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A B S T R A C T

Nursing workforce management is a challenging decision-making task in hospitals. The decisions are made
across different timescales and levels from strategic long-term staffing budget to mid-term scheduling. These
decisions are interconnected and impact each other, therefore are best taken by considering staffing and sche-
duling together. Moreover, this decision-making needs to be made in a stochastic setting to meet uncertain
patient demand. A sufficient and cost-efficient staffing level with desirable schedule is essential to provide good
working conditions for nurses and consequently good quality of care. On the other hand, understaffing can
severely deteriorate the quality of care thus should be strictly controlled.

To help with the decision making, based on our previous research we formulate in this paper an integrated
nurse staffing and scheduling model under patient demand uncertainty into a two-stage stochastic programming
model with an emphasis on understaffing risk control. Conditional Value-at-Risk (CVaR), a risk control measure
primarily used in the financial domain, is integrated in the stochastic programming model to control under-
staffing risk. The IBM ILOG CPLEX solver is applied to solve the stochastic model. The model and solution
approaches are tested using a case study in a real-world environment setting. We have evaluated the perfor-
mance of the stochastic model and the benefit of CVaR in terms of impact on schedule quality.

1. Introduction

The increasing patient demand in healthcare raises challenges for
hospitals from many perspectives. As nurse labour costs typically re-
present a large share of the total hospital budget [3], hospitals need to
manage and deploy their human resources efficiently. Overtime work-
load, undesired work patterns, and low satisfaction are widely known
issues among nurses [27]. Managing personnel cost, reducing overtime
workload and undesired work patterns and improving work satisfaction
efficiently all have positive impact on the quality of care provided for
patients and the cost efficiency of hospitals [21]. One potential way to
address these issues is to develop and analyse models and decision
support systems to gain insight into the outcomes and consequences of
various nurse workforce management strategies.

The management of nurse workforce is extremely challenging due to
the fact that it is typically made across different time horizons and
different organisational levels [16]. It is a multi-phase planning and
control process that consists of staffing, shift scheduling and allocation
phases [16]. Staffing is a strategic long-term planning decision that
determines the mix of nursing resources. Shift scheduling focuses on the

assignment of available nurses to shifts and then constructs a mid-term
roster. The roster needs to strictly meet regulations and policies and
satisfy staff's personal preferences as much as possible. The regulations
and policies restrict the acceptable scheduling patterns that nurses can
work on, and consequently a different mix of nurse resources may be
required. The linkage between these two phases suggests a more in-
tegrated approach, which motivates the model proposed in this paper.

Decision-making on nurse staffing and scheduling becomes more
challenging when uncertainty is considered, which almost always pre-
sents in realistic scenarios. Many hospitals are subject to regulations to
guarantee a certain level of nurses to ensure the quality of care pro-
vided [23,26,27]. The patient demand determines the number of nurses
required for each shift on each day of the week. This demand fluctua-
tion has direct impact on the number of nurses required, i.e. on labour
cost (e.g. by hiring agent nurses or overtime nurses when understaffing
occurs) as well as on the attractiveness of the schedule (e.g. by in-
creasing overtime shifts etc.). Understaffing needs to be addressed as it
can severely deteriorate the quality of care [23,26].

Patient demand uncertainty needs to be taken into consideration to
ensure an efficient and flexible schedule. To account for these issues, we
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propose a two-stage stochastic programming (SP) model for the in-
tegrated nurse staffing and scheduling problem under patient demand
uncertainty. In the first stage, the initial staffing level and schedule is
decided to minimise the labour cost, overtime workload and un-
attractive shift patterns. The second stage then adjusts the schedule
under different demand scenarios by introducing /removing nurse
shifts from/into a centre nurse pool. We propose to apply Conditional
Value-at-Risk (CVaR) to control the risk of understaffing, i.e. to keep the
under-staff number within a certain confidence level to ensure an
adequate number of nurses.

CVaR is primarily used in finance as a risk measure to control the
loss within certain confidence levels [22]. In has been introduced in
healthcare operational research in the recent literature. Najjarbashi and
Lim [17] use CVaR to reduce the variability of operating room sche-
duling under uncertainty by reducing the worst-case outcomes of an
operating room schedule. Their MILP model formulation is based on a
finite set of scenarios generated using the Monte Carlo sampling
method. Kishimoto and Yamashita [15] apply an LP approach with
CVaR type constraints for intensity modulated radiotherapy treatment
(IMRT) optimisation. A key clinical criterion that measures the quality
of an IMRT plan is to satisfy dose-volume constraints (DVCs), which is
an NP-hard problem. The CVaR type constraints, which always satisfy
the DVCs, can be described as linear constraints; therefore, the opti-
misation problem is transferred to an LP problem, which is much easer
to solve.

