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ARTICLE INFO ABSTRACT

Keywords: Pricing and capacity decisions in car rental companies are characterized by high flexibility and interdependence.
Car rental When planning a selling season, tackling these two types of decisions in an integrated way has a significant
Pricing impact.

FMlth’; emu:lir;:igcemem This paper tackles the integration of capacity and pricing problems for car rental companies. These problems

include decisions on fleet size and mix, acquisitions and removals, fleet deployment and repositioning, as well as
pricing strategies for the different rental requests.

A novel mathematical model is proposed, which considers the specific dynamics of rentals on the relationship
between inventory and pricing as well as realistic requirements from the flexible car rental business, such as
upgrades. Moreover, a solution procedure that is able to solve real-sized instances within a reasonable time
frame is developed. The solution procedure is a matheuristic based on the decomposition of the model, guided by
a biased random-key genetic algorithm (BRKGA) boosted by heuristically generated initial solutions. The po-
sitive impact on profit, of integrating capacity and pricing decisions versus a hierarchical/sequential approach, is

Genetic algorithm

validated.

1. Introduction

Car rental companies face several decisions related with their ca-
pacity, including decisions on fleet size/mix, acquisitions and deploy-
ment, which are significantly connected with the pricing of the rentals
that are fulfilled. This paper proposes a new mathematical model for
the integration of these problems, as well as a solution procedure that is
able to solve realistically sized instances within a reasonable time
frame.

1.1. Motivation

The car rental business is a relevant sector within the current mo-
bility systems, which has been significantly growing in the past years.
In the U.S., the revenue gains have grown 4% in 2015, with an average
fleet growth of 5% [1]. Moreover, the use of rental cars is also expected
to grow in the future beyond the traditional corporate and leisure uti-
lization, towards becoming an occasional alternative to owning a pri-
vate car [2].

This is a business that faces interesting and challenging operations
management issues, in which quantitative methods that support deci-
sion-making are becoming critical. In 2013, the CEO of Hertz, one of the
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main global players in the market, highlighted how technology is be-
coming the key competitive advantage of car rental companies and how
it has been taking a central space even in the governing structure of the
organizations [3]. These challenges are important for practitioners yet
the literature has only recently gained momentum in structuring and
studying the interesting fleet operations and revenue management
problems faced by car rentals. The main differentiation of this business,
when compared with more traditionally studied transportation sectors,
is its flexibility. The inherent flexibility of the fleet (mobility of the
vehicles), the flexibility associated with acquiring vehicles for the fleet
(and removing them) and the flexibility of the decision-making pro-
cesses, associated with a highly competitive, price-sensitive and effi-
ciency-dependent market, make this a relevant and interesting sector to
study.

1.2. Brief problem description and previous works

This work deals with the integration of two of the main decisions
that car rentals face: determining the capacity of their fleet — which
includes decisions on acquisition modes and timings, as well as fleet
deployment between locations, in order to meet demand - and de-
termining the price of the variety of rentals that are requested.
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Currently, these problems are mainly tackled separately, often within a
sequential or hierarchical framework. Pachon et al. [4] propose the
primary modeling framework for fleet planning in the car rental in-
dustry: a sequential and hierarchical structure of mathematical models
and solution methods to solve in different steps the problems of pool
segmentation (where the rental stations are clustered in fleet-sharing
pools), strategic fleet planning (where the size of the fleet of each pool is
decided), and tactical fleet planning (where the fleet levels in each sta-
tion of the pool are decided — deployment — as well as the required
vehicle transfers).

Recently, some works have been developed that attempt to integrate
the most linked decisions, especially fleet size and fleet deployment
[5,6], although often simplifying the problem and hindering the prac-
tical application of the developed research. However, in Fink and Re-
iners [7], fleet sizing is studied in detail, using a realistic modeling
approach that included acquisitions and removals of vehicles as well as
other issues, such as partial substitution between vehicle groups, in
order to turn it applicable to real-world situations.

In car rental, the issues of fleet management often intertwine issues
with operations, such as the ones discussed so far, with other problems
usually tackled under the revenue management framework. In fact, due
to the inherent flexibility of the fleet, this sector is often studied in
revenue management, especially as far as capacity allocation is con-
cerned. For example, Guerriero and Olivito [8] derive different accep-
tance policies for car rental booking requests while Steinhardt and
Gonsch [9] integrate these approaches with operations issues related
with planned upgrades. As for pricing, it is considered as an emerging
tool used by practitioners to manage demand, since it is increasingly
easy and cheap for companies to dynamically and swiftly change the
prices through online booking channels [10,11]. Heterogeneity of
customer preferences influence most rental businesses, inclusively on
the antecedence of the requests and especially in what regards pricing
and revenue management. In many businesses, rental customers are
divided into two main groups: customers that require the service with
some antecedence and “walk-in” customers, with different willingness
to pay and different service expectations. In the car rental problem
tackled in this paper, the antecedence of the rental requests is con-
sidered to have several discretized levels and may significantly influ-
ence the demand, alongside price.

Oliveira et al. [12] present a thorough literature review on fleet
management and revenue management issues on car rental and propose
a conceptual framework for the different levels of decision. One group
of decisions deals with pool segmentation, as proposed by Pachon et al.
[4]. Then, for each pool, five interconnected decision blocks are de-
fined. Three of these blocks are related with operations fleet manage-
ment problems such as fleet size/mix, which broadly decides how many
vehicles of each type will compose the fleet (including decisions on
acquisitions and removals), fleet deployment, which deals with the dis-
tribution of the vehicles among locations and how they are repositioned
between them, and fleet assignment, which assigns specific vehicles to
the existing rental requests. As for the problems usually tackled by
revenue management, two main blocks are defined that represent the
two perspectives of the field: pricing, where the price of each rental is
defined, and capacity allocation, which decides which fixed-price rental
requests should be fulfilled with the existing capacity. This paper can be
positioned within this conceptual framework, since it integrates three
main decision blocks for a single pool of locations: flee size/mix, fleet
deployment and pricing.

