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A B S T R A C T

Several decision making problems with multiple decision makers in a hierarchical decision making scenario can
be best described using multilevel optimization problem. Different organizational structure adapt a hierarchical
decision making system where each decision maker controls parts of the decision variables and is affected by the
decision of other decision makers. Recently, inspired by natural adaptation, a metaheuristic based algorithm is
proposed for these problems. The algorithm works by using an initial solution generated by solving the leader’s
problem, where the leader is the decision maker in the upper level. That solution will go through each level by
adjusting and evolving its components. Even though the approach is tested to be promising, the final solution can
be very different from the initial one given by the leader. Furthermore, no cooperation mechanism between the
decision makers is given. In addition, the decision makers may have multiple and conflicting objectives. In this
paper a cooperation mechanism where fuzzy membership function is used to link the cooperation between the
decision makers is used. That means once the solution received by the lower level decision makers, a cooperative
feasible region will be determined which is a subset of the relaxed feasible region. To deal with the multi-
objective optimization problem, preference free method called ideal point method will be used. Bi-level nu-
merical examples are also given to demonstrate how the algorithm works.

1. Introduction

Several organizational structures and applications involves a hier-
archical decision making scenario where multiple decision makers try
to optimize their own objectives by controlling part of the decision
variables. These problems can be formulated as nested optimization
problems where part of the constraint set is determined by the solution
of other optimization problems. Hence, the decision makers can be
arranged in a hierarchical structure with their own, usually conflicting,
objectives. That is, a decision maker at one level of the hierarchy may
have its own objective function determined partly by variables con-
trolled by decision makers in the other levels. Such type of decision
making problems are often modelled as Stackelberg games, with some
finite number of hierarchical levels. These types of problems are usually
referred to as multilevel programming problems [4] and have got the
attention of researchers in the last four decades.

Due to the hierarchical nature of the problems, the decision taken at
higher levels in the system will affect the choice of the followers in their
objectives and constraints by the values that come from the top level.
The constraints at upper levels will also have impact on the choice of
values for lower level players. Moreover, the payoffs of the upper level
players at their respective objective values and their constraints are also

affected by the choice made at lower levels. Hence, the leader first fixes
his/her set of variables, and the next level fixes his/her ones and pro-
ceeding this way, eventually the lowest level (the last follower) opti-
mizes his/her objective with the variables from the higher levels are
considered to be constants. Since the response of the lower level opti-
mizer may not fit to the best objective values of the higher levels, they
optimize their own objectives knowing that lower level will optimize
later. Therefore, the higher levels might incorporate these anticipated
rational reactions or responses from the lower levels while fixing their
variables. Here, the lower levels are not directly dictated by the higher
levels but are influenced by the set of variables fixed at higher level
decision makers.

Several researches on Multilevel programming problems (MLPP)
have been conducted over the decades, the vast majority of which
concentrate on Bilevel (two level) programming problems. Many al-
gorithms are also proposed to solve variety of MLPP. Vertex enumera-
tion Methods including the Kth-best algorithm and the grid search al-
gorithm is one of the methods proposed [6,7,10,35]. By transforming
the lower level problems using methods like KKT condition and penalty
function, solution approaches are proposed [2,5,17,31,32]. Using these
approaches some descent algorithms have also been proposed
[14,18,29]. Multi-parametric Programming Methods which make use of
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the parametric nature of the upper level variables when one solves the
lower level problem is also another approach proposed and used
[12,13,23]. Fuzzy Methods, which apply the fuzzy goal programming
approach to solve linear MLPP is also proposed and used in [24,25].

MLPP is a very complex and difficult problem. It has been shown
that even for the case of what might be considered as the simplest
version of it, the linear bilevel programming problem, is strongly NP-
Hard [16,29]. Moreover, the complexity of the problem increases as
significantly as the number of levels gets larger [8]. Because of this,
getting exact solution is very hard even for two level problems cases.
There is a possibility that the processing times of many of these solution
approaches may exponentially increase at worst as the size of the
problem increases ([3], Chapter 5). Hence methods that can give ap-
proximate solutions with practically reasonable time are becoming
important. The development of metaheuristic algorithms aid these de-
velopment of new solution approaches [15,20,26,30]. Metaheuristic
algorithms have the advantage of not to be affected much by the be-
haviour of the problem. However, they don’t guarantee producing the
exact optimal solution but a sound approximation. The performance of
these algorithms depends on the parametric setting during im-
plementation [28]. More discussion can be obtained from the following
survey papers [19,35].

