
Lemos, Alexandre; Melo, Francisco S.; Monteiro, Pedro T.; Lynce, Inês

Article

Room usage optimization in timetabling: A case study at
Universidade de Lisboa

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Lemos, Alexandre; Melo, Francisco S.; Monteiro, Pedro T.; Lynce, Inês (2019) :
Room usage optimization in timetabling: A case study at Universidade de Lisboa, Operations
Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 6, pp. 1-13,
https://doi.org/10.1016/j.orp.2018.100092

This Version is available at:
https://hdl.handle.net/10419/246378

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2018.100092%0A
https://hdl.handle.net/10419/246378
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Room usage optimization in timetabling: A case study at Universidade de
Lisboa

Alexandre Lemos⁎, Francisco S. Melo, Pedro T. Monteiro, Inês Lynce
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol, 9, Lisboa 1000-029, Portugal

A R T I C L E I N F O

Keywords:
University timetabling
Room usage optimization
Integer linear programming
Greedy algorithms

A B S T R A C T

This paper discusses the problem of room usage optimization for university timetables: given a timetable, we
want to optimize the room occupation by determining the events allocated to each room, while ensuring that the
rooms have enough capacity to “seat” all people participating in those events. This paper contributes with two
approaches to the problem of optimizing the timetable scheduled for each room. The first approach consists of a
two-stage Integer Linear Programming (ILP) which applies a lexicographic optimization wherein the goal of the
first stage is to maximize the number of students seated and that of the second stage is to optimize the room
occupation. This is provably optimal, in both optimization criteria. However, it is computationally demanding,
requiring significant computation time for large problems. To address this issue, we propose a second approach,
consisting of a greedy algorithm. The algorithm assigns lectures to rooms greedily, according to a specific cost
function that seeks to maximize the number of students seated. We show that the proposed cost function
guarantees that the greedy algorithm performs within 63% of the total number of students. We apply both
algorithms in a case study involving real data from Instituto Superior Técnico (IST), the engineering school from
Universidade de Lisboa. Our results confirm that the greedy algorithm is two orders of magnitude faster than ILP
when considering large data sets. Comparing the performance of the two methods we observe that the perfor-
mance of the greedy algorithm, when compared to the ILP-based approach, is within 2% for the number of
seated students and 34% for the room occupation. The GRASP algorithm is a good extension of the greedy
algorithm, which is able to improve in 12% the quality of the solution (in terms of compactness) without adding
significant CPU time. Overall, the two proposed approaches provide significant gains for both optimization
criteria when compared to the current hand-made solutions.

1. Introduction

The allocation of events to rooms is an important and complex task.
The well-known phrase “space, like time, is money” shows the im-
portance of optimizing the usage of rooms. At Instituto Superior
Técnico (IST), the engineering school from Universidade de Lisboa, in
Portugal, the allocation of events is still handmade and therefore sus-
ceptible to optimization. We expect that the automated optimization of
space usage can significantly reduce the number of rooms required, a
considerable achievement if we take into account that—at certain time
slots—there are no rooms available in the IST campus. Furthermore,
having a better optimized distribution of events per rooms makes it
easier to add new events without disrupting the existing distribution.

The efficient allocation of events to rooms is only part of the more
complex problem of creating timetables. In this work, we do not address
the latter—we assume timetables have already been generated—but

instead we focus on optimizing the room allocation, given a timetable.
The purpose of this work is thus to optimize the room usage while
maintaining the original schedule of the events. In practice, the pro-
posed algorithm can only change events from one room to another.
Such changes take into account the capacity of the rooms, which should
be enough to accommodate the expected number of participants in the
events.

As an example of the problem addressed herein, let us consider the
timetables for two rooms—referred simply as Room 1 and
Room 2—depicted in Fig. 1. For the sake of the example, we assume
that both rooms have the same capacity; the events shown in the
timetables correspond to lectures of different courses and their names
are immaterial for our discussion. The objective is to exchange events
between these two rooms to reduce the time gaps between events in the
same room without changing the existing timetable (i.e., the time and
duration of the existing events). We note that, by maintaining the

https://doi.org/10.1016/j.orp.2018.100092
Received 18 July 2018; Received in revised form 13 December 2018; Accepted 13 December 2018

⁎ Corresponding author.
E-mail address: alexandre.lemos@tecnico.ulisboa.pt (A. Lemos).

Operations Research Perspectives 6 (2019) 100092

Available online 14 December 2018
2214-7160/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2018.100092
https://doi.org/10.1016/j.orp.2018.100092
mailto:alexandre.lemos@tecnico.ulisboa.pt
https://doi.org/10.1016/j.orp.2018.100092
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2018.100092&domain=pdf

timetable, any constraints involving the student’s curriculum (not
having overlaps between courses offered to the same students, for ex-
ample) are not violated.

Suppose that a new event requires a room for the whole Wednesday
afternoon; with the current set-up, it is impossible to allocate such a
room. However, it is possible to move some events from Room 2 to
Room 1 in order to ensure one free (available) room on Wednesday
afternoon. Fig. 2 shows one possible tighter timetable.

The contributions of this paper are two-fold: (i) we contribute an ILP
formulation of the space allocation problem; and (ii) a greedy algorithm
to address that same room allocation problem, with provable perfor-
mance guarantees. The ILP formulation, by construction, provides an
optimal solution to the allocation problem. We show, however, that for
large problems the computational requirements of this formulation are
significant. The greedy algorithm, while requiring significantly less
computational effort, is able to deliver a solution that is provably ε-
optimal, where we provide a lower bound for ε. We showcase the ap-
plication of both approaches in a real-world problem involving
University timetables and show that both algorithms solve the problem
for rooms and events requiring different capacities.

This paper is organized as follows. Section 2 provides a brief review
of the relevant state of the art in the area, where the majority of the
work is focused on generating complete timetables. Section 3 formally
introduces the problem. Section 4 discusses different metrics to analyze
the quality of compact timetables. Section 5 analyses the current hand-
made solution. Section 6 describes the ILP implementation to optimize
the number of seated students while ensuring a compact timetable.
Section 7 presents two greedy algorithms and their theoretical im-
plications. Section 8 discusses the results of the different methods for
assigning the lectures of the two campi of IST in the academic year of
2016/2017. The results are also compared with the hand-made solution
used in that year. Finally, Section 9 concludes the paper and suggests

future research directions.

2. Related work

2.1. Timetables

University timetabling problems [1–6] are known to be NP-com-
plete [7] since the search space for possible solutions grows ex-
ponentially with the number of events. University timetabling can be
classified into two major categories: examination timetabling [8] and
course timetabling problems. These categories are characterized along
these lines:

• Examination timetabling - focuses on creating the timetables for the
examinations. These timetables must ensure that a student can at-
tend examinations for which he is enrolled in.

• Course timetabling:

• Curriculum-based course timetabling [5] - focuses on creating
timetables based on a pre-defined curriculum that the students
must follow.

• Post-enrolments timetabling [4] - deals with creating timetables
based on the students enrolments.

There are many different approaches to solve these problems. For
example, Constraint Programming (CP) [6,9], Integer Linear Program-
ming (ILP) [2,3,10,11], multi-agent [12,13] and local search [14–16]
approaches have already been successfully applied. The UniTime [17]1

tool is a success case of applying CP techniques to the university
timetabling problem. The tool solves both course timetabling and post-

Fig. 1. Timetables for two rooms.

1 The tool is available on http://unitime.org.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

2

http://www.unitime.org/

enrolments timetabling. The assignment of lectures to room can be
influenced by two constraints: requirements (e.g. need of projection
support) and capacity. Both constraints are part of the optimization
criteria. However, the criteria do not consider room optimization.

The multi-agent [12,13] approach focuses on negotiating the as-
signment of lectures to rooms and time slots in order to reach a feasible
timetable while optimizing the preferences of the teachers. The agents
representing the teacher have different ranks and seek to assign their
lectures according to their preference. The higher ranking teachers have
priority in terms of having their preferences satisfied.

In the literature, there are different views regarding compact
timetables: from students timetables [11] to teachers time-
tables [18,19]. The latter is usually associated to the high school
timetabling problem, where the goal is both to avoid idle periods in
teachers timetables and to minimize the number of working days.