As previously discussed, the integration between fleet size/mix and
fleet deployment has been often considered in the car rental fleet
management literature. The integration of these problems (herein
commonly referred to as capacity problems) with pricing decisions is
mentioned as a research direction with considerable potential [12].
Some interesting works aim to fulfill this gap, such as Haensel et al.
[13] where fleet deployment is integrated with capacity allocation
decisions by simultaneously deciding on booking limits and vehicle
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transfers for a homogeneous fleet. To the best of our knowledge, only
one paper aims to integrate pricing with fleet management decisions (in
the case, fleet deployment as well) for the car rental business. Madden
and Russell [14] propose an interesting formulation where the price is
decided based on the discrete choice of price levels and where the direct
impact of price on demand is used to balance fleet levels.

The potential of this integration, which is starting to be explored in
the literature, derives from the close connections between the two
problems and the overlapping decision-making time horizons. In fact,
pricing decisions influence and are influenced by the availability of the
fleet, which is dependent on fleet occupation and on fleet size and lo-
cation.

Also in other sectors, the relationship between pricing and capacity,
the ability of price to manage demand, and the potential of their in-
tegration is being explored. Zhang and Zhang [15] investigate the role
of congestion tolls in an airport as a demand management tool as well
as a financing source, focusing on the impact of carriers with a sig-
nificant market position transposing these costs for higher price tickets.
Also, in Wang et al. [16], the problem of locating a park-and-ride fa-
cility is integrated with the pricing decision. The relationship between
pricing and production decisions is thoroughly explored in Bajwa et al.
[17]. In [18], pricing is integrated with assortment and inventory de-
cisions for substitutable products in a retail environment. Some inter-
esting insights are identified regarding the lack of structure of the so-
lutions obtained, which reflects the potential of optimization
approaches, and regarding the importance of this integration to sig-
nificantly improve profitability. The impact of price-driven product
substitution for a company selling to different customer segments,
within a context of integrated pricing and production decisions, is
further studied in Kim and Bell [19], with a significant effort on de-
mand and substitution modelling.

The solution method proposed in this work is a matheuristic, since it
hybridizes a metaheuristic with mathematical models. This approach
decomposes the original mathematical model in terms of its decisions.
The metaheuristic guides the search over the decisions on pricing
strategy, while the remaining decisions are solved using mathematical
models generated by fixing the pricing strategies on the original
monolithic model. In fact, approaches that combine decomposition
strategies with metaheuristics are currently being used to solve difficult
combinatorial problems. The decomposition takes advantage of special
structures of the problem enabling these approaches to outperform “less
hybridized” methodologies. Raidl [20] proposes an interesting discus-
sion on this topic, showing promising possibilities for these approaches.
The combination of genetic algorithms with decomposition strategies to
solve complex problems has been used with success, for example, by
Paes et al. [21] to tackle the unequal area facility location problem.

The metaheuristic used to guide the decomposition is a biased
random-key genetic algorithm (BRKGA) [22]. BRKGA is a variation of
the random-key genetic algorithm (RKGA) where there is a bias on the
choice of one of the parents towards one with a better fitness (instead of
an entirely random selection). BRKGA has been used with success in
several complex problems. Moreover, this type of methodology has the
ability to encompass problem-specific knowledge and to use it to boost
its performance. This is demonstrated, for example, in the work of
Ramos et al. [23], where BRKGA is used to tackle the container loading
problem and includes procedures that take into account static stability
constraints derived from mechanical equilibrium conditions.

An important part of the solution method is the generation of initial
solutions for the first population of BRKGA, which is conventionally
entirely random. Other works have used this type of boost for BRKGA.
When tackling the two-stage stochastic Steiner tree problem, Hokama
et al. [24] use a constructive heuristic to generate the entire initial
population of the algorithm. It is nonetheless more common to generate
only a part of the initial population, thus ensuring that there is still
randomness associated with it. For example, when tackling the three-
dimensional bin packing problem with heterogeneous bins, Li et al.
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[25] generate four solutions using a constructive heuristic. These so-
lutions are added to the initial population, whose remainder individuals
are randomly generated. Furthermore, even one heuristically generated
solution added to the initial population can have significant impact. In
Stefanello et al. [26], a genetic algorithm is proposed to solve the
problem of pricing network of roads, i.e. defining tolls to be applied in
some arcs of the network. One solution is generated by relaxing in-
tegrality constraints and is added to the initial population, thus
boosting the overall performance.

1.3. Contributions

The car rental business is characterized and seizes its natural ad-
vantage of being able to decide on capacity levels with significant
flexibility. Nevertheless, other characteristic that fully differentiates
this sector from other sectors mentioned above (such as retail) is the
rental-type of transaction considered. In this context, capacity is not
only affected by initial or frequent capacity/inventory decisions but
also by “returning” vehicles, which are temporarily used but become
available again in the future, possibly at a different location. This im-
pacts significantly the structure of the problem.

Traditionally, car rental companies tend to separate these problems
deciding on fleet size first and then managing the demand through
pricing decisions that accelerate or decelerate occupation and de-
ploying the fleet to meet demand. This work points out to the fact that
integrating these decisions will allow for significant improvements due
to the flexibility gained by also using fleet size as a tool to manage
demand. The main disadvantage of the integration — the computational
burden - is tackled by the use of an innovative solution procedure.

This work has thus three main contributions:

A new mathematical model for the integration of capacity (in-
cluding decisions on acquisitions, fleet size and mix, and deploy-
ment) and pricing decisions for car rentals.

An innovative and high-performing solution method for the problem
that is able to obtain good solutions for real-sized instances within
realistic time frames.This method is based on a decomposition of the
mathematical model. A genetic algorithm is used to guide the search
over part of the decision variables. The value (fitness) of these
partial solutions is evaluated by fixing them in the original model and
solving it for the remaining decisions. Moreover, a structured and
robust way of heuristically generating initial solutions for the ge-
netic algorithm is proposed, showing a significant power to boost
the search.

A quantitative proof that the integration of these problems brings
measurable improvements for companies, when compared with a
sequential approach.