One of the aims in this research is to investigate the nurse sche-
duling problem under patient demand uncertainty. One way to react to
this uncertainty is to build some robustness in the integrated planning
and scheduling phases. As summarised in Jonas Ingels and Maenhout
[11], several studies in the literature propose a reactive decision sup-
port model. This model adopts options, such as allocating overtime
shifts, schedule changes and allocating cross-trained nurses, to match
supply and demand. In contrast, a proactive approach is to build some
mechanisms in the scheduling phase such that a robust roster is con-
structed. A common proactive approach is to include buffers, such as
time buffers or capacity buffers. Time buffers, e.g. flexible shift length,
have been applied in personnel scheduling. Capacity buffers, e.g. re-
serving duties, have mostly been studied in the airline industry. An-
other proactive approach is two-stage stochastic approach. The first
stage constructs the baseline schedule by minimising the cost while
satisfying a minimum staffing requirement. The second stage takes re-
course actions to adjust the shifts to meet the requirements from dif-
ferent scenarios. Our proposed approach falls into this category. To
have more detailed information on measure of robustness and cost of
robustness, we refer to Jonas Ingels and Maenhout [11], Tam et al.’s
[25] work.

Two stochastic programming models are proposed in the paper. The
first Stochastic Demand Model (SDM) models the demand profiles (i.e.
the required number of nurses for each shift on each day) as scenarios.
The second is an SDM with an additional CVaR constraint (SDM-CVaR)
to control the understaffing risk. Both models aim to optimise the la-
bour cost, to improve work satisfaction, as well as to reduce overtime
workload and undesired work patterns. A practical yet very efficient
solution procedure with CPLEX solver is applied to solve these models.

The main contribution of the paper can be summarised as follows:
1) An integrated staffing and scheduling model under patient demand
uncertainty is proposed to produce a more flexible schedule, which
accounts for reducing labour cost and overtime workload, and un-
attractive work patterns. 2) Applying CVaR as a risk control measure for
understaffing, aiming at sufficient staff level within desired confidence
level.

The remainder of this paper is organised as follows. Section 2 pre-
sents a literature review on the problem and related research. In
Section 3, we formulate the integrated models under stochastic de-
mand. Section 4 presents the solution method. Section 5 presents a case
study to evaluate and compare the performance of the models. Finally,

we draw our conclusions and present future work in Section 6.

2. Literature review

Various models have been proposed in the literature on nurse
scheduling problems [27]. Early papers focussed on problem con-
straints. Van den Bergh et al. [27] classify the constraints into different
categories such as coverage, time-related, fairness and balance con-
straints. These constraints can be treated as hard constraints (which
must be satisfied) or soft constraints (which can be violated but usually
associated with a penalty) to achieve flexibility of problem modelling
and solving. Nowadays, the quality of a nurse roster is increasingly
measured in terms of personal satisfaction [27]. Overtime workload,
work patterns and job satisfaction are the key factors that are in-
vestigated to achieve a satisfactory roster.

To simplify the modelling of the problem, nursing workforce man-
agement has been divided into a multi-phase sequential process
[9,16,28] with different time horizons and different management le-
vels. Early research focussed on phase-specific problem modelling and
solving methodologies [9,10,16,28].

Then some researchers realised that workforce management should
not be considered in isolated phases because of the inter-relationship of
staffing-size and scheduling, as well as the conflicting multiple objec-
tives of minimising cost and maximising costumer service [14,16,19].
This line of research can be generally concluded as a two-step approach:
it first determines the staffing levels required to meet the desired per-
formance at low cost, and then generates the minimum cost shift
schedules to meet these requirements. Dantzig's set covering formula-
tion [7], dated back to the ’50s, is still highly relevant and used fre-
quently in this approach. In the first step, the staffing level requirement
is interpreted as a strict constraint to be met in Dantzig's model. The
constraints introduced in the second step are commonly related to
working regulation and employee preferences. The two-step approach
is appealing because it evades the difficulty of stochastic performance
constraints in the mathematical models. With this approach, the per-
formance constraints are taken care of in the staffing stage, so that shift
scheduling becomes a deterministic problem. However, the two-step
approach may lead to sub-optimal shift schedules [12]. Therefore, re-
cent literature has started to focus on more integrated approaches.

Maenhout and Vanhoucke [16] propose a more compact integrated
staffing and scheduling model for a long-term nurse management pro-
blem over multiple departments. It is a single aggregated model com-
pared with the two-step approach described above. It shows that
staffing multiple departments simultaneously and integrating nurse
characteristics into the staffing decision can lead to substantial im-
provements in schedule quality. Wright and Mahar [30] tackle the
staffing and scheduling problem and achieve reduced cost and im-
proved nurse satisfaction by scheduling cross-trained nurses, which
come from multiple departments in a centre nurse pool. Wright and
Bretthauer [29] present coordinated decision-making models to co-
ordinate nurses inside the hospital, and agent nurses outside the hos-
pital to reduce labour cost, as well as overtime workload. The results
show how centralised scheduling can be used to reduce cost and im-
prove nurse satisfaction. However, all these studies assume a determi-
nistic setting.

