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A B S T R A C T

To stay competitive in present-day turbulent business environment, managers of manufacturing firms must
achieve crucial operational goals, such as maintaining product quality, reducing operating costs, and attaining
customer satisfaction. In real manufacturing systems, allowing backordering sometimes can be an effective
strategy to help smooth manufacturing schedules and lower operating costs. However, the consequence of ex-
cessive shortages is the undesirable service level which reduces customer satisfaction and goodwill. To cope with
this unwanted result, a maximal permitted backlogging level is set as an operating constraint to achieve the
minimum required service level. Also, production of scrap items and stochastic breakdown are both inevitable in
the manufacturing processes. Motivated by addressing aforementioned issues and providing insight information
to managers for supporting their operational decision makings, this paper investigates the optimal runtime for a
fabrication system with backordering, service level constraint, stochastic breakdown, and scrap. Mathematical
model was developed and optimization methods are used to decide the optimal runtime that minimizes total
system costs. Various key insights relating to joint impacts of backlogging, service level, stochastic breakdown,
and scrap on the optimal runtime decision are revealed through a numerical illustration along with sensitivity
analyses.

1. Introduction

The present study investigates the optimal runtime for a fabrication
system incorporating backlogging with service level constraints, scrap,
and stochastic breakdown. Conventional economic production quantity
(EPQ) model derived the most economic fabrication lot size for a pro-
duction system without considering shortage/backordering, and it as-
sumes that the manufacturing process is perfect [1–2]. However, in
real-life fabrication systems, allowing backordering of shortages of
certain portion of demand can sometimes be an effective strategy to
help managers smooth production schedules and lower overall oper-
ating costs. But, the consequence of abusive shortages is the undesirable
service level that reduces customer satisfaction and goodwill. To cope
with this unwanted result, a maximal allowable shortage level is often
set as an operating constraint to achieve minimum required service
level. Aucamp and Fogarty [3] incorporated backordering strategy into
conventional economic order quantity (EOQ) model, wherein no extra
backlogging cost and a limited reasonable delay time were considered.
de Kok [4] explored an inventory model with adjustable production

rate. The product demand is assumed to obey a compound Poisson
process and the adjustable production rate was used to cope with
fluctuations in demand. They considered that excess demands were lost
and average number of lost-sales occurrences per unit time as the ser-
vice measures. A two-critical-number control policy was used to derive
approximations for the switch-over level so as to achieve the required
service level. Aucamp [5] derived an exchange curve for managers to
determine the backorder policy. Such an exchange curve illustrated the
trade-off between aggregate inventory costs versus the costs for max-
imum allowed backorder delay. Boyaci and Gallego [6] investigated a
stock refilling problem with the aim of minimizing ordering and
holding costs subject to a constraint on the expected level of back-
orders. A algorithm was developed to compute an optimal policy, the
imputed penalty cost rate, and the corresponding fill-rate. Chiu [7]
analyzed the impact of service level on an EPQ model with random
scrap. The expected system cost with backordering is proved to be less
than that of the same model without backordering. Then, relationship
between a so-called imputed backorder cost and maximum shortage
level was derived, and a formula was proposed to compute the
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intangible backlogging expense for the case when desired service level
is unattainable. Finally, applying the intangible backorder cost to the
solution process, an update optimal batch size policy was determined.
Other studies [8–13] also addressed diverse aspects of backordering
with service level constraint.
Furthermore, in real world production environments, due to diverse

