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A B S T R A C T

We study the existence and uniqueness of equilibria for perfectly competitive markets in capacitated transport
networks. The model under consideration is rather general so that it captures basic aspects of related models in,
e.g., gas or electricity networks. We formulate the market equilibrium model as a mixed complementarity
problem and show the equivalence to a welfare maximization problem. Using the latter we prove uniqueness of
the resulting equilibrium for piecewise linear and symmetric transport costs under additional mild assumptions.
Moreover, we show the necessity of these assumptions by illustrating examples that possess multiple solutions if
our assumptions are violated.

1. Introduction

We consider perfectly competitive markets upon capacitated net-
works, where transport costs are modeled using piecewise linear and
symmetric cost functions. In this setting, we prove uniqueness of market
equilibria under mild assumptions. Our motivation is the following. On
the one hand, uniqueness of market equilibria is a classical topic of
mathematical economics by itself. On the other hand, our model in-
cluding a networked transport infrastructure has important applications
in the areas of, e.g., electricity and gas markets. Furthermore, unique-
ness of equilibria of such models is an important prerequisite for
studying more complicated, e.g., multilevel, market models; see, e.g.,
[4,6–8,12,14,15] for multilevel models in electricity markets as well as
[6,9] for multilevel models of gas markets. Most of the above men-
tioned papers abstract from transport costs. However, there also exist
equilibrium models including transport costs on networks. These are
mainly studied in the context of imperfect competition in gas markets,
cf., e.g., [2,3]. For an application in the electricity sector, see [18] or
[13] for a more general study. In addition to the fields of gas and
electricity, one might also think of other networked transport structures
like they appear in water or traffic networks. However, these fields are
somehow different. In traffic networks the classical concept of equili-
bria are Wardrop equilibria, cf. [20,21], which differs from the equili-
bria yielding market clearing prices in our context. Finally, in the
context of water networks, the techno-economic literature focuses on
different issues like market power and institutional constraints due to

the complex nature of water rights; cf., e.g., [1].
Our contribution is in line with the papers by Grimm et al. [10] and

Krebs et al. [16]. The former proves uniqueness of long-run market
equilibria using a network flow transport model as we do in our paper.
The latter considers uniqueness and multiplicity of solutions in the
context of short-run market models using DC power flows. However,
both analyses do not cover transport costs, which are part of many
realistic models for electricity or gas markets that also consider the
corresponding network infrastructure—see the literature cited above.
Moreover, none of these papers considers uniqueness of equilibria. In
contrast, we analyze perfectly competitive markets and prove unique-
ness of the resulting equilibria.

2. Market equilibrium modeling

We consider transport networks that we model by using connected
and finite digraphs =G N A( , ) with node set N and arc set A.
Subsequently, all player models of our overall market model are stated.
Since we consider perfectly competitive markets, all players are price
takers and their optimization problems are formulated using exogen-
ously given market prices πu at every node u∈N.

The first type of players are producers. We assume that there exists
exactly one producer at each node u∈N, which we model by a fixed
generation capacity >y 0u and variable production costs wu>0.
Production at node u is denoted by yu≥ 0 and is bounded from above
by the generation capacity. The objective of a producer is to maximize
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its profit and, thus, its linear optimization problem reads

− ≤ ≤π w y y ymax ( ) s.t. 0 .
y

u u u u u
u

Its solutions are characterized by the corresponding
Karush–Kuhn–Tucker (KKT) conditions

− + − = ≤ ⊥ ≥ ≤ − ⊥ ≥− + − +π w β β y β y y β0, 0 0, 0 0,u u u u u u u u u

(1)

where ±βu are the dual variables of the production constraints. Here and
in what follows, we use the standard ⊥-notation, which abbreviates

≤ ⊥ ≥ ⇔ ≥ =a b a b ab0 0 , 0, 0.

Consumers, as our second players, are also located at the nodes
u∈N and decide on their demand du≥ 0. Their demand elasticity is
modeled by inverse demand functions � �→≥p : ,u 0 for which we make
the following assumption.