Healthcare systems, like many other service systems, are featured
with non-stationary and uncertain demands: the number of patients/
customers fluctuates over time in a stochastic manner. Defraeye and
Nieuwenhuyse [8] provide a state-of-the-art literature review on
staffing and scheduling approaches that account for non-stationary
demand, mainly focusing on applications in call centres and emergency
departments. In healthcare systems, patient demand uncertainty is
prominent. Most hospitals enforce a patient-to-nurse ratio. Therefore,
uncertainty should be taken into account in the decision making to
produce a flexible schedule. Zinouri [32] addresses staff scheduling
problems through a demand prediction and scenario-based approach. In
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his work, based on historical data, a time series forecasting method is
applied to predict daily surgical case volume. Based on the prediction, a
scenario set is generated for the staff-scheduling problem.

Stochastic programming is a well-developed method to model de-
cision-making under uncertainty in a flexible way, which imposes real-
world constraints relatively easily. Bard and Purnomo [5] consider the
problem of short-term nurse rescheduling for daily fluctuation in pa-
tient demand, where a given mid-term schedule is revised to cover
shortage. In Bagheri et al.’s [4] stochastic model, in addition to fluc-
tuation in patient demand, uncertainty in patient stay period over time
is also considered. Zhu and Sherali [31] present a two-stage stochastic
workforce-planning model in which the second stage decisions assign
continuous workload to each worker. Kim and Mehrotra [14] propose a
two-stage stochastic integer programming model to the integrated
staffing and scheduling problem, where the second stage decision
variables are integer. They assume that all acceptable working schedule
patterns are pre-generated; then a modified multi-cut aggregation in an
integer L-shaped algorithm with a priority branching strategy is pro-
posed to solve the model. In Bagheri et al. [4], a sample average ap-
proximation method is applied to obtain an optimal schedule with the
minimum regular and overtime assignment cost.

The model proposed in this paper seeks to efficiently schedule
nurses in a ward facing uncertain demand while simultaneously opti-
mising the number of nurses assigned to the ward based on an initial
staffing number. We formulate the problem as a two-stage stochastic
program. Patient demand i.e. the required number of nurses for each
day is modelled using scenarios that vary over time. Thus, overstaffing
and understaffing may occur. In order to keep understaffing under
certain level, a CVaR constraint, which is often used to measure un-
certainty in finance, is utilised in the model.

3. Problem description and modelling

3.1. Problem description

In nursing workforce management systems at most hospitals, the
staffing level in each department needs to be decided, based on which a
schedule for the corresponding staffing level over a period of 4 weeks
(usually) can be constructed under stochastic patient demand. This
usually starts with an initial base line number of nurses available for
each department within the hospital's budget. The scheduling policy,
which is defined in terms of practices rules, needs to be tackled to
construct a satisfactory schedule, therefore staffing and scheduling need
to be simultaneously considered in the process.

Previous work [16,29,30] showed that coordination of staffing
across different departments can improve the quality of decision-
making. Nurses are typically assigned according to a fixed or cross-
utilisation policy. The former policy states that a nurse is permanently
assigned to a specific ward. The latter implies that a nurse who is a
member of a centre pool can be referred to a different unit. The hospital
in our study applies a mixed policy. That is, an initial base number of
nurses within the department's budget are assigned to the department.
However, a centre pool of nurses is maintained from where extra nurse
shifts can be transferred from the pool to cover the shortage in certain
department, or redundant nurse shifts can be transferred into the pool.

3.1.1. Objective function
The quality of a nurse staffing plan and scheduling should be

measured from multiple perspectives as stated above for both hospital
and nurses. In Maenhout and Vanhoucke [16], the quality of a nurse
staffing and shift scheduling plan is measured using three dimensions
representing the hospital's and nurses’ objectives, i.e., the effectiveness
in providing nursing care, the efficiency of a nursing unit and the job
satisfaction among nursing staff. We adapt similar measurements in our
objective function, explained as follows:

(1) Personnel cost: The personnel cost consists of regular payment and
overtime payment. In practice, the salary scale of nurses varies
according to their experience, length of employment and other
factors. The regular payment and overtime payment are re-
presented by their corresponding parameters. In this work overtime
payment is 1.5 times of regular payment, and nurses’ pay is doubled
on bank holidays.

(2) The quality of a nurse roster in modern working environment is
increasingly measured using personnel job satisfaction [27] in-
cluding violations of balanced workload and individual preferences.
This is captured in our model.

(3) The recourse cost is the cost of over-staffing and understaffing in
the second-stage SP model.