The solution method proposed was conceived according to a mod-
ular and quick-to-answer design, so that it can be easily implemented in
a decision support system to help car rental companies make more
profitable decisions. Nevertheless, the work developed in this paper
already brings relevant managerial insights, especially regarding the
potential of integrating pricing and capacity decisions for a selling
season. Based on this research, a company is able to ascertain whether
an integrated approach brings advantages over a sequential approach,
mainly based on market size and number and type of products to price.

Moreover, a parallel can be built between the car rental business
and car sharing systems, namely in what concerns the mobility/flex-
ibility of the fleet and decision-making processes and the role of pricing
in managing demand. Therefore, this model and solution procedure can
be extended to be applied in this increasingly relevant urban mobility
topic.
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1.4. Paper structure

This paper is structured as follows. Firstly, the capacity-pricing
problem for car rentals and the novel mathematical model will be
presented (Section 2) and the proposed solution method will be ex-
plained (Section 3). Then, in Section 4, the computational tests and
their results are discussed and finally, in Section 5, some conclusions
and future research directions are drawn.

2. Problem definition

The work here presented was inspired by the case of a Portuguese
car rental company. In this section, the problem will be introduced by
providing an overall scenario of this company’s business and an over-
view of the scope of the problem at hand. Then, the Capacity-Pricing
Model will be fully defined by its mathematical formulation as an
Integer Non-Linear Programming Model (INLP).

2.1. Problem statement: The case of a Portuguese car rental company

This work aims to support the decisions of a car rental company that
is planning a selling season (1-3 months) and must decide on the ac-
quisition and fleet capacity plan, which are interconnected with the
overall pricing strategy. Indeed, in this kind of business, when demand
exists, very roughly companies can increase their profit either by
maintaining the prices and increasing the fleet, or raising the prices and
keeping the fleet size as it is.

The car rental company that inspired this work is based in Portugal,
where it has approximately 40 rental stations, divided into four regions.
All regions share the same fleet. The company uses these regions as
“units of location” when tackling the tactical/strategic problems that
will be detailed in this section. This is due to the fact that moving ve-
hicles between stations within the same region is negligible in terms of
both cost and time, unlike inter-region movements.

The fleet of the company is composed of approximately 10,000
vehicles and is divided in up to 5 vehicle groups, depending on the
selling season. Besides being differentiated by group, the fleet is also
divided in owned and leased fleet. The purchase of owned vehicles is
planned with a certain advance. Usually, these vehicles are available in
the beginning of the selling season and are sold within one year. Leased
vehicles, however, are used to face peaks in demand and can be
available for shorter and more flexible periods of time, with a higher
cost for the company.

This fleet is used to serve the different types of rentals requested,
which are characterized by start and end locations and dates, as well as
required vehicle group. Depending on the selling season, this company
can deal with 450-2500 different rental types, priced individually and
differentiated according with the antecedence of the request. For each
rental type, the number of requests the demand, which may later oc-
cupy the acquired vehicles, is highly dependent on pricing.

A common practice to help meet demand in different locations
throughout the season is to perform “empty transfers”. An “empty
transfer” occurs when a vehicle is moved from one location to another
not as part of a rental but to meet demand, with a non-negligible cost
and travel time. The company performs these transfers by either truck
or using a driver.

Other practice used by this and other car rental companies to meet
demand is to offer upgrades when the requested group is not available.
This means that the companies offer a more-valued vehicle than what
was requested for the same price. This allows them to maximize the
utilization of the fleet and to meet demand. However, regular upgrades
are commonly avoided as they incentivize the strategic consumer be-
havior of renting vehicles that do not meet expectations in hope of
begin offered an upgrade. A proper fleet planning can help provide the
needed vehicles where they are needed so that upgrades are only used
as a last resource.
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Due to maintenance costs, there is a high emphasis on the com-
pany’s ability to maximize the occupation of vehicles. Currently, the
company follows a hierarchical approach: first, it decides the capacity
and afterwards makes the pricing decisions with the goal to maximize
the fleet occupation. The main objective of this work is increase the
company’s profitability by integrating the capacity with the pricing
decisions, since the latter have a strong impact on demand and, con-
sequently, can help make better capacity decisions.

2.2. Mathematical model

In order to fully describe the problem presented above, a mathe-
matical model was developed. The main decision variables are related
with the acquisition of vehicles and with the prices of different rental
types. The number of rental requests is highly dependent on the pricing
decisions. These requests may later become fulfilled rentals and occupy
the acquired vehicles. In order to fully understand and map this inter-
action between capacity and pricing, other decisions are considered,
such as the stock of vehicles in each location and time period and the
number of vehicles “empty transferred” between locations.

As mentioned above, the fleet of vehicles, besides being differ-
entiated by group, is also divided in owned and leased fleet. It is as-
sumed that the total number of vehicles purchased for the owned fleet
are available at the beginning of the time horizon. The leased vehicles
may become available for shorter periods throughout the time horizon.

The objective is to maximize the company’s profit in the time hor-
izon. The profit is the difference between the revenues obtained with
the rentals fulfilled and the costs of leasing/acquiring fleet, performing
the empty transfers and maintaining the owned fleet, as well as a pe-
nalization factor for upgrades.

This model has four main groups of constraints, which will be fur-
ther explained in Section 2.2.4:

® Stock calculating constraints, where the stock of vehicles of each
group in each time period and station is computed;

e Capacity/Demand constraints, where these are established as a
limitation on the number of rentals fulfilled and empty transfers
realized;

® Business-related constraints, where the limitations regarding pos-
sible upgrades and available purchase budget are established;

o Other auxiliary constraints.

The goal of introducing pricing decisions, and corresponding
changeable demand levels, in the capacity planning is not to produce
operational decisions that are updated on an online manner and swiftly
react to changes in the system. This objective, although very important
for car rental companies, is considered to be out of scope for this study.
Within the tactical/strategic scope herein considered, pricing decisions
and demand information are used in an offline manner to provide better
quality to a model that aims to produce season-lasting decisions, such as
fleet size and mix. In a real-world application, applying this model to
support such decisions would not be conflicting with using a more
operational model where requests appear in an online fashion and de-
cisions like performing empty transfers or offering upgrades are revised
and dynamically optimized.