Assumption 1. All inverse demand functions pu, u∈N, are strictly
decreasing and continuously differentiable.

Under Assumption 1 the concave problem of a surplus maximizing
consumer at node u is given by

∫ − ≤p x x π d dmax ( ) d s.t. 0
d

d
u u u u0u

u

and its again necessary and sufficient first-order optimality conditions
comprise

− + = ≤ ⊥ ≥p d π α d α( ) 0, 0 0,u u u u u u (2)

where αu is the dual variable of the lower demand bound.
The third player in our market model is the transport system op-

erator (TSO). He operates the transport network, in which every arc
a∈ A is described by its lower and upper capacities −fa and +fa and by its
transport cost function � �→ ≥c :a 0. In what follows we assume that all
transport cost functions ca, a∈A, are convex. The goal of the TSO is to
control the arc flows fa, a∈ A, such that the transport is realized from
low- to high-price regions and the earnings to be maximized result from
the corresponding price differences; cf., e.g., Hobbs and Helman [11]
for the case of electricity networks. Thus, the convex problem of the
TSO reads

∑ − −
= ∈

π π f c fmax ( ) ( )
f a u v A

v u a a a
( , ) (3a)

≤ ≤ ∈− +f f f a As.t. , .a a a (3b)

Here and in what follows, a variable without index denotes the
vector containing all corresponding node or arc variables, e.g.,
= ∈f f: ( ) .a a A Constraints (3b) reflect the network’s capacities and have

the dual variables ±δ .a The optimality conditions of (3) are given by

− − ′ + − = = ∈
≤ − ⊥ ≥ ∈
≤ − ⊥ ≥ ∈

− +

− −

+ +

π π c f δ δ a u v A
f f δ a A
f f δ a A

( ) 0, ( , ) ,
0 0, ,
0 0, .

v u a a a a

a a a

a a a (4)

Putting all first-order optimality conditions as well as the flow balance
conditions

∑ ∑= − + − ∈
∈ ∈

d y f f u N0 , ,u u
a δ u

a
a δ u

a
( ) ( )out in (5)

together, we obtain the mixed complementarity problem (MCP)

Producers: (1), Consumers: (2), TSO: (4), Market Clearing: (5).
(6)

This MCP models the considered market for the case of perfect com-
petition. Hence, solutions of (6) are market equilibria. It can be easily
seen that this complementarity system is equivalent to the welfare
maximization problem

∫∑ ∑ ∑− −
∈ ∈ ∈

p x x w y c fmax ( ) d ( )
d y f u N

d
u

u N
u u

a A
a a, , 0

u

(7a)

≤ ≤ ∈y y u Ns.t. 0 , ,u u (7b)

≤ ∈d u N0 , ,u (7c)

≤ ≤ ∈− +f f f a A, ,a a a (7d)

∑ ∑= − + − ∈
∈ ∈

d y f f u N0 , .u u
a δ u

a
a δ u

a
( ) ( )out in (7e)

Here we use the standard δ-notation for the in- and outgoing arcs of
a node u∈N, i.e., = ∈δ u v u A( ): {( , ) }in and = ∈δ u u v A( ): {( , ) }.out The
mentioned equivalence can be shown by comparing the first-order
optimality conditions of Problem (7) with the MCP (6) and by identi-
fying the dual variables γu of the flow balance constraints (7e) with
equilibrium prices πu of the complementarity problem. Furthermore,
we use the fact that the KKT conditions are again necessary and suffi-
cient optimality conditions of Problem (7) under Assumption 1. The
equivalence between the optimization problem (7) and the MCP (6)
now allows us to consider Problem (7) in order to obtain results for the
MCP (6). This is exactly the road that we follow in order to prove the
uniqueness of the equilibrium of (6). By doing so, we remark one
structural difference between these two versions of the same problem.
In the MCP formulation we consider nodal prices πu to be given exo-
genously. In this setting the question then is whether there exists (an
unique) equilibrium, i.e., a solution of (6). On the other hand, solving
the welfare maximization problem (7) does not require these prices to
be given. Instead, equilibrium prices are part of the dual solution of the
problem as we noted above.