Most of the proposed algorithms and methods are sensitive to the
behaviour of the problem and hence, researchers are still looking for
out of the box solution approach of these problems. Furthermore,
generalizing and fine tuning existing algorithms to be suitable for real
problem solving as well as making them code-able is an important re-
search dimension in the field. In [26], an approach based on natural
adaptation and using evolutionary strategy is proposed. In the ap-
proach, the leader problem will be solved under the relaxed constraint
set where the solution then passed through each of the levels by
adapting relevant components of the solution in each level. Even
though the approach seems promising, the solution varies highly as no
additional controlling or cooperation mechanism is used. Hence, the
final solution at the end of the algorithm implementation may be very
different from the initial solution proposed by the leader [33]. In this
paper, a cooperative decision making approach will be used to over-
come this limitation. In the approach, the decision makers will co-
operate by considering the objective goal of the upper level leaders and
using fuzzy membership function to modify the relaxed constraint set.
In addition to that, since the decision makers may have multiple and
conflicting objectives a proper solution approach needs to be used.
Giving preference is not always easy for the decision maker and a
preference free approach based on the ideal point called ideal point
method will be used [11].

Hence, the main objectives of this paper are

• to improve the previously proposed algorithm so that a proper
guideline is put by each of the decision makers in the levels to force
decision makers in the other levels to consider their solution and
reduce the variation as much as possible by reducing the feasible
region.

• optimization with multiple objective is more common almost in all
real applications, hence, cases when the decision makers in each
levels with having multiple objectives with a case of unavailable
decision makers’s preference is discussed

The paper is organized as follows. In the next section basic concepts
on fuzzy theory, general formulation of multiobjective and multilevel
programming problem will be presented followed by a discussion on
the proposed cooperative hierarchical decision making approach in
Section 3. A numerical example will be sued to demonstrate the ap-
proach in Section 4 followed by a conclusion in Section 5.

2. Preliminaries

2.1. Fuzzy numbers

The concept of fuzzy numbers and fuzzy system was introduced in
mid-1960s [34]. It extends the number system by introducing what is
called a membership function. In the case of crisp number, a number is
equivalent to a single value, whereas a fuzzy number is an interval with
a membership function to measure the degree of membership of the
numbers in the interval. Many real scenarios can better be expressed
using fuzzy numbers. For example consider the word tall, represented
by a variable say x. Suppose a person with 2 m and more can be clas-
sified as tall. What about 1.99 m? 1.98 m? Hence, if fuzzy expression is
used, those with 2m and above are tall with membership function value
of 1 and the membership function decreases as we go down from 2 m
until a defined lower boundary, say 1.6 m. Hence, if we use a linear
decreasing function for the membership function, it can be expressed as
follows:

=
⎧
⎨
⎩

≥
− > >

≤
μ x

x
x x

x
( )

1, 2;
2.5 4, 2 1.6;
0, 1.6. (1)

The graph representation of the above membership function is given
in Fig. 1(a)

Different shapes of membership functions are used and discuss in
literature. Triangular and trapezoidal shaped membership functions are
the common membership functions used.

The −α cut of a fuzzy number with 0< α<1 is the member of the
interval with membership value of at least α, i.e. {x: μ(x)≥ α}, as de-
monstrated in Fig. 1(b). If the inequality is strict then it is called strong
alpha cut.

Fuzzy expressions are more realistic for different situations with
unclear boundaries. Some words can perturb the shape of the mem-
bership function. These words are called hedges [21,27]. For example
the words ‘very’ and ‘somewhat’ are hedges. The membership function
related to the hedge ‘very’ can be expressed by squaring the original
membership function and the hedge ‘somewhat’ will have the opposite
effect (by taking the radical of the original membership function).

2.2. Multiobjective optimization

2.2.1. Basics
A multiobjective optimization problem is an optimization problem

with multiple and usually conflicting objectives [11,22]. Consider an
optimization problem with k objectives given as in Eq. (2).

∈
minF x( )
x S (2)

where F: ℜn→ℜk for = ⋯F x f x f x f x( ) ( ( ), ( ), , ( ))k1 2 and S is the feasible
region.

Since the objective function space is partially ordered, it is not al-
ways possible to compare and order the outcome of two solutions.