Burke et al. [11] proposed an ILP based method to solve curriculum-
based timetabling. The optimization criteria used considers, among
others, the room capacity and curriculum compactness. The objective is
to minimize the global number of students not seated and to reduce the
number of time gaps between lectures of the same curriculum. There-
fore, the focus of the compaction process lies only on the student’s
timetable. The minimization does not ensure an uniform distribution of
the unseated students. The ILP method decomposes the problem into
multiple sub-problems where only a part of the optimization criteria are
used. These sub-problems can be used to compute bounds in their re-
spective optimization criterion. In the end, the solution to the problem
is computed based on the solution of each of the sub-problems.

Vermuyten et al. [3] proposed a two-stage approach to optimize
student flows using ILP. The first-stage focuses on assigning lectures to
time slots and rooms, and the second focuses on re-assigning rooms to
lectures with pre-defined time slots from the first stage. The main op-
timization criterion of the second-stage is to assign rooms in such a way

that congestions are avoided. The ILP implementation also adds some
constraints regarding the compaction of the timetables in the perspec-
tive of a student. The ILP implementation tries to avoid timetables with
two or more hours without lectures for the students. This type of con-
straint is particularly important for commuting students. However, the
proposed method does not reduce the number of isolated lectures (i.e.
days where a student timetable has only one lecture assigned). This
type of decomposition is common since it reduces the problem com-
plexity without loosing any solutions [2]. Another approach [20] fol-
lows the same decomposition for examination timetabling: it applies a
greedy heuristic to the first task (exams assigned to timeslots) and ILP
to the second (exams assigned to rooms).

Beyrouthy et al. [21] studied the utilization of teaching space in
order to improve room-size profiles when planning building a campus.
The study shows that most rooms have overcapacity (the number of
seats of the rooms is larger than the number of students). Furthermore,
it was shown that the location of the room has a direct effect on room
utilization since both students and teachers prefer certain locations.
Beyrouthy et al. [22] proposed methods to split lectures in order to
improve the room utilization.

Lindahl et al. [23] studied the impact of the number of time slots
allowed, in the quality of the timetable. To this end, linear program-
ming models were developed to solve the timetabling problem with
three optimization objectives: number of time slots available; room
usage (minimize the number of rooms used); and overall quality. The
study of the number of time slots available is particularly important
since it is easier to increment the number of time slots when adding new
courses than to build more rooms.

Song et al. [14] proposed an iterative algorithm with three stages:
initialization, intensification, and diversification to solve the course
timetabling problem. The first stage finds a partial feasible solution
using a greedy algorithm to allocate the maximum possible number of

Fig. 2. Reorganized timetables for the same two rooms, which now include a free room during Wednesday afternoon.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

3

events. The intensification stage uses a simulated annealing method to
find a local optimum. The final stage uses random perturbations (swap
of lectures) to improve the solution. The solution found is used as the
new starting point of the next iterations.

2.2. Greedy algorithms

Assigning lectures to rooms is a problem that can be solved by a
greedy algorithm. Cormen et al. [24] used a simplified version of this
problem to illustrate the use of greedy algorithms. The example focuses
on allocating the largest amount of activities to a room. For this pro-
blem the authors choose the first activity to be assigned based on the
ending time, i.e. the activity that ends first. This ensures that the room
has the largest amount of empty time slots (which is actually the goal).
So all activities are sorted by order of ending time. The list of activities
are placed in a monotonically increasing order and so the algorithm
chooses the first activity to assign. In order to ensure that a solution is
found, all activities must start after the last one ends.

Greedy heuristics, such as Greedy Randomized Adaptive Search
Procedure (GRASP), have successfully been applied to course time-
tabling [15,16,25] and examination timetabling [20,26]. The greedy
algorithm is guided through a cost function that sums all constraints
violated. This method does not ensure any type of confidence in terms
of finding an optimal solution. Furthermore, the optimization criterion
of this algorithm never considers room optimization.

Greedy algorithm performance
It is possible to compute the approximated value of the optimal

solution for a greedy algorithm if the benefit function is sub-modular,
positive and monotone. The benefit function describes the advantages
of performing an action.

Let us consider C as a finite set. A function f is considered to be
monotone if and only if it has the following property:

∀ ⩽⊆ f A f C() ()A C (1)

In order to be considered sub-modular [27], the function f must
have the following property:

∀ ∪ −
⩾ ∪ −

⊂ ∈ ∖ f A x f A
f B x f B
({ }) ()
({ }) ()

A B C X C B, ,

(2)

When one considers a greedy algorithm with a monotone, positive,
sub-modular function, the resulting solution is approximated within

− −e1 1 to the optimal solution [28].

3. Problem description

In this section we formally introduce the problem and the notation
used throughout the text.

3.1. Preliminaries

Let us consider a set = …R r r{ , , }n1 of n rooms for which a set
= …L l l{ , , }m1 of m lectures has to be scheduled. The lectures can be

scheduled in available time slots of a working day ∈ …D {1, ,5} (1
corresponding to Monday, 2 to Tuesday, and so on). Each day has a set
of consecutive working time slots of half an hour, ∈ …T {1, ,24}.2 Each
room r, where r∈ R, has an ideal capacity, capr>0. Each lecture l
where l∈ L is characterized by:

• Number of enrolled students (studentsl);

• Working day dl (dl∈D);

• Subset of sequential time slots = … ⊂T sTime eTime T{ , , } ,l l l of size

lenl, where the sTimel is the first time slot of the lecture and eTimel is
the last time slot of the lecture (sTimel< eTimel).

As all weeks have basically the same lectures, one can generate the
timetables for one week and generalize for the whole semester.

In this problem, we consider that lectures have pre-defined time
slots and therefore there is no need to consider curriculum based con-
straints. The goal is to assign all lectures to rooms.

The pre-defined schedule of a lecture (day and time slots) is re-
presented with an incidence matrix A. Ad t

l
,l equals 1 if lecture l is

scheduled in the time slot t∈ Tl of day dl and 0 otherwise.
The Boolean variable xl, r∈ {0, 1} is equal to 1 if and only if the

lecture l∈ L is assigned to the room r∈ R, and 0 otherwise. A room is
considered to be occupied in a time slot if and only if a lecture is as-
signed to that room in that time slot.

The seatedl, r value corresponds to the number of students seated in
case lecture l is assigned to room r. Note that seatedl, r is given a value
even if this lecture l is not assigned to room r. Formally:

= ⎧
⎨⎩

≥
seated

students cap students
cap otherwise

if
l r

l r l

r
,

(3)

3.2. Constraints

When assigning the lectures to rooms, the constraints considered are
as follows:

• Conflicts: A room can have at most one lecture scheduled per time
slot per day. Formally, for all r∈ R, d∈D and t∈ T,

∑ × ≤
∈

x A 1.
l L

l r d t
l

, ,
(4)

• Capacity: The number of attending students must be less or equal to
the ideal capacity of the room where the lecture is scheduled.
Formally, for all r∈ R,

× ≤ ∀ ∈ ∈students x cap .l l r r l L r R, , (5)

Besides the constraints above, since the goal of this work is to op-
timize room usage, it is important to define metrics to correctly eval-
uate the usage of a room, as detailed in the next section.

4. Optimization: generate compact timetables

4.1. Metrics definitions

Different metrics can be applied to evaluate the usage of a room, for
example in terms of the “compactness” of the corresponding occupation
timetable. The simplest concept of compactness is, perhaps, the per-
centage of free space in a schedule. The percentage of free space can be
computed as

∑ ∑ ∑ ∑= ×
∈ ∈ ∈ ∈R D T

x Afree-space 1 ,
l L t T d D r R

l r d t
l

, ,

where |X| denotes the cardinality of set X. However, since the average
of all free space is constant, as the number of occupied slots is also
constant, this metric cannot be used.

One alternative is to calculate the variance in the amount of occu-
pation across rooms. The variance can be computed by:

=
∑ −∈ x μ

R
Var

()
,r R r

2

where, xr is the number of free time slots in room r and μ is the average

2We consider that the rooms are available for use only between 8am and
8pm, corresponding to a total of 12 h.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

4

number of free time slots.
The objective would then be to have high variance, as this would

mean that some rooms are significantly more occupied than others,
instead of uniform occupation of space. However, this metric fails to
grasp the difference between a very sparse timetable and a very com-
pact one. A sparse timetable has many more transitions between va-
cancies and occupations than a compact one.

