t/Itmax and Itmax re-
presents maximum number of iterations in the algorithms. The at-
tacking stage occurs when |A|< 1 and as the result, wolves becomes
closer to the position of prey, Xp(t). On the other hand, |A|> 1 results
in wolves to explore other preys. The exact position of the prey, the
optimal solution, is unknown. However, α, β, and δ, are the closest
known answers to the optimal solution. Considering, X1, X2, and X3 as
the new positions for α, β, and δ, other wolves update their position
through the following equation:

+ = + +X t X X X(1) ()/31 2 3 (35)

In the following, we summarize each step of the GWO algorithm.
Step 1: Consider Xi(t) as the position of the wolf where i=1,…,

Nmax. Nmax represents the number of wolves in the group. Each wolf

represents the jobs sequence and the value generated by the best
heuristic in Section 5.1 is used as the starting point.

Step 2: Fitness of the solution is determined by: F(Xi)=Ω – Cmax(Xi)
i=1,2,…, Nmax, where Ω is a large positive number and Cmax(Xi) is
calculated based on Eq. (13).

Step 3: We find α, β, and δ by sorting the solutions in non-de-
creasing order of their fitness values. Then, the first sequence is Xα and
the second and the third sequences are Xβ and Xδ, respectively. We
apply local search on these sequences in an attempt to achieve solutions
with higher quality. The proposed local search selects a job from cur-
rent sequence and reinserts it in other available positions in an attempt
to find sequences with improved fitness values. The orders of the Xα, Xβ
and Xδ are updated to reflect the improvement during the local search.

Step 4: Position of subordinate wolfs are updated through Eq. (35).
Step 5: Fitness of each wolf are recalculated using the Equation in

Step 2 and α, β, and δ are updated.
Step 6: Repeat steps 4–6 until the stopping condition is met.
A wolf's fitness (solution) determines its role in the group. Updating

position of wolves can impact the position and subsequently, the role of
wolves in the group. For further details of adjusting GWO for AF pro-
blems, readers are referred to Komaki and Keyvanfar [16].

6. Computational experiment

The performance of proposed heuristic algorithms is measured
through randomly generated instances. The number of jobs (n) are set
at 20, 40, 60, and 80. The number of the machines at the first stage (m)
are set at 2, 4, 6, and 8 and the number of stages (b) are set as 3, 4, 5,
and 6. Also, the release, setup, processing, and assembly times are
generated randomly using uniform distributions for sixteen problem
sets, see Table 6. Totally, 4× 4×4×16=1024 instances are gen-
erated with 30 replications of each instance, i.e., in total 30,720 test
problems are run and the average performance of the algorithms are
compared. All algorithms are run in MATLAB2016 on a laptop with a
2.2 GHz Intel Core i5-5200 processor and 8 GB RAM.

As is the case with heuristic methods, we limit our solution space to
permutation schedules. We also make sure that none of the problem sets
in Table 6 fulfills the conditions of Theorems 1 through 3. Due to
probabilistic nature of GWO, each problem is run 30 times and the
average of results is considered as the performance of the algorithm. We
tried different parameter values to tune the metaheuristics. Population
size and maximum number of iterations are reported in Table 7. The
optimal values are shown in the right two columns.

Performance of the Lower Bounds: The deviation of the LB (DVL)
from the best known solution of the algorithms is measured as
DVL= (Sol⁎−LBcmax)/Sol⁎ * 100 where LBcmax=max {LB1, LB2, …,
LBb} and Sol⁎ is the best obtained solution by the algorithms. Fig. 3

Table 6
Release, setup, processing, and assembly times of jobs.

Problem Set Range of rij Range of sij and salj Range of tij Range of qlj

Set 1 U[0,200] U[0,100] U[0,200] U[0,200]
Set 2 U[0,100] U[0,100] U[0,100] U[0,200]
Set 3 U[0,100] U[0,100] U[0,200] U[0,100]
Set 4 U[0,200] U[0,100] U[0,100] U[0,100]
Set 5 U[0,100] U[0,100] U[0,200] U[0,200]
Set 6 U[0,200] U[0,100] U[0,200] U[0,100]
Set 7 U[0,200] U[0,100] U[0,100] U[0,200]
Set 8 U[0,100] U[0,100] U[0,100] U[0,100]
Set 9 U[0,200] U[0,200] U[0,200] U[0,200]
Set 10 U[0,100] U[0,200] U[0,100] U[0,200]
Set 11 U[0,100] U[0,200] U[0,200] U[0,100]
Set 12 U[0,200] U[0,200] U[0,100] U[0,100]
Set 13 U[0,100] U[0,200] U[0,200] U[0,200]
Set 14 U[0,200] U[0,200] U[0,200] U[0,100]
Set 15 U[0,200] U[0,200] U[0,100] U[0,200]
Set 16 U[0,100] U[0,200] U[0,100] U[0,100]

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

8

presents the DVL for 16 problem sets in Table 6. The best lower bound
performance belongs to problem sets 7 and 15 while the worst lower
bound performance belongs to sets 9 and 12. On average, the perfor-
mance of the proposed LB is 0.44%.