So far we formulated a short-run market model that does not depend
on multiple scenarios. It is, however, straight forward to extend the
setting to multiple scenarios, which then yields a time-separable pro-
blem for which all of our results carry over directly.

Since existence of equilibria is trivial because =d y f( , , ) (0, 0, 0) is
feasible and the problem is bounded from above, we focus on the study
of uniqueness of a solution of Problem (7). We first note that strictly
convex cost functions ca in (7) yield a unique solution.

Theorem 2.1. Suppose Assumption 1 holds. Consider Problem (7) with
strictly convex cost functions ca, a∈A. Then, the solution of Problem (7) is
unique.

Proof. Uniqueness of (d, f) follows directly from Theorem 1a in [17].
Uniqueness of the productions then follows from the flow conservation
constraints (7e). □

In the rest of the paper, we consider the case without having the
assumption of strictly convex cost functions. First, we show uniqueness
of the demands.

Theorem 2.2. Suppose Assumption 1 holds. Let (d, y, f) and (d′, y′, f′) be
two solutions of Problem (7). Then, = ′d d holds.

Proof. The claim follows directly from Theorem 1a in [17]. □

3. Uniqueness for piecewise linear and symmetric transport costs

In what follows, we consider piecewise linear and symmetric
transport cost functions. This is formalized in the following assumption.

Assumption 2. All transport cost functions ca, a∈A, have the form
=c f m f( ):a a a a with �∈ ≥ma 0.

Note that all transport cost functions satisfying this assumption are
convex.

In the following we use the concept of flow-induced partitions; cf.,
e.g., [10]. A flow-induced partition of the network =G N A( , ) w.r.t. a
solution (d, y, f) of Problem (7) is the partition {Gi}i∈ I, �⊆I , where
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each Gi ≔ (Ni, Ai) is a connected component of the graph ∖N A A( , ) with
= ∈ = ∨ =− +A a A f f f f: { : }a a a a . Each Gi, i∈ I, is called a flow-induced

component. Additionally, for two arbitrary nodes u, v∈N we denote by
Puv an undirected path from u to v and define

=⎧
⎨⎩−

r
a P

:
1, if is directed along ,

1, otherwise,a
uv

for each arc a∈ Puv. To show uniqueness of the productions we make
the following assumption.

Assumption 3. For each two nodes u≠ v∈N and all paths Puv we have

∑ ∑− + < − − >
∈ ∈

w w m or w w m0 0.u v
a P

a u v
a P

a
uv uv

Since the latter assumption is the key precondition for uniqueness,
we discuss it in more detail. The assumption mainly states that the
aggregated transport costs between two nodes need to be less than the
difference of production costs at the nodes. This needs to hold for all
possible transport paths connecting the two nodes and is a direct gen-
eralization of the required assumptions in the cases in which no net-
work or a network without transport costs are considered. In these cases
one needs to assume that the variable production costs are pairwise
different; cf., e.g., [10]. Thus, not surprisingly, this precondition is
exactly covered by Assumption 2 if transport costs are zero, i.e., if

=m 0a holds for all a∈ A. Moreover, we think that Assumption 3 is
rather mild in practice. The variable production costs wu and wv belong
to production facilities of different producers located at the nodes u and v
and the transport costs depend on the installed network infrastructure
that is operated by the TSO. Usually, this network infrastructure has high
investment costs but comparably small operating costs. This is, for in-
stance, the case in gas transport networks, where building new infra-
structure (like new pipelines or compressor stations) is costly compared
to the operation of the network, for which the costs are mainly given by
the compressor costs; cf., e.g., [5,19] and the references therein. Thus, we
think that the assumption is reasonable in the considered setup.

Theorem 3.1. Suppose Assumptions 1, 2, and 3 hold. Let =z d y f( , , ) be a
solution of (7) and let = ∈G N A{ ( , )} ,i i i

i I �⊆I , be its flow-induced
partition. Then, there exists at most one node k∈Ni in each flow-induced
component Gi with < <y y0 k k.