Such observation suggests that number of transitions — i.e., the
number of times a room changes status from vacant to occupied and
vice-versa — may be a useful metric. To this end, one can define the
auxiliary Boolean variable cl, d, t, r∈ {0, 1} which is equal to 1 if and
only if the occupation of the room changes from occupied to free or
vice-verse, and 0 otherwise. And the goal would be to minimize the
value of this auxiliary value, i.e.:

∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

minimize c
r R t T d D l L

l d t r, , ,
(6)

However, this metric considers all holes in a timetable equally bad,
which may not be true. For example, a hole corresponding to exactly
one time slot (half an hour) is actually worse than a hole of four time
slots (two hours) since no event can be scheduled in the former. Such
issue can be addressed by applying a weighted metric: the weight is
inversely proportional to the size of vacancies, as it is easier to schedule
new events in longer vacancies.

4.2. Comparison

While the latter metric may be, perhaps, the one that best captures
our desired notion of “compactness”, none of the metrics is actually
perfect, since none is better across all problems.

For example, consider three rooms, r1, r2, r3, with the same capacity
and four lectures with different durations. Further consider that we
want to minimize the number of transitions as shown in statement (6).
According to this metric, the two timetables shown in Fig. 3a and b are
both optimal (with three transitions each). Apart from these there are
other optimal timetables that can be obtained.

Consider now that a problem arises and the events in r1 (i.e., the
event l1) need to be assigned to a different room. One solution for this
problem is shown in Fig. 3c. If the timetable in Fig. 3b is the “original”
one, it requires less modifications to attain the solution. However, we
can equally imagine other cases in which the timetable in Fig. 3a is
closer to the final configuration than Fig. 3b.

As another example, consider two new aperiodic events l5 and l6,
with =sTime t ,l 25 =eTime t ,l 55 and =sTime t ,l 16 =eTime t ,l 26 as the re-
spective starting and finishing times. If the original timetable is the one
shown in Fig. 3a, then no change to the previously allocated lectures is
required. However, if the original timetable is the one shown in Fig. 3b,
then lecture l2 must change from room r3 to r2 before adding the new
events. As it is impossible to predict future perturbations, it is not
guaranteed that, for example, obtaining an empty day is always the best
solution. Hence, it is not possible to elect the overall best approach.

5. Instituto superior Técnico case study

In this section, we present the case study of timetables in Instituto
Superior Técnico. The current hand-made timetables and their pro-
blems are the main motivation for this work. We want to study possible
approaches to optimize the current timetables in order to mitigate the
problems related to space usage.

Instituto Superior Técnico (IST)3 is part of Universidade de Lisboa
which is the major university in Portugal and one of the largest in
Europe. IST is a higher education institute focused on the fields of Ar-
chitecture, Engineering, Science and Technology and promoting

excellence in teaching, research, development and innovation activ-
ities.

IST offers 86 different higher education degrees with approximately
11,412 students enrolled (including graduation and post-graduation
students) and 1200 teachers. The lectures are scheduled from 8:00 to
20:00, five days a week without mandatory lunch breaks. These lectures
can have different durations, from one hour to three hours. IST has two
main student campi: Alameda and Taguspark with 94 and 21 rooms,
respectively. Each room has a specific capacity. The median capacity of
the rooms in Alameda is 58 and in Taguspark is 48. The standard de-
viation for the room’s capacities in Alameda and Taguspark are 31.25
and 64.28, respectively.

Besides offering degrees, IST hosts multiple aperiodic events (e.g.
student-organized events, workshops, and conferences) on campus.
Many times, these events are taking place in the same days as lectures
from the different courses. All these new events must be scheduled,
when required, in suitable rooms.

Nowadays, the generation of timetables is handmade. The time-
tables for the current year (2017/2018) were still generated by hand,
based on the timetable used in the previous year. This approach reduces
the scope of the problem to solve each year since only a small set of
events must be changed.

Solving university timetabling manually makes it particularly dif-
ficult to optimize space usage. The large variety of rooms available
makes choosing the most suitable room for a lecture even a more im-
portant decision.

The main problems at IST, in terms of space usage, are (i) the dif-
ficult task of scheduling aperiodic events and (ii) closing down a room
due to unpredictable problems.

Fig. 3. An optimal timetable (a), an optimal timetable with a free day (b) and
an optimal timetable after closing down r1 (c).

3 https://tecnico.ulisboa.pt.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

5

https://tecnico.ulisboa.pt

When considering these problems, it is important to establish the
most compact timetable for each room beforehand, at the beginning of
each semester. Typically these problems arise during the semester, and
thus it is important to be able to re-optimize the timetables without
changing the original timeslots.

Current hand-made timetables
The data used in this work is divided into four data sets corre-

sponding to the classes at Alameda campus and Taguspark campus for
both semesters of 2016/2017. The differences between the data sets are
summarised in Table 1. Note that, the total number of students is the
summation of each enrolment in a lecture. Therefore, this number in-
cludes double counting of students. The data sets corresponding to the
Alameda campus are larger, in particular for the first semester. The
rooms are grouped by capacity and usage. Rooms are usually divided
into three types: hall rooms, rooms (Rr) and laboratories. Here, only the
first two are considered. Hall rooms can be split in two: large hall rooms
(Rlh) and hall rooms (Rh). Table 2 shows the summary of the rooms and
their average capacities for each campus. Rr is the most heterogeneous
set of rooms.

The timetables at IST are mixed between curriculum-based time-
tabling and post-enrolment timetabling. The undergrads normally have
to follow a strict curriculum plan and therefore undergrads timetables
are curriculum-based. On the other hand, as students progress in their
studies they have more flexibility to choose what course to enroll. In
this light, the generation of timetables for these courses can be con-
sidered a post-enrolment timetabling problem.

The hand-made timetables for the academic year of 2016/2017 do
not seat all the students enrolled in the lectures. The number of students
seated and the total number of enrolled students are shown in Table 3.
The total number of enrolled students seated may be impossible to
achieve due to space restrictions.

6. ILP formulation

An encoding using Integer Linear Programming (ILP) was im-
plemented to solve the problem of assigning lectures to rooms. The ILP
implementation is complete which ensures the eventual discovery of
the optimal solution to the problem. To solve this problem a two-stage
method is used where the goal is to: (i) maximize the number of seated
students and (ii) minimize the number of transitions.

6.1. First stage: maximizing the number of students seated

∑ ∑ ∑ × ×
∈ ∈ ∈

seated x Amaximize:
l L t T r R

l r l r d t
l

, , ,
l l

l l
(7)

∑ = ∀
∈

∈xsubject to: 1
r R

l r l L,
(8)

∑ × ≤ ∀
∈

∈ ∈ ∈x A 1
l L

l r d t
l

r R d D t T, , , ,
(9)

≥ × − × ∀ ∈ ∈cap x students students α()r l r l l r R l L, , (10)

In this section we describe our first approach to solve stage (i) of the
method.

As previously mentioned, objective function (7) maximizes the
number of students seated, where the value of seatedl, r is defined in (3).

The problem needs two constraints to ensure the correct allocation
of the lectures. First, it is necessary to ensure that a lecture is allocated
into exactly one room in the predefined time and day (constraint (8)).

Constraint (9) is required to ensure that there is no more than one
lecture in each room in a specific slot. Finally, constraint (10) ensures
that, in the worse case, only a percentage α of the students enrolled
cannot be seated. The reason for this constraint is explained further on.

6.2. Second stage: compactness

The second stage (ii) of the ILP implementation consists on a re-
execution of the program with a different objective and adding a new
constraint. Now, the goal is to compact the found timetable.

The old maximization statement is replaced by constraint (11)
where BEST is the value obtained in the first stage. The new optimization
statement (12) minimizes the number of time gaps in a room timetable
(independently of the size of the time gap) by counting the number of
transitions. The optimization statement (12) is not linear. However, it is
easy to convert it to a linear formulation through the use of auxiliary
variables and constraints as shown in [29]. The ILOG CPLEX solver [30]
automatically transforms this type of statements.

