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A B S T R A C T

While the basic economic order quantity model has found some practical applications, it makes a number of
assumptions which do not reflect most real life inventory systems. This paper proposes an inventory system
where the items ordered are capable of growing during the course of the inventory replenishment cycle, for
example livestock. Furthermore, it is assumed that a certain fraction of the items is of poorer quality than
desired. It is also assumed that live newborn items are ordered and fed until they grow to a customer-preferred
weight, after which they are slaughtered. Before all the slaughtered items are put on sale, they are screened so as
to separate the good quality items from those of poorer quality. In order to determine the optimal inventory
policy, a model, which aims to maximize the expected total profit, is developed and numerical examples are
provided to illustrate the model and the solution procedure. The logistic growth function is compared to the
linear and split linear growth functions. The margin of error between the results of the split linear function and
the logistic growth function were found to be smaller than between the logistic and linear function. In addition,
it was found that the optimal order quantity was most sensitive to the target slaughter weight.

1. Introduction

Harris’ [9] work on the classic economic order quantity (EOQ)
model has laid the groundwork for modern inventory management [3].
However, the classic EOQ model makes a number of assumptions. In
attempts to model more realistic inventory systems, numerous re-
searchers have relaxed these assumptions to create new models. Ex-
amples of recent works based on the classic EOQ model include studies
on inventory management for growing items [20], inventory models for
cases where delays in payments are partially permitted in a fuzzy en-
vironment [18] and inventory management in a multi-item system
provided that the demand of the items is correlated [16]. The focus of
this research article is on inventory management for growing items,
where assumptions that the items do not grow and that all the items are
of good quality are relaxed in an effort to create a relevant model. This
is because these assumptions are not true for all situations. Certain
items, such as livestock, are capable of growing during the course of the
inventory replenishment cycle [20]. Preparation of these items for sale
usually involves some degree of processing, and item quality is seldom
perfect in most production processes [22].

Research into inventory modelling for growing items is relatively
sparse and new with the first paper published by Rezaei [20] in 2014.
The major difference between growing items, for example poultry, and
conventional items, for example books, is that the total weight of

growing items increases during the course of an inventory cycle. Item
growth was the major differentiator between the model by Rezaei [20]
and the classic EOQ model. In order for the items to grow, they need to
be fed, and hence, feeding costs were included in the model. Various
researchers have started to extend the work on inventory control for
growing items into diverse other areas. For instance, Zhang et al. [27]
incorporated environmental sustainability to Rezaei's [20] work by
developing an EOQ model for growing items in a carbon constrained
environment. Nobil et al. [19] extended the growing items inventory
model by relaxing the assumption that shortages are not allowed while
approximating the growth of the items by a linear function.

Item quality is another area that has recently been included in re-
search efforts because not every single item manufactured or procured
is of perfect quality. Imperfect quality was first incorporated into the
classic EOQ model by Salameh and Jaber [22]. They formulated an
inventory model for a situation where a certain fraction of the items
received in each lot is of poorer quality. Over the years, this model has
been improved in several ways. Cardenas-Barron [2] and Maddah and
Jaber [17] corrected computational errors made in the expressions for
the EOQ and expected total profit respectively. Goyal and Cardenas-
Barron [8] proposed a simpler method for computing the EOQ. Salameh
and Jaber's [22] work has also been extended in several ways. Huang
[12] studied a vendor-buyer inventory system for items with imperfect
quality. Chang [4] presented a model in which the fraction of imperfect

https://doi.org/10.1016/j.orp.2018.11.004
Received 8 August 2018; Received in revised form 12 November 2018; Accepted 29 November 2018

⁎ Corresponding author.
E-mail addresses: sebatjane350@outlook.com (M. Sebatjane), olufemi.adetunji@up.ac.za (O. Adetunji).

Operations Research Perspectives 6 (2019) 100088

Available online 30 November 2018
2214-7160/ © 2018 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22147160
https://www.elsevier.com/locate/orp
https://doi.org/10.1016/j.orp.2018.11.004
https://doi.org/10.1016/j.orp.2018.11.004
mailto:sebatjane350@outlook.com
mailto:olufemi.adetunji@up.ac.za
https://doi.org/10.1016/j.orp.2018.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2018.11.004&domain=pdf