Proof. Let u≠ v∈Ni be two nodes in a flow-induced component
satisfying < <y y0 u u and < <y y0 v v. Furthermore, let Puv be a path
from u to v that is completely contained in Gi, i.e., ∈ − +f f f( , )a a a holds
for all arcs a∈ Puv. We now construct a feasible point ′ = ′ ′z d y f( , , ) of
Problem (7) with a larger objective function value than z. This yields a
contradiction to the optimality of z. For a suitable �∈ɛ we define for
each node k∈N and each arc a∈A

′ =
⎧

⎨
⎩

+ =
− = ′ =⎧

⎨⎩

+ ∈
y

y k u
y k v
y

f
f r a P
f

:
ɛ, if ,
ɛ, if ,

, otherwise,
:

ɛ, if ,
, otherwise.k

u

v

k

a
a a uv

a

It is easy to see that these productions and flows satisfy the flow-
balance conditions (7e). Now we determine an interval for ε such that z′
also satisfies the production and flow bounds (7b) and (7d). We have

≤ + ≤ ≤ − ≤ ≤ + ≤ ∈− +y y y y f f r f a P0 ɛ , 0 ɛ , ɛ for all ,u u v v a a a a uv

which implies

≥ ⎧
⎨⎩
− − − − ⎫

⎬⎭

≤ ⎧
⎨⎩

− − − ⎫
⎬⎭

∈ =
−

∈ =−
+

∈ =
+

∈ =−
−

y y y f f f f

y y y f f f f

ɛ max , , max { }, max { } ,

ɛ min , , min { }, min { } .

u v v
a P r a a a P r a a

u u v
a P r a a a P r a a

, 1 , 1

, 1 , 1

uv a uv a

uv a uv a

The lower bound is negative and the upper bound is positive. In

what follows, we denote with zΦ( )͠ the objective function value of a
feasible point z͠ of Problem (7). The objective function difference of z
and z′ reads

∑ ∑

∑ ∑

− ′ = − − + + + −

− + +

= − − + +

∈ ∈

∈ ∈

z z w y w y w y w y

c f c f r

w w m f m f r

Φ( ) Φ( ) ( ɛ) ( ɛ)

( ) ( ɛ)

( )ɛ ɛ .

u u v v u u v v

a P
a a

a P
a a a

u v
a P

a a
a P

a a a

uv uv

uv uv

The triangle inequality yields

∑− ′ ≤ − +
∈

z z w w m rΦ( ) Φ( ) ( )ɛ ɛu v
a P

a a
uv

and together with the definition of ra we obtain

⎛
⎝

∑ ⎞
⎠

⎛
⎝

∑ ⎞
⎠

′ ≥ − − +

= − − +

∈

∈

z z w w m

z w w m

Φ( ) Φ( ) ( )ɛ ɛ

Φ( ) sgn(ɛ) ɛ.

u v
a P

a

u v
a P

a

uv

uv

As we can choose ε being positive or negative and since Assumption 3
holds, we can choose an ε≠ 0 such that Φ(z′)>Φ(z) holds. This is a
contradiction to the optimality of z. □

Next we prove uniqueness of the productions in a solution of
Problem (7). To this end, we obtain from the following lemma—which
is mainly taken from Grimm et al. [10]—that it is sufficient to show
uniqueness of productions for fixed binding production and flow
bounds (7b) and (7d).

Lemma 3.2. Suppose Assumption 1 holds. Then, exactly one of the two
following cases occurs:

(a) There exist a demand vector d* and a production vector y* such that
every solution of Problem (7) is of the form (d*, y*, f) for some flow f.