6.1. Comparisons of the heuristic algorithms

In this section, we analyze the efficiency of heuristic proposed in
Section 5.1. The heuristics proposed in this article results in very fast
(less than 0.5 s) solutions. After running 30 replication of each instance,
the solutions of heuristics are compared to each other. Fig. 4 shows the
average and ranking of DVL for nine heuristic algorithms. It can be
observed that on average, I5 has the best performance followed by I9
and I8, and I6 have the worst performance, followed by I2 and I1.

We use average relative percentage deviation, RPD= (Algsol – LB)/
LB×100, to measure the efficiency of proposed heuristics. Fig. 5 shows
the performance of each heuristic algorithm by measuring average RPD
of dispatching rules based on number of jobs. I5 and I9 are the best
performing algorithms and their performances improve as the number
of jobs increases. The worst performance belongs to I1 followed by I6.
Performance of I1 and I3 deteriorates by increasing the number of jobs
while the performance of other algorithms improves as the number of
the jobs increases. The main reason for I1’s underperformance is due to
its oversimplified formula. I1 in Eq. (24) ignores jobs’ real times and
only relies on the minimum of processing, and setup times over all
components and stages.

Fig. 6 represents the performance of heuristics based on the number

of machines in the first stage. Algorithms with the best performances, I5
and I9, and the worst performances, I1 and I6, are similar to the ones in
Fig. 5. As was the case in Fig. 5, the performance of heuristics except for
I1 and I3 improves as the number of the machines increases. It can be
observed that I4 and I7’s average performances are almost identical with
both having sharp increase in performance as the number of machines
increases.

Fig. 7 depicts the performance of the heuristic algorithms based on
number of stages. On average, I5 followed by I3, and I9 yields the best
performances and the worst performances belong to I6 and I1. In gen-
eral, the performance of I2 through I6 and I9 improves as number of
stages increases. Comparing Figs. 5–7 reveals that performance of
presented algorithms is more sensitive to the number of machines in the
first stage than number of jobs or number of stages.

Fig. 8 depicts the performance of the heuristics based on the sixteen

Table 7
Optimal parameters of the meta heuristic algorithms.

Parameter Description Tested range GVNS GWO

Nmax Population size 100–500 with increment of 100 200 500
Itmax Max. of iterations 50–500 with increment of 50 450 400

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
V

L

Problem Sets

Fig. 3. Average DVL of dispatching rules and heuristic algorithms.

0
1
2
3
4
5
6
7
8
9

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

I1 I2 I3 I4 I5 I6 I7 I8 I9

R
an
k

D
V
L

Average DVL Rank

Fig. 4. Overall performance of the heuristic algorithms and their rank.

0

2

4

6

8

10

I1 I2 I3 I4 I5 I6 I7 I8 I9

R
PD

Algorithm

20 40 60 80

Fig. 5. Performance comparison of heuristic algorithms based on number of
jobs.

0

2

4

6

8

I1 I2 I3 I4 I5 I6 I7 I8 I9

R
PD

Algorithm

2 4 6 8

Fig. 6. Performance comparison of heuristic algorithms based on number of
machines in the first stage.

0

2

4

6

8

10

I1 I2 I3 I4 I5 I6 I7 I8 I9

R
PD

Algorithm

3 4 5 6

Fig. 7. Performance comparison of heuristic algorithms based on number of
stages.

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

9

problem sets defined in Table 6. The behavior of the heuristics confirms
the ones observed in Figs. 3 through 6, with heuristic 5 yielding the best
performance followed by heuristics I9 and I3 and heuristics I1, I6, I7, and
I7 yielding the worst performances, respectively.

6.2. Statistical analysis of heuristic algorithms

In order to evaluate the significance of RPD differences in the pro-
posed nine heuristics, we perform statistical tests of the RPD results in
Fig. 8 using SPSS software. Statistical tests also help us to validate the
conclusions we drew in Section 6.1. A one-way analysis of variance
(ANOVA) test requires normality, independence of residuals, and
homoscedasticity assumptions. First, we check the normality of ob-
tained results through Shapiro-Wilk test. The selection of Shapiro-Wilk
test is due to the limited sample size (16 samples for each heuristic).
According to Table 8, p-value (sig.) for heuristics 1, 3, 4, 6, and 9 is
smaller than the significance level, 0.05. Therefore, the RPD values for
these heuristics are not normally distributed.

As a result, we apply a non-parametric technique such as Kruskal-
Wallis one-way analysis of variance by rank to check whether the dis-
tribution of the samples is the same or not. It should be pointed out that
the non-parametric tests do not require explicit conditions related to the
sample of data. Rejecting null hypothesis of the test implies that at least
one of the instances stochastically dominates other instances. Table 9
shows the mean rank of heuristics. The null hypothesis of the Kruskal-
Wallis test is that the mean ranks of the groups are the same, while the
alternative hypothesis is that at least one mean rank is different than

the mean rank of heuristics.
According to Table 9, I5 has the smallest (best) mean rank among

other employed heuristics while I1 yields the largest (worst) result.
These results are in accordance with the results observed in Fig. 8. In
general, it is observed that I1, I6, and I7 have considerably larger mean
rank comparing to the others. Table 10 shows the result of Kruskal-
Wallis test. Table 10 shows that the P-value (sig.) is smaller than the
significance level (0.00 < 0.05). This means that above mean rank
values are not the same and the difference observed is beyond chance.