quality items and the demand rate were assumed to be fuzzy variables.
Building upon Salameh and Jaber [22], Yu et al. [26] incorporated
partial backordering and deterioration. Wee et al. [25] extended Sal-
ameh and Jaber's work by relaxing the assumption that shortages are
not allowed. Jaber et al. [13] presented an EOQ model for imperfect
quality item subject to learning effects. Chung et al. [7] developed a
two-warehouse inventory model for items with imperfect quality.
Chang and Ho [5] derived an EOQ model for items with imperfect
quality and shortages without the use of differential calculus. Chen and
Kang [6] studied an integrated vendor-buyer inventory system for items
with imperfect quality under conditions of permissible delay in pay-
ments. The effects of a company's pricing and marketing plans were
accounted for in an inventory model for items with imperfect quality
presented by Sadjadi et al. [21]. Cardenas-Barron [1] presented a
closed-form solution for the EOQ model for items with imperfect
quality, quantity discounts and different holding costs for good and
poorer quality items. Hsu and Hsu [11] extended the work of Salameh
and Jaber [22] by incorporating sales returns in to the model. Wang
et al. [24] developed an EOQ model for imperfect quality taking into
account partial backorders and a constraint on the screening process.
Khan et al. [15] studied a vendor-buyer inventory system for items with
imperfect quality where the vendor and the buyer have a vendor-
managed inventory (VMI) agreement in place. Jaggi et al. [14] pre-
sented an EOQ model for deteriorating items with imperfect quality
taking into account trade credit financing and the use of an additional
rented warehouse. Tiwari et al. [23] developed a vendor-buyer in-
ventory model for deteriorating items with imperfect quality and
carbon emissions cost.

A review of current literature seems to suggest that there is no work
published on inventory modelling which considered the assumptions of
growing and imperfect quality items simultaneously. In this paper, an
attempt is made here to develop an inventory system that considers
growing items allowing a certain fraction of the items to be of poorer
quality. The inventory model presented is more practical than the
classic EOQ model and it serves as an extension to the models presented
by Salameh and Jaber [22] and Rezaei [20]. A comparison of the
proposed inventory system and previously published relevant inventory
models in the literature is provided in Table 1, which shows the con-
tributions made by various research papers in the existing literature as
well as what this paper adds to inventory theory research for growing
items.

The remainder of this paper is organised as follows. Section 2 pro-
vides a brief description of the proposed inventory system. The nota-
tions and assumptions used when formulating the mathematical model
for the proposed inventory system are given in Section 3. In Section 4,
the mathematical formulation of the system is outlined. Numerical re-
sults are presented in Section 5 to illustrate the proposed solution
procedure and to provide managerial insights through a sensitivity
analysis. The paper is then concluded in Section 6.

2. Problem definition

The inventory system under study considers a situation where a
company orders a certain number of items which are capable of

growing over time, for example chickens. Fig. 1 represents the typical
behaviour of such an inventory system. The growth process is fa-
cilitated by the company through feeding the items. The company in-
curs a cost for feeding and raising the items. At the end of the growth
period (i.e. after having grown to a certain weight), the items are
slaughtered and sold. A certain fraction of the slaughtered items is not
of acceptable quality. Prior to selling the items, the company screens
them to separate the good quality items from the poorer quality items.
Good quality items are sold at a given price and at a given demand rate
throughout the sales cycle while the poorer quality items are salvaged
(i.e. sold at a price which is lower than the price of the good quality
items) as a single batch after the screening process.

Each inventory cycle can be divided into two distinct periods,
namely the growth and the consumption periods. During the growth
period (i.e. period t1 in Fig. 1), ordered newborn items are fed and
raised until they grow to a certain target weight. This marks the end of
the growth period, and the items are the slaughtered. During the con-
sumption period (i.e. period T in Fig. 1), the slaughtered items are kept
in stock and sold to consumers following a screening process (i.e.
period t2 in Fig. 1) which separates the items of good quality from the
ones of poorer quality. Fig. 1 also shows the relationship between one
inventory cycle and the next. The inventory level during a cycle con-
tinues to deplete due to consumption and reaches zero at the end of
period T. At this time, the items in the next inventory cycle would have
completed their growth cycle. This means that the items in the next
cycle will be ready for consumption (i.e. they have grown to the target
weight) at the instant the items in the previous inventory cycle are used
up. The company wants to determine the number of items to order
when a growing cycle begins in order to maximize its total profit. The
total profit is defined as the difference between total revenue and total
costs. Total revenue includes the revenue from the sale of both good
and poorer quality items. The total cost is the sum of the purchasing,
feeding, holding, setup and screening costs.

A model is presented to address the two pertinent questions of how
much to order and when to place an order. The objective function of the
model is the expected total profit, while the decision variables are the
lot size and cycle time, subject to the feasibility constraint that the sum
of the growing period and the facility setup time must be less than the
consumption period.

3. Notations and assumptions

3.1. Notations

Table 2 presents a list of notations used in developing the model.

3.2. Assumptions

The following assumptions were made in order to formulate the
model:

• The ordered items are capable of growing prior to being slaugh-
tered.

• A single type of item is considered.

Table 1
Gap analysis of related works in literature and contribution of this paper.

References Characteristics of the inventory system Solution technique
Conventi-onal items Growing items Imperfect quality Carbon tax Shortage Closed form Heuristic

Harris [9] ✓ ✓
Salameh and Jaber [22] ✓ ✓ ✓
Rezaei [20] ✓ ✓

Zhang et al. [27] ✓ ✓ ✓
Nobil et al. [19] ✓ ✓ ✓
This paper ✓ ✓ ✓
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• A cost is incurred for feeding and growing the items.