The overall objective function is thus an integrated function of all
the above costs.

3.1.2. Constraints
Nurse scheduling in hospitals involves many constraints including

working regulations, legal requirements, and nurses’ preferences, etc.
The constraints concerned in this paper are derived from real-life sce-
narios in hospital wards and are mostly tested in benchmark problems
in the literature. Rules and regulations have been directly taken from
real-world cases and preserved with essential characteristics. The pro-
blem can have several variants with respect to the number of nurses, the
number of shifts and the length of the scheduling period.

3.2. Problem modelling

3.2.1. Background on two-stage stochastic program
Stochastic programming is a well-developed optimisation method

under uncertainty. Shapiro and Philpott [24] provide a very good in-
troduction to the topic. The classical two-stage linear stochastic pro-
gramming problems can be formulated as

= +
∈

g x c x Q x δ ωmin{ ( ): [ ( , ( ))]}
x X

T

where Q(x, δ) is the optimal value of the second-stage problem

q ymin
y

T

+ ≤Tx Wy hSubject to

Here ∈x n is the first-stage decision vector, X is a polyhedral set,
defined by a finite number of linear constraints, ∈y m is the second-
stage decision vector, and =δ q T W h( , , , ) contains the data of the
second-stage problem.

The first stage variables x must be decided before the realisations of
the random variable ω, and the second stage or recourse variables y are
taken, as corrective actions after the value of random variables become
known. That is, the recourse actions are a compensation for any in-
feasibility from the first stage decisions; the objective is to minimise the
sum of the first stage cost and the expected value of recourse costs.

3.2.2. Stochastic demand model (SDM) for the integrated nurse scheduling
problem

We formulate the Stochastic Demand Model (SDM) as a two-stage
integer stochastic program. In the first stage, before a realisation of
patient demand is known, staffing decisions are made, i.e. the assign-
ment of shifts to nurses based on the available nurses and (estimated)
baseline requirement. In the second stage, the patient demand, i.e. the
real required number of nurses is realised, and adjustment needs to be
made to meet the requirement. The recourse actions are adding addi-
tional nurse shifts to cover understaffing or cancelling surplus shifts
when overstaffing happens. The expected value of shortfall and surplus
of shifts will be minimised. In Table 1 we present the notations used in
the model.
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The stochastic demand model (SDM) for the integrated nurse
scheduling problem can be formulated as follows:

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
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The objective function minimises the aggregated cost which consists
of regular time wage and overtime wage, the penalty from violations of
soft constraints and unwanted shift patterns, as well as the expected
penalty costs occurred from nurse shortage and surplus when the
second stage patient demand is realised.

Constraint (1) states that each nurse can only start one shift each
day. It also serves as the exclusive constraint stating that each nurse on
a single day cannot take a regular shift and an overtime shift at the
same time. Constraint (2) imposes a relation constraint using a large
constant value M between the indicator variable SRi and assignment
variables srijk. It states that if nurse i takes a regular shift srijk, then the
indicator variable SRi=1, while SRi=0 means nurse i is not assigned.
The same rule applies to overtime shift, defined by constraint (3).
Constraint (4) ensures that when a nurse works additional time over a
regular shift, he or she also works through a required shift. i.e. if
SOi=1, then SRi =1. Constraint (5) ensures a sufficient number of
required nurses are assigned over the planning period based on the
baseline requirement before the realisation of patient demand. Con-
straint (6) limits the maximum number of working shifts during the
planning period. Constraints (7) limits the maximum number of night
shifts that a nurse should take. Constraint (8) states that a nurse should
work a certain minimum number of regular shifts during the planning
period. Constraint (9) states a nurse must receive a certain minimum
number of complete weekends off during the planning period, where
|W| denotes the number of weeks in the planning period. Constraint
(10) states there should be no stand-alone night shift, i.e. no night shift
between two non-night shifts. Constraints (11, 12), and (13) impose
that there must be at least two days off after a night shift, i.e. no se-
quence of “NOW” “NWO” “NWW”, where N, O and W denote a night
shift, a day off and a regular working shift, respectively. Constraint (14)
penalises a stand-alone regular shift, i.e. there should be only one
working day between two off days. Constraint (15) penalises unwanted
regular shift patterns such as Day Early, Late Early, Late Day, and Early
Night. Constraint (16) is the adjusted coverage constraint after rea-
lisation of patient demand. It states that on each day, the assigned
number of nurse shifts at the first stage, after cancelling excess nurse
shifts and adding additional nurse shifts, should meet the demand for
each shift in each scenario.

3.2.3. Stochastic demand model with CVaR constraint
In most service systems, staffing and scheduling determine both cost

and service qualities [8]. This is especially true in health care systems.

Table 1
Notations.