(b) There exist two solutions =z d y f( , , ) and ′ = ′ ′z d y f( , , ) of Problem (7)
with y≠ y′ and

∈ = = ∈ ′ =
∈ = = ∈ ′ =
∈ = = ∈ ′ =
∈ = = ∈ ′ =

− −

+ +

a A f f a A f f
a A f f a A f f
u N y u N y

u N y y u N y y

{ : } { : },
{ : } { : },
{ : 0} { : 0},

{ : } { : }.

a a a a

a a a a

u u

u u u u

Theorem 3.3. Suppose Assumptions 1, 2, and 3 hold. Then, the
productions yu, u∈N, in a solution of Problem (7) are unique.

Proof. Assume that the productions yu, u∈N, in a solution of
Problem (7) are not unique. Due to Theorem 2.2 the demands are
unique. Let =z d y f( , , ) and ′ = ′ ′z d y f( , , ) be two solutions satisfying
part (b) of Lemma 3.2. This means that the flow-induced partitions

= ∈G N A{ : ( , )}i i i
i I of z and z′ are the same. Summing up the flow-balance

conditions for all nodes u∈Ni yields

∑ ∑= ′
∈ ∈

y y
u N

u
u N

u
i i (8)

for all i∈ I. By Theorem 3.1, there exists at most one node u∈Ni where
both production bounds are strict, i.e., < <y y0 u u. As z and z′ have the
same binding production structure, z and z′ have the same productions
in each flow-induced component due to (8). Thus, = ′y y holds. This is a
contradiction to the choice of y and y′. □

We now briefly illustrate the necessity of Assumption 3 in
Theorem 3.3. To this end, we consider a two-node network with
=N {1, 2} and =A {(1, 2)} as depicted in Fig. 1, where all parameters of

production, demand, and transport are given. Note that
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− + =w w m 01 2 12 holds and, thus, Assumption 3 is violated. Two so-
lutions of Problem (7) are given by

=d d y y f( , , , , ) (9, 11.5, 20.32, 0.18, 11.32)1 2 1 2 12 and =d d y y f( , , , , )1 2 1 2 12
(9, 11.5, 19, 1.5, 10) and we obtain the equilibrium prices =π 11 and
=π 22 .
Up to now, we derived conditions under which the solution of

Problem (7) is unique in the demands and productions if the transport
costs are piecewise linear and symmetric. It remains to prove the un-
iqueness of the flows. In the following we first consider uniqueness of
flows for tree networks.

Theorem 3.4. Suppose Assumptions 1, 2, and 3 hold and let the network G
be a tree. Then, the solution of Problem (7) is unique.

Proof. Due to Theorems 2.2 and 3.3 the solution of Problem (7) has
unique demands du, u∈N, and productions yu, u∈N. Let

= ∈ ∈ ∨ ∈N u v N u v A v u A( ): { : ( , ) ( , ) } be the neighborhood of a node
u∈N and let = ∈ =L u N N u: { : ( ) 1} be the set of leaf nodes. Without
loss of generality, we assume that G is an out-tree. Then, we can
compute the unique flow as follows. As long as we have arcs in our
graph we do the following: For every leaf node u∈ L and unique arc
a∈ δin(u) we set ← −f d ya u u and then update ← +y y fv v a for the
unique neighbor v∈N(u). We then set N←N∖L, ← ∖⋃ ∈A A δ u( ),u L

in

and iterate. Obviously, this procedure computes a unique flow and
terminates after |A| iterations. □

We now illustrate that the conditions that are sufficient for
uniqueness in the tree case are no longer sufficient if the network
contains cycles. To this end, we consider a cycle with three nodes as
depicted in Fig. 2. In this situation all assumptions of Theorem 3.4 are
satisfied but we obtain multiple solutions of Problem (7). Two solutions
are given by common demands and productions =d d d y y y( , , , , , )1 2 3 1 2 3
(2, 2.63, 1.17, 5.79, 0, 0) and different flows =f f f( , , ) (3.21, 0.5812 13 23
,0.58) as well as =f f f( , , )12 13 23 (2.96, 0.83, 0.34). Here we obtain the
equilibrium prices =π 2,1 =π 2.74,2 and =π 4.493 . This example in-
dicates that we need additional assumptions to obtain uniqueness of
Problem (7) for non-tree networks.