• The cost of feeding the items is proportional to the weight gained by
the items.

• Holding costs are incurred for the duration of the consumption
period.

• A random fraction of the slaughtered items is of poorer quality.

• The screening process is 100 percent effective

• All poorer quality items can be sold.

• Poorer quality items are salvaged as a single batch after the
screening period.

• The selling price of good quality items is greater than that of the
poorer quality items.

• There is no rework or replacement of poorer quality items.

4. Model development

4.1. General model

At the beginning of a growing cycle, the company purchases y
newborn items that are capable of growing, such as livestock. At the
time of receiving the order, each newborn item weighsw0. The total
weight of the inventory at this point,Q0, is determined by multiplying
the unit weight of the items by the number of items ordered
(i.e. =Q yw0 0). The items are fed and they grow to a target weight
w1 which is a function of time. After reaching the target weight ofw1,
they are slaughtered. The total weight of the inventory at the time of
slaughter is =Q yw1 1. The items are screened for the period t2 at a rate
of r. The proposed inventory system is depicted by Fig. 1. A fraction, x,
of the slaughtered items is of poorer quality. This fraction is assumed to
be a random variable with a known distribution, g(x), and the ex-
pectation E(x). At the end of the screening period, all the poorer quality
items are sold as a single batch at a discounted price. The good quality
items are sold throughout the consumption period, T, at a demand rate
ofD unit weights per unit time.

The objective of the proposed inventory model is to maximize the
company's total profit (TP), which is the company's total costs sub-
tracted from its total revenue (TR). The total cost per cycle is made up
of five components, namely purchasing, setup, screening, feeding and
holding costs, denoted by PC, SC, ZC, FC andHC respectively. The com-
pany's total profit function per cycle is, therefore, given by

= − − − − −TP TR PC SC FC HC ZC. (1)

Since the fraction of poor quality items, x, is assumed to be a
random variable with a known probability density function given by g
(x), the expected value of the total profit per cycle is given by

= − − − − −E TP E TR PC SC FC E HC ZC[ ] [ ] [ ] . (2)

In order to meet an annual demand ofDweight units of good quality
items, the company needs to setup growth facil-
ities −D yw E x/[ (1 [ ])]1 times a year. The inverse of the number of
times the company should setup growing facilities gives the expected
cycle duration of the consumption period as

= −E T yw E x
D

[ ] (1 [ ]) .1
(3)

Since all the slaughtered inventory is subjected to screening prior to
being sold, the total weight of slaughtered inventory, yw1, and the
screening rate, r, are used to compute the duration of the screening
period, t2, as

=t yw
r

.2
1

(4)

Fig. 1. Behaviour of an inventory system for growing items with imperfect quality.

Table 2
Notations used when deriving the mathematical model.

Symbol Description

y Number of newborn items ordered per cycle
T Cycle time
w0 Weight of each newborn item
w1 Weight of each grown item at the time of slaughtering
wt Weight of each item at time t (depending on the actual growth function)
Qt Total weight of all the ordered inventory at time t
p Purchasing cost per weight unit of grown item
s Selling price of good quality item per weight unit
v Selling price of poorer quality item per weight unit
h Holding cost per weight unit per unit time
K Setup cost per cycle
D Demand for good quality items in weight units per unit time
c Feeding cost per weight unit per unit time
x Percentage of slaughtered items that are of poorer quality
g(.) Probability density function of a variable
z Screening cost per weight unit
r Screening rate
t1 Duration of the growing period
t2 Screening time
ts Setup time
E[.] Expected value of some random variable
α Asymptotic weight of each item (for exponential growth function)
β Integration constant (for exponential growth function)
λ Exponential growth rate per unit time (for exponential growth

function)
γ Linear growth rate per weight unit per unit time (for linear growth

function)
δj Linear growth rate in growth region j (for split linear growth function)

′w1 Supremum on weight in the first growth region (for split linear growth
function)

′t1 Supremum on growth period duration in the first growth region (for
split linear growth function)

″w1
Supremum on weight in the first growth region (for split linear growth
function)

″t1 Supremum on growth period duration in the second growth region (for
split linear growth function)
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4.1.1. Expected revenue per cycle
Since the company sells both good and poorer quality items, the

total revenue includes income from sales of both good and poorer
quality items. Good quality items are sold continuously at a price of s
per weight unit. At the end of the screening process, the poorer quality
items are salvaged as a single batch at a discounted price of v per weight
unit. Hence, the expected value of the revenue per cycle is given by

= − +E TR syw E x vyw E x[ ] (1 [ ]) [ ].1 1 (5)

4.1.2. Purchasing cost per cycle
At the start of each cycle, the company purchases y newborn items,

each weighingw0, at a cost of p per weight unit. Hence, the purchasing
cost per cycle is

=PC pyw .0 (6)