∑ ∑ ∑ × × =
∈ ∈ ∈

seated x A BEST

subject to:

l L t T r R
l r l r d t

l
, , ,

l l
l l

(11)

∑ ∑ ∑
∈ ∈ ∈

cminimize:
r R d D t T

l d t r, , ,
(12)

∑ ∑
=

⎧
⎨
⎩

× = ×
∈

−
∈c

x A x A0 if

1 otherwise
l d t r l L

l r d t
l

l L
l r d t

l

, , ,
, , 1 , ,

(13)

7. Greedy approaches

In this section, the proposed two greedy algorithm are described.

7.1. Greedy algorithm

The algorithm is guided through a cost function. Algorithm 1 shows

Table 1
Data sets characteristics.

Taguspark Alameda

1st Semester 2nd Semester 1st Semester 2nd Semester

Courses 108 101 1022 1015
Degrees 8 78
Lectures 290 246 2111 1611
Students 51,523 42,578 283,745 219,217
Hall rooms 5 36
Rooms 21 94

Table 2
Characteristics of the rooms: large hall Rlh, hall Rh and other rooms Rr.

Alameda Taguspark

Type Rlh Rh Rr Rlh Rh Rr

Average capacity 148 130 55.77 252 130 36.41
Standard deviation 13.85 0 25.18 0 0 11.43
of rooms 3 4 113 2 3 48

Table 3
Number of students versus number of seated students in the hand-made solu-
tion.

Campus Alameda Taguspark

Semester 1st 2nd 1st 2nd

Total number of seated students 268,668 210,958 51,006 42,286
Total number of students 283,745 219,217 51,523 42,578

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

6

the general idea behind the greedy search implemented. The algorithm
ends when all lectures have been allocated. The algorithm chooses the
lecture with the smallest cost to allocate at each iteration (lines 7–14).
At the end of each iteration, a lecture is assigned and that information is
stored in the set allocated (line 17) to ensure that the same lecture is not
going to be re-assigned in the next iteration (line 8). The cost function
originally considered to evaluate a timetable Q for room r was:

× + +conflict Q w transition Q idealCAP Q() () ()r r r (14)

where the function conflict returns the number of overlapping lectures
(constraint (4)); the function transition returns the number of transitions
(computed as shown in constraint (13)) and the function idealCAP re-
turns the number of students above the ideal capacity in the allocated
lecture. The value of the weight w has to satisfy the following con-
straint:

∑≥ × + ×
∈

w len students24 5 .
l L

l l
(15)

This constraint ensures leaving a lecture without a room is worse
than the level of compactness (24*5 is the worse case in terms of
transitions) and having students exceeding the ideal capacity. The idea
was to guide the search to compact timetables. However, this cost
function does not have any type of optimality guarantees. Furthermore,
the complexity causes the solution to be worse in the most important
aspects: number of conflicts and number of students exceeding the ca-
pacity. Therefore, the criterion of compactness was only used in cases
where the number of students seated in two different lectures was the
same. This change requires modifying Algorithm 1, by the addition of a
new if for the case where =cosT cost, this way ensuring that the com-
paction process only happens when there are two lectures with the
same cost. The objective is to have a timetable where all students can
have a seat in the lectures. Moreover, it is desirable to guarantee the
quality of the solution as discussed further on.

To produce some guarantees in terms of optimality another cost
function was used.

∑ ∑ ∑ − × ×
∈ ∈ ∈

students seated x A()
l L t T r R

l l r l r d t
l

, , ,
l

l
(16)

This cost expression is simply based on the number of students that
could not be seated in this assignment. Algorithm 1 does not allow
conflicting assignments and therefore they are not described in the cost
function. When considering the slack α the algorithm also does not
allow the allocation of lectures to rooms for which constraint (10) is
violated.

Theoretical implications. It is possible to define a benefit function which
is sub-modular and monotone. When using cost expression (16), the
implicit benefit function f is basically the number of students seated per
assignment. Formally, the benefit of assigning lecture l is

= × ×f l seated x A() ,l r l r d t
l

, , ,l l l where rl is the room where the lecture
was assigned. Assigning a lecture to a room is always positive, as the
total number of students with seats increases. Differently, when using
function (14), the benefit can be negative since the number of
transitions and conflicts are considered. Not considering conflicts, i.e.
only assigning the lecture to a room if no conflict exists makes function
(16) monotone since it has property (1).

Function (16) is sub-modular [27] since in the best case scenario the
benefit will always be the same (all students of the lecture can be seated
in the room). In the worst case, there is no room large enough and so
the benefit will be smaller. Recall property (2), where C is the set of
unassigned lectures and A, B⊂ C. The way the search is performed, the
smaller set A will always have a larger number of rooms available than
B. When adding x to A, the algorithm will choose the room that max-
imizes the number of students seated which will be at least as good as
the assignment to B (as B has a smaller number of rooms available but
all rooms available in B are also available in A). This way we can see
that property (2) is ensured.

To sum up, function (16) was constructed to be a positive, mono-
tone and sub-modular function. Therefore, the solution will be within
63% of the optimal, in terms of students seated [28].

7.2. Greedy randomized adaptive search procedure

The Greedy Randomized Adaptive Search Procedure (GRASP)
shown in Algorithm 2 has two main stages: (i) a random greedy algo-
rithm (line 3) and (ii) a local search (line 4). As suggested in [26], we
used two stages to optimize different criteria similar to the process used
in our ILP approach. The ending condition of the algorithm is either the
number of iterations (line 2) or the time limit (which ever comes first).
In the end of each iteration the algorithm stores the new solution if and
only if it is better than the one found before (line 5).

7.2.1. The random greedy procedure
The goal of the greedy algorithm is to maximize the number of

students seated and it is guided by the cost function expressed in (16).
The degree of randomness can be customized by changing the size of
the Restricted Candidate List (RCL). The RCL is filled with lectures
which have the best cost at the time. The allocations are chosen ran-
domly from the RCL. The size 0 represents a greedy algorithm in its pure

Algorithm 1. Greedy algorithm based on a cost function.

Algorithm 2. GRASP algorithm.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

7

form (without randomness) and 1 represents a completely random al-
gorithm. The process ends when a complete solution is found which
does not violate any hard constraints.

7.2.2. Local search
The goal of the local search is to minimize the number of transitions

without deteriorating the quality of the solution in terms of seated
students. This is achieved by swapping lectures between rooms where
the number of students seated increases or stays constant. Swapping can
never deteriorate the quality of the current solution. This stage ends
when no more possible swaps can take place without deteriorating the
quality of the solution.

8. Experimental evaluation

In this section, the results for the different methods are examined.
The advantages and shortcomings of the methods are also discussed.

8.1. Experimental setup

The algorithms described above are implemented in Java and are
available from https://github.com/ADDALemos/Compacter. The
Pentaho Data Integration (PDI)4 software, which was used to transform
and clean the data is also available from the same link. The data and the
script to generate the plots shown in this paper are also available.

The data used to test the system was obtained through the
FenixEdu™public API5 system which is in use at IST. The data was
profiled, transformed and cleaned using PDI which is an extract-trans-
form-load graphical tool. The data had two main data quality problems:
duplicates and incorrect values of capacities on the rooms (e.g. room
with capacity 1). The rooms identified with problems were analyzed
and corrected. In most cases, these rooms are offices and thus not useful
when solving the timetabling problem.

The tests were executed using the runsolver tool [31] with a time out
of 6000 seconds and a limit of 3 Gb of memory. The GRASP algorithm
was executed with maximum number of iterations of 1000 (the same as
in [25]). The GRASP algorithm was tested with different sizes of RCL.
The solution with best results in terms of quality is the one with a RCL
size of 60% of the total number of lectures. This coincides with the
value used in [25] for the complete university timetabling problem. The
implementation was executed on a computer running Ubuntu 14, with
24 CPUs at 2.6 GHz and 64 Gb of RAM. The ILP model was im-
plemented using the library of ILOG CPLEX (version 12.7.1.0) [30].

8.2. Results & discussion

In this section, experimental results are presented and discussed.

8.2.1. Problem decomposition
To reduce the size of the problem, one can separate the problem into

sub-problems. In this case the problem can be decomposed into five
sub-problems (one per each day of the week). Decomposing the pro-
blem in week days does not remove any possible solutions, since all
lectures are already scheduled. This separation is particularly inter-
esting when the data set is large and it is difficult to solve the data set as
a whole. In this work, this technique was applied to solve the Alameda
data sets when solving with the ILP approach. In the future, the solution
can also be used to benefit from parallelization.