In order to figure out which heuristic(s) are statistically different,
we perform pairwise Kruskal-Wallis test for all pairs of 9 heuristics.
Table 11 shows the pairs with significant difference:

Table 11 tests the hypothesis that whether the RPD distributions of
two heuristics are the same or not. The main trend observed is that any
one of heuristics I1, I6 and I7 have significantly different mean rank
(i.e. worse performance) than the rest of heuristics. These results are
confirm the underperformance of I1, I6 and I7. On the other hand,
Table 11 shows that heuristics I9 and I5 have significantly different (i.e.
better performance) comparing with other heuristics.

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
PD

Problem Set

I1 I2 I3 I4 I5 I6 I7 I8 I9

Fig. 8. Performance comparison of heuristic algorithms based on Problem Sets in Table 6.

Table 8
Shapiro-Wilk Normality Test.

Tests of Normality
Shapiro-Wilk

Heuristic Statistic Df Sig.

RPD 1 0.675 16 0.000
2 0.924 16 0.193
3 0.859 16 0.019
4 0.885 16 0.046
5 0.935 16 0.289
6 0.848 16 0.013
7 0.904 16 0.092
8 0.919 16 0.164
9 0.859 16 0.018

*This is a lower bound of the true significance.
a. Lilliefors Significance Correction.

Table 9
The ranks of groups in Kruskal-Wallis Test.

Ranks
Heuristic N Mean Rank

RPD I1 16 130.03
I2 16 72.94
I3 16 32.88
I4 16 59.06
I5 16 12.50
I6 16 116.75
I7 16 110.84
I8 16 89.38
I9 16 28.13
Total 144

Table 10
Kruskal-Wallis Test.

RPD

Kruskal-Wallis H 131.896
df 8
Asymp. Sig. 0.000

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

10

6.3. Comparisons of the metaheuristic algorithms

In this section, we analyze the efficiency of GVNS and GWO meta-
heuristics. We embed the heuristic solution of Section 5.1 as the pro-
mising starting point for GVNS and GWO. We utilize different values for
the maximum number of iterations as stopping criteria in GVNS to in-
vestigate several scenarios ranging from an average computation time
of less than a second to 10 s. To provide a fair comparison between
GVNS and GWO, we let the algorithms run for at most 10 s.

Fig. 9(a) shows the average RPD for GVNS, GWO, and the best
heuristic algorithm, I5, based on different problems sets. On average,
the performance for GVNS is 0.77% while this value for GWO and I5 is
1.04% and 1.31%, respectively. Also, GVNS yields the best outcome in
problem sets 12 and 14, while its worst performance is obtained in
problem set 8. Also, GVNS is performing better than GWO in all pro-
blem sets except problem set 2.

Fig. 9(b) depicts the average RPD of algorithms based on “number
of jobs” where the trends for GVNS and GWO are similar for all job
sizes. This is due to the fact that these two algorithms use the results for
same heuristics as starting points. It is worth noting that for all job sizes,
GVNS outperforms the GWO algorithm. However, as the number of jobs
increases, the average RPD for GVNS and GWO converges.

Table 11
Pairwise Kruskal-Wallis Test for all Heuristics.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
PD

Problem Sets

GVNS GWO I5

Fig. 9. (a). Average RPD based on Problem set. (b). Average RPD based on
number of jobs.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

R
PD

Number of jobs

GVNS GWO I5

Fig. 9. (continued)

Table 12
Tests of Normality.

Shapiro-Wilk

Heuristic Statistic df Sig.

RPD 1.00 0.926 16 0.214
2.00 0.940 16 0.353
3.00 0.953 16 0.532

Table 13
Test of Homogeneity of Variance.

Levene Statistic df1 df2 Sig.

RPD Based on Mean 0.047 2 45 0.954
Based on Median 0.066 2 45 0.936
Based on Median and with adjusted df 0.066 2 38.035 0.936
Based on trimmed mean 0.049 2 45 0.952

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

11

6.4. Statistical analysis of metaheuristic algorithms and I5

Similar to heuristics comparisons in Section 6.2, we start with
Shapiro-Wilk test to check the normality of obtained results in Fig. 9.

According to Table 12, there is not enough evidence to reject the
normality assumption. The next step is to test the homogeneity of
variances or levene's test in Table 13. According to this table, the test
statistics is not significant and as a result, the group variances are
homogeneous. The RPD values for these heuristics methods are gener-
ated independently from each other. Thus, the independency assump-
tion holds.

So far, we have confirmed the assumptions for ANOVA test. ANOVA
test in Table 14 shows the P-value<0.001. Therefore, there is at least
one group whose mean RPD is different than the rest.

Table 15 shows exactly which of the three heuristics are performing
significantly different. Significance values have appeared on different
columns of this table. Therefore, RPD value for each heuristic is sig-
nificantly different than the rest of the two. This result is in accordance

with the conclusion we had in Section 6.3 where the mean RPD shoed
that the performance for GVNS is better than GWO and GWO perfor-
mance is significantly better than I5.