4.1.3. Setup cost per cycle
At the beginning of each cycle, a fixed setup cost of K is incurred by

the company and thus the setup cost per cycle is given by

=SC K . (7)

4.1.4. Feeding cost per cycle
Growth of the items is facilitated by the company through feeding

the items for the period t1. Feeding the items costs the company c per
weight unit per unit time. The amount of food consumed by the items is
assumed to be dependent on the age (i.e. weight) of the items, as given
by the growth functionwt. This means that as the items get older and
bigger, their feeding requirements also increase. These three quantities,
together with the number of ordered items are used to determine the
feeding cost per cycle as

∫=FC cy w dt.
t

t
0

1

(8)

4.1.5. Screening cost per cycle
A screening process is conducted for the duration t2 to separate the

items of good quality from those of poorer quality. It costs the com-
pany z units of money to screen a single weight unit of the slaughtered
items. The cost of screening all the items in each cycle is given by

=ZC zyw .1 (9)

4.1.6. Expected holding cost per cycle
Following the growth period, the items are slaughtered after having

grown to a target weight ofw1. The holding cost component is essen-
tially the costs associated with keeping the fully grown slaughtered
items in storage. Therefore the company pays the holding cost for the
period T. It costs the company h to keep a single weight unit of the
slaughtered items in storage for a year. The expected value of the
holding cost per cycle, shown in Fig. 1, is given by

= ⎡
⎣⎢

−
+ ⎤

⎦⎥
E HC h

y w E x
D

y w E x
r

[ ]
(1 [ ])

2
[ ]

.
2

1
2 2 2

1
2

(10)

4.1.7. Expected total profit function
The expression for the expected total profit per cycle, E[TP], is de-

termined by substituting Eqs. (5) through (10) into Eq. (2). This is used
to compute the expected total profit per unit time, E[TPU], as

∫

=

= + − −

− −

− ⎡
⎣

+ ⎤
⎦

− − −

− −

−
−

E TPU

sD

w dt

h

[ ]

.

.

E TP
E T

vDE x
E x

pDw
w E x

KD
yw E x

zD
E x

cD
w E x

t
t

yw E x yw DE x
r E x

[ ]
[ ]

[ ]
(1 [ ]) (1 [ ]) (1 [ ])

(1 [ ]) (1 [ ]) 0

(1 [ ])
2

[ ]
(1 [ ])

0
1 1

1

1

1 1

(11)

4.2. Investigating different growth functions

Solving Eq. (11) requires specific growth functions for the growing
items under study, which are different for different items. In order to
formulate a more general expression for the expected total profit, which
can be applied to various growing items, it is assumed that the amount
of feed stock consumed by the items is dependent on the weight of the
items (i.e. as the items get older, they consume more feed stock). By so
doing, the feeding cost per cycle can be determined using a method
similar to the one applied when computing the holding cost. This im-
plies that the feeding cost per cycle can be computed as the product of
the feeding cost per weight unit (c), the number of items to be fed (i.e.
the lot size, y) with the area under the growth/feeding period in the
graph depicting the inventory system behaviour. The growth function
of the items is required in order to compute the feeding cost. Three
different generalized growth functions are considered. The first growth
function is the logistic function. The logistic function is one of the most
widely used functions for modelling item growth [10]. This is a more
realistic representation of most growing items. The second growth
function considered is linear. It is convenient because it reduces the
computational complexity required to solve the model. In the third
growth function considered, herein referred to as the split linear func-
tion, the non-linear nature of item growth is approximated by splitting
it into a few linear regions having different linear growth rates.

4.2.1. Model I (Logistic growth function)
Typically, at the beginning of the growth period, the weight of the

items increases slowly and picks up gradually over time and when the
items approach maturity, the rate of weight gain experienced by the
items slows down. Finally, the weight of the items behaves asympto-
tically when they reach their mature weight. At this point, feeding the
items does not result in significant weight increases. This pattern of
growth, common in most growing items, can be represented by the
logistic function. Fig. 2 depicts the behaviour of the inventory system
for growing item when the items’ growth function is modelled by a
logistic function.

The logistic growth function relates the weight of items with time
and it makes use of three parameters. These parameters are denoted
by α, β and λwhich represent the asymptotic weight of the items, the
integration constant and the exponential growth rate respectively. The
growth function of the items is given by

=
+ −w α

βe1
.t λt (12)

It should be noted that for the logistic function, =f t w( )0 0, and
therefore, the weight of the newborn items (w0) is not explicitly written
in the model.

The items are slaughtered when their weight reaches the target
weightw1 following the growth period t1. By considering these, Eq. (12)
becomes

=
+ −w α

βe1
.λt1 1 (13)

From Eq. (13), the slaughter age (or duration of the growth period)
is determined as
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= −
⎡
⎣

− ⎤
⎦( )

t
λ

ln 1
.