uncontrollable factors, the production of scraps and the stochastic
machine failure are both inevitable. Mak [14] studied a fabrication
system featuring uncertain product quality in a production lot and
demand is partially met. He assumed that an allowable fraction of the
demand with known probability distribution can be backordered. A
mathematical model was developed to help determine the optimal stock
refilling policy and numerical example was used to verify his research
result. Widmer and Solot [15] explored a machine failure and main-
tenance problem using the queuing network theory. They evaluated
production rate, utilization, and other performances of a flexible
manufacturing system, and used the simulation analyses and results to
verify accuracy of their study. Groenevelt et al. [16] examined two
separate production control policies that coped with random machine
breakdown. The first policy considered that production of the inter-
rupted lot will not be resumed after a machine failure occurrence (i.e.,
the NR policy). The second policy assumed that after a machine failure
occurrence and if existing inventory level drops below a particular
threshold point, then production of the interrupted lot will be resumed
right away (this is called abort/resume (AR) policy). Machine fixing
time is assumed to be insignificant, and impacts of machine failure
occurrence and corrective maintenance on economic batch size deci-
sions were explored accordingly. Widyadana and Wee [17] examined
deteriorating items’ EPQ models featuring preventive maintenance,
stochastic breakdown and instant corrective action. The excessive de-
mands are assumed lost. Two separate EPQ models were developed, one
considered the distribution of corrective and maintenance times is
uniform and the other one assumed exponential. Numerical examples
with sensitivity analyses were provided to illustrate their models. They
found that the corrective time variable for the exponential distribution
model is most sensitive to the optimal total cost. Chiu et al. [18]
decided the optimal runtime for an EPQ-based system with Poisson
distributed machine failure rate and uniformly distributed scrap rate.
After an occurrence of failure, the machine will be under repair at once
and the fabrication of the interrupted lot resumes when the machine is
repaired. They built a mathematical model and proposed a recursive
algorithm to decide the optimal fabrication runtime. A numerical il-
lustration was provided to demonstrate applicability and cost efficiency
of their result as compared to a prior research that considered break-
down with NR policy. Other research that examined various aspects of
imperfect fabrication systems such as breakdown, scrap, rework of
defects, and other quality assurance matters, can also be found else-
where [19–37].
Motivated by providing insight information to support managerial

key operational decision makings, the present research extends prior
studies [7,18] and investigates the optimal runtime for a manufacturing
system with backordering, service level constraint, scrap, and random
machine breakdown. Due to little attention has been drawn on ex-
ploration of joint impacts of backordering, service level constraint,
scrap, and breakdown on the optimal runtime decision for such a par-
ticular fabrication system, we are intended to link the gap.

2. Materials and methods

2.1. The proposed problem

This study explores a manufacturing runtime problem with scrap,
backordering, service level constraint, and random machine break-
down. Consider that the demand rate of a manufactured product is λ
units per year, and this item can be fabricated at a rate of P units per
year. The production process is imperfect, an x portion of scrap

products may be produced arbitrarily at rate d, yielding d= Px. To
avoid stock-out situations, P–d–λ>0 is assumed.
In the fabrication process, the production equipment is subject to a

breakdown that obeys Poisson distribution. When an equipment failure
happens, abort/resume (AR) control plan is implemented, and under
the AR policy, machine repair initiates right away, and the disturbed
batch resumed at once when the production facility is repaired. We
assumed that the machine repair time is constant (however, if the ac-
tual repair time shall exceed this allowable time, then a rental machine
will be used to avoid further delay in production). Shortage is allowed
and backordered with an additional shortage cost b per product per unit
time. To avoid an abusive backlogging situation [7], a minimum ac-
ceptable service level (1–α)% is set as a predetermined policy. Addi-
tional notations include the following:

T1= uptime, the decision variable,
K= setup cost,
C= unit fabrication cost (including unit screening cost),
M= equipment repair cost per breakdown,
CS= disposal cost per item,
C1= unit cost of safety stock,
CT= unit delivery cost,
h= holding cost per product per year,
h3= holding cost per item per unit time of safety stock,
Q= replenishment lot size per production cycle,
T’= cycle time in the case of breakdown occurring,
β= number of breakdowns per year–a Poisson distributed vari-

able,
t= time to a breakdown occurs,
tr= time needed to repair the machine,
t1’= uptime when the stock piles up,
t2’= time to consume all existing perfect quality items,
t3’= time in which backlogging gradually accumulated,
t4’= uptime in which backlogging being gradually satisfied,
TC1(T1)= total system cost per cycle in the case of breakdown occurs

in backlogging stage,
TC2(T1)= total system costs per cycle in the case of breakdown oc-

curs in stock pileup stage,
E[TC1(T1)]= expected total system cost per cycle when breakdown

happens in backlogging stage,
E[TC2(T1)]= expected total system costs per cycle when breakdown

happens in the stock pileup stage,
T= cycle length–in the case of no breakdown happening,
t1= uptime when stock piles up–in the case of no breakdown