7. Conclusion and future work

Multi-stage assembly flowshops (MSAF) have diverse applications in
industry. This article is the first attempt in exploring assembly flowshop
with more than three stages and with setup and release time. We de-
veloped a mixed binary linear optimization model and a constraint-free
mathematical model for this problem. Due to the NP-hard complexity of
the optimization model, we explored special cases that are likely to
occur in industry and derived polynomial solutions for the constraint-
free mathematical presentation. For instance, Corollary 5 proved that,
under bottleneck condition for one of the stages and no-idle condition
for the manufacturing stage (or negligible release time impact on ma-
kespan), there exists polynomial optimal solutions for total completion
time. This is fairly likely in industry as the likelihood of having one
bottleneck stage among several stages is high and facilities tend to start
the production process after procuring all the necessary components.
The presented models and their polynomial optimal solutions can be
extended to MSAF with no release or setup time. We also proposed
lower bounds (LB), nine efficient dispatching rules, and two meta-
heuristic algorithms, called GVNS and GWO, for the presented MSAF.
Experimental results revealed that the proposed LB is effective with
average deviation of 0.44% from the best known solution. Experimental
results also showed that the proposed dispatching heuristics result in
fairly good solutions. Moreover, GVNS yields significantly better per-
formance than GWO in 15 out of 16 problem sets. The performance of
proposed heuristics and meta-heuristics are confirmed with detailed
statistical analysis. Authors suggest exploring AFb solutions for dif-
ferent criteria such total tardiness and proposing new efficient LBs,
heuristics, and meta-heuristics for AFb|rj,sj|Cmax as one path for future
study. One can also consider stochastic or controllable processing,
setup, and/or release times for this problem. Exploring MSAF with
learning effect is another interesting concept to explore. Developing
variations of efficient MILP or constraint-free optimization models for
MSAF and comparing them with the results in this paper is another
direction for future studies.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.orp.2019.100111.

Appendix

I-Proof of Theorem 1. Since Eq. (15) is written for AF with at least four stages, we first derive C[j] for AF4|rj,sj|. In the next step, we generalize the
results for more than 4 stages. Eqs. (13)–(15) for AF4|rj,sj| is written as:

C [j] =max{max{max{max∀k{max{r[k,j], A[k,j-1]}+t[k,j] +s[k,j]}, C[2,j-1] +sa[2,j]}+ q[2, j], C[3,j-1] +sa[3,j]}+ q[3, j],
C[j-1] +sa[4,j]}+ q[4, j](I)

= + + = … = … =A r A t s k m j n Amax{ , } 1, , & 2, , where 0k j k j k j k j k j k[, 1] [, 1] [, 2] [, 1] [, 1] [,0] (II)

= + + = = … =C C C sa q l j n Cmax{ , } 2, 3 & 2, , where 0l j l j l j l j l j l[, 1] [1, 1] [, 2] [, 1] [, 1] [,0] (III)

For the second stage, l=2, Eq. (III) is written as, max{max∀k{A[k,j-1]}, C[2,j-2] +sa[2,j-1]}+ q [2, j-1]. Eq. (II) leads us to A[k,2]=max {r[k,2],
r[k,1]+ t[k,1]+ s[k,1]}+ t[k,2]+ s[k,2]. According to the first condition, for any pairs of jobs i and j; rk,i≤ rk,j + t k,j. For instance, for subsequent job
positions, j and j-1, we have: r[k,j] ≤ r[k,j-1]+ t[k,j-1] ∀k and j (IV). s [k,j-1]≥ 0 ∀k and j, simplifies A[k,2] to: A[k,2]= r[k,1]+ t[k,1]+ t[k,2]+ s[k,1]+ s[k,2].
Thus, Eq. (II) is written as:

= + + = + +
= =

A r t s A A t sork j k
i

j

k i
i

j

k i k j k j k j k j[, 1] [,1]
1

1

[,]
1

1

[,] [, 1] [, 2] [, 1] [, 1]
(V)

Eq. (III) for l=2 and j=2 is expressed as: C[2,1]=max{max∀k{A[k,1]}, sa[2,1]}+q[2,1] Using samax, j≤ smin,j ∀j condition and Eq. (V) we have:

Table 14
ANOVA Test.

RPD
Sum of Squares df Mean Square F Sig.

Between Groups 2.333 2 1.167 19.651 0.000
Within Groups 2.671 45 0.059
Total 5.005 47

Table 15
Post Hoc for RPD.

Subset for alpha= 0.05

Heuristic Name N 1 2 3

Tukey HSDa GVNS 16 0.7656
GWO 16 1.0419
I5 16 1.3056
Sig. 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size=16.000.

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

12

https://doi.org/10.1016/j.orp.2019.100111

= + = + + = + + + + +C max A q andC max A C sa q max A t s max A q sa q{ } max{ { }, } max{ { }, { } }k k k k k k k k k k[2,1] [,1] [2,1] [2,2] [,2] [2,1] [2,2] [2,2] [,1] [,2] [,2] [,1] [2,1] [2,2] [2,2]
According to the second and the third conditions in the Theorem, C[2,2] is simplified to:

= + = +C A q C C A qmax { } Thus is: max { }k k j j k k j j[2,2] [,2] [2,2] [2, 1] [2, 1] [, 1] [2, 1] (VI)

Eq. (III) for the third stage, l = 3, is written as:

= + = + + = + +C C sa q A q sa q A q qmax{ , } max{max { } } max { }k k k k[3,1] [2,1] [3,1] [3,1] [,1] [2,1], [3,1] [3,1] [,1] [2,1] [3,1]

C[3,2]=max{C[2, 2], C[3,1] +sa[3,2]}+ q [3,2]=max{max∀k{A[k,1]+t[k,1]+s[k,1]}+q[2,2], max∀k{A[k,1]}+ q[2,1]+ q [3,1]+sa[
3,2]}+ q [3,2]. According to the second and the third conditions, C[3,2] will be:

= + + = +
=

C A q q C A qmax { } and in general: max { }k k j k k j
l

b

l j[3,2] [,2] [2,2] [3,2] [3, 1] [, 1]
2

1

[, 1]
(VII)

The first condition, rk,max− rk,min≤ t k,min, can be expanded as:

+

+

r r t

r r t

k k k

k j k j k j

[,2] [,1] [,1]

[,] [, 1] [, 1]

Adding the sides yields:

+
= = = =

r r t r r t r Aor or
i

j

k i
i

j

k i
i

j

k i k j k
i

j

k i k j k j
2

[,]
1

1

[,]
1

1

[,] [,] [,1]
1

1

[,] [,] [, 1]
(VIII)

Replacing Eqs. (V),(VI),(VII) in Eq. (1) and applying conditions (VIII), ql,max≤ {tmin, ql-1,min}, and sal, j≤ s min, simplifies C [j] to:

= + + + + + +
= =

C r t s q q C sa qmax max ,j k k
i

j

k i
i

j

k i j j j j j[] [,1]
1

[,]
1

[,] [2,] [3,] [1] [4,] [4,]

For different j, C [j] is simplified to:

= + + +
=

C r t s qmax { }k k k k
l

l[1] [,1] [,1] [,1]
2

4

[,1]

= + + +
= = =

C r t s qmax k k
i

k i
i

k i
l

l[2] [,1]
1

2

[,]
1

2

[,]
2

4

[,2]

and in general, for b > 4: C [j]=max∀k{r[k,1]+ += =t si
j

k i i
j

k i1 [,] 1 [,]}+ = ql
b

l j2 [,]. Thus Cmax and TC in Eqs. (16) and (17) are derived accordingly.
The proof is completed. Q.E.D.

II-Proof of Corollary 1. Suppose there is an optimal schedule, Л*, for which the order of jobs J[i] and J[j] on the first stage machine, Mi, is J[i]→ J[j]
(i.e. J[i] is processed immediately before J[j]) whereas the order of these jobs on at least one of subsequent stages, let's sayMa on stage 2, is J[j] → J[i].
Condition rk,max - rk,min≤ t k,min yields rk,i≤Ak,i-1 ∀k and I (no idle time between consecutive jobs in the first stage). For Л* we have: A[k,j]
(Л*)=A[k,i] (Л*)+ t [k,i] + s [k,i]≤ R [2,j](Л*)≤ R [2,i] (Л*).

Consider schedule Л’ which is made by swapping positions of J[j] and J[i] on Mi. We have:

A A R(’) (*) (*)k j k j j[,] [,] [2,]

Also, A[k,i] (Л’)=A[k,j] (Л*)≤ R [2,i] (Л*). Therefore, all jobs in Л’ can start on Ma at the same time as they start in Л*. Thus, Л’ is optimal too.
Similar proof can be provided for TC objective. This corollary can be proved for any other order of jobs and any combination of processing stages
considering conditions of Theorem 1. Thus, permutation schedule does not increase the optimal makespan. This result can be easily extended for
AFb|rj|TC. Corollary 2 derives a polynomial optimal algorithm for AFb|rj|Cmax under the conditions of Theorem 1.

III-Proof of Theorem 2. Similar to Theorem 1, we first derive C[j] for AF4|rj,sj|. Then, we generalize the results for l > 4 stages. The first condition
simplifies Eq. (II) to: A[k,j-1]= A[k,j-2]+ t[k,j-1]+ s[k,j-1] which is the same as Eq. (V). According to the third condition, Eq. (III) for l=2 is expressed
as:

= + + + + +C A t s sa q sa qmax{max { }, }k k k k[2,2] [,1] [,2] [,2] [2,1] [2,1] [2,2] [2,2]

The third condition, Amax,j < samin, j, implies smax,j < samin, j and tmax,j < samin, j Thus, using this condition and the second condition, we have:
C[2,2]= = sai 1

2
[2,i] + = qi 1

2
[2,i]

= + + = + + + + + + + + +

= +
= =

C A C sa q A t s t s sa q sa q sa q

sa q

max{max { } } max{max { }, }k k k k k k k k

i
i

i
i

[2,3] [,3] [2,2] [2,3] [2,3] [,1] [,2] [,2] [,3] [,3] [2,1] [2,1] [2,2] [2,2] [2,3] [2,3]

1

3

[2,]
1

3

[2,]

Thus, C[2,j-1] in Eq. (III) is:

= +
= =

C sa qj
i

j

i

j

[2, 1]
1

1

1

1

i i[2,] [2,] (VIII)

Eq. (15) for the third stage, l = 3, is as follows:

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

13

= + = + + = + +C C sa q sa q sa q sa q qmax{ , } max{ , }[3,1] [2,1] [3,1] [3,1] [2,1] [2,1] [3,1] [3,1] [2,1] [2,1] [3,1]