β
α

w
1

1
1

(14)

The feeding cost per cycle is computed as the product of the feeding
cost per weight unit (c), the number of items to be fed (y) and the area
under the growth/feeding period as given in Fig. 2, thus

∫ ∫= =
+

= ⎡
⎣

+ + − + ⎤
⎦

−

−[ ( ) ]

FC c yw dt cy α
βe

dt

cy αt α
λ

βe β

1

ln 1 ln(1 ) .

t

t

t

λt

λt

0 0

1

1 1

1
(15)

4.2.2. Model II (Linear growth function)
Suppose that the growth function of the items is linear. In such a

case, each item's weight increases (i.e. grows) at a constant rate
of γweight units per unit time. Growth occurs for the duration t1 and
when the newborn items are received, they each weighw0. This means
that the growth function,wt, of the items is a linear function with
gradient γ and y-interceptw0. Thus,

= +w w γt.t 0 (16)

Fig. 3 illustrates the behaviour of the proposed inventory system.
The items are raised for period t1 after which they are slaughtered when
their weight reaches the target weight ofw1. At the time of slaughter,
Eq. (16) can be rewritten as

= +w w γt .1 0 1 (17)

From Eq. (17), it follows that the slaughter age is

= −t w w
γ

.1
1 0

(18)

Likewise, the feeding cost per cycle is

= ⎡
⎣

− ⎤
⎦

= ⎡
⎣⎢

− ⎤
⎦⎥

FC c t yw yw cy w w
γ

( )
2

( )
2

.1 1 0 1 0
2

(19)

4.2.3. Model III (Split linear growth function)
For the split linear function, the non-linear growth function of the

items is split into approximate linear parts, which are three in this case.
This model balances the reduced computational burden of the linear
approximation (Model II) and the realism of the logistic growth func-
tion (Model I). The growth of the items is divided into three regions as
shown in Fig. 4. The three regions represent phases of slow growth (at
the beginning of a growing cycle), fast growth (in the intermediate
period) and slow growth (as the item mature). Depending on the target
weight of slaughter, the items might undergo all three growth phases,
or a subset thereof. Each of the regions has an associated supremum on
the weight of items and the corresponding duration of the growth
period. The supremum for the target slaughter weight and the corre-
sponding time for the first region (i.e. initial slow growth) are shown
as ′w1 and ′t1 in Fig. 4 and those in the intermediate region are re-
presented by ″w1 and ″t1 . Each of the three linearly approximated re-
gions has an associated growth rate or gradient, given by δ1, δ2 and δ3.
There are three cases involved, depending on where the target weight
falls.

Case 1: If the target slaughter weight of the items lies in the initial
slow growth region, then the slaughter weight is given by

= +w w δ t1 0 1 1. (20)

It follows that the slaughter age (or duration of the growth period) is

= −t w w
δ

.1
1 0

1 (21)

Therefore, the feeding cost per cycle is

Fig. 2. Inventory system behaviour with a logistic growth function.

Fig. 3. Inventory system behaviour with a linear growth function.
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= ⎡
⎣⎢

− ⎤
⎦⎥

FC cy w w
δ

( )
2

.1 0
2

1 (22)

Case 2: If the target slaughter weight of the items lies in the inter-
mediate fast growth region, the slaughter weight is given by

= ′ + − ′w w δ t t( ).1 1 2 1 1 (23)

Likewise, the slaughter weight in this case is

⎜ ⎟= ′ + ⎛
⎝

− ′⎞
⎠

t t
w w

δ
.1 1

1 1

2 (24)

The feeding cost per cycle becomes

= ⎡
⎣⎢

′ −
+

− ′
+

− ′ ′ − ⎤
⎦⎥

FC cy
w w

δ
w w

δ
w w w w

δ
( )

2
( )

2
( )( )

.1 0
2

1

1 1
2

2

1 1 1 0

2 (25)

Case 3: If the target slaughter weight of the items lies in the final
slow growth region, the slaughter weight, slaughter age and feeding
cost per cycle, are given, respectively, by

= + −″ ″w w δ t t( ),1 1 3 1 1 (26)

⎜ ⎟= + ⎛

⎝

− ⎞

⎠

″
″

t t
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2
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1
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2
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2

3

1 1 1 0

3 (28)

Henceforth, the results of the logistic growth function are used to
formulate the expected total profit function. The results from the other
two models will be utilised in the numerical example section, so as to
compare the effectiveness of the different models. The results presented
from this point can be replicated for the other two models by changing
the slaughter age and the feeding cost per cycle since those are the only
factors affected by assuming different growth functions.

4.3. Model with logistic growth function

4.3.1. Expected total profit function
The expected revenue, purchasing cost, setup cost, screening cost

and holding cost per cycle remain the same as those in Eqs. (5), (6), (7),
(9) and (10) respectively. The feeding cost in adapted from (15). The
expected total profit per cycle is thus given by

= − + − −

− ⎡
⎣

+ + − + ⎤
⎦

−

− ⎡
⎣⎢

−
+ ⎤

⎦⎥

−[ ( ) ]
E TP syw E x vyw E x pyw K

αt α
λ

βe β zyw

h
y w E x

D
y w E x

r

[ ] (1 [ ]) [ ]

ln 1 ln(1 )

(1 [ ])
2

[ ]
.