8.2.2. Number of attending students
Another issue to discuss is whether the constraint “the number of

attending students must be smaller or equal to the capacity of the room”

should be considered hard or soft.
Ideally, all students should be allowed to have a seat in a lecture for

which they are enrolled. In practice not all students will actually attend
all the lectures. Furthermore, it may be impossible (due to space re-
strictions) to find rooms with sufficient capacity for all lectures. In the
literature, the constraint is usually considered hard [4,12,13] in parti-
cular when solving post-enrolment timetabling [4,14] since the stu-
dents choose the course they really want to attend. However, when
solving curriculum-based timetabling [5,9] it is common to consider the
constraint as soft. At IST, as previously mentioned, both types of
timetables exist. Undergrads usually have a specified curriculum to
follow but, as they progress in the study, the more flexibility they have
in the curriculum. Although ideally this constraint should be considered
as hard, independently of the type of timetables, in practice this may be
impossible. The ILP implementation shows that no feasible solution
exists when considering the constraint as hard.

Table 4 shows the results for the different methods (greedy, ILP,
GRASP and hand-made) when maximizing the number of seated stu-
dents.

The ILP implementation (4)-(9), maximizing the number of students
seated, found the optimal value for all data sets. It is possible to see that
it is inevitable to allocate some lectures to rooms which do not have the
required capacity. Table 4 shows in the column “Optimal”, the optimal
value in terms of the number of students seated for all data sets, and in
column “Total # students” the total number of students that should be
seated. With these results and the total number of students it is possible
to see that around 2% of the global number of students cannot be se-
ated. This means that, with the current lectures and rooms, it is im-
possible to seat all enrolled students for all lectures. Note that to obtain
the optimal values it was necessary to use the decomposition discussed
above (on weekdays) to avoid exceeding the memory limit, for the
Alameda data sets. The hand-made timetables for this year leave more
students without a seat. Table 4 shows the global number of students
seated for the hand-made solution (column Result) and distance to the
optimal value in percentage (column Difference). The distance is
computed based on the optimal value obtained by the ILP im-
plementation.

The greedy algorithm using the cost function (16) was the only
greedy algorithm that obtained a feasible solution. The CPU time of the
algorithm for the complete data set is, on average, only 1 second (even
for Alameda) making it unnecessary to apply the decomposition.

The solution obtained by the greedy algorithm has only 10% of
students without seats. The greedy algorithm is not able to find the
optimal value. However, the solutions found are very similar as they are
on average less than 2% from the optimal. The CPU time for the greedy
algorithm is significantly smaller. This fact has particular importance
when considering larger data sets. The greedy algorithm does not re-
quire any decomposition into sub-problems as it can solve the complete
problem in less than 1 second. The greedy algorithm is two orders of
magnitude faster than the ILP implementation (with the decomposi-
tion). This shows that ILP does not scale in terms of memory and time.

The GRASP algorithm lies in middle of the results in terms of quality
and CPU time. GRASP does not provide any type of quality assurance
unlike the greedy and ILP approaches. However, the quality of the so-
lution does improve. The GRASP algorithm improves the quality of the
solution but still falls short of the optimal. The randomness and the
local search stage improves the quality in terms of seating students.

When comparing with the simple greedy approach, GRASP im-
proves only half percent in terms of the number of students seated.
However, this improvement comes with a cost since the GRASP algo-
rithm is worse in terms of CPU time. Note that, both greedy algorithms
optimize both criteria at the same time.

In the GRASP approach, most of the time is spent in the second stage
of the algorithm. On average the algorithm spends more than 80% of its
CPU time on the local search stage. In all the Alameda instances the
time limit occurred before reaching the final number of iterations.

4 http://community.pentaho.com/.
5 http://fenixedu.org/dev/api/.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

8

https://github.com/ADDALemos/Compacter
http://community.pentaho.com/
http://fenixedu.org/dev/api/

However, in our case the quality of the solution converges before the
limit. Therefore, one can reduce the number of iterations without losing
quality.

Fig. 4 shows the evolution of the quality, in terms of students seated,
of current best solution for Alameda data sets as a function of the
number of iterations. The values shown in Fig. 4 represent the quality of
the stored solution in a given iteration. The quality for Alameda 2nd
semester does not improve significantly over time. However, the quality
of the original solution is closer to the optimal than for Alameda 1st
semester. This can be explained by the fact that this instance has a
smaller number of courses and lectures.

Furthermore, one can see, in Fig. 4, that after 300 iterations the
solution quality is stable. Table 4 shows the quality of the results after
3000 seconds and 6000 seconds (time limit) for the Alameda data sets.

From these results, we can conclude that the constraint “the number
of attending students must be smaller or equal to the capacity of the
room” must be considered a soft constraint.

8.2.3. Slack on the number of attending students
Maximizing the number of students seated may not be the best

approach since all students are considered equally independently of the
size and type of lecture. For example, it is worse not seating 3 students
in a practical lecture with 20 students than not seating 3 students in a

theoretical lecture with 100 students enrolled. For this reason, we
added constraint (10) of the formulation to ensure a more even dis-
tribution of students which are above the ideal capacity.

Adding constraint (10) slack on the number of attending students,
does not compromise the CPU time of the first stage of the ILP im-
plementation (number of seated students). Naturally, in some cases the
global quality of the solution may be worse (i.e. more students without
seat). However, the distribution should be better since the percentage of
students above the ideal capacity per room is smaller. Interestingly,
only when solving the sub-problem for Monday on Alameda 1st seme-
ster the optimal was below the known optimal (only 1% worse).

α can never be below 27% in order to find feasible solutions in
Alameda 1st semester. However, in the 2nd semester the value of α rises
for a staggering 35%. For Taguspark, it is possible to impose a α of 10%
in the 1st semester. The results are summarized in the Table 5. The
lowest values of α were obtained by checking all the possible values
until finding a feasible solution (starting with =α 0). However, these
results only show the lower value of α. The lower value may be caused
by a single overbooked lecture.

Therefore, a more detailed analyses of the results was performed.
Figs. 5, 6, 7 and 8 show the cumulative distribution of the number of
slots with the number of students enrolled above the ideal capacity as a
function of the percentage of students above the ideal capacity. In these
figures one can extract the number of time slots with at-most α of
overbooking. It can be observed that as the percentage rises the number
of slots decreases. In other words, it is more common to have rooms
with a small percentage of students above the ideal capacity. For ex-
ample, in Fig. 7 (Taguspark 1st semester) when considering the ILP
approach there are only a small number of slots with the percentage of
students above 30% of the ideal capacity. In fact, there are only 3 time
slots (which represent only one lecture) in this situation. Ignoring this
lecture, the α value could be lower than 5%. Interestingly, the number
of slots with overbooking is higher in the 1st semester in both campi.
This result is expected since in both campi the 1st semester has a larger
number of students enrolled.

To sum up, we have observed that high values of slack are caused by
a small number of lectures.

Table 4
Comparison of greedy, ILP, Hand-made approaches in terms of global seated students. Result represents the best solution found by the algorithm for each data set.
The optimal value was the one obtained by ILP. The CPU time for the decomposed problems corresponds to the sum of the CPU times of all sub-problems.