The first-stage problem:
Parameters

I The set of nurses (index i)
J The set of days during the planning period (index j)
W The set of weeks in the planning period (index w)
K The set of shift types, for example, {E (Early), D (Day), L (Late), N

(Night)} (index k)
KU The set of unwanted shift patterns, for example, {DE, LE, LD, EN}

(index k’)
n1 Maximum number of working shifts a nurse can take in the period
n2 Maximum number of night shifts a nurse can take in the period
n3 Minimum number of regular shifts a nurse need to take in the period
n4 Minimum number of weekends off a nurse should take in the period
M A big constant number
Rjk Baseline required number of nurses on day j with shift k
c1 Regular wage rate per shift
c2 Overtime wage rate per shift
c3, c4 Penalty for violating the corresponding soft constraint
Decision variables
srijk Binary, takes value 1 if nurse i on day j takes shift k with regular pay,

0 otherwise.
soijk Binary, takes value 1 if nurse i on day j takes shift k with overtime

pay, 0 otherwise.
SRi Binary, takes value 1 if nurse i works regular shifts, 0 otherwise.
SOi Binary, takes value 1 if nurse i works overtime shifts, 0 otherwise.
dev1,dev2 Integer, the amount of deviation when modelling the corresponding

soft constraints
The second-stage problem:

Parameters
Ω The set of all scenarios (index ω)
pω The probability of scenarioω
Rjk

ω The required number of nurses under scenario ω on day j with shift k
+q The cost of adding a shift
−q The cost of cancelling a shift
Decision variables
αjk

ω Integer, the additional number of nurse shift need to be added on day
j with shift k for scenario ω

βjk
ω Integer, the excess number of nurse shift need to be cancelled on day j

with shift k for scenario ω
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A common approach is to treat staffing level as a minimum coverage
constraint that needs to be strictly met. This approach has been applied
widely with Dantzig's formulation in the literature, and in some of our
previous work [10,20]. This approach is appealing yet less flexible
under uncertainty. A more flexible approach is using a probability
constraint to limit the expected probability that the number of patients
exceeds the nurse-to-patient ratio as proposed in [30]. Another in-
novative approach is to adopt the concept of robust optimisation and
choose the worst case to determine the smallest number of required
staff [6]. Kim and Mehrotra [14] adopt a big M method by setting a
sufficiently large penalty to track the nurse-to-patient level. Under-
staffing needs to be specially attended to, as it can severely deteriorate
the quality of care [23,26]. In this paper, we introduce an additional
constraint adapted from the financial domain to control the risk of
understaffing.

Value at Risk (VaR) has been widely used in finance to estimate the
exposure to risk by estimating the loss of a finance product. VaR re-
presents the maximum loss associated with a specific confidence level.
However, it does not explain the magnitude of loss when the VaR limit
is exceeded. Conditional Value-at-Risk (CVarR) is firstly proposed by
Rockafellar and Uryasev [22]. It is defined as the expected value of
losses strictly exceeding VaR, shown in Fig. 1. CVaR is a coherent risk
measure, and has superior mathematical properties compared with
VaR. It can be applied either as an objective function or a constraint to
control the risk of loss. In both cases it can be reduced to a set of linear
functions, which are very easy to optimise in mathematical program-
ming.

In general, we can simply add a CVaR constraint in a model to
control the loss under a user specified threshold value μ by specifying
that

≤ μCVaR

4. Solution approach

In this section, we describe how the two-stage stochastic program-
ming models are solved. We first discuss how to linearise the CVaR
constraint and solve the problem as an integer linear program. Then, we
discuss how to construct scenarios for the problem. The resulted sto-
chastic integer programming is finally solved by the IBM ILOG CPLEX
solver.

The objective function of a general two-stage stochastic program-
ming (SP) model is to minimise the first stage cost and the expected
value of the second stage cost. Recourse variables can be continuous or
integer. Our model is a two-stage SP model with integer recourse,
which is very challenging to solve. The solution approaches to two-
stage SP with integer recourse can be generally grouped into exact
methods and heuristic methods. Ahmed et al. [2] adopt an L-shape
method based on Bender's decomposition, which incorporates a Branch-

and-Bound procedure to achieve optimality. Kim and Mehrotra [14]
developed a modified multi-cut approach in the L-shape algorithm with
a prioritising branching strategy. Ahmed and Shapiro [1] reported a
general sample average approximation algorithm for stochastic integer
optimisation, which can provide an exact optimal solution with a large
enough sample size. However, for a relatively small sample size, only a
good approximation solution can be obtained. In our problem, we will
first linearise the CVaR constraint, and then a relatively small number
of scenarios will be generated. IBM CPLEX will be used to solve the
resulting stochastic integer programming.

4.1. Linearisation of CVaR constraint

As we described in Section 3.2.3, CVaR is used to control the loss
under a user-specific value µ. The appealing property of CVaR is that it
can be re-written into a set of easy-to-solve linear functions. With the
notations defined in Table 2 we demonstrate how a CVaR constraint can
be written as a set of linear constraints.