λt

1 1 0

1 1

2
1
2 2 2

1
2

1

(29)

To further simplify Eq. (29), an expression for y is determined from
Eq. (3) as

=
−

y DE T
w E x

[ ]
(1 [ ])

.
1 (30)

Eq. (30) is substituted into Eq. (29) to yield an expression for the
expected total profit per cycle, E[TP], in terms of E[T]. The expected
total profit per unit time, E[TPU], is computed by dividing the new E
[TP] function by the expected cycle time as follows

=

= + − − −

− ⎡⎣ + + − + ⎤⎦

− ⎡
⎣
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− − −

−
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−

E TPU
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w E x

K
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cDα
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DE T D E T E x
r E x

[ ]
[ ]
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(1 [ ]) (1 [ ]) [ ] (1 [ ])

(1 [ ]) 1
1

[ ]
2

[ ] [ ]
(1 [ ])

0
1

1
1

2

2 (31)

4.3.2. Model constraints
Two governing constraints are necessary to ensure feasibility of the

proposed inventory system. The first constraint is to ensure that the
items are ready for consumption at the required time, while the second
ensures that shortages are avoided during the screening period.
Constraint 1. In order to ensure that the slaughtered items are ready
for consumption during the consumption period, the sum of the setup
time (ts) and the duration of the growth period (t1) should be less than
or equal to the expected consumption period. This restriction by the
expected value of the consumption period, E[T], is formulated as

+ ≤t t E T[ ].s1 (32)

By substituting t1 from Eq. (14), Eq. (32), becomes

≥
⎧

⎨
⎪

⎩⎪
−

⎡
⎣

− ⎤
⎦ + =

⎫

⎬
⎪

⎭⎪

( )
E T

λ
t T[ ]

ln 1
.

β
α

w
s min

1
1

(33)

Constraint 2. DefineN(yw1, E(x)) as the weight of good quality
slaughtered items minus the weight of poorer quality slaughtered
items per cycle. This can be represented, mathematically, as

= − = −N yw E x yw E x yw E x yw( , ( )) ( ) (1 ( )) .1 1 1 1 (34)

One of the assumptions made is that shortages are not allowed. In

Fig. 4. Inventory system behaviour with a split linear growth function.
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order to avoid shortages, the number of good quality items must be at
least equal to the demand during the screening time t2. It follows that

≥N yw E x Dt( , ( )) .1 2 (35)

Substituting Eq. (34) and the value of t2 into Eq. (35), a restriction
on E(x) is formulated as follows

≤ − ={ }E x D
r

x( ) 1 .res (36)

4.3.3. Mathematical formulation of the EOQ model for growing items with
imperfect quality

Using the objective function in Eq. (31) and the constraints, the
mathematical formulation for the proposed inventory system is given
by

= + − − −

− + + − +
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4.4. Solution

4.4.1. Determination of the decision variables
The optimal solution to the proposed inventory system is de-

termined by finding the value of E[T] which maximizes E[TPU] as

= − ⎡
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By substituting Eq. (30) into Eq. (38), the order quantity which
maximizes the expected value of the total profit per unit time is given
by

=
⎡⎣ − + ⎤⎦

y KD

hw E x

2

(1 [ ])
.

DE x
r1

2 2 2 [ ]
(39)

4.4.2. Proof of concavity of the objective function
In order to show that there exists a unique solution for Eq. (31) and

that the value at the point actually maximizes the objective function, it
suffices to calculate the grad of the function to identify the optimum
point, and to show that the Hessian is negative (semi) definite. Eq. (40)
shows the optimum point from the grad function.
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The Hessian matrix of the objective function, given by
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is shown to be negative semi-definite in Eq. (42) since all parameters
are non-nagative.
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The quadratic form of the objective function is determined from the
Hessian matrix as
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From Eq. (43), the quadratic form of the objective function is shown
to be negative which implies that the objective function is concave once
it exists.

4.4.3. Computational algorithm
The following optimization algorithm is proposed for determining

the solution to the EOQ model for growing items with imperfect quality:
Step 1: Compute t1 and Tmin using Eqs. (14) and (33) respectively.
Step 2: Check the problem's feasibility with respect to the first

constraint. The problem is feasible provided that Tmin≥ 0. If it is fea-
sible proceed to Step 3, otherwise proceed to Step 8.

Step 3: Compute xres using Eq. (36).
Step 4: If E(x)≤ xres, then problem is feasible and proceed to Step 5.

Otherwise the problem is infeasible and proceed to Step 8.
Step 5: Compute E[T] using Eq. (38).
Step 6: =T E T* [ ] provided that E[T]≥ Tmin, otherwise =T T* min.
Step 7: Compute y* and E[TPU*] using Eqs. (39) and (31) respec-

tively considering the T* value.
Step 8: End.