happening,
t2= time required to deplete all existing finished items–in the

case of no breakdown happening,
t3= time in which backlogging accumulated–in the case of no

breakdown taking place,
t4= uptime in which backlogging being satisfied–in the case of no

breakdown happening,
E[TC3(T1)]= expected system costs per cycle in the case of no

breakdown happening,
T= cycle time whether the machine breakdowns or not,
TCU(T1 )= total system cost per unit time whether a breakdown

happening or not,
E[TCU(T1)]= expected system cost per unit time whether a break-

down happening or not,
I(t) =perfect quality stock level at time t,
Is(t) = level of scrapped items at time t,
g= time needed to repair the machine (i.e., tr).
Because in the fabrication process, the machine is subject to a

random failure (i.e., the time to a breakdown is random), so there are
three possible cases of breakdown occurrence must be investigated:
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2.2. Case 1: when machine breakdowns in the backlogging stage

In this situation, t is less than t4’. The on-hand inventory status of
perfect quality products is depicted in Fig. 1. It can be seen that when a
breakdown occurs, the level of backlogging is at H0, and under the AR
policy, once the machine is fixed and restored, the production of the
interrupted lot is immediately resumed. Hence, the level of backlogging
continues to reduce, and then changes to having positive stocks in t1’. At
the end of production uptime, the level of on-hand inventory reaches H.
Then, all available products are consumed in t2’, followed by a shortage
in period t3’ until they accumulate to a permitted maximum level B (i.e.,
a predetermined level set by the minimum acceptable service level
constraint). Subsequently, the uptime of the following replenishment
cycle begins. Some basic formulas (see Appendix A) can be observed
from Fig. 1.
Fig. 2 exhibits the on-hand stock status of scraps in the proposed

system. It can be seen that at the end uptime, the maximal level of scrap
products reaches dT1.
The total system costs TC1(T1), in the case of breakdown in the

backlogging stage, comprise the manufacturing setup cost, variable
production and disposal costs, fixed repairing cost of breakdown,
holding and purchasing costs of safety stock, holding costs of perfect
quality items and scrap items in t1’ and t2’, variable shipping costs, and
variable backordering costs. Hence, TC1(T1) is as follows:

= + + + + + +

+ + + +

+ + + + +

( )TC T K CQ C xQ M h t t C t

h t t dt t T

C x Q t b t t b H t

( ) ( ) ( )

( ) ( ) ( ) ( )
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B
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2 3 4 0

r

1

(1)

Substituting Eqs. (A-1)–(A-8) in Eq. (1), and using the expected
values of x to manage the scrap rate's randomness, and with extra
computations, we obtain E[TC1(T1)] as

= + + + + + +

+ + + +

+ + + + + +

( )E TC T K CT P T PC E x M h t t C t

h bt B Pt t

h b P E x tt C E x T P t

[ ( )] [ ] ( ) ( )

( )

( ) [ ] [(1 [ ]) ( )]

S r
t

r

B E x T P E x T P E x T P
r

B
P PE x

B
r T r

1 1 1 1 3 2 1

(1 [ ]) (1 [ ])
2

(1 2 [ ])
2

2( [ ] ) 2 1 1

r

1 2 12 2 12

2 2

(2)

2.3. Case 2: when machine breakdowns in the stock pileup stage

In this case, the time to breakdown t falls within the range of [t5’,
T1] (i.e., t5’< t< T1) (see Fig. 3). An additional Eq. (3) can be observed
directly from Fig. 3 as follows:

=H P d t t( )·( )1 4 (3)

In this case, the total system costs TC2(T1) comprise the manu-
facturing setup cost, variable fabrication and disposal costs, fixed re-
pairing cost of breakdown, holding and purchasing costs of safety stock,
holding costs of perfect quality items and scrap items, variable shipping
costs, and variable backordering costs. Hence, TC2(T1) is

= + + + + + +

+ + + + + +

+ + + +

+
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Substituting Eqs. (A-1)–(A-8), and Eq. (3) in Eq. (4), and using the
expected values of x to cope with the random scrap rate, and with
additional derivations, we obtain E[TC2(T1)] as

= + + + + + +

+ + +

+ + + + +
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h htt P
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2.4. Case 3: no breakdown occurrence in uptime

In this situation, t>= T1 (see Fig. 4). Observing Fig. 4, one can

Fig. 1. The level of on-hand perfect quality items in the proposed manu-
facturing system when breakdown occurs in the backlogging stage.