Fig. 1. a. Membership function for the fuzzy expression ‘tall’ b. −α cut of a
fuzzy number ‘tall’.
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Hence, the optimality is defined based on dominance relation. A solu-
tion x1∈ S is said to dominate another solution x2∈ S, if and only if
fi(x1)≤ fi(x2) for all i and strict inequality for at least one i. A feasible
solution is called Pareto optimal solution if there is no other solution
which dominates it. Due to the conflict of objectives, there usually will
be multiple Pareto solutions. Choosing one solution from the Pareto
optimal solutions depends on the preference of the decision maker.

Different solution methods are proposed to deal with multiobjective
optimization problems. Basically, these solution methods can be clas-
sified into two broad categories, namely classical and heuristic-based
approaches. Classical solution approaches are methods which uses a
mathematical arguments to arrive to a single Pareto optimal solution.
Most of these methods deals with the conversion of the problem to a
single objective optimization problem or a series of single objective
optimization problems and use existing solution methods designed for
single objective optimization problems [11]. Classical solution methods
may involve decision maker’s preference, like weighting method, ϵ-
constraint method and lexicographic method; or may not involve de-
cision maker’s preference, like in Benson’s method and ideal point
method.

Heuristic-based methods are methods based on metaheuristic algo-
rithms like evolutionary algorithms and swarm intelligence. The
methods have the advantage of producing multiple near Pareto optimal
solution with appropriate implementation over classical methods.
These solutions can be preference guided based on the decision maker’s
preference or produced with the aim of archiving a good representative
number of solutions with a good distribution in the near Pareto front.
Even though these approaches are very promising by giving the deci-
sion maker multiple decision choices, they are sensitive to parameter
tuning.

2.2.2. Ideal point method
Definition 1. The ideal point of a multiobjective optimization problem
is the collection of best objective function values over the constraint set.
That is for a multiobjective optimization problem as given in Eq. (2), a
point = ⋯y y y y( , , , )I I I

k
I

1 2 is called an ideal point if each of the
components can be computed using Eq. (3).

=
∈

y minf x( )i
I

x S i (3)

Another point of interest in multiobjective optimization is the Nadir
point.

Definition 2. A Nadir point for a multiobjective optimization problem
given in Eq. (2), = ⋯y y y y( , , , ),N N N

n
N

1 2 is computed using

=
∈

y maxf x( )i
N

x P i (4)

where P is the set of all Pareto optimal solutions.

The ideal point method (ideal point approximation method) works
towards finding the nearest Pareto optimal solution to the ideal point.
This method is usable based on the distance function d(x, y) between
two points in the outcome space of the problem. Hence, the problem
will be converted to a single objective optimization problem as given in
Eq. (5).

∈
min d y F x( , ( ))
x S

I
(5)

One of the advantages of this method is it doesn’t need the decision
maker’s preference towards solving the problem rather it approximates
and finds the compromised solution nearest to the ideal point. Any LP
norm can be used for the distance function. Detailed discussion and
analysis on this method is given in [11]. L2 norm is used in this paper.

In implementing the ideal point method, it should be noted that, the
method is sensitive to the scaling of the objective functions. That is
some of the objectives can be very much larger than the others, for

example one of the objective can be 10,000s and the other in between 0
and 1. To deal with it a normalization of the objectives can be used. One
way to do so is to reformulate the multiobjective optimization problem
as follows:

⎜ ⎟= ⎛
⎝

⋯ ⎞
⎠∈

minF x
f x
Z

f x
Z

f x
Z

( )
( )

,
( )

, ,
( )

x S

k

k

1

1

2

2 (6)

where Zi solves

∈
max f x| ( )|

x S i (7)

2.3. Multilevel optimization

2.3.1. Basics
Multilevel optimization problems are a finite series of nested opti-

mization problems where one is set in the constraint set of another.
Different decision makers will deal with each of the optimization pro-
blems in each level. The decision space can be partitioned based on the
decision makers or levels, say ⊆X n (the Euclidean n-space) into r sub-
regions, where r indicates the number of levels in the hierarchy of the
MLPP, as × × ⋯× ⊆ × × ⋯×X X X ,r n n n1 2 r1 2   where

+ + ⋯+ =n n n nr1 2 . i.e. for any = … ∈x x x x( , , , ) ,n
n

1 2  the vector x is
partitioned as …x x x( , , , ),r1 2 with = … ∈x x x x( , , , )k k k

n
k n

1 2 k
k .