5. Numerical results

5.1. Numerical example

The proposed inventory system is applied to a numerical example,
which considers a company that purchases day-old chicks, feeds/grows
them until they reach a targeted weight and then puts them on sale after
screening for quality. All three growth functions (i.e. non-linear logistic,
linear and split linear functions) are considered and the results are
compared. The following parameters, which apply to all three models,
are utilized to analyze the proposed inventory system:

= = =

= = =

= = =

= =

D K h

c w t

p s v

z r

1 000 000 g/year; 1 000 ZAR/cycle; 0.04 ZAR/g/year;

0.2 ZAR/g/year; 1 500 g;

0.01 year; 0.025 ZAR/g; 0.05 ZAR/g; 0.02 ZAR/g;

0.00025 ZAR/g; 10 g/minute.

s1

It is assumed that the inventory operation runs 24 h/day for 365
days, then the annual screening rate, r=10 g/min.× 1 440 min./
day× 365 days/year= 5 256 000 g/year. It is also assumed that the
fraction of poorer quality chicken, E(x), is a uniformly distributed
random variable with a probability density function given by

= ⎧
⎨⎩

≤ ≤
g x

x
otherwise( )

25, 0 0.04
0, .

From the probability density function g(x), it follows that:

∫= = ⎡
⎣⎢

− ⎤
⎦⎥

=E x x dx[ ] 25 25 0.04 0
2

0.02
0

0.04 2 2

∫− = − = ⎡
⎣⎢

− − − ⎤
⎦⎥

=E x x dx(1 [ ]) 25(1 ) 25 (0.04 0) (0.04 0 )
2

0.98
0

0.04 2 2

The following parameters apply to Model I (i.e. Logistic growth
function):

= = =α β λ6 870 g; 120; 40/year(0.11/day).

The following parameters apply to Model II (i.e. Linear growth
function):
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= =w γ57 g; 15 330 g/year (42 g/day).0

The following parameters apply to Model III (i.e. Split linear growth
function):

= = ′ =

′ = =

= =

=

″ ″

w g δ w

t δ

w t δ

57 ; 10 220 g/year (28 g/day); 550 g;

0.0521year(19 days); 27 375 g/year(

75 g/day); 5 350 g; 0.2274 year (83 days);

10 220 g/year (28 g/day).

0 1 1

1 2

1 1 3

The proposed solution procedure (for the Logistic function model) is
illustrated by applying it to the numerical example. Similar procedures
are followed for the other two models. The procedure is outlined as
follows:

Step 1: Compute t1 and Tmin (in years) using Eqs. (14) and (33) re-
spectively.

= −
⎡⎣

− ⎤⎦ =
( )

t
ln 1

40
0.08781

1
120

6870
1500

= + = + =T t t 0.0878 0.01 0.0978min s1

Step 2: The problem is feasible since Tmin≥ 0, proceed to Step 3.
Step 3: Compute xres using Eq. (36).

= − =x 1 ,1, 0, 00, 000,
52, 560, 00

0.8097res

Step 4: The problem is feasible since E(x)≤ xres, proceed to Step 5.
Step 5: Compute E[T] using Eq. (38).

= × ×

⎡⎣ + ⎤⎦

=
× ×

×

E T[ ] 2 100 1, 000, 000

(0.04x1, 000, 000 ) 1
0.2227

2 , 2 , 1, 000, 00, 0 , 0 . , 98
, 525, 600, 0 , 0 . , 96

Step 6: E[T]≥ Tmin, = =T E T* [ ] 0.2227.
Step 7: Compute y* and E[TPU*].

= × ×

⎡⎣ + ⎤⎦

=
× ×

y* 2 100 1, 000, 000

(0.04x1500 ) 0.96
151.5034

2 2 , 1, 00, 0, 0, 00 , 0, . 98,
52, 560, 00

=E TPU[ ] 34, 641.73

Step 8: End.
The other two growth functions are also considered and the results

are compared with the results from the logistic growth function. Fig. 5
depicts the growth of the items using the different growth functions. It
shows how the weight of each item changes with time under different
growth functions until the item reaches the target weight, at which
point it is slaughtered.

A summary of the results from the numerical example is given in
Table 3. From the results of the numerical example, when utilising the

logistic growth function the company should order 152 newborn items
at the beginning of each cycle. The newborn items should be grown for
a period of 0.0878 years (32 days) and the consumption period lasts for
a period of 0.2227 years (81 days). An order should be placed every
0.2227 years (81 days) and the company should expect to make an
annual profit of 34 641.73 ZAR. Screening for quality should start im-
mediately as consumption begins and it should happen for a period of
0.0432 years (16 days), after which the imperfect quality items should
be sold as a single batch.