Fig. 2. The on-hand inventory status of scraps in the proposed system.

Fig. 3. The level of on-hand inventory of perfect quality products in the pro-
posed manufacturing system when breakdown occurs in the stock pileup stage.
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directly obtain basic formulas (as shown in Appendix B).
In this case, TC3(T1) comprise the manufacturing setup cost, vari-

able production and disposal costs, holding and purchasing costs of
safety stock, holding costs of perfect quality and scrap products in t1
and t2, variable shipping costs, and variable backordering costs.
Therefore, TC3(T1) is as follows:

= + + + +

+ + +

+ + +
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h t t T
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( ) ( ) ( )

(1 ) ( )

S r r
H H d T

T
B

3 1 3 1

2 1 2 2
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1

(6)

Replace Eqs. (B-1) to (B-6) in Eq. (6), and applying the expected
values of x to cope with the randomness of scrap rate, and with extra
derivations, we obtain E[TC3(T1)] as

= + + + + + +

+ +

+ + + +

( )E TC T K CT P T PC E x M h t t C t

h

h b C E x T P

[ ( )] [ ] ( ) ( )

( ) [(1 [ ]) ]

S r
t

r

B E x T P E x T P E x T P

B
P PE x

B
T

3 1 1 1 3 2 1

(1 [ ]) (1 [ ])
2

(1 2 [ ])
2

2( [ ] ) 2 1

r

1 2 12 2 12

2 2

(7)

A predetermined desired minimum acceptable service level (1–α)%
is set by production planner to avoid the abusive backlogging situation.
The following relationship between the maximum backlogging level
and the service level indicator α can be obtained from a prior study [7]
as follows:

=B E x
P

T P1 [ ] 1 (8)

3. Results

3.1. Integration of three possible cases

In this study, since Poisson distributed failure with mean= β per
year is assumed, thus, time to machine failure obeys exponential

distribution with f(t)= βe–βt as density function and F(t)= (1–e–βt) as
the cumulative density function. Therefore, E[TCU(T1)] is as follows:

=
+ +
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where the expected cycle time E[T] is [18]

= + =T E T f t dt E T f t dt P E x TE[ ] [ ] ( ) [ ] ( ) [1 ( )]T
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11

1 (10)

By substituting three separate expected cost functions E[TC1(T1)], E
[TC2(T1)], and E[TC3(T1)], along with f(t) and E[T] into Eq. (9), and
with additional derivations, we obtain E[TCU(T1)] as follows:
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where g, z1, v, Y1, s, w1, w2, w3, w4, and w5 stand for the following:
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From Eq. (11), we obtain the first and second derivatives of E[TCU(T1)]
as

Fig. 4. The level of on-hand perfect quality items in the proposed manu-
facturing system when breakdown does not occur.

Table 1
Results of iterations of our proposed recursive searching algorithm for T1*.

β Iteration e–βT1U T1U e–βT1L T1L* Difference between T1U and T1L E[TCU(T1U)] E[TCU(T1L)] Difference b/w E[TCU(T1U)] and E[TCU(T1L)]

0.5 initial 0.0000 0.6009 1.0000 0.3698 0.2311 $10,528.48 $10,467.52 $60.96
2nd 0.7405 0.4453 0.8312 0.4198 0.0255 $10,456.09 $10,455.07 $1.02
3rd 0.8004 0.4286 0.8107 0.4257 0.0029 $10,454.94 $10,454.92 $0.02
4th 0.8071 0.4267 0.8083 0.4263 0.0004 $10,454.92 $10,454.92 $0.00
5th 0.8079 0.4264 0.8080 0.4264 0.0000 $10,454.92 $10,454.92 $0.00
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If Eq. (18)> 0, then E[TCU(T1)] is convex. Because the first term on
the right-hand side (RHS) of Eq. (18) [λ / (1 – E[x])]> 0, hence, if the
second term on RHS of Eq. (18)> 0, then E[TCU(T1)] is convex. With
further derivations, we know that under the following condition the
convexity holds:
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Once we confirm that T1< δ(T1), then E[TCU(T1)] is convex, sub-
sequently, we can seek T1* by setting the first derivative of E[TCU(T1)]
(i.e., Eq. (17)) equal to 0. Applying the square root solution to Eq. (17),
the following can be gained:
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Fig. 5. The behavior of E[TCU(T1)] with respect to replenishment runtime T1.