In the rest of this section we consider general networks. The pre-
vious Theorems 2.2 and 3.3 together state that we only have to consider
the flows of a solution of Problem (7) to establish uniqueness of the
overall solution. Thus, we can write Problem (7) as the following min-
cost flow problem for given net supplies −y du u for all u∈N:

∑
∈

m fmin
f a A

a a
(9a)

≤ ≤ ∈− +f f f a As.t. , ,a a a (9b)

∑ ∑− = − ∈
∈ ∈

y d f f u N, .u u
a δ u

a
a δ u

a
( ) ( )out in (9c)

Solving this problem then yields optimal flows for given productions
and demands. We now transform the arc set of the network such that all
arc capacities are non-negative and all transportation costs are linear.
To this end, we make the following case analysis for each arc
= ∈a u v A( , ) with transport costs =c f m f( )a a a a and use the notation
=−a v u: ( , )1 for the corresponding backward arc.

(i) If ≤ ≤− +f f0 a a holds, the transport costs are given by =c f m f( )a a a a.
We denote the corresponding arc set with ′ = ∈A a A: { :1
≤ ≤− +f f0 }a a .

(ii) If ≤ ≤− +f f 0,a a we replace a by −a 1 with transport costs
=− − −c f m f( )a a a a1 1 1 and capacities ∈ + −−f f f[ , ]a a a1 . We denote the

corresponding arc set with ′ = ∈ ≤ ≤− +A a A f f: { : 0}a a2 .
(iii) If ≤ ≤− +f f0 ,a a we use transport costs =c f m f( ) ,a a a a capacities

∈ +f f[0, ],a a and we add the backward arc −a 1 with transport costs
=− − −c f m f( )a a a a1 1 1 and capacities ∈ −−f f[0, ]a a1 . We denote the

corresponding arc set with ′ = ∈ ≤ ≤− +A a A f f: { : 0 }a a3 .

Thus, Problem (9) is equivalent to the min-cost flow problem

∑
∈ ′

m fmin
f a A

a a
(10a)

≤ ≤ ∈ ′− +f f f a As.t. , ,a a a 1 (10b)

≤ ≤ ∈ ′+ −−f f f a A, ,a a a 21 (10c)

≤ ≤ ≤ ≤ ∈ ′+ −−f f f f a A0 , 0 , ,a a a a 31 (10d)

∑ ∑− = − ∈
∈ ∈

y d f f u N, ,u u
a δ u

a
a δ u

a
( ) ( )out in (10e)

with non-negative flows on the graph ′ = ′G N A: ( , ) with arc set A′, which
we obtain by the network transformation (i)–(iii). Hence, we can re-
strict ourselves to consider uniqueness of solutions of Problem (10). To
obtain unique flows in this setting we need the following assumption.

Assumption 4. Let =G N A( , ) be an arbitrary network. Then

∑ ≠
∈

r m 0
a A

a a
C

holds for all cycles =C N A( , )C C of G.

Theorem 3.5. Suppose Assumption 4 holds. Then, the solution of Problem
(10) is unique.

Proof. Assume f≠ f′ are two solutions of Problem (10). Then, the flow
difference − ′f f is a circulation because at each node u∈A′ the flow
conservation reads

⎜ ⎟

∑ ∑

∑ ∑ ⎛
⎝

∑ ∑ ⎞
⎠

− ′ − − ′

= − − ′ − ′ =

∈ ∈

∈ ∈ ∈ ∈

f f f f

f f f f

( ) ( )

0.

a δ u
a a

a δ u
a a

a δ u
a

a δ u
a

a δ u
a

a δ u
a

( ) ( )

( ) ( ) ( ) ( )

out in

out in out in

Thus, − ′f f decomposes into flows on a set Z of cycles and there exists a
cycle C∈ Z with

= − ′ ≠r f fΔ : ( ) 0C a a a (11)

for all arcs a∈ C. We next show that = ∅Z , which yields a
contradiction to f≠ f′. As f and f′ are both solutions of Problem (10),

∑ ∑ ∑= − ′ =
∈ ′ ∈ ∈

m f f r m0 ( ) Δ
a A

a a a
C Z

C
a C

a a

follows from the objective function difference. Assume that there exists
a cycle ∈∼C Z with ∑ ≠∈

∼ ∼ r mΔ 0C a C a a and, w.l.o.g.,

Fig. 1. Two-node network with multiple solutions.