2.2.1. Indices and parameters
t,t'=1{0,..,T} Index for the set 7 of time periods, where
t = 0 represents the initial conditions of the
time horizon (season) and “overlaps” with
t = T for the previous season
g.8l,82=1{1, ..,.G} Index for the set G of vehicle groups

s, 81,82, ¢ ={1, ..,S} Indices for the set S of rental locations

Operations Research Perspectives 5 (2018) 334-356

r=1{1, ..,R} Index for the set R of rental types
(characterized by check-out and check-in
location and time period, and vehicle group
requested)

sout, Check-out location of rental type r

sin, Check-in location of rental type r

dout, Check-out time period of rental type r

din, Check-in time period of rental type r

g Vehicle group requested by rental type r

a=1{0, ..,A} Index for the set A of antecedences
allowed (number of time periods between
the rental request and the start of the
rental), where a = 0 represents a “walk-in”
customer

p=1{1, ...,P} Index for the set # of price levels allowed

PRI, Pecuniary value associated with price level
p for vehicle group g (for example, for
group g = 2, price level p =1 has a
pecuniary value of PR ; = 20€)

DEM,qp, Demand for rental type r, at price level p,

with antecedence a

COSg Buy cost of a vehicle of group g. The value
considered is the net cost: purchase gross
cost minus salvage value derived from its
sale after one year (see Section 2.1)

LEA, Leasing cost (per time unit) of a vehicle of
group g

OWN, Ownership cost (per time unit) of a vehicle
of group g

LP, Leasing period for a vehicle of group g

PYU Penalty charged for each upgrade

UPGgg, Whether a vehicle of group gl can be
upgraded to a vehicle of group g2 (= 1) or
not (= 0)

TTys Transfer time from location s1 to location
52

TCy152 Transfer cost of a vehicle of group g from
location s1 to location s2

BUD Total budget for the purchase of vehicles

M Big-M large enough coefficient

Other sets:

R¢  Rental types that do not require group g
Rir Rental types whose check-in is at location s at time

eft—1,t[
R Rental types whose check-out is at location s at time
eft—1,t[

Ri*¢  Rental types that require a vehicle to be in use at ¢ (i.e.,
dout < t Adin > t)

Inputs from previous seasons (previous decision periods):

INXg% Initial number of owned (O) vehicles of group g located at
s, at the beginning of the season (t = 0)

ONythé 0 Number of owned (O) or leased (L) vehicles of group g on
on-going empty transportation (previously decided), being
transferred to location s, arriving at time ¢

ONUgLéO Number of owned (O) or leased (L) vehicles of group g on
on-going rentals (previously decided), being returned to
location s at time ¢

2.2.2. Decision variables
ng Number of vehicles of group g acquired for the owned fleet
available at t = 0 in location s

L
Wgts
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Number of vehicles of group g acquired by leasing to be
available at time ¢ in location s

Qop =1 if price level p is charged for rental type r with
antecedence a; = 0 otherwise

nglS/ 0 Number (stock) of leased (L) or owned (O) vehicles of group
g located at s at time ¢

ySLlé 20g ) Number of leased (L) or owned (O) vehicles of group g empty
transferred at time ¢ from location s1 to location s2

u,ﬁgo Number of fulfilled rentals requested as rental type r with
antecedence a that are served by a leased (L) or owned (O)
vehicle of group g

fL/O Auxiliary variable: total leased (L) or owned (O) fleet of

group g at time ¢

2.2.3. Objective function

Eq. (1) represents the objective function of the model, which aims to
maximize the profit of the company, comprising the activities of
renting, purchasing and leasing vehicles and managing the fleet. The
first element of the objective function represents the revenue earned
from the fulfilled rentals, which is given by the price charged (depen-
dent on the group requested) times the number of rentals served using
leased and owned fleet. This term of the objective function renders the
model non-linear, since two decision variables are multiplied.

The second term represents the cost of purchasing the owned fleet —
a one-time cost. The following terms are related with the costs of
leasing the vehicles (recurrent throughout the leasing period) and the
ownership costs (also recurrent). The latter are significantly smaller
than the former and aim to represent the regular costs of maintaining
the owned fleet. Then, the empty transfer costs are represented, which
depend on the group of each vehicle transferred and the origin-desti-
nation pair. Finally, an artificial marginal cost to offer upgrades is in-
cluded in order to ensure that this practice only exists if there are no
available cars from the required group.

max Profit from fulfilled rentals — Buying cost — Leasing cost

—Ownership cost
— Empty transfer cost — Penalty for upgrading=

[[ zi: U + ur‘zg] Zi]lqmpPRIm] - gz_] [Z_: ]Cos
[u,ﬁg + u,?lg]PYU

= g=1
(€Y

5>

=1 a=1

~

A
a=1

G
L ()
[yslsth + yxlsth]] gsls2 — Z Z

g=1 rer8

2.2.4. Constraints

Stock calculating constraints. Eqs. (2)-(6) represent the calculation of
the “stock” of available vehicles of a certain group, in a specific
location, at a specific time. These constraints also link the problem
for the different time periods and locations.

Eq. (2) aim to characterize the stock of owned vehicles of each
group, in each location, for each time period except the initial one. The
stock is equal to the one of the previous period, increased by expected
arrivals from rentals and empty transfers that started on previous sea-
sons (parameters) and by the arrival of vehicles that were being em-
ployed in rentals that started this season and were meanwhile returned
to this specific location, decreased by the vehicles that were meanwhile
occupied by rentals that started in this location, increased also by the
vehicles that were being empty-transferred from other locations and
have meanwhile arrived, and finally decreased by the vehicles that
were transferred to other locations.
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+ ONU?,

ONY), ais

gts

Z Z “r?a,g

rer% a=1
S
0}
Z ys,c,g,t—l
c=1 (2)