The decision maker in level one is called the leader and the others as
followers. We denote a vector ∈xi ni to represent a decision vector
controlled by decision maker at level i. At the kth level, if fk(x) represent
the objective function of the decision maker at the sub-level, for given
values of … −x x x, , , k1 2 1 the decision maker chooses values for the vector
xk in an attempt to optimize his/her objective function fk(x). Note here
that an optimal solution x̄k of the kth level problem is a function of the
vectors …+ +x x x, , ,k k r1 2 (which are considered as parameters) since the
remaining vectors, … −x x, , k1 1 are assumed to be already fixed at the
upper levels. Then a general r-level MLPP is mathematically formulated
as:

…

… ∈ …
…

… ∈ …
…

… ∈ …
⋱

…

… ∈

∈

∈

∈

∈

f x x x

x x S x x x
f x x x

x x S x x x
f x x x

x x S x x

f x x x

x x S

min ( , , , )

s.t. ( , , ) , where [ , , , ] solves
min ( , , , )

s.t. ( , , ) , where [ , , , ] solves
min ( , , , )

s.t. ( , , ) , where [ , , ] solves

min ( , , , )

s.t. ( , , ) ,

x X
r

r r

x X
r

r r

x X
r

r r

x X r
r

r r

1
1 2

1 1 2 3

2
1 2

1 2 3 4

3
1 2

1 3 4

1 2

1

r r

1 1

2 2

3 3

(8)

where ⊆X ,i ni ∑ == n ni
r

i1 . The set = ∩ ∩ ⋯∩S S S Sr1 2 is called the
relaxed constraint set that every decision maker should select its decision
variables from this set. We assume that S is non-empty and bounded.

To formulate a definition of optimality for MLPP, we need the fol-
lowing terms [33].

1. A constraint region of the MLPP is

= … ∈ × ⋯× … ∈ ∩ ∩ ⋯∩x x X X x x S S SΩ {( , , ) : ( , , ) }r r r r1 1 1 1 2

2. For each given vector … ∈ × ⋯× ≤ <x x X X k r( ¯ , , ¯ ) , 1 ,k k1 1 the fea-
sible region of the +k( 1) and lower levels is given by

… = … ∈ ×⋯×
… … ∈

+ +

+
x x x x X X

x x x x S
Ω( ¯ , , ¯ ) {( , , ) :

( ¯ , , ¯ , , , ) }

k k r k r

k k r

1 1 1

1 1

Then, clearly … ⊆ ∩ ⋯∩+x x S SΩ( ¯ , , ¯ )k k r1 1 .
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3. Projection of Ω onto the kth, 1≤ k< r, levels decision space is given
by

… = … ∃ … ∈ …
… ∈

+X X x x x x x x
x x

Ω( , , ) {( , , ): ( , , ) Ω( , , ),
with ( , , ) Ω}

k k k r k

r

1 1 1 1

1

4. For each … ∈ …x x X X( ¯ , , ¯ ) Ω( , , ),k k1 1 1≤ q< r, = −k r q, the rational
reaction set for the +k( 1) and lower order levels is given by

… = … …
∈ … …

… ∈ …

…

∈ …

+ +

+
+

+

+

+

M x x x x x x
f x x x x

x x x x

x x

M x x x

( ¯ , , ¯ ) {( ¯ , , ¯ ): ( ¯ , , ¯ )
argmin{ ( ¯ , , ¯ , , , ):

( , , ) Ω( ¯ , , ¯ ),

( , , )

( ¯ , , ¯ , )}}

k k r k r

k
k k r

k r k

k r

k k

1 1 1

1
1 1

1 1

2

1 1

5. The Induced Region ( )�� at level one is

= ⋯ ∈ ∈ ⋯ ∈x x S x X x x M x{( , , ) : , ( , , ) ( )}r r1 1 1 1 2 1��

Now using the definition of the induced region ,�� one can describe
the MLPP at the first level as

⋯
⋯ ∈

f x xmin ( , , )
x x

r
( , , ) 1

1
r1 �� (9)

We shall identify any optimal solution of problem (9) (if it exists) as an
optimal solution of problem (8).

Definition 3. A given point … ∈x x( ¯ , , ¯ ) Ωr1 is said to be an (ε, δ)-
approximate solution to the MLPP in (8), where δ, ε≥ 0, if

1. … ≤ … + + … ∀ … ∈f x x f x x ε f x x x x( ¯ , , ¯ ) (˜ , , ˜ ) (1 | ( ¯ , , ¯ )|) , ( ˜ , , ˜ )r r r r
1

1
1

1
1

1 1 ��

2. … ≤ … … + + … ∀

∈ … … ∈ …

−

−

f x x f x x x x δ f x x j

r x x M x x

( ¯ , , ¯ ) ( ¯ , , ¯ , , , ) (1 | ( ¯ , , ¯ )|) ,

{2, 3, , }, ( , , ) ( ¯ , , ¯ )

j
r

j
j j r

j
r

j r j

1 1 1 1

1 1

A point …x x( ¯ , , ¯ )r1 satisfying the second condition is called in a δ-
reaction to x̄1.