Fig. 2. Three-node cycle with multiple solutions.
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∑ >
∈

∼
∼

r mΔ 0.C
a C

a a
(12)

Then, we define a new flow f͠ by

=
⎧
⎨
⎩

∉

− ∈

∼

∼∼
f

f a C

f r a C
:

, if ,

Δ , if ,a͠
a

a a C

for all a∈A′. Using (11) and the definition of ra we have = ′f fa͠ a for all
arcs ∈ ∼a C . Hence, f͠ satisfies the flow bounds (10b)–(10d) because
both f and f′ are feasible. We next show that f͠ satisfies the flow
conservation constraints (10e). For all nodes ∉ ∼u C we have

∑ ∑ ∑ ∑− = − = −
∈ ∈ ∈ ∈

f f f f y d .͠ ͠
a δ u

a
a δ u

a
a δ u

a
a δ u

a u u
( ) ( ) ( ) ( )out in out in

At all nodes ∈ ∼u C there exists either (i) exactly one arc
∈ ∩ ∼a δ u C( ) ,in in exactly one arc ∈ ∩ ∼a δ u C( ) ,out out and it is
=r r ,a ain out (ii) ≠ ∈ ∩ ∼a a δ u C( ) ,1

in
2
in in ∩ = ∅∼δ u C( ) ,out and

= −r r ,a a1
in

2
in or (iii) ≠ ∈ ∩ ∼a a δ u C( ) ,1

out
2
out out ∩ = ∅∼δ u C( ) ,in and

= −r ra a1
out

2
out. Hence, the flow f͠ satisfies the flow conservation at

each node ∈ ∼u C due to

∑ ∑

∑ ∑

⎜ ⎟

⎜ ⎟

−

= −

+

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

− − ∩ ≠ ∅ ∩

≠ ∅

−⎛
⎝

+ ⎞
⎠

∩ ≠ ∅ ∩

= ∅

⎛
⎝

+ ⎞
⎠

∩ = ∅ ∩ ≠ ∅

= −

∼ ∼

∼ ∼

∼ ∼

∈ ∈

∈ ∈

∼

∼

∼

f f

f f

r r δ u C δ u C

r r δ u C δ u C

r r δ u C δ u C

y d

( )Δ if ( ) , ( )

,

Δ if ( ) , ( )

,

Δ if ( ) , ( )

.

͠ ͠
a δ u

a
a δ u

a

a δ u
a

a δ u
a

a a C

a a C

a a C

u u

( ) ( )

( ) ( )

in out

in out

in out

out in

out in

in out

1
in

2
in

1
out

2
out

Thus, f͠ is feasible for Problem (10) and its objective function value is
given by

∑ ∑ ∑= −
∈ ′ ∈ ′ ∈

∼
∼

m f m f r mΔ .͠
a A

a a
a A

a a C
a C

a a

Using (12), we obtain an upper bound

∑ ∑ ∑− <
∈ ′ ∈ ∈ ′

∼
∼

m f r m m fΔ .
a A

a a C
a C

a a
a A

a a

The latter is a contradiction to the optimality of f. So, it implies
∑ =∈ r mΔ 0C a C a a for all cycles C∈ Z and as Assumption 4 holds, we

have =Δ 0C for all C∈ Z and thus = ∅Z . □

Combining Theorems 2.2, 3.3, and 3.5, we obtain the final un-
iqueness theorem.

Theorem 3.6. Suppose Assumptions 1, 2, 3, and 4 hold. Then, the solution
of Problem (7) is unique.
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