Egs. (3) and (4) represent a similar situation yet applied to the
leased fleet. One of the main differences of this type of fleet is that
acquisitions may occur throughout the season. Therefore, a similar
structure can be seen when confronting with Eq. (2), but with the ad-
dition of some terms related with the acquisition of leased vehicles. In
Egs. (3) and (4), the stock is increased with the corresponding leasing
acquisitions. Then, since leased vehicles must be removed from the fleet
after the leasing period (LP) is over, Eq. (4), valid for all time periods
greater than the leasing period, also decrease the stock by the number
of returned leased vehicles.
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Egs. (5) and (6) calculate this stock for the beginning of the season
(t = 0). As for the owned fleet, Eq. (5), the initial stock will be equal to
the stock existent in the previous season (parameter) and the number of
purchased vehicles. The leased fleet, Eq. (6), is considered to be initially
null.

gOS_INXO+w Vg s

()

gOA—O Vg s

(6)

Capacity / Demand constraints:. At a given location and time period, the
number of rentals fulfilled and the empty transfers that start at that
location and time are limited by the stock of available cars - Eq. (7). Eq.
(8) ensure that the number of rentals fulfilled is also limited by the
demand for the rental type, at the chosen price level.
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Business-related constraints:. The upgrading policies (i.e., which groups
can be upgraded to which groups) are translated into Eq. (9).

(u,{;g + uroag)
9

Also, the number of purchased vehicles in each time period is lim-
ited by the total available budget - Eq. (10).

A
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Other constraints:. Eq. (11)ensure that only one price level is chosen per
rental type and antecedence.

M~

Qrgp =1 Vr,a
1 an

p

In order to facilitate the construction of the objective function, an
auxiliary decision variable was created that represents the totality of
the leased (L) and owned (O) fleet of a certain group in each time
period. Eq. (12) define it as the sum of the stock of vehicles at the rental
locations, the vehicles that are currently being used in rentals and the
cars currently being transferred between locations.
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Finally, Eq. (13) represent the domain of the decision variables.
Except for the binary variable that selects the price level to be charged,
all variables are integer and non-negative.
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A brief discussion on some insights regarding model structure are
presented on Appendix A.1. This discussion is based on an analogy
between the formulation proposed and the transportation problem
model and helps further understand the inherent structure of this pro-
blem.

3. Proposed solution method

Since the Capacity-Pricing Model is significantly complex and hard
to solve for real-sized instances, inclusively due to the non-linearity of
the objective function, a solution method was proposed to obtain good
quality solutions within a reasonable time-frame.

The overall idea of the method is based on the decomposition of the
original model in pricing decisions and the remaining decisions, exploring
the structure of the mathematical model. A metaheuristic — in this case,
a genetic algorithm - is used to search for good pricing strategies. Here,
for simplicity, the term pricing strategy will be used to represent a set of
feasible values for the pricing decision variables g, Vr, a, p (see
Section 2.2.2). To assess how good a pricing strategy is, the values
corresponding to the pricing decisions are fixed and the mathematical
model is solved for the remaining variables. The resulting objective
value quantifies the profit that can be obtained with the pricing
strategy.

Fig. 1 shows the overview of the proposed solution method. Biased
Random-Key Genetic Algorithm (BRKGA) is the metaheuristic used to
search good pricing decisions and is represented by the central diamond
shape. In this section, the BRKGA framework will be detailed, including
the structure of the chromosomes and population. Fitness calculation is
the process within the genetic algorithm that assesses how good each
pricing strategy is and, as mentioned above, comprehends solving the
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mathematical model with the pricing decisions fixed. In fact if the
prices are fixed inputs and not decision variables, the problem becomes
an integer linear problem and hence easier to solve. Such problems are
special cases of Mixed Integer Programs (MIP) and due to ubiquity of
this acronym, it will be used to represent this problem. In order to speed
up the process, the linear program (LP) that results from relaxing the
integrality constraints of this MIP is considered as a substitute ap-
proximation for the fitness evaluation.

From this search procedure, the best pricing strategy is retrieved
and the final value to the remaining variables is calculated by fixing the
pricing strategy and solving to optimality the resulting MIP model
(bottom rectangle in Fig. 1).

BRKGA’s “generation zero” is conventionally entirely random. In
this solution method, specific knowledge about this problem, such as
the natural decomposition scheme that arises from forbidding upgrades,
was used to improve the performance of the BRKGA’s search. Initial
heuristic pricing strategies were generated and fed into the “generation
zero”. These solutions are achieved by decomposition, relaxation and
construction, and are represented by the rectangles on the left that are
shown as inputs to the BRKGA procedure. This will also be detailed in
this section, with a full discussion on the modeling choices made, which
are also represented in the bottom of Fig. 1.

3.1. BRKGA framework

A Biased Random-Key Genetic Algorithm (BRKGA) was used to
guide the search over different pricing strategies. In genetic algorithms,
a solution is considered as an individual belonging to a population and
encoded in a chromosome. The objective function value of the solution is
translated into the chromosome’s fitness. A population, composed of a
set of individuals, is evolved over some generations. Each generation
involves the creation of a new population through the combination of
pairs of individuals of the previous generation (the parents), as well as
random mutation. The fitness value is herein critical for the selection of
elements to combine and produce the following generation. Genetic
algorithms with random-keys use random real numbers between 0 and
1 as genes. A deterministic procedure, the decoder, translates each
chromosome into a solution of the original problem and evaluates it in
terms of its fitness [22].

In this case, the solutions that compose a population and that were
translated into chromosomes are the pricing strategies. The value of each
pricing strategy would be the result of solving the MIP model with the
price as a fixed input. However, in order to accelerate the procedure, an
approximation was used to evaluate the fitness of each chromosome:
the linear program (LP) resulting from relaxing all integrality con-
straints. To obtain the final solution, the MIP model is run with the
integrality constraints considering as price input the best pricing
strategy found by the BRKGA.

3.1.1. General idea and motivation

The general idea of the proposed solution method is to use BRKGA
to generate and evolve pricing strategies. Each pricing strategy is
evaluated in terms of the optimum outcome for all the decisions, by
solving the Capacity-Pricing Model to optimality with prices as inputs.
This allows to decompose the main problem in easier sub-problems. At
the same time, the fact that this decomposition and the search within
the consequent sub-problems are guided by a metaheuristic gives the
solution method, at least theoretically, a certain validity and con-
sistency. Moreover, by using a population-based method, it is expected
that local optima will be avoided.