According to Rockafellar and Uryasev [22], the general CVaR≤ μ
term can be replaced by the following linear constraints (19)–(21):

∑+
−

≤ξ
σ

p z μ1
(1 ) ω

ω ω

(19)

≥ ∀z ω0,ω (20)

≥ − ∀x yz f ξ ω( , ) ,ωω (21)

We can now express the constraints using the notations defined in
Table 2 in the context of nurse scheduling as follows:
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s.t. (1)–(18)
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−
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σ
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(19)

≥ ∀z ω0,ω (20)

∑ ∑ ∑≥ − + − + − ∀z R sr so α β ξ ω( ( ) ) ,ω

j k
jk
ω

i
ijk ijk jk

ω
jk
ω

(22)

We denote it as the stochastic demand model with CVaR constraint
or SDM-CVaR.

4.2. Scenario generation

We used two different approaches to generate scenarios:

(1) Based on historical data:

In Parisio and Jones [18], demand vectors were generated based on
historical data, and then fed into a pool. From the pool, a small number
of vectors were randomly selected to construct the demand scenarios. In
our model, Rjk

ω represents the number of nurses required for a given shift
k on day j under a given scenario ω. Inspired by Parisio and Jones [18],
we considered the historical number of patients occupying beds as a
representation of the true distribution of patient demand and collected
this weekly over a 12-month period (52 weekly data). Then these pa-
tient demand patterns were fed into a pool. From this pool, we ran-
domly selected 4 weekly data values to construct one monthly demand
scenario - each of the scenarios has equal probability. Then we used the
nurse-to-patient ratio to convert the number of patients into the number
of nurses required. We have taken this approach because it is practical
and normally provides a good approximation of the true demand.Fig. 1. VaR and CVaR [22].
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(1) Based on Auto-Regressive Integrated Moving Average (ARIMA)
forecasts:

In Zinouri's work [32], empirical forecast errors were used to gen-
erate demand scenarios for the model. More specifically as in Kim and
Mehrotra [14], long-term forecasts were obtained using the ARIMA
method. We applied this method to generate demand scenarios. We
defined 52-week as a time window and rolled it forward one day to
create a new time window. Thus, 364 (52×7) time windows were
created over a year period. For each time window, a forecast is gen-
erated using ARIMA. Then the forecast error vectors were fed into a
pool. From this pool, we randomly selected a certain number of error
vectors and added them to the mean point forecast to generate demand
scenarios.

Kaut and Wallace [13] stated that in stochastic programming we
only solve an approximation of the stochastic programming model with
a finite number of scenarios. The quality of this approximation is di-
rectly linked to the quality of the scenarios. The quality of the scenarios
is problem dependent. The number of scenarios is also important. We
would like the number of constructed scenarios to be relatively modest
so that the resulting model can be solved with reasonable computa-
tional effort.

These scenario generation methods have been applied previously in
several nurse-scheduling problems and simply adapted to our problem
here, given their suitability. While an in-depth investigation of scenario
generation methods would be worthy on its own in the literature, it is
out of the scope of this manuscript.

5. A case study

The development of the approach is based on several benchmark
nurse rostering problems, e.g. GPOST and ORTEC, which are publicly
available at http://www.schedulingbenchmarks.org. They are mono-
cyclic problems and different from each other with respect to the
parameters, such as the number of nurses, number of shift types and
length of scheduling periods. These are notably simplified problems,
only serving the purpose of developing modelling and solution ap-
proaches. These problems preserve the generic constraints, such as

coverage constraints and shift pattern constraints, in general nurse
rostering problems. The model and the solution approach can thus be
adapted and applied to problems with similar features and constraints.
The main problem, i.e. integrated nurse-scheduling problem, in this
section is based on a variant of the ORTEC problem [10] with the ad-
ditional characteristics described in Section 3 and historical patient
demand patterns. We use this problem as a case study to explore the
benefits of SDM and SDM-CVaR models. The models are developed in
C++ with concert technology in CPLEX on top of the CPLEX solver.

5.1. Problem instances and input data

We created the problem instances covering the period from January
to December 2013. Shift types, start times, and end times are presented
in Table 3. Fulltime nurses work 36 h regular time per week. The
working regulations of the hospital in our case study state that a nurse
may work at most one extra 9-hour overtime shift per week. However,
on a single day, if a nurse has already taken a regular shift, she/he
cannot take an overtime shift on the same day.

Daily patient census data from January to December over the study
period were applied to create the problem instances and scenarios. A
1:4 nurse-to-patient ratio was applied to the patient demand during the
daytime to obtain the baseline of nurses required shown in Table 3 as an
example.