= + + = + + + + +
= =

C C C sa q sa q sa q q sa qmax{ , } max ,
i i

[3,2] [2,2] [3,1] [3,2] [3,2]
1

2

1

2

[2,1] [2,1] [3,1] [3,2] [3,2]i i[2,] [2,]

= + +
= =

sa q q
i

i
i

i
1

2

[2,]
1

2

[2,] [3,2]

= + + = + + + + + = + +
= = = = = =

C C C sa q sa q sa q q sa q sa q qmax{ , } max ,
i

i
i

i
i

i
i

i
i

i
i

i[3,3] [2,3] [3,2] [3,3] [3,3]
1

3

[2,]
1

3

[2,]
1

2

[2,]
1

2

[2,] [3,2] [3,3] [3,3]
1

3

[2,]
1

3

[2,] [3,3]

and in general:

= + +
= =

C sa q qj
i

j

i
i

j

i j[3, 1]
1

1

[2,]
1

1

[2,] [3, 1]
(IX)

The third condition, Amax,j < samin, j, implies rk,1 < samin, j. Using this condition and replacing Eqs. (V), (VIII), and (IX) in Eq. (13) and applying
conditions of Theorem 2 simplifies C [j] to:

= + + + +
= =

C sa q q C sa qmax ,j
i

j

i
i

j

i j j j j[]
1

[2,]
1

[2,] [3,] [1] [4,] [4,]

= + + + + + = +

+
= = = =

= =

C sa q q sa q sa q sa

q q

max{ , }i i i i l
b

l i i

i i l b
b

l

[2] 1
2

[2,] 1
2

[2,] [3,2] [2,1] 2 [,1] [4,2] [4,2] 1
2

[2,]

1
2

2,] 1 [,2]

= + + + + + +

= + +
= = = = =

= = =

C sa q q sa q q sa q

sa q q

max{ , }i i i i i i i i l b
b

l

i i i i l b
b

l

[3] 1
3

[2,] 1
3

[2,] [3,3] 1
2

[2,] 1
2

[2,] 1 [,2] [4,3] [4,3]

1
3

[2,] 1
3

[2,] 1 [,3]

= + +
= = =

C sa q qj
i

j

i
i

j

i
l

l j[]
1

[2,]
1

[2,]
3

4

[,]

and, for b > 4: C [j] = = sai
j

1 [2,i] + = qi
j

1 [2,i] + = ql b
b

1 [l,j]. Thus Cmax and TC in Eqs. (16)–(19) are derived accordingly. The proof is completed.
Q.E.D.

IV- Proof of Theorem 3. Similar to Theorem 1, we first derive C [j] for AF4|rj,sj|. Then, we generalize the results for l>4. The first condition
simplifies Eq. (II) to: A[k,j-1]= A[k,j-2]+ t[k,j-1]+ s[k,j-1] (V). Similarly, Eq. (III) for l=2 is expressed as:

C[2,1]=max{max∀k{A[k,1]}, sa[2,1]}+q[2,1] =max∀k{A[k, 1]} +q[2,1] (According to the third condition)

= + + + + +C A t s A q sa qmax{max { }, max { } }k k k k k k[2,2] [,1] [,2] [,2] [,1] [2,1] [2,2] [2,2]

According to the second and the third conditions, C[2,2] will be: C[2,2]=max∀k{A[k,1]}+ q[2,1]+ sa[2,2] + q[2,2]

= + + + + + + + + + =
+ + + + +

C A t s t s A q sa q sa q
A q sa q sa q
max{max { }, max { } }

max { }
k k k k k k k k

k k

[2,3] [,1] [,2] [,2] [,3] [,3] [,1] [2,1] [2,2] [2,2] [2,3] [2,3]

[,1] [2,1] [2,2] [2,2] [2,3] [2,3]

Thus, C[2,j-1] in Eq. (III) is:

= + +
= =

C A sa qmax { }j k k
i

j

i
i

j

i[2, 1] [,1]
2

1

[2,]
1

1

[2,]
(X)

Eq. (15) for the third stage, l = 3, is written as follows:

= + + = + +C A q sa q A q qmax{max { } , } max { }k k k k[3,1] [,1] [2,1] [3,1] [3,1] [,1] [2,1] [3,1]

= + + + + + +C A q sa q A q q sa qmax{max { } , , max { } }k k k k[3,2] [,1] [2,1] [2,2 [2,2] [,1] [2,1] [3,1] [3,2] [3,2]

= + + + +C A q q sa qmax { }k k[3,2] [,1] [2,1] [3,1] [3,2] [3,2]

and in general:

= + + +
= =

C A q q samax { }j k k
i

j

i
i

j

i[3, 1] [,1] [2,1]
1

1

[3,]
2

1

[3,]
(XI)

Replacing Eqs. (V) and (XI) and considering r[k, j] ≤A[k,j-1] in Equation (13) and applying conditions of Theorem 3, simplifies C [j] to:

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

14

= + + + + +
= =

C A q q sa C sa qmax max { } ,j k k
i

j

i
i

j

i j j j[] [,1] [2,1]
1

[3,]
2

[3,] [1] [4,] [4,]

= + + +C A q q qmax { }k k[1] [,1] [2,1] [3,1] [4,1]

= + + + + +C A q q q sa qmax { }k k[2] [,1] [2,1] [3,1] [4,1] [4,2] [4,2]

= + + +
= =

C A q q samax { }j k k
l

l
i

j

b i j[] [,1]
2

3

[,1]
1

[,] [4,]

and in general, for b > 4: C [j] =max∀k{A[k,1]}+ = ql
b

l2
1

[,1]+ = qi
j

b i1 [,]+sa[b,j]. Thus Cmax and TC in Eqs. (22) and (23) are derived accordingly. The
proof is completed. Q.E.D.