3.1.2. Chromosome structure

A chromosome represents a pricing strategy, i.e., the price levels
chosen for each rental type, requested with a certain antecedence. A
chromosome is a vector of genes, which can take on a value — an allele -
between 0 a 1. In this structure, each gene in the chromosome relates to
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Fig. 1. Overview of the proposed solution method.

the combination of a rental type with an antecedence level, therefore
each chromosome hasIR| X |A| genes, where IR| is the number of rental
types and | Al the number of antecedence levels. The allele of the gene,
i.e. the random number (n) associated with it, is then compared with
the threshold that comes from dividing the range [0,1] in IP| equal
partitions, where |P| is the number of possible price levels allowed:

price level = [

n
— | +1
1/1PI a4

Fig. 2 illustrates this translation process for a simple example.

3.1.3. Fitness evaluation

In order to understand the value of each pricing strategy, the fitness
of the chromosome is evaluated. As mentioned above, the objective is to
understand what the optimum result of using each pricing strategy is,
considering the impact it has in all other decisions. To achieve this, one
should solve the MIP that results from fixing on the Capacity-Pricing
Model the pricing strategy given by the chromosome. Preliminary tests
showed that, although the MIP model is fairly quick to solve, the so-
lution times (around a few minutes) were not adequate when con-
sidering a population of considerable size that should evolve for some
generations within a reasonable time frame. Therefore, to significantly
speed up the process, the linear relaxation of the MIP (LP) was used as
an approximation.

For this approximation to be valid, it is important to guarantee that
not only the LP obtains an objective value similar to the MIP but also
that the fitness ranking by which the chromosomes are sorted in a
population is similar. In fact, in BRKGA, the evolution of a population
consists, on a simplified view, in three main steps: (1) the best elements
of the population (the elite) are directly copied to the next generation,
(2) new chromosomes are generated from the cross-over of two ele-
ments of the current generation (elite or not), and (3) new chromo-
somes are randomly generated and inserted (mutant chromosomes).
The fitness is used to sort the elements of a population so that the top
(elite) and bottom elements are identified and steps (1) and (2) take
place.

Therefore, to validate this approximation, 100 chromosomes were

T T T3

randomly generated and evaluated using the MIP model and its LP
relaxation, based on Instance 1 (see Section 4.1). As expected, the LP
was always solved in a few seconds, while the MIP was given a time
limit of 2 min and could prove optimality in approximately one third of
the cases. Fig. 3 shows the boxplot for each situation. In fact, the values
of the objective function were very similar, even in the cases where the
MIP could not prove optimality. As expected, the LP approximation
obtained results more similar to the MIP when the latter was able to
prove optimality. However, in both cases, the differences are very small
(always less than 0.14%).

As for the order by which these 100 chromosomes are sorted, there
are some differences when using the objective function value of the LP
or of the MIP. Nevertheless, these differences do not appear to be sig-
nificant. Fig. 4 shows this by plotting the chromosomes in the order
sorted by LP approximation against the MIP objective function value. With
this, it is possible to conclude that, although the ranking order is not
exactly the same using the two approaches (if it were the graph would
show a monotonically decreasing plot), where there are differences in
ranking position there are no major differences in the objective function
value. For example, the main difference is between positions 33 and 35
and here the difference of the MIP objective function value between the
three chromosomes in these positions is only of 0.03%. Therefore,
solving the LP relaxation provides a valid approximation for the MIP
objective value in the context of this solution method.

3.2. Generation zero: Heuristically generated initial pricing strategies

In order to boost the performance of the BRKGA, some specific
pricing strategies were added to the (conventionally entirely random)
initial generation, or “generation zero”. The goal was to use specific
knowledge of the problem to provide solutions that could have a good
performance and could otherwise be missed. This specific knowledge is
especially related with practical-driven simplifications or relaxations of
the original problem. For example, if upgrades are not allowed, the
problem becomes separable by vehicle group and hence easier to solve
and the resulting pricing strategy may show significant potential to
improve and evolve in this framework.

T4 Fig. 2. Chromosome structure and translation into a

a a as a; ap as a a as

pricing strategy. Example of choice among 2 possible

ap a as
price levels for 4 rental types (r) and 3 antecedences

chromosome: [ 0.86][0.22][0.74 | [0.15 | [0.78] [ 0.19 | [ 0.52 | [ 0.66 | [ 098 | [ 0.41 ] [ 0.12 | [ 0.05 ]

(a).

price level 1 (> 0.50) X X X X X X
price level 2 (< 0.50) X X X
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Fig. 3. Box plot for the percent variation between objective value of LP re-
laxation vs. MIP for 100 random chromosomes.
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Fig. 4. MIP objective function (OF) value of 100 random chromosomes sorted
using the LP approximation.

In this work, the addition of initial pricing strategies was structured
according to their sources. The initial prices were thus obtained by
three types of procedures:

® Decomposition of the main problem in separable sub-problems;
® Relaxation of integrality constraints;
e Constructions of naive strategies.

Decomposition:. One of the “natural decompositions” of the Capacity-
Pricing Model was previously mentioned and consists in solving the
problem for each vehicle group individually. Although the resulting
sub-problems are still INLPs, they are smaller and easier to solve, and
provide significant information in a practical context. Another
decomposition approach often used in multi-period problems is to
separate the problem by time period. In this case, it corresponds to
solving the problem with a “myopic” perspective, considering one week
at a time (if the week is used as time unit) and using the decisions of the
previous week as inputs of the following one. Two approaches were
used, with different “myopia degrees” that were materialized in how
the leasing costs were accounted for. In the most myopic approach, only
the leasing costs for that specific week were considered whether in the
other approach if a leasing was decided in that week the leasing costs
for the entire leasing period were imputed to the decision week. Other
“myopic” aspect of both these approaches is that purchases for the
owned fleet are only considered on the first week. In conclusion, three
initial pricing strategies are generated by decomposition: one by group
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decomposition and two by time period decomposition.