Fig. 6. Joint effects of time-to-breakdown 1/β and scrap rate x on the expected system costs E[TCU(T1)].

S.W. Chiu, et al. Operations Research Perspectives 6 (2019) 100090

5



= ( )z w w e w e2 2 2 2c
T T s

1 1 3 41 1 (23)

By rearranging Eq. (17), the following is gained:

=
+ + +

( )
[ ( ) ] [ ( ) ]e

z w w e
T w w e sw e T w w

2 2 2
{2 2 2 } (2 ) 2

T
T s

T s T s
1 1 1 4 1

12 2 5 1 1 5 1 1 1 3 3

(24)

Since e–βT1 is the complement of F(T1) (i.e., (1 – e–βT1)), and we
know that 0 ≦ F(T1) ≦ 1, hence, 0 ≦ e–βT1 ≦ 1. By using Eqs. (20) and
(24), we propose a recursive algorithm based on the existence of
bounds for e–βT1 and T1* to find the optimal replenishment runtime T1*
as follows. Step 1: let e–βT1= 0 and e–βT1=1; then applying Eq. (20)
we can find the initial upper bound (i.e., T1U) and the lower bound (i.e.,
T1L). Step 2: substitute T1U and T1L in Eq. (24), respectively, to find the
update values of e–βT1U and e–βT1L. Step 3: back and forth, repeatedly
computing Eqs. (20) and (24) until there is no significant difference
between the upper bound T1U and lower bound T1L. Subsequently, T1*
is derived.

4. Numerical example and discussion

Suppose a manufactured product has λ=4000 units and
P = 10,000 units per year. Shortage backordering is allowed with a
predetermined eighty percent service rate (i.e., (1–α)%=80%) policy
set as a minimum acceptable service level. In the manufacturing pro-
cess, a uniform distributed random scrap items are produced over the
range [0, 0.2]. All scraps are discarded in the end of each fabrication
cycle. Moreover, during the process production equipment is subject to
a Poisson distributed failure rate with mean β=0.5 per year. We also
assume the following values for other system variables:

K= $450,

C= $2 (which includes unit screening cost),
h= $0.80,
M= $500,
CS= $0.30, unit disposal cost,
CT= $0.01, unit delivery cost,
C1= $2, unit cost of safety stock,
h3= $0.60, holding cost per safety stock per year,
g= 0.018 year, fixed repairing time (i.e., tr),
b= $0.10, unit backordering cost.

4.1. Convexity of E[TCU(T1)] and the optimal runtime

First, we verify whether or not E[TCU(T1)] is convex (Eq. (19)) at
β=0.5, by applying both upper and lower bounds of e–βT1 (Eq. (24))
and their associated runtimes (Eq. (20)), we obtain
T1U=0.6009< δ(T1U)= 2.5055 and T1L= 0.3698< δ(T1L)= 2.1646
(Additional results of the effect of variations in mean breakdown rate β
on T1U, δ(T1U), T1L, and δ(T1L) are exhibited in Appendix C). Since
Eq. (19) holds, we confirm that E[TCU(T1)] is convex. Subsequently, in
order to determine the optimal runtime T1*, we first let e–βT1= 0 and
e–βT1=1, applying Eq. (20) to obtain the initial upper bound
T1U=0.6009 and lower bound T1L= 0.3698. Substituting T1U and T1L
in Eq. (11), we obtain E[TCU(0.6009)]= $10,528.48 and E[TCU
(0.3698)]= $10,467.52. By replacing initial values of T1U and T1L in
Eq. (24) we have e–βT1U=0.7405 and e–βT1L=0.8312 as the starting
exponential values for the second iteration. Following the same pro-
cedure, by repeatedly computing T1U, T1L, e–βT1U, and e–βT1L back and
forth until the difference between T1U and T1L is insignificant. Table 1
shows results of a few iterations of our recursive T1* searching algo-
rithm for breakdown rate at β=0.5 and the service level at 80%. It is
noted from Table 1 that the optimal runtime T1*= 0.4264 and E[TCU
(T1*)]= $10,454.92. The behavior of E[TCU(T1)] with respect to

Table 2
Analytical results of effects of variations in service levels on different system parameters.