When comparing the three solutions computed with the different
growth functions, the EOQ's, cycle times and screening times are the
same regardless of the type of growth function assumed. However, the
different growth functions result in different slaughter ages and ex-
pected total profits. The deviation between the results from the linear
and logistic growth models are more significant than those between the
split linear and logistic growth models. For example, the slaughter age
for both the logistic growth model and the split linear model is 32 days
while the linear model has a slaughter age of 34 days. The annual ex-
pected profit for the linear model is 30 964.01 ZAR while it is 33 746.67
ZAR for the split-linear model. The latter result deviates less from the
logistic growth model which has a yearly profit of 34 641.73 ZAR.

5.2. The effect of poorer quality on the lot size

The effect of poor quality on the order quantity is investigated by
varying the expected fraction of poorer quality items and the results are
illustrated through Fig. 6. In order to test the effect of imperfect quality,
the order quantity when all the items are of good quality is first de-
termined. This serves as a base for comparison. Following this, the
fraction of poorer quality items was increased gradually and the new
order quantities required to satisfy the demand for good quality items
were recorded at various fractions of poor quality items. When all the
items are of good quality, no additional items are required in order to
meet the annual demand for good quality items. As the fraction of
poorer quality items increases, additional items need to be ordered.

Fig. 5. Logistic, linear and split linear growth functions for the items considered
in the numerical example.

Table 3
Summary of the results from the numerical example.

Variable Units Quantity
Logistic growth
function

Linear growth
function

Split linear growth
function

t1 year 0.0878 0.0941 0.0868
t2 year 0.0432 0.0432 0.0432
T* year 0.2227 0.2227 0.2227
y* items 152 152 152
E[TPU*] ZAR/year 34 641.73 30 964.01 33 746.67

Fig. 6. The impact of the presence of poorer quality items on the order quan-
tity.
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This highlights the potential repercussions of the presence of poorer
quality items because the need to order additional items means more
inventory related costs.

5.3. Sensitivity analysis

Sensitivity analysis is conducted on selected parameters in order to
investigate the effects that changes in those parameters have on the
expected total profit per unit time and the EOQ. Not all input para-
meters were investigated because the proposed inventory has numerous
input parameters. The sensitivity analysis was only conducted on seven
input parameters, the feeding cost, setup cost, holding cost, fraction of
poor quality items, demand, growth rate and the slaughter weight of the
items.

The following observations are made based on Fig. 7, which shows
the results of the sensitivity analysis of the EOQ:

• The EOQ is most sensitive to the slaughter weight. As the slaughter
weight increases, the EOQ decreases. This is because if the items are
slaughtered at larger weights, the company would need to order
fewer newborn items to meet the same demand rate. The reverse is
also true, a 50% decrease in the target weight doubles the EOQ
while a 50% increase in target weight only leads to 25% decrease in
EOQ

• The effect of the fraction of imperfect quality items on the EOQ is
minimal. Large increases in the poor quality fraction resulted in
small increases to the EOQ. This can be attributed to the relatively
small poor quality fraction in the base case used in the numerical
example. If the poor quality fraction in the base case was not very
small, the effects on the EOQ would be greater.

• The setup cost, demand rate and holding costs have notable effects
on the EOQ. A 50% increase in the setup and holding cost results in
an increase of 22% and a decrease of 18% respectively.

Based on the results of the sensitivity analysis of the expected total
profit, illustrated in Fig. 8, the following observations are made:

• The expected total profit per unit time is negatively affected by all
the parameters except the demand and the growth rates.

• The demand rate has the biggest impact on the expected total profit
per unit time. A 50% increase in demand results in a 57% increase in
the profit.

• Decreases in the growth rate have bigger effects than similar in-
creases. A 50% increase in the growth rate increases the expected
profit by 5% whereas a decrease of 50% results in a 16% decrease in
the expected profit.

• Changes in the setup and the holding costs have the second biggest
impact on the expected total profit but their impact is not as dra-
matic as that caused by the demand rate and their effect is reversed.
A 50% decrease in both parameters leads to a 6% increase in profit.

6. Conclusion

The major contribution made by the research presented in this
paper is the incorporation of imperfect quality into the EOQ model for
growing items. The presence of imperfect quality items has a significant
impact on the order quantity. This finding should motivate production
and operations managers to pay attention to quality checks and ensure
that the percentage of imperfect quality items is kept to a minimum.

Another significant aspect of the work presented in this research
article is the consideration of three different growth functions (i.e. lo-
gistic, linear and split linear functions) and the comparison of results
obtained when using the different growth functions. The margin of
error between the results of the split linear function and the logistic
growth function were found to be smaller than between the logistic and
linear functions.

The model presented in this paper can be extended by incorporating
some of the popular extensions to the classic EOQ model, such as sto-
chastic demand, inflation, trade credit financing, backordering of
shortages, deterioration and quantity discounts, among others.
Furthermore, the proposed inventory system assumed that the
screening process is 100% effective at separating good and poorer
quality items. This, along with the inclusion of learning effects in the
screening process, represent other potential areas for further develop-
ment of the model.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.orp.2018.11.004.
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