Relaxation:. The initial pricing strategies generated by this method do
not necessarily arise from specific knowledge about the problem, but
from the behavior of the Capacity-Pricing Model. Some preliminary
experiments were conducted in order to understand if relaxing the
integrality constraints of specific (integer) decisions would have a
significant impact on both solving speed and solution quality. From
these experiments, four different relaxation approaches were selected.
The first consisted in relaxing the integrality of all decision variables,
except the binary price selecting variables. The remaining three
consisted on relaxing the integrality of all decision variables, except
the binary price selecting variables and one of the three main decisions:
acquisitions (w), stock (x) and rentals fulfilled (u). Each of these four
approaches are still based on non-linear models, yet are easier to solve
than the original one.

Construction:. These initial pricing strategies are generated not based
on the Capacity-Pricing Model but on construction heuristics and aim to
represent the naive or obvious solutions that could otherwise be missed.
It is not expected that these strategies allow for a significant
improvement boost, yet, since the processing time of enunciating
these strategies is negligible, it is worth considering them, as they are
often the strategies “at hand” to be used by companies. There are two
ways of constructing naive strategies: one is to price every rental type
requested at every antecedence level with the same price (1| pricing
strategies are thus generated, where IP| is the number of possible price
levels), and the other is to apply always increasing or decreasing price
levels to a rental type, depending on the antecedence (which leads to
two other naive pricing strategies).

Modeling options

The decomposition and relaxation methods to obtain initial pricing
solutions are based on non-linear models. Although these models are
simpler and easier than the original Capacity-Pricing Model, pre-
liminary experiments revealed difficulties in tackling some of the bigger
real-sized instances (see Section 4.1). To face this, it was necessary to
define and compare basilar modeling options.

Table 1 compares four types of models that can be used to generate
initial prices: multi- and single-period (M)INLP and Constraint Pro-
gramming (CP) models. Single-period models are introduced to tackle
the decomposition by time period. The construction of naive strategies is
not represented in the table since it consists in enunciating pricing
strategies and not in solving mathematical models.

The most immediate option would be to use the Capacity-Pricing
Model (INLP multi-period) and a single-period corresponding version.
The multi-period model suits the decomposition by group, with the ad-
dition of a group of constraints to ensure that no upgrades are allowed,
and the four types of integrality relaxation considered. In both cases,
preliminary tests showed that there is a practical limitation on the size
of the instance tackled, especially due to the compile-time of the non-
linear segment of the objective function. However, this time can be
considered a “fixed cost”, since the objective function is common to
these five initial prices to be generated (one by group decomposition and

Table 1
Modelling options comparison.
Decomposition
By group By time period Relaxation
(M)INLP multi-period v - v
(M)INLP single-period - v v
CP multi-period v - X
CP single-period - v X

@ Subject to size limitations.
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four by integrality relaxation) and thus only has to be compiled once.

The single-period model could be used to generate the two initial
pricing strategies based on time-period decomposition, with similar in-
stance size limitations. Nevertheless, since the objective function is
different, a new “fixed cost” should be considered. By definition, it
could also be used while relaxing the integrality of different decision
variables.

Summarizing, each of the first two lines of Table 1 encompass a
fixed resolution time to compile the non-linear model (which leads to
limitations in the instance size) and a variable time to solve per initial
price.

As the instance size limitations can hinder the generation of de-
composition and relaxation initial pricing strategies for bigger instances
and are mainly caused by the non-linearity of the objective function, a
different modeling (and, consequently, solving) approach was con-
sidered: the adaptation of the multi-period and the single-period (M)
INLP models to a multi-period and a single-period Constraint
Programming (CP) models. Constraint Programming was considered
due to its ability to deal with non-linearity issues, which were con-
suming the most time in the previously considered models.

First and foremost, Constraint Programming is a “paradigm for
solving combinatorial search problems” [27] and a modeling approach
suitable for integer decisions. The basic idea of CP is that variables have
finite integer domains, related by a set of constraints that must be sa-
tisfied and that define the finite solution space. Therefore, it cannot be
used to tackle the generation by relaxation. Preliminary tests showed
that there were practical limitations on the instance size for the multi-
period CP model for group decomposition. Moreover, these limitations
were more significant than the ones found for the INLP model (i.e.,
some instances that could be tackled by the INLP could not be tackled
by the CP multi-period model). However, for the single-period CP
model, no significant size limitations were found.

Concluding, for the decomposition by group and relaxation the ori-
ginal Capacity-Pricing Model with additional constraints was selected
as preferred modeling approach, while the CP single-period model was
used to heuristically generate initial prices based on time decomposition.
The CP single-period model is presented as an Appendix (Section A.2)
and was developed with two alternative objective functions, depending
on the degree of myopia, as previously discussed.

In order to ensure a reasonable run time, a practical limit was set to
establish for which instances relaxation and group decomposition initial
prices could be generated. Nonetheless, few instances are expected to
surpass this limit. The limit was calculated based on computational tests
that showed that there is an exponential relationship between the size
of the instances (measured by the number of rental types |R| times the
number of vehicle groups IG1) and the time to generate relaxation and
group decomposition pricing strategies (see Fig. 5). In order to keep run
time for these procedures under the limit of 100 min, for instances with
IRI X IG| > 8, 250 it will not be advantageous to generate prices by re-
laxation and group decomposition. As observed in Fig. 5, only the two
biggest instances, which are considerably bigger than the remaining
ones, would be included in this set. The impact of the generation of
these initial pricing strategies on the overall run time will be further
discussed on Section 4.

4. Computational tests, results and discussion

This section aims to present and discuss the computational tests
performed and results obtained, as a means to validate the different
components of the solution method, as well as its overall relevance.
This section describes the real-sized instances generated, based on the
ones available in the literature, to perform these tests. Then, a baseline
of comparison is established, in order to understand the impact of the
capacity and pricing integration versus the (typical) sequential/hier-
archical approach. Finally, the most relevant results will be presented
and discussed, including a comparison with an exact approach to the
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Fig. 5. Time to generate group decomposition and relaxation initial prices,
using (M)INLP models.

original INLP using a non-linear solver.