Definition 4. A point … ∈x x( ¯ , , ¯ ) Ωr1 is said to be first-rank better (or
simply better) than ⋯x x(˜ , , ˜ )r1 if either

1. … ∉x x(˜ , , ˜ ) Ω,r1 or
2. ∀(ε1, δ1) such that …x x(˜ , , ˜ )r1 is an (ε1, δ1)-approximate solution of

MLPP, ∃(ε, δ) such that ε≤ ε1, δ< δ1 or ε< ε1, δ≤ δ1 and
…x x( ¯ , , ¯ )r1 is an (ε, δ)-approximate solution of MLPP.

Definition 5. A point … ∈x x( ¯ , , ¯ ) Ωr1 is said to be second-rank better than
⋯x x(˜ , , ˜ )r1 if either

1. … ∉x x(˜ , , ˜ ) Ω,r1 or
2. ∀(ε1, δ1) such that …x x(˜ , , ˜ )r1 is an (ε1, δ1)-approximate solution of

MLPP, ∃(ε, δ) such that + < +ε δ ε δ1 1 and ⋯x x( ¯ , , ¯ )r1 is an (ε, δ)-
approximate solution of MLPP.

Hence we have the following theorem [33].

Theorem 1.

(a) Any solution of MLPP is first-rank better than a non-optimal point and
any point can never be second-rank better than a solution of MLPP.

(b) (Transitivity) If a point ⋯x x( ¯ , , ¯ )r1 is first-rank (or second-rank) better
than ⋯x x(˜ , , ˜ )r1 and …x x(˜ , , ˜ )r1 is first-rank (or second-rank) better than

…x x( ˇ , , ˇ ),r1 then ⋯x x( ¯ , , ¯ )r1 is first-rank (or second-rank) better than
…x x( ˇ , , ˇ )r1 .

(c) A first-rank better solution is second-rank better, but not the converse.

Based on the decision maker’s motive towards other decision

makers, a multilevel optimization problem can be categorized into
three categories.

• Category one: The first category is cooperative category. It is when
each decision maker in each level tries to optimize its objective
function and at the same time look at the suggestion of the other
level objectives positively. Hence, if there are two optimum solu-
tions it will take the one which is favorable for the other decision
makers as well.

• Category two: The second category is non-cooperative category. It is
when each decision maker in each level tries to optimize its objec-
tive function and at the same time look at the suggestion of the other
level objectives negatively. Hence, if there are two optimum solu-
tions it will take the one which is not favorable for the other deci-
sion makers.

• Category three: The third category is when the problem is neither
cooperative nor non-cooperative. That includes partial cooperative
or partial non cooperative problems. That is if a decision maker is
cooperative for some of the decision makers and non-cooperative for
the others.

2.3.2. Adaptation inspired algorithm for multilevel programming
Inspired by natural adaptation a solution procedure using a meta-

heuristic algorithm is proposed [26]. The solution methods works based
on an initial solution found by optimizing the leader’s problem under
the constraint set. That solution will go through each level by evolving
and adapting its components relevant to each level’s decision variable.
It is inspired by natural adaptation of animals, that is when animals
passes through or experience different environments it will update to
the new environment to get along. In the natural adaptation inspired
algorithm, a solution will be proposed by the leader, and each of the
decision makers will update that solution while it goes from higher
level to the last level to come back to the leader. In each level, the
decision maker in the level will update the relevant variable (to that
level) based on its own objective function only.

Hence, first the leader problem under the relaxed constraint set for
all the variables will be solved, which is given in Eq. (10), using evo-
lutionary strategy.