The two methods based respectively on historical data and ARIMA
forecasts and described in Section 4.2 were tested to generate demand
scenarios in our experiment. The model parameters were set as follows:
the number of shift types was 4, the number of weeks in the period was
4, n1=24, n2=3, n3=16, n4=4, c1=10, c2=15, c3=c4=5, +q =18,

−q =2.

5.2. Evaluation of SDM model and SDM-CVaR model solutions and
computational time

Table 4 presents the performance of the SDM model based on the
two scenario generation methods, i.e. based respectively on historical
data and on ARIMA forecasts. For each of the methods, we tested 50
and 200 scenarios. The choice of using 50 and 200 scenarios in our
empirical study is arbitrary. The first two rows report the numbers of
regular and overtime shifts assigned at the first stage, and the third and
fourth rows report the adjustment made (added and cancelled shifts) at
the second stage to meet demands. It can be seen that scenarios gen-
erated with ARIMA forecasts required more adjustments, maybe due to
larger fluctuations in demand. The CPU time needed to solve the
models are similar as well as the optimality gap of the final solution.
The fundamental reason of the similar CPU time is that the CVaR
constraint has been transformed to linear constraints, which do not
increase the complexity of the problem. The CPLEX parameter
CPX_PARAM_EPGAP (gap to the optimum) was set to 0.01.

Given the concerns about nurses’ job satisfaction, many hospitals

Table 2
Notations for a general and Nurse Rostering Problem (NRP) models with CVaR.

x Decision vector.
In our NRP model, x consists of the decision variables srijk and soijk.

yω Random vector that influences the loss of decision x.
In our NRP model, it is the patient demand uncertainty denoted by Rjk

ω , i.e. the number of nurses required on day j with shift of type k under scenario ω
f(x, yω) A loss function that is generated by x and y.

In our NRP model, − ∑ +R sr so( )jk
ω

i ijk ijk is the nurse shortage function on day j with shift type k under scenario ω. Thus f(x,
yω)=∑ ∑ − ∑ + − +R sr so α β( ( ) )j k jk

ω
i ijk ijk jk

ω
jk
ω

pω The probability of scenario ω.
In our NRP model, it is the probability of patient demand scenario ω.

ξ The VaR value in the optimal solution.
zω Auxiliary variables in the linear programming formulation which represent the loss (i.e. f(x, yω)) in excess of the VaR value (i.e. ξ).
σ A user specified percentile value, i.e. the confidence level, 95% in our case
μ A user specified threshold value of loss

Table 3
Shift types, durations and baseline demand. Each shift covers 9 h including one
hour resting time, except for night shifts that contain no resting time. Demand is
based on historical data.

Shift type Start time End time Demand
Mon Tue Wed Thu Fri Sat Sun

Early 07:00 16:00 3 3 3 3 3 2 2
Day 08:00 17:00 3 3 3 3 3 2 2
Late 14:00 23:00 3 3 3 3 3 2 2
Night 23:00 07:00 1 1 1 1 1 1 1
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are actively seeking ways to improve the situation. We now show how
the SDM model can be used to improve the overall desirability of the
schedule in terms of reduction of personnel constraint violations.

The violations of soft constraints such as unwanted shift patterns
were measured using ∑ ∑ + ∑ ∑ ∑c dev c dev1 2i j ij i j k ijk3 4 in in the

objective function defined in Section 3.2.2. We penalised unwanted
shift patterns by dev1, dev2. We observed that the penalty cost was 0, as
shown in the fifth row in Table 4. This demonstrates that the solutions
satisfied all these constraints. This finding demonstrates that better
work satisfaction for nurses can be achieved in the SDM model solution.

Table 5 presents the performance of the SDM-CVaR model also
based on the two scenario generation methods. The user-specified
parameters in the model were set to =μ 50, =σ 95%. The difference
between the SDM and SDM-CVaR models mainly exists in the scheduled
adjustment shifts, i.e. αjk

ω , βjk
ω . We will investigate the SDM-CVaR model

in more details in the next section.

5.3. Comparison of SDM and SDM-CVaR schedule

To observe a clearer comparison on the basic SDM and SDM-CVaR
models, we compared the schedule quality of the two models for the
same set of historical data based scenarios. The actual historical number

Table 4
SDM model solution evaluation.

Historical data based scenario generation Forecast data based scenario generation
50 scenario solution 200 scenario solution 50 scenario solution 200 scenario solution

No. of regular shift (srijk) 231 231 231 231
No. of overtime shift (soijk) 25 25 25 25
No. of added shift (αjk

ω ) 36 38 168 189

No. of cancelled shift (βjk
ω ) 6 6 29 35

Soft constraint violation (dev1,dev2) 0 0 0 0
CPU time 61.64 s 80.09 s 66.10 s 93 s
Optimality gap 1.02% 0.90% 0.43% 0.26%

Table 5
SDM-CVaR model solution evaluation.