ILP

Decomposition Time Result Difference (%) Optimal Total
(s) (# students seated) # students

Alameda 1st Week days 3904.59 281,080 0 281,080 283745
2nd Week days 2681.26 216,600 0 216,600 219217

Taguspark 1st No 15 51,427 0 51,427 51523
2nd No 10 42,512 0 42,512 42578

Greedy
Alameda 1st No 1 277,422 1.3 281,080 283745

2nd No 1 213,731 1.32 216,600 219217
Taguspark 1st No 1 50,698 1.41 51,427 51523

2nd No 1 42,024 1.14 42,512 42578
GRASP
Alameda 1st No 3000 278596 0.8 281080 283745

2nd No 3000 211612 2.3 216600 219217
Alameda 1st No 6000 278596 0.8 281080 51523

2nd No 6000 214050 1.1 216600 42578
Taguspark 1st No 2387 51213 0.6 51427 51523

2nd No 1439 42341 0.4 42512 42578
Hand-made
Alameda 1st N/A N/A 268,668 4.41 281,080 283745

2nd N/A N/A 210,958 2.6 216,600 219217
Taguspark 1st N/A N/A 51,006 0.81 51,427 51523

2nd N/A N/A 42,286 0.53 42,512 42578

Fig. 4. The evolution of the quality, in terms of students seated, of current best
solution found by GRASP, for Alameda data sets.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

9

8.2.4. Overbooking
The results presented above clearly show that overbooking is a

reality in these data sets. As such, the level of overbooking can be a
metric to evaluate the quality of the solution. The comparison between
the ILP and the hand-made approaches are shown in Figs. 5–8 for
Alameda and Taguspark data sets. The hand-made solution forces more
rooms to be overbooked. For example, in Fig. 7 (Taguspark 1st seme-
ster) there are 2 slots with 48% of students above the ideal capacity in
the hand-made solution. However, the solution found by the ILP im-
plementation does not require any room to have these percentages. In
the Alameda data sets, the ILP implementation found a solution with
the highest percentage being 35% which is a clear improvement. The
hand-made solution has rooms with more than 50% of students above
the ideal capacity. Furthermore, in Alameda 1st semester there are only
112 slots with overbooking with the ILP implementation, versus 852
slots with overbooking in the hand-made solution (Fig. 5).

The greedy algorithm is, once again, a bit worse in terms of the
quality of the results since it has rooms with a larger percentage of
students above the ideal capacity. It is important to remember that the
algorithm deals with this constraint as it deals with conflicts; it does not
allow the assignment of lectures to rooms above a certain threshold α.
When comparing the results with the ones found by the ILP im-
plementation, one can see that the threshold required to find a feasible
solution is higher. However, the number of slots with overbooking is
similar. When analyzing Fig. 8, corresponding to Taguspark 2nd se-
mester, one can see that the difference between Greedy and ILP ap-
proaches is small. In fact, the Greedy approach has 13 time slots with
overbooking versus only 10 in the ILP approach. This difference, in fact,
corresponds to a single lecture. However, this lecture has 30% of stu-
dents above the ideal capacity. On the other hand, in the data set of
Alameda 2nd semester (Fig. 6) the ILP implementation has 2 more time
slots with overbooking than the greedy algorithm. This fact can be
explained by an imposed lower value to α. The value of α for the ILP is
35% which is smaller than the 42% used for the greedy algorithm.

When comparing the results for the greedy algorithm with the hand-
made solution, one can see that the improvement is significant in both
the number of overbooked slots and percentage of students who cannot

Table 5
Minimal value of slack necessary to find a feasible solution for the Alameda and Taguspark data sets.

Weekday

Monday (%) Tuesday (%) Wednesday (%) Thursday (%) Friday (%)

Alameda 1st 35 27 27 27 27
2nd 35 35 35 35 12

Taguspark 1st 33
2nd 10

Fig. 5. The cumulative distribution of slots with the number of students en-
rolled above the ideal capacity as a function of the percentage of students above
the ideal capacity for Alameda 1st semester.

Fig. 6. The cumulative distribution of slots with the number of students en-
rolled above the ideal capacity as a function of the percentage of students above
the ideal capacity for Alameda 2nd semester.

Fig. 7. The cumulative distribution of slots with the number of students en-
rolled above the ideal capacity as a function of the percentage of students above
the ideal capacity for Taguspark 1st semester.

Fig. 8. The cumulative distribution of slots with the number of students en-
rolled above the ideal capacity as a function of the percentage of students above
the ideal capacity for Taguspark 2nd semester.

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

10

be seated in those slots. For Alameda 1st semester, the greedy algorithm
only has 140 slots with overbooking versus 852 slots in the hand-made
solution. Moreover, the lower value of alpha of the hand-made solution
is 60% versus 50% obtained by the the greedy algorithm.

Some of the assignments that cause the highest number of students
above the ideal capacity in the hand-made solution could eventually be
solved by simple reassignments of lectures. However, it is possible that
the assignment of certain lectures to specific rooms without the proper
capacity may be due to empirical knowledge; some teachers may jus-
tifiably prefer specifics rooms, even though not all students can be se-
ated. Furthermore, it could also mean that in practice not all students
will actually attend the lecture. Not considering this criterion could
cause students that actually attend lectures not to be seated in order to
seat students which may never attend. It should also be noted that the
set of overbooked lectures obtained by the ILP and greedy algorithms
are actually a disjoint set of the set of overbooked lectures found in the
hand-made solution. Thus, assuming there is a reason for assigning
these rooms, we have forced these lectures to be assigned to the pre-
ferred rooms. The addition of this criterion does not change the CPU
time. As expected, the overall number of unseated students is higher.
When forcing these assignments, also as expected, the set of overbooked
lectures is the same for all algorithms. Even though they are now equal
in terms of students seated, the ILP and greedy solutions are better in
terms of compactness. Table 6 summarizes the number of seated stu-
dents when allowing the ILP approach to keep the same room for the
overbooked lectures as in the hand-made solution. These results are
optimal, for each instance, and were obtained using the ILP approach.

8.2.5. Compactness process
In terms of compactness, the greedy algorithm only performs the

compaction procedure in tie-breaking scenarios. In other words, the
compaction is only executed when allocating lectures with the same
gain in terms of seated students. Nevertheless, the results are an im-
provement when comparing them with the hand-made solutions used in
IST, even though the values found by the greedy algorithm are not
optimal. Table 7 compares the values obtained by the ILP im-
plementation, the greedy algorithm and the hand-made solution. The
values represent the number of transitions from free to occupied slots
and vice-verse.

The ILP implementation finds the optimal solution for the
Taguspark data sets although it requires significantly more CPU time.
The number of transitions obtained is higher when using the greedy
algorithm. Nevertheless, the results are close to the optimal found by
the ILP implementation. The greedy algorithm finds a solution which is
1.2x worse than the optimal.

The ILP implementation was not able to compact all the allocations
when considering the decomposed data sets from Alameda within a pre-
defined time-frame. In the worst case, three days of CPU time were
spent to find the optimal solution.

Overall, the number of transitions of the greedy implementation is
1.4x and 1.5x higher than the optimal for the Alameda 1st semester and

2nd semester, respectively. The number of days spent for each weekday
for the Alameda data sets is shown in Table 8.

Once again the quality of the solution found by the GRASP algo-
rithm lies in the middle of the ILP and greedy approaches. Only the
local search stage of GRASP optimizes the quality in terms of transi-
tions. When comparing GRASP with the simple greedy algorithm, the
improvement is more significant when considering the number of
transitions. In this optimization criterion GRASP is able, on average, to
reduce the distance to the optimal value in 12%. The summary of the
results are shown in Table 7. Nevertheless, even with fewer iterations
the algorithm is considerably worse in terms of CPU time.

Fig. 9 shows the evolution of the quality, in terms of transitions, of
the current best solution for Alameda data sets as function of the
number of transitions. We conclude that, the algorithm converges in
more or less the same number of iterations for both optimization cri-
teria (Fig. 4). Considering this optimization criterion, the first solution
for the Alameda 2nd semester has a larger distance to the optimal than
when considering the number of students as an optimization criterion.
Nevertheless, the Alameda 2nd semester instance has a smaller number
of transitions which is normal since it has fewer lectures.

8.2.6. Time limit for the ILP compactness process
The greatest weakness of the ILP implementation is the large CPU

time required, in particular in the second stage. One approach to reduce
the CPU time lies on warm-starting the second stage with the solution
from the first stage. However, this process, on average did not improve
the CPU time. We believe that the improvement really depends on how
close the solution found in the 1st stage is to an optimal solution of the
2nd stage. In this case, the solution, of most instances, for the 1st stage
is not close to an optimal solution for the 2nd stage.

In the second stage, most of the time spent by the ILP solver is not
improving the quality of the solution. The solver is actually proving
optimality. In practice, the trade-off between optimality and CPU time
may sometimes lead to a shorter CPU time.

To this end, a study on the evolution of the quality of the solutions
over time for the Alameda data sets (which are the most complex) was
performed. Figs. 10 and 11 show the evolution for each weekday for the
1st and 2nd semesters, respectively. Both graphs have logarithm scale
and shown the time in seconds. The large round grey symbols mark the
reaching of the optimal solution (without proving it). The large green
triangle symbols mark the time for proving the optimal solution. We
conclude that, in most of the cases, the time spent after 6000 seconds
produces small changes in the quality of the solution. If we consider the
6000 seconds as the time limit we can see that for the 2nd semester
most of the data sets had already their optimal value found, even
though it was not yet proven.