(1–α)% B H Annual expected backordering
cost

Annual expected holding
cost

T1* E[TCU(T1*)] Increase of cost due to a raise in
(1–α)%

% of cost increase due to a raise
in (1–α)%

100% 0 1746 $0 $764 0.3493 $10,728.57 $877.64 8.9%
90% 192 1730 $1 $694 0.3845 $10,589.88 $738.95 7.5%
80% 426 1706 $4 $624 0.4264 $10,454.92 $603.99 6.1%
70% 715 1667 $11 $554 0.4763 $10,325.05 $474.12 4.8%
60% 1071 1607 $22 $483 0.5356 $10,202.30 $351.37 3.6%
50% 1512 1512 $38 $411 0.6046 $10,089.69 $238.76 2.4%
40% 2043 1362 $62 $340 0.6810 $9,991.65 $140.72 1.4%
30% 2647 1134 $93 $271 0.7561 $9,914.39 $90.46 0.6%
20% 3252 813 $131 $210 0.8129 $9,865.38 $14.45 0.1%
11% 3699 457 $165 $169 0.8311 $9,850.93 – –

Fig. 7. Detailed increase percentages in E[TCU(T1)] with respect to various service level (1–α)%.
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replenishment runtime T1 is depicted in Fig. 5.

4.2. Joint effects of 1/β and x on the E[TCU(T1)]

The joint effects of time-to-breakdown 1/β and the scrap rate x on E
[TCU(T1)] is presented in Fig. 6. It indicated that as 1/β increases, E
[TCU(T1)] declines slightly; but as x goes up, E[TCU(T1)] increases
significantly.

4.3. Effects of service level (1–α)% on the system parameters

Analytical results of the impacts of variations in service levels on
different system parameters are exhibited in Table 2. It is noted that for
the lowest systems cost, the service level falls on 11%, meaning that the
system runs out of stock for 89% of the cycle time. However, such a low
availability of on-hand inventories might not meet up with customer's
satisfaction. Most of the firms often set a minimum acceptable service

level to maintain the customer's satisfaction, for instance, an 80% ser-
vice level as we assumed in our numerical example.
The analytical result (refer to Table 2) specifies that there is a

$603.99 increase of cost due to a raise in service level from 11% to
80%, or 6.1% surge of E[TCU(T1)]. Detailed increase percentages in E
[TCU(T1)] with respect to various service level (1–α)% is depicted in
Fig. 7.
Detailed effects of service level (1–α)% on the maximum back-

ordering level B and its associated cost, maximum on-hand inventory
level H and its related cost, the optimal runtime T1*, and its associated
E[TCU(T1*)] are revealed by the proposed model using this demon-
strated example (Table 2).
Fig. 8 exhibits the behavior of E[TCU(T1)] relating to the service

level (1–α)% and the scrap rate x. It shows that as the service level
(1–α)% increases, E[TCU(T1)] goes slightly higher; but as x raises, E
[TCU(T1*)] increases significantly.
The joint effects of the service level (1–α)% and x on optimal

Fig. 8. The behavior of E[TCU(T1)] with respect to the service level (1–α)% and the scrap rate x.

Fig. 9. Joint effects of the service level (1–α)% and the scrap rate x on the optimal replenishment runtime T1*.
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runtime T1* is displayed in Fig. 9. It pointed out that as service level
(1–α)% raises, T1* declines significantly; and as x goes up, T1* increases
slightly.
Fig. 10 shows the behavior of E[TCU(T1*)] relating to the mean-

time-to-breakdown 1/β and the service level (1–α)%. It is noted that as
1/β increases, E[TCU(T1*)] declines; and as service level (1–α)% raises,
E[TCU(T1*)] increases significantly. Suppose the mean-time-to- break-
down 1/β reaches infinite, the proposed system becomes the same as a
fabrication system with scrap, backordering, and service level con-
straint [7]. If the service level (1–α)% increases to 100%, the proposed
system becomes the same as a production system with scrap and
random machine breakdown [18].