∈

f x

s t x S

min ( )

. .
x x x( , ,..., ) 1r1 2

(10)

Suppose the solution, for Eq. (10), found is (x1(0), x2(0), ..., xr(0)).
Then =−x x x x x x x( , , ..., , ) ( , , ..., ),r r r1(1) 2(0) 1(0) (0) 1(0) 2(0) (0) The next step
will be this solution will go down in each level by updating components
of this solution. That is for =i r2, 3, ..., , we will have to use evolu-
tionary strategy to solve Eq. (11)

∈

− +f x x x x x x

s t x S

min ( , , ..., , , , ..., )

. .
x

i
i i i r1(1) 2(1) 1(1) 1(0) (0)

i

(11)

to update the solution to − +x x x x x x( , , ..., , , , ..., )i i i r1(1) 2(1) 1(1) (1) 1(0) (0) . After
going all the levels down a solution from the first iteration which is
given by (x1(1), x2(1), ..., xr(1)) will be generated. This solution will be
passed to the leader. The leader will then take this updated solution and
solve Eq. (12) and generate (x1(2), x2(1), ..., xr(1))

∈

f x x x

s t x S

min ( , , ..., )

. .
x

r
1 1

2(1) (1)
1

(12)

This iteration will continue until a termination criterion is met.
Suppose if maximum number of iteration is the termination criterion
with the number of iterations being set to be T, then the final solution to
be solved will be Eq. (13).

∈

−f x x x x

s t x S

min ( , , ..., , )

. .
x r

T T r T
r

1( ) 2( ) 1( )
r

(13)
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The final solution which is (x1(T), x2(T), ..., xr(T)) will be taken as the
outcome of the algorithm.

As mentioned in [26], the approach is not cooperative. Hence, the
final solution can be very far from the initial solution proposed by the
leader. In addition, it is also vulnerable for the cyclic oscillation be-
tween same solutions without converging. However, this can be im-
proved by adding the cooperations parameter in between the decision
maker. A fuzzy membership function will be used, in the next section, to
extend and overcome the limitations of the approach.

3. Cooperative hierarchical decision making

We consider the cooperative multilevel optimization. Each decision
maker will deal with multiobjective optimization, as given in Eq. (14).

…

… ∈ …

…

… ∈ …
…

… ∈ …
⋱

…

… ∈

∈

∈

∈

∈

F x x x

x x S x x x

F x x x

x x S x x x
F x x x

x x S x x

F x x x

x x S

min ( , , , )

s.t. ( , , ) , where [ , , , ] solves

min ( , , , )

s.t. ( , , ) , where [ , , , ] solves
min ( , , , )

s.t. ( , , ) , where [ , , ] solves

min ( , , , )

s.t. ( , , ) ,

x X
r

r r

x X
r

r r

x X
r

r r

x X
r

r

r r

1
1 2

1 1 2 3

2
1 2

1 2 3 4

3
1 2

1 3 4

1 2

1

r r

1 1

2 2

3 3

(14)

where →F :i n kiR R given by = ⋯F x f x f x f x( ) ( ( ), ( ), , ( ))i i i k,1 ,2 , i .
The adaptation inspired algorithm will be used however the in

solving each of the algorithms in different levels the solution found by
the other solution will be considered and a fuzzy membership function
is suitable to put these in the objective functions. The main steps of the
proposed approach is summarized as follows:

1. Step 1
Solve of the components of the leader’s problem under the relaxed
constraint set, S, as given in Eq. (15)

=

∈

f f x

s t x S

min ( )

. .
i

I
x i1, 1,

(15)

After computing the ideal point = ⋯( )y f f f, , , ,I I I
k

I
1 1,1 1,2 1, 1

compute the
solution = ⋯x x x x* ( *, *, , *)k1 2 by solving the problem in Eq. (16).

∈

min d y F x

s t x S

( , ( ))

. .
x

I
1 1

(16)

Set = ⋂ ≥S S x μ x α¯ ¯ { : ( ) }1 1 where μ1(x) is given by:

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

≤

≥

−

−

−

−

−

−

μ x

d F x y

d y y( )

1, ( ( *), );

0, ( , );

, otherwise.

d F x y d y y

d F x y d y y
I

d F x y d y y

d F x y d y y
N I

d F x y d y y

d F x y d y y

1

( ( ), ) ( , )

( ( *), ) ( , ) 1 1

( ( ), ) ( , )

( ( *), ) ( , ) 1 1

( ( ), ) ( , )

( ( *), ) ( , )

I N I

I N I

I N I

I N I

I N I

I N I

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(17)

where y N
1 is the Nadir point and y I

1 the ideal point.
Note that, rather than using the Nadir point a decision maker can
give a tolerance compromise from his/her ideal point. In that case it
will reduce the computational cost of computing the Nadir point.

2. Step 2
For each i from 2 to r by fixing the value of x′s by x* except xi,

minimize

∈

min f x

s t x S

( * )

. .
x

i j
i

,
/

i

(18)

for = ⋯j k1, 2, , i and where = ⋯ ⋯x x x x x* ( *, *, , , , *)i i r/ 1 2 .
Based on the result update yi

I . Once the ideal point yi
I and the

corresponding Nadir point yi
N (or a tolerance level) are computed,

solve Eq. (19).