As one can see, the evolution shown in Figs. 10 and 11 is not
smooth, but rather exhibits some jumps. These jumps correspond to a
restart on the execution of the solver. Every time a jump occurs, the
solution found is significantly improved. Therefore, one can try to
produce more jumps. The ILP implementation was rerun with the Re-
peatPresolve flag with value 3 (re-presolve with cuts and allow new
root cuts). The results for Alameda data sets are shown in Figs. 12 and
13. The optimal solution is always found faster with this configuration.
Nevertheless, the solver still spends most of the CPU time to prove
optimality. When solving most of the instances the solver spends 50%
or more time proving the optimality. In the worst case, for the data set
of Thursday Alameda 2nd semester, the CPU time spent on proving
optimality is 92% of the total CPU time.

9. Conclusion and future work

This paper discusses the problem of room usage optimization for
university timetables. In particular, the methods proposed optimize the
room occupation by determining where to allocate events with pre-
defined time slots. This optimization process must ensure that the

Table 6
The maximum number of seated students, obtained using the ILP approach,
when pre-assigning the overbooked lectures present in the hand-made solution.

Campus Working day Semester

1st 2nd

(Mon to Fri) Optimal # Students Optimal # Students

Taguspark All 49,038 49,555 40,231 40,511
Alameda Monday 52,933 55,649 48,808 50,905

Tuesday 55,509 59,228 42,609 44,457
Wednesday 48,465 50,393 31,389 32,293
Thursday 53,638 57,168 27,528 28,530
Friday 40,657 42,957 44,978 47,339

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

11

rooms have enough capacity to seat all people participating in those
events. In this work, we propose two different approaches to solve the
above-mentioned problem. Both approaches were successfully tested
with data sets from both campi of IST in the academic year of 2016/
2017.

First, we propose a two-stage ILP implementation to allocate lec-
tures to rooms while optimizing the room usage. The first stage focuses

on allocating lectures to rooms in order to maximize the number of
students seated. To ensure fairness, we added a slack to the capacity of
each room before maximizing the number of students seated. The
second stage focuses on the minimization of the number of transitions
from free to occupied (and vice-versa) for each room. The ILP

Table 7
Compaction results in terms of number of transitions for the greedy algorithm, GRASP, ILP before and after the compactness optimization. The ILP finds the optimal
solution to the Taguspark data sets within the time limit. The time spent just in compaction routine is also shown. The cells highlighted in grey represent values found
through decomposition.

Hand-made Greedy ILP GRASP

Trans. # Trans. # Trans. before comp. # Trans. after comp. Extra time (s) # Trans.

Alameda 1st 2148 1242 2068 937 8.4× 105 1118
2nd 1945 1030 2001 685 4.2× 105 944

Taguspark 1st 383 279 369 217 1.2× 102 238
2nd 330 241 307 193 3.8× 10 210

Table 8
ILP compactness results in terms of number transitions and CPU time (in days), for the Alameda data sets.

Weekday Monday Tuesday Wednesday Thursday Friday

Results Time (d) # Trans Time (d) # Trans Time (d) # Trans Time (d) # Trans Time (d) # Trans
Alameda 1 0.8 146 1.6 272 3.5 145 3 202 0.7 148

2 0.5 155 0.7 148 2.5 123 1 122 0.4 137

Fig. 9. The evolution of the quality, in terms of transitions seated, of current
best solution found by GRASP, for Alameda data sets.

Fig. 10. The evolution of the number of transitions over time in seconds (log
scale), for the Alameda 1st semester. The grey circle and the green triangle
symbols mark the finding of an optimal value and the proving of optimality,
respectively. The results were obtained by the execution of CPLEX with the
default configurations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 11. The evolution of the number of transitions over time in seconds (log
scale), for the Alameda 2nd semester. The grey circle and the green triangle
symbols mark the finding of an optimal value and the proving of optimality,
respectively. The results were obtained by the execution of CPLEX with the
default configurations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 12. The evolution of the number of transitions over time in seconds (log
scale), for the Alameda 1st semester. The grey circle and the green triangle
symbols mark the finding of an optimal value and the proving of optimality,
respectively. The results were obtained by the execution of CPLEX configured to
re-apply presolve with cuts and allow new root cuts. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

12

implementation finds the optimal solution for all data sets tested.
However, it requires some decomposition in order to solve all data sets
within the time and memory constraints.

Even with the decomposition in working days the ILP im-
plementation has a significantly long CPU time. The execution is par-
ticularly large for the second-stage. To reduce this problem, we pro-
posed a greedy algorithm. The greedy algorithm does not find an
optimal solution for the data sets but, as expected, is significantly faster.
The cost function allows us to ensure that the solution is within 63% of
the optimal value (when considering the number of students seated as
an optimization criterion). In practice, the results are much closer to the
ones found by the ILP implementation. The proposed GRASP algorithm
is a good extension of the greedy algorithm which is able to improve the
quality of the solution without adding much CPU time. However, this
algorithm, does not give any guarantees in terms of the quality of the
solution found.

The two approaches proposed in this paper improve the quality of
the hand-made solution for either optimization criteria.

As future work, we propose extending the methods in order to solve
Minimal Perturbation Problems. In particular, re-assigning lectures to
rooms after a perturbation occurs maintaining the timetables stability.
Moreover, one can use domain knowledge to improve the CPU time of
the ILP implementation (similar to the decomposition proposed in this
paper). In relation with the greedy algorithm proposed, it may be
possible to improve the quality of the solution by searching neighbor-
hood structures. The application of this local search algorithm does not
remove the proven guarantees associated with the chosen cost function.

Acknowledgments

The authors would like to thank the reviewers for their helpful
comments and suggestions that contributed to an improved manuscript.
This work was supported by Universidade de Lisboa, Instituto Superior
Técnico and Departamento de Engenharia Informática (DEI) and by
national funds through Fundação para a Ciência e a Tecnologia (FCT)
with reference UID/CEC/50021/2013 (INESC-ID multi-annual
funding).

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.orp.2018.100092.

References

[1] McCollum B. University timetabling: bridging the gap between research and practice.
Proceedings of the 5th international conference on the practice and theory of automated
timetabling (PATAT). Springer; 2006. p. 15–35.

[2] Lach G, Lübbecke ME. Optimal university course timetables and the partial transversal
polytope. Experimental algorithms, 7th international workshop. 2008. p. 235–48. https://
doi.org/10.1007/978-3-540-68552-4_18.

[3] Vermuyten H, Lemmens S, Marques I, Beliën J. Developing compact course timetables
with optimized student flows. Eur J Oper Res 2016;251(2):651–61. https://doi.org/10.
1016/j.ejor.2015.11.028.

[4] Lewis R, Paechter B, McCollum B. Post enrolment based course timetabling: adescription
of the problem model used for track two of the second international timetabling com-
petition. Cardiff Business School; 2007. Cardiff Working Papers in Accounting and
Finance A2007/3

[5] Di Gaspero L, Schaerf A, McCollum B. The second international timetabling competition
(itc-2007): curriculum-based course timetabling (track 3). Tech. Rep.. Queen’s University;
2007.

[6] Müller T. Constraint-based timetabling. Charles University in Prague Faculty of
Mathematics and Physics; 2005. PhD dissertation.

[7] Even S, Itai A, Shamir A. On the complexity of timetable and multicommodity flow
problems. Soc Ind Appl MathSIAM J Comput 1976;5(4):691–703.

[8] Müller T. Itc2007 solver description: a hybrid approach. Ann Oper Res 2009;172(1):429.
[9] Banbara M, Inoue K, Kaufmann B, Schaub T, Soh T, Tamura N, et al. teaspoon: solving the

curriculum-based course timetabling problems with answer set programming. Proceeding
of 11th international conference of the practice and theory of automated timetabling
PATAT. 2016. p. 13–32.

[10] Cacchiani V, Caprara A, Roberti R, Toth P. A new lower bound for curriculum-based
course timetabling. Comput Oper Res 2013;40(10):2466–77. https://doi.org/10.1016/j.
cor.2013.02.010.