References

[1] Allahverdi A, Gupta JND, Aldowaisan T. A review of scheduling research involving
setup considerations. OMEGA Int J Manag Sci 1999;27:219–39.

[2] Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY. A survey of scheduling problems
with setup times or costs. Eur J Oper Res 2008;187:985–1032.

[3] Allahverdi A, Soroush HM. The significance of reducing setup times/setup costs. Eur
J Oper Res 2008;187:978–84.

[4] Allahverdi A. The third comprehensive survey on scheduling problems with setup
times/costs. Eur J Oper Res 2015;246(2):345–78.

[5] Allahverdi A, Aydilek H, Aydilek A. Two-stage assembly scheduling problem for
minimizing total tardiness with setup times. Appl Math Modell 2016;40(17-
18):7796–815.

[6] Andrés C, Hatami S. The three stage assembly permutation flowshop scheduling
problem. V international conference on industrial engineering and industrial man-
agement. 2011. p. 867–75.

[7] Campos SC, Arroyo JEC, Tavares RG. A general VNS heuristic for a three-stage
assembly flow shop scheduling problem. International Conference on Intelligent
Systems Design and Applications. Cham: Springer; 2016. p. 955–64.

[8] Framinan JM, Perez-Gonzalez P. The 2-stage assembly flowshop scheduling pro-
blem with total completion time: efficient constructive heuristic and metaheuristic.
Comput Oper Res 2017;88:237–46.

[9] Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop sche-
duling. Math Oper Res 1976;1(2):117–29.

[10] Gonzalez-Neira EM, Ferone D, Hatami S, Juan AA. A biased-randomized simheur-
istic for the distributed assembly permutation flowshop problem with stochastic
processing times. Simul Modell Pract Theory 2017;79:23–36.

[11] Graham RL, Lawler EL, Lenstra JK, Kan AR. Optimization and approximation in
deterministic sequencing and scheduling: a survey. In annals of discrete mathe-
matics (Vol 5. Elsevier; 1979. p. 287–326.

[12] Hatami S, Ebrahimnejad S, Tavakkoli-Moghaddam R, Maboudian Y. Two meta-
heuristics for three-stage assembly flow shop scheduling with sequence-dependent
setup times. Int J Adv Manuf Technol 2010;50:1153–64.

[13] Hatami S, Ruiz R, Andres-Romano C. The distributed assembly permutation flow-
shop scheduling problem. Int J Prod Res 2013;51(17):5292–308.

[14] Hatami S, Ruiz R, Andrés-Romano C. Heuristics and metaheuristics for the dis-
tributed assembly permutation flowshop scheduling problem with sequence de-
pendent setup times. Int J Prod Econ 2015;169:76–88.

[15] Komaki GM, Mobin S, Teymourian E, Sheikh S. A general variable neighborhood
search algorithm to minimize makespan of the distributed permutation flowshop
scheduling problem. World Acad Sci Eng and Technol Int J Soc Behav Educ Econ
Bus Ind Eng 2015;9(8):2701–8.

[16] Komaki GM, Kayvanfar V. Grey Wolf Optimizer algorithm for the two-stage as-
sembly flow shop scheduling problem with release time. J Comput Sci
2015;8:109–20.

[17] Komaki GM, Teymourian E, Kayvanfar V, Booyavi Z. Improved discrete Cuckoo
optimization algorithm for the three-stage assembly flowshop scheduling problem.
Comput Ind Eng 2017;105:158–73.

[18] Komaki M, Malakooti B. General variable neighborhood search algorithm to
minimize makespan of the distributed no-wait flow shop scheduling problem. Prod
Eng 2017;11(3):315–29.

[19] Komaki GM, Sheikh S, Malakooti B. Flow shop scheduling problems with assembly
operations: a review and new trends. Int J Prod Res 2018:1–30https://www.

tandfonline.com/doi/abs/10.1080/00207543.2018.1550269.
[20] Koulamas C, Kyparisis GJ. The three-stage assembly flow shop scheduling problem.

Comput Oper Res 2001;28:689–704.
[21] Lee CY, Cheng TCE, Lin BMT. Minimizing the makespan in the 3-machine assembly-

type flow shop scheduling problem. Management Science 1993;39:616–25.
[22] Lin J, Wang ZJ, Li X. A backtracking search hyper-heuristic for the distributed as-

sembly flow-shop scheduling problem. Swarm Evolut Comput 2017;36:124–35.
[23] Maleki-daronkolaei Aref, Seyedi I. Taguchi method for three-stage assembly flow

shop scheduling problem with blocking and sequence-dependent set up times. J Eng
Sci Technol 2013;8(5):603–22.