∈

min d y F x

s t x S

( , ( * ))

. .
x

i
I

i
i/

i

(19)

Update the component of x* using the result. Set
= ⋂ ≥S S x μ x α{ : ( ) }i

i
i (use a similar formula for level i as given in

Eq. (17) for level 1).
3. Step 3

With fixed value for xi’s with x* for all ∈ ⋯i n{2, 3, , }, solve the
leader problem for a new y I

1 .

∈

min f x

s t x S

( * )

. .
x

j1,
/1

1

(20)

for = ⋯j k1, 2, , 1
After updating the ideal point for the leader solve:

∈

min d y F x

s t x S

( , ( * ))

. .
x

I
1 1

/1
1

(21)

Update x* based on the result and update the relaxed constraint set.
4. Step 4

If termination criterion is met terminate else go back to step 2.
The termination criteria can be satisfaction of the decision makers
with the result, maximum number of iteration, no improvement is
archived (including cyclic rotation of solutions) and if S̄ become
empty.

4. Numerical example

To demonstrate the proposed approach the following examples are
used

1. The first example: The first example is taken from [1]. It is a bilevel
multiobjective optimization problem of the form:

∈

∈

∈

F

x
F

x S

min

where solves
min

s.t.

x

x

1

2

2

1

2

R

R

where = + −
− +

− −
+F ( , ),x x

x x
x x

x1
1

2 1
2 2

4
1 2

1 2
1 2

2
= −− +

− +
−
+F x x( , , )x

x
x
x2

4
3

4
1 1 2

1
2

1
2

and

= ∈ − + ≤ − ≤ ≥ ≥S x x x x x x x x{( , ) : 4 0, 4, 0, 0}1 2
2

1 2 1
1
2 2 1 2R .The

feasible region S is given in Fig. 2(a). According to the first step of
the solution procedure the ideal point for the leader’s problem is (-1,
-1.6111). Hence, the leader will search for a solution which is near
to the found ideal point, by minimizing the following equation:

∥ − ∥ = ∥ − − + −
− +

− − − −
+

∥

∈

min y F x x x
x x

x x
x

s t x S

( ) 1 1
2 1

, 1.6111 2 2
4

. .
x

I
1 1

1 2

1 2

1 2

2

(22)

The solution, x*, is (3.6393, 0) with objective function value of
1.5957. The leader then pass this solution to the follower. The fol-
lower fix the first component and determine ideal value for the
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value it controls. The Nadir point is taken to be (0, 0). The fuzzy
membership with value at least 0.5, =α 0.5,1 results 0.2836≤ x2.
Hence = ⋂ ∈ ≤S S x x x: {( , ) : 0.2836 },1 2

2
2R as shown in Fig. 2(b).By

fixing x *,1 the ideal point, y ,I
2 for the follower will be (0.1328,

-0.2810, 2.7295). Then the follower optimizes the following pro-
blem:

∥ − ∥ = ∥ −
− +

−
+

− ∥
∈

min y F x x x
x

x
x

x

s t x S

( *, ) 0.0377 0.1328
3

, 5.992 1.6471
1

,

0.2837
. . (3.6393, )

x
I

2 2 1 2
2

2

2

2
2

2

2

(23)

The optimum value is found at 0.8975. Hence, x* become (3.6389,
0.8975). With =α 0.52 and by contracting the membership function
restriction the new feasible region will be

= ⋂ ∈ ≤ ≤S S x x x: {( , ) : 3.5900 4.4488},1 2
2

1R as given in Fig. 2(c).By
fixing x *,2 the ideal solution for the leader will be (1.1895,−1.5916)
and the nearest point which will minimize the distance of the values
in the solution space from the ideal solution is found at =x * 4.44881
with objective function value of 2.4351, i.e =x* (4.4488, 0.8975). In
computing the feasible region using the appropriate fuzzy mem-
bership function it becomes empty set, i.e. = ∅S .Hence, the final
resulting solution is =x* (4.4488, 0.8975).