[11] Burke EK, Marecek J, Parkes AJ, Rudová H. Decomposition, reformulation, and diving in
university course timetabling. Comput Oper Res 2010;37(3):582–97. https://doi.org/10.
1016/j.cor.2009.02.023.

[12] Nouri HE, Driss OB. Distributed model for university course timetabling problem. IEEE
international conference on computer applications technology (ICCAT). 2013. p. 1–6.

[13] Nouri HE, Driss OB. MATP: a multi-agent model for the university timetabling problem.
Software engineering perspectives and application in intelligent systems - proceedings of
the 5th computer science on-line conference (CSOC2016), Vol 2. 2016. p. 11–22. https://
doi.org/10.1007/978-3-319-33622-0_2https://doi.org/10.1007/978-3-319-33622-0_2.

[14] Song T, Liu S, Tang X, Peng X, Chen M. An iterated local search algorithm for the uni-
versity course timetabling problem. Appl Softw Comput 2018;68:597–608. https://doi.
org/10.1016/j.asoc.2018.04.034.

[15] Kampke EH, de Souza Rocha W, Boeres MCS, Rangel MC. A GRASP algorithm with path
relinking for the university courses timetabling problem. Proc Ser Braz Soc Comput Appl
Math 2015;3(2):1–7. https://doi.org/10.5540/03.2015.003.02.0108.

[16] de Souza Rocha W, Claudia M, Boeres S, Rangel MC. A grasp algorithm for the university
timetabling problem. Proceeding of 9th international conference of the practice and
theory of automated timetabling PATAT. 2012. p. 404–6.

[17] Müller T, Rudová H. Real-life curriculum-based timetabling with elective courses and
course sections. Ann Oper Res 2016;239(1):153–70. https://doi.org/10.1007/s10479-
014-1643-1.

[18] Santos HG, Uchoa E, Ochi LS, Maculan N. Strong bounds with cut and column generation
for class-teacher timetabling. Ann Oper Res 2012;194(1):399–412. https://doi.org/10.
1007/s10479-010-0709-y.

[19] Dorneles ÁP, de Araújo OCB, Buriol LS. A fix-and-optimize heuristic for the high school
timetabling problem. Comput Oper Res 2014;52:29–38. https://doi.org/10.1016/j.cor.
2014.06.023.

[20] Gogos C, Alefragis P, Housos E. An improved multi-staged algorithmic process for the
solution of the examination timetabling problem. Ann Oper Res 2012;194(1):203–21.
https://doi.org/10.1007/s10479-010-0712-3.

[21] Beyrouthy C, Burke EK, Landa-Silva D, McCollum B, McMullan P, Parkes AJ. Towards
improving the utilization of university teaching space. J Oper Res Soc
2009;60(1):130–43. https://doi.org/10.1057/palgrave.jors.2602523.

[22] Beyrouthy C, Burke EK, Silva DL, McCollum B, McMullan P, Parkes AJ. The teaching
space allocation problem with splitting. Practice and theory of automated timetabling VI,
6th international conference, PATAT revised selected papers. 2006. p. 228–47. https://
doi.org/10.1007/978-3-540-77345-0_15https://doi.org/10.1007/978-3-540-77345-
0_15.

[23] Lindahl M, Mason AJ, Stidsen TR, Sørensen M. A strategic view of university timetabling.
Eur J Oper Res 2018;266(1):35–45. https://doi.org/10.1016/j.ejor.2017.09.022.

[24] Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. The MIT
Press9780262033848; 2009.

[25] Moura AV, Scaraficci RA. A GRASP strategy for a more constrained school timetabling
problem. Int J Oper Res 2010;7(2):152. https://doi.org/10.1504/ijor.2010.030801.

[26] Casey S, Thompson J. Grasping the examination scheduling problem. Proceedings of the
4th international conference on the practice and theory of automated timetabling
(PATAT). Springer; 2002. p. 232–44.

[27] Edmonds J. Submodular functions, matroids, and certain polyhedra. Comb Optim
1970;11:11–26.

[28] When greedy algorithms are good enough: Submodularity and the (1 - 1/e) approxima-
tion. https://jeremykun.com/2014/07/07/when-greedy-algorithms-are-good-enough-
submodularity-and-the-1-1e-approximation/; 2014. Accessed: 2017-07-03.

[29] Gurski F. Efficient binary linear programming formulations for boolean functions. Stat
Optim InfComput 2014;2(4). https://doi.org/10.19139/soic.v2i4.83.

[30] IBM ILOG. Optimization studio CPLEX user’ s manual, version 12 release 7. 2016.
[31] Roussel O. Controlling a solver execution with the runsolver tool. J Satisfiability Boolean

ModellComput 2011;7(4):139–44.

Fig. 13. The evolution of the number of transitions over time in seconds (log
scale), for the Alameda 2nd semester. The grey circle and the green triangle
symbols mark the finding of an optimal value and the proving of optimality,
respectively. The results were obtained by the execution of CPLEX configured to
re-apply presolve with cuts and allow new root cuts. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

A. Lemos, et al. Operations Research Perspectives 6 (2019) 100092

13

https://doi.org/10.1016/j.orp.2018.100092
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0001
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0001
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0001
https://doi.org/10.1007/978-3-540-68552-4_18
https://doi.org/10.1007/978-3-540-68552-4_18
https://doi.org/10.1016/j.ejor.2015.11.028
https://doi.org/10.1016/j.ejor.2015.11.028
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0006
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0006
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0007
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0007
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0008
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0009
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0009
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0009
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0009
https://doi.org/10.1016/j.cor.2013.02.010
https://doi.org/10.1016/j.cor.2013.02.010
https://doi.org/10.1016/j.cor.2009.02.023
https://doi.org/10.1016/j.cor.2009.02.023
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0012
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0012
https://doi.org/10.1007/978-3-319-33622-0_2
https://doi.org/10.1007/978-3-319-33622-0_2
https://doi.org/10.1016/j.asoc.2018.04.034
https://doi.org/10.1016/j.asoc.2018.04.034
https://doi.org/10.5540/03.2015.003.02.0108
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0016
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0016
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0016
https://doi.org/10.1007/s10479-014-1643-1
https://doi.org/10.1007/s10479-014-1643-1
https://doi.org/10.1007/s10479-010-0709-y
https://doi.org/10.1007/s10479-010-0709-y
https://doi.org/10.1016/j.cor.2014.06.023
https://doi.org/10.1016/j.cor.2014.06.023
https://doi.org/10.1007/s10479-010-0712-3
https://doi.org/10.1057/palgrave.jors.2602523
https://doi.org/10.1007/978-3-540-77345-0_15
https://doi.org/10.1007/978-3-540-77345-0_15
https://doi.org/10.1007/978-3-540-77345-0_15
https://doi.org/10.1016/j.ejor.2017.09.022
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0024
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0024
https://doi.org/10.1504/ijor.2010.030801
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0026
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0026
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0026
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0027
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0027
https://jeremykun.com/2014/07/07/when-greedy-algorithms-are-good-enough-submodularity-and-the-1-1e-approximation/
https://jeremykun.com/2014/07/07/when-greedy-algorithms-are-good-enough-submodularity-and-the-1-1e-approximation/
https://doi.org/10.19139/soic.v2i4.83
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0029
http://refhub.elsevier.com/S2214-7160(18)30169-6/sbref0029

	Room usage optimization in timetabling: A case study at Universidade de Lisboa
	Introduction
	Related work
	Timetables
	Greedy algorithms
	Greedy algorithm performance

	Problem description
	Preliminaries
	Constraints

	Optimization: generate compact timetables
	Metrics definitions
	Comparison

	Instituto superior Técnico case study
	mk:H2_13
	Current hand-made timetables

	ILP formulation
	First stage: maximizing the number of students seated
	Second stage: compactness

	Greedy approaches
	Greedy algorithm
	mk:H2_20
	Theoretical implications

	Greedy randomized adaptive search procedure
	The random greedy procedure
	Local search

	Experimental evaluation
	Experimental setup
	Results & discussion
	Problem decomposition
	Number of attending students
	Slack on the number of attending students
	Overbooking
	Compactness process
	Time limit for the ILP compactness process

	Conclusion and future work
	Acknowledgments
	Supplementary material
	References