[24] Maleki-Darounkolaei A, Modiri M, Tavakkoli-Moghaddam R, Seyyedi I. A three-
stage assembly flow shop scheduling problem with blocking and sequence-depen-
dent set up times. J Ind Eng Int 2012;8(1):1–7.

[25] Mirjalili S, Mirjalili SM, S.M., A., Lewis A. Grey wolf optimizer. Adv Eng Softw
2014;69:46–61. 2014.

[26] Morizawa K. A branch-and-bound based heuristic algorithm for minimizing ma-
kespan in machining-assembly flowshop scheduling. Engineering 2014;6(13):877.

[27] Naderi B, Ruiz R. The distributed permutation flowshop scheduling problem.
Comput Oper Res 2010;37(4):754–68.

[28] Potts CN, Sevast'janov SV, Strusevich VA, Van Wassenhove LN, Zwaneveld CM. The
two-stage assembly scheduling problem: complexity and approximation. Oper Res
1995;43(2):346–55.

[29] Sheikh S, Komaki GM, Kayvanfar V. Multi objective two-stage assembly flow shop
with release time. Comput Ind Eng 2018;124:276–92.

[30] Shoaardebili N, Fattahi P. Multi-objective meta-heuristics to solve three-stage as-
sembly flow shop scheduling problem with machine availability constraints. Int J
Prod Res 2015;53(3):944–68.

[31] Tajbakhsh Z, Fattahi P, Behnamian J. Multi-objective assembly permutation flow
shop scheduling problem: a mathematical model and a meta-heuristic algorithm. J
Oper Res Soc 2014;65(10):1580–92.

[32] Tharumarajah A, Bemelman R, Welgama P, Wells A. Distributed scheduling of an
assembly shop. Systems, Man, and Cybernetics. 1998 IEEE International Conference
on 1. IEEE; 1998. p. 433–8.

[33] Xiong F, Xing K. Meta-heuristics for the distributed two-stage assembly scheduling
problem with bi-criteria of makespan and mean completion time. Int J Prod Res
2014;52(9):2743–66.

[34] Yokoyama M, Santos DL. Three-stage flow-shop scheduling with assembly opera-
tions to minimize the weighted sum of product completion times. Eur J Oper Res
2005;161(3):754–70.

[35] Zhang Y, Zhou Z, Liu J. The production scheduling problem in a multi-page invoice
printing system. Comput Oper Res 2010;37(10):1814–21.

[36] Zhang G, Xing K, Cao F. Scheduling distributed flowshops with flexible assembly
and set-up time to minimise makespan. Int J Prod Res 2017:1–19.

[37] Deng J, Wang L, Wang SY, Zheng XL. A competitive memetic algorithm for the
distributed two-stage assembly flow-shop scheduling problem. Int J Prod Res
2016;54(12):3561–77.

[38] Li P, Yang Y, Du X, Qu X, Wang K, Liu B. Iterated Local Search for Distributed
Multiple Assembly No-Wait Flowshop Scheduling. 2017 IEEE Congress on evolu-
tionary computation (CEC) 2017:1565–71.

[39] Tozkapan A, Kirca Ö, Chung CS. A Branch and Bound Algorithm to Minimize the
Total Weighted Flowtime for the Two-Stage Assembly Scheduling Problem.
Computers and Operations Research 2003;30(2):309–20.

S. Sheikh, et al. Operations Research Perspectives 6 (2019) 100111

15

http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0001
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0001
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0002
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0002
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0003
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0003
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0006
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0006
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0006
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0007
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0007
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0007
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0010
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0010
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0010
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0011
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0011
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0012
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0012
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0012
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0013
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0013
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0013
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0014
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0014
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0014
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0015
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0015
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0016
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0016
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0016
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0020
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0020
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0020
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0022
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0022
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0022
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0023
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0023
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0023
https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1550269
https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1550269
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0025
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0025
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0027
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0027
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0029
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0029
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0031
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0031
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0031
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0032
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0032
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0032
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0033
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0033
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0034
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0034
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0035
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0035
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0036
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0036
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0036
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0038
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0038
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0039
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0039
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0039
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0040
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0040
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0040
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0041
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0041
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0041
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0042
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0042
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0042
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0043
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0043
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0043
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0044
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0044
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0045
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0045
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0046
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0046
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref0046
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref1001
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref1001
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref1001
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref1002
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref1002
http://refhub.elsevier.com/S2214-7160(18)30052-6/sbref1002

	Multi-Stage assembly flow shop with setup time and release time
	Introduction
	Literature review
	Problem description
	Assumptions and notations
	Optimization models and special cases
	Numerical example

	Proposed lower bounds for cmax
	When the first stage is bottleneck
	When stage u is bottleneck (u = 2,…, b)

	Solution algorithms
	Constructive heuristics
	Metaheuristic algorithms
	General variable neighborhood search algorithm
	Grey wolf optimizer algorithm

	Computational experiment
	Comparisons of the heuristic algorithms
	Statistical analysis of heuristic algorithms
	Comparisons of the metaheuristic algorithms
	Statistical analysis of metaheuristic algorithms and I5

	Conclusion and future work
	Supplementary materials
	Appendix
	References