2. The second example:
The second example is taken from [9]. The is given by:

= + +

= − − +

∈

∈

∈

F x x x

x x
F F x x x x

x S

min 2

where( , ) solves
min [ , 3] [ 2 , ]

s.t.

x

x x

1 1 2 3

2 3

( , )
2 2 3 2 3

1

2 3 2

R

R

where
= ∈ + ≥ + ≤ + + ≤

≥ ≥ ≥

S x x x x x x x x x x x

x x

{( , , ) : 1, 3, 2 5,

0, 0, 0}
1 2 3

3
1 2 1 2 1 2 3 1

2 3

R .

The ideal point which is also the optimal objective function for the
leader under the feasible region S is 1 at =x (1, 0, 0). The maximum
possible objective function value in the feasible region is 7, hence let

=y 7N . (Fig. 3)
By applying the feasibility reduction with μ≥ 0.5 gives the fol-
lowing (at =x 11 ):

+ ≤x x2 32 3 (24)

Solving the follower’s bi-objective problem with the feasible region
being = ∩ ∈ + ≤S S x x x x x{( , , ) : 2 3}1 2 3

3
2 3R gives the ideal point to

be = − −y ( 3, 2)I with =y (2, 1.5)N . By applying the ideal point
method and solving Eq. (25), the solution becomes

=x (1, 0.52, 1.24) with objective function values −( 1.96, 0.72).

= − − +
+ ≤ ≤ ≤ ≥

F x x x x
s t x x x x
min [ 2 , ]
. . 2 30 2 0

2 2 3 2 3

2 3 2 3 (25)

By applying the feasibility reduction with μ≥ 0.8, the feasible re-
gion becomes = ∩ ∈ − + +S S x x x x x{( , , ) : ( 2 3)1 2 3

3
2 3

2R

− + ≤x x( 2) 12.7108}3 2
2

Solving the leader’s problem again gives = =y y* 2.76I
1 at

=x (0.48, 0.52, 1.24) and set =y 4.5N
1 .

The reduce membership function is given by
= ∩ ≤S S x x x x{( , , ): 0.8280},1 2 3 1 which gives an empty set. Hence

the termination of the algorithm.

The final results of the examples and the results reported in the
literature is presented in Table 1

As can be seen from the table the solution found is not dominated by
any of the reported solutions in the literature. The result dominates the
leader’s objective function in the second example but in the follower’s it
either dominated nor dominate the solutions.

Fig. 2. Diminishing of the feasible region with the iterations of the algorithm.
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5. Discussion

Hierarchical decision making, possible with multiple objective
function for the decision makers, is common in different application
especially in organizational structures where there are multiple deci-
sion makers with their own objective sharing the same resource. The
decision maker may be competing cooperatively, non-cooperatively or
neither. In this paper, a cooperative scenario discussed, where adap-
tation inspired algorithm is modified to suit the multiobjective case, by
using ideal point methods, and by incorporating cooperativeness, using
fuzzy membership function. According to the proposed approach, the
leader will propose an initial solution based on the ideal point of his/
her problem. The solution will evolve by going through each lower

levels. The decision maker in a lower level takes the proposed solution
and also considers the gain of the upper level decision makers. Hence,
the feasible region will keep on diminishing based on these additional
criteria.

A numerical example, taken from a literature, is given to demon-
strate the idea. Several future works can be proposed. One possible
future work is to consider cases where the cooperation is partial. That is
when some of the decision makers are cooperative and some others are
not. In addition, if a decision maker is cooperative to some of the de-
cision makers and not cooperative some other can also be studied fur-
ther. A comparative study with other algorithms using a number of
benchmark problems needs also to be explored.

One of the possible future work is to test the proposed approach on

Fig. 3. Feasibility reduction for the second example.

Table 1
Results.

Example 1

Our results Results from literature

x* F*1 F*2 x* F*1 F*2 Citation
(4.4488, 0.8975) (1.19, −1.5917) (−0.2135, 4.3785, 3.5513) (0.8, 0.2) (0, 0.048) (1.143, −2.667, 0.6) [1]

Example 2
Our results Results from literature

x* F*1 F*2 x* F*1 F*2 Citation
(0.48, 0.52, 1.24) 2.76 (−1.96, 0.72) (1, 0, 2)) 3 (−4, 2) [9]

(3, 0, 0) 3 (0, 0) [9]
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more complex and real problems. Perhaps, a detailed comparative
analysis can also be conducted to see in which type of problems the
algorithm perform better. Theoretical analysis on the convergent con-
dition of the algorithm is another interesting issue to study further.
Hybridizing multiple methods to produce an efficient method is
common in different problem solving approaches, hence, to boost the
performance of the algorithm, an hybridization with other approaches
can be studied further.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.orp.2018.100093
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