Historical data based scenario generation Forecast data based scenario generation
50 scenario solution 200 scenario solution 50 scenario solution 200 scenario solution

No. of regular shift (srijk) 231 231 231 231
No. of overtime shift (soijk) 25 25 25 25
No. of added shift (αjk

ω ) 19 20 90 90

No. of cancelled shift (βjk
ω ) 15 14 50 35

Soft constraint violation (dev1,dev2) 0 0 0 0
CPU time 103.82 s 139.58 s 125.30 s 155.56 s
Optimality gap 0.6% 0.34% 0.82% 0.20%

Fig. 2. Quality factors of SDM and SDM-CVaR schedule.

Table 6
SDM-CVaR model with different parameter μ.

=μ 50, =σ 95% =μ 20, =σ 95%

No. of regular shift (srijk) 231 231
No. of overtime shift (soijk) 25 25
No. of added shift (αjk

ω ) 19 95

No. of cancelled shift (βjk
ω ) 15 10

Soft constraint violation (dev1,dev2) 0 0
CPU time 103.82 s 104.56 s
Optimality gap 0.6% 0.93%
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of nurse shifts required was applied as the baseline for comparison, in
contrast to the schedules obtained by solving the SDM model (SDM
schedule) and the SDM-CVaR model (SDM-CVaR schedule).

To measure the quality of a schedule s, we applied a quality factor as
defined in Parisio and Jones [18] as follows:

= −
∑
∑

θ
ε
d

1 t t

t t

where = −ε s d| |t t t is the deviation between the nurse shifts assigned at
time t by schedule s and the actually required number of nurse shifts
(demand) at time t. The quality factor, which is always between 0 and
1, is plotted in Fig. 2 for both SDM and SDM-CVaR schedules. This
factor ranges from 0.8 to 1 with an average of 90% in the SDM sche-
dule, and from 0.9 to 1 with an average of 95% in the SDM-CVaR
schedule. Therefore, the average quality of the SDM-CVaR schedule is
approximately 5% better than that of the SDM schedule.

5.4. Evaluation of the CVaR constraint

The coverage constraint ∑ + + −sr so α( )i ijk ijk jk
ω

= ∀β R ω j k, , ,jk
ω

jk
ω includes adjustment shifts from the nurse pool ap-

plied to meet demand fluctuations. By adding extra shifts αjk
ω , the

downside risk of the schedule, i.e. the nurse shift shortage, can be re-
stricted by constraints (19)–(21). That is, we can control the number of
shortage shifts by setting different user specified values for µ in Eq. (19)
in the CVaR constraint. For instance, if we want to keep the shift
shortage under 50 (i.e. set µ = 50) with 95% confidence in the CVaR
constraint, we need about 20 extra shifts as shown in the third row of
Table 6. If we want to have a tighter control on nurse shortage, we can
set the CVaR constraint to a smaller value e.g. µ = 20, with 95%
confidence. However, a large number of extra shifts is required (95 for
µ = 20 vs 20 for µ=50) to achieve this target.

Table 7 compares the results of SDM and SDM-CVaR based on 50
scenarios generated from historical data for the 12-instance (monthly)
set. The second column presents the baseline requirement of shifts re-
quired in the first stage. The regular and overtime shifts are constructed
based on this baseline requirement. The number of adjustments consists
of the number of shifts added and cancelled. We also report the number
of soft constraints violations. From the results we can see that there is
no difference between the two models in terms of soft constraints vio-
lations. The average and standard deviations in Table 7 show that the
difference lies in the number of adjustments. The incorporation of the
CVaR constraint into the SDM-CVaR model leads to less adjustments.

6. Conclusions

Healthcare systems show non-stationary and uncertain demand.
Therefore, decision making on nurse staffing and scheduling should be
considered together in a stochastic setting. When patient demand
fluctuates, overstaffing or understaffing may occur. In particular, un-
derstaffing needs to be paid more attention to as it can severely dete-
riorate the quality of care.

In this paper, two integrated nurse scheduling models with patient
demand uncertainty have been proposed and analysed. The experi-
mental results showed that the Stochastic Demand Model (SDM) with
CVaR constraint is able to control the number of shortage shifts at a
user-specified confidence level. Our research showed how a nurse
schedule can be adjusted with respect to the level of risk the decision
maker is willing to take.

Using our model could potentially lead to healthcare quality im-
provement and result in cost benefit. In this paper, we used historical
patient data and forecast error vectors based on the ARIMA method to
generate scenarios with rough estimate of patient demand for the SDM
and SDM-CVaR models. With more accurate demand scenarios, we
could potentially have a better scheduling of nurse shifts. Further work
will investigate the generation of a larger number of scenarios using
different methods, such as Sample Average Approximation method,
based on a more detailed study of patient demand distributions.
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