4.4. Discussion and limitation

The present study constructed the production planning model based
on a case where only one or no breakdowns occur during a production
run. Table D1 (see Appendix D) presents the Poisson probabilities re-
sults for a machine with different mean breakdown rates per year. It
indicates that for a piece of equipment in good condition, or with less
than one breakdown occurrence per year, the present study is appro-
priate as there is over 92.88% chance that only one or no breakdowns
will occur (refer to Table D1). In addition, for a machine in fair con-
dition, or with less than or equal to two breakdown occurrences per
year, our model indicates that there is over 76.27% chance of one or no
breakdowns occurring (Table D1). However, to explore the production
planning for a machine having a mean breakdown rate greater than
three per year, a different model should be built for this specific con-
dition.

5. Conclusion

With the intention of offering insight information to backing man-
agerial decision making on key operational goals, this research de-
termines optimal runtime for a fabrication system with backordering,
service level constraint, stochastic breakdown, and scrap.
Consequently, a detailed solution process is presented to resolve the
problem, it includes a mathematical model to portray the problem,
derivation of system cost function by integrating three separate cost
functions of sub-problems, a method to verify convexity of cost func-
tion, a recursive algorithm to search for the optimal fabrication run-
time, a numerical illustration with sensitivity analyses to demonstrate
applicability of our results.
As a result, with the in-depth exploration, various key insights re-

lating to the joint impacts of the backlogging, service level, scrap, and
random breakdown on the runtime decision are revealed (Figs. 5–10).
An interesting direction for future research is to investigate the impact
of a discontinuous stock issuing plan on optimal decision of the pro-
blem.
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Appendix A

In Section 2.2., from Fig. 1, the following equations can be obtained:

= + =T t t Q
P

( )1 4 1 (A-1)

=H B P d t( )·0 (A-2)

=H P d t( )· 1 (A-3)

=t Q
P

t1 4 (A-4)

Fig. 10. The behavior of E[TCU(T1*)] with respect to the mean-time-to-breakdown 1/β and the service level (1 – α)%.

S.W. Chiu, et al. Operations Research Perspectives 6 (2019) 100090

8

https://doi.org/10.1016/j.orp.2018.100090


=t H
2 (A-5)

=t B
3 (A-6)

=t B
P d( )4 (A-7)

= +
=

T t t
i

i r
1

4

(A-8)

Appendix B

In Section 2.4., from Fig. 4, the following equations can be obtained:

= + =T t t Q
P

( )1 4 1 (B-1)

=H P d t( )· 1 (B-2)
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2 (B-3)

=t B
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=
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Appendix C

Table C1

Appendix D

e t
x
( *)
!

t x*
11

(D-1)

Table C1
The effect of variations in mean breakdown rate β on T1U, δ(T1U), T1L, and δ(T1L).

β 1/β T1U δ(T1U) T1L δ(T1L)

6.00 0.17 0.5780 3.9684 0.1583 0.5082
5.00 0.20 0.5784 2.9261 0.1792 0.5783
4.00 0.25 0.5790 2.2651 0.2055 0.6710
3.00 0.33 0.5801 1.8721 0.2388 0.8020
2.00 0.50 0.5822 1.7126 0.2815 1.0145
1.00 1.00 0.5885 1.9265 0.3366 1.4919
0.50 2.00 0.6009 2.5055 0.3698 2.1646
: : : : : :
0.01 100.00 1.3428 6.3964 0.4065 5.4342

Table D1
The probabilities of Poisson distributed breakdown rates.

β t*1 e t1* t*1 =P x( 0) =P x( 1) P(x≤1) P(x>1)

3 0.4966 0.2254 1.4898 22.54% 33.58% 56.12% 43.88%
2 0.4634 0.3959 0.9267 39.59% 36.68% 76.27% 23.73%
1.5 0.4488 0.5101 0.6732 51.01% 34.34% 85.35% 14.65%
1 0.4349 0.6473 0.4349 64.73% 28.15% 92.88% 7.12%
0.5 0.4264 0.8080 0.2132 80.80% 17.23% 98.03% 1.97%
0.01 0.4241 0.9958 0.0042 99.58% 0.42% 100.00% 0.00%
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