4.1. Instances

In [28], twenty instances for the vehicle-reservation assignment
problem in car rentals are presented. These instances are based on real
data retrieved from a Portuguese car rental company and contain real
information regarding detailed reservation requests and vehicles. The
data regarding reservation requests was used to generate fourty realistic
instances. This section explains how these instances were generated,
with special focus on types of rentals and demand data.

Instances for the vehicle-reservation assignment problem

The vehicle-reservation assignment problem presented in [28]
consists in assigning specific vehicles to fulfill reservation requests in
order to maximize the profit of the car rental company. The instances
made available [29] provided, among other parameters and informa-
tion, full lists of reservation requests that the company had received up
to specific dates. These requests were characterized by start and end
date (and hour), start and end rental station, vehicle group requested,
the profit expected from fulfilling the request, a priority status (related
with customer confirmation) and an indication whether the customer
would, if needed, accept a downgrade, which are used by the company
as a last resource (upgrades were assumed to be always accepted).

As expected, in these instances the density of requests is higher for
closer dates. Fig. 6 exemplifies for a specific instance how the re-
servations are distributed in time according to their start date and
rental length.

Adaptation towards realistic rental types

In order to build significant and realistic rental types for the capa-
city-pricing integrating model, the reservation requests listed on the
above-mentioned original instances were aggregated by rental types.
All listed reservation requests that shared the following characteristics
were aggregated by rental types: group of the vehicle required, starting
week, ending week, starting zone, and ending z one.

As for the start and end time, rentals were aggregated in a weekly
basis due to the strategic level of the decisions considered in this model,
as discussed in Section 2. Moreover, only reservations that start within
the time horizon of twelve weeks were considered.

As for the start and end location, the original list of reservations
detailed the specific rental station. Once more, due to the type and
impact of decisions considered in these models, the start rental stations
mentioned in the original instances were aggregated in four zones. As
for the end zone, since in the original instances it was almost always
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Fig. 6. Example of original instance for the vehicle-reservation assignment
problem - distribution throughout the time horizon according to start date, by
rental length.

coincident with the start zone, it was also randomly determined.

From this aggregation, other parameters were also defined: the
number of rental zones and the number of required groups are depen-
dent on the rental types for each instance.

Demand inputs

The aggregation of the reservations described previously in this
section provided a measure of the actual demand for the different types
of rentals, based on the number of listed reservations that fell into each
aggregated bin (rental type).

Nevertheless, in this model, the demand input DEM,,, for each
rental type r depends on the price level p = {1, ....,P} and on the ante-
cedence a = {0, ..,A} with which the rental request was made.
Therefore, there was a need to generate different levels of demand for
each rental type, related with the variation of these two indices. The
demand given by the aggregation of reservations on the original in-
stances (OD) provides a realistic reference for each rental type, and sets
the reference demand for the first price level (p = 1). The reference
demand (RD) for the following prices levels (p > 1) is strictly de-
creasing and is obtained by the following equation, where || stands for
the number of price levels and « is a parameter that controls the gap
between the levels.

OD, p=1
RD, = oD
© BB - i P>

15)

Note that @ = 1 ensures that the reference demands are strictly
decreasing and never null. However, if needed, it is also possible to
model the demand-price relationship of a luxury product, where the
demand increases as the price increases, by setting a < 0. In this
specific case, based on preliminary results and type of business, the
value a = 2 was chosen.

After setting the reference demand for each price level, one needs to
generate the demand per antecedence as is detailed in the following
equations, where f3 represents a randomly generated number such that
Belo, 1[:

RD,, a=0
DEM,qp = { RDp41 + [B(DEM; pq—1 — RDpy1 + 1), a>0Ap <P
|8 X DEM, pq-11, a>0Ap=P

(16)

The reference demand for each price level is associated with the first
antecedence level. For the following antecedence levels, the demand
value will be built from the reference demand of the next price level, to
which will be added a fraction (8) of the gap between this and the
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Fig. 7. Example of a generated demand profile for a specific rental type.

demand value of the previous antecedence. On the last price level, a
similar reasoning is applied, where the reference demand upon which
the value is built is zero. This calculation ensures that all values that the
demand takes across price levels are greater than the reference demand
of the next price level. Fig. 7 represents a possible demand profile for a
rental type which had an original demand OD = 329.

The generated demand profiles are based on realistic data from a car
rental company that operates in Portugal, which is a relatively small
market. In order to validate the results for bigger markets, a scale factor
was also considered when generating the demand profiles. More spe-
cifically, two different instances were generated from each of the ori-
ginal listings of requests: the first is directly derived from the original
instances (“scale factor” of 1) and represents a small/medium market
such as Portugal, while the second has a “scale factor” of 100, which is
multiplied to the former demand profile, thus representing the chal-
lenges faced by a company operating on a significantly bigger market.

Remaining inputs

Some parameters were unknown in the original instances or not
fully adaptable to this model and were thus randomly generated, based
on previously defined minimum and maximum values and respecting
the relationship and hierarchy between vehicle groups, when applic-
able — for example, for the monetary value associated with each price
level and group. The cost parameters were also generated in a similar
fashion, yet maintaining a reasonable comparison between them when
needed, e.g. the daily leasing costs are always significantly higher than
the daily ownership/maintenance costs.

The upgrades were allowed in a fully nested way, i.e. the vehicle
groups follow an hierarchy and rentals that require a least valued group
can be upgraded to all groups that are more valued.

The budget was also randomly set yet for all instances it was pro-
portional to the number of rental types and the scale factor of demand.

Table A.1, on Appendix A.4, details the main characteristics of each
of the forty instances generated following the methodology described in
this section. The instances are available at Oliveira et al. [30].

4.2. Baseline: Hierarchical resolution strategy

In order to justify the advantages of integrating capacity and pricing
problems, a baseline resolution strategy was developed for comparison,
based on a more traditional sequential or hierarchical decision-making
process. The goal of this comparison is to determine the potential of
integrating these problems. Fig. 8 depicts the overall hierarchical ap-
proach. In this framework, the first decisions made are the ones related
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Fig. 8. Structure of the sequential baseline re-
solution strategy.

with the acquisitions (capacity), based on average prices and demand
for each rental type. These decisions are made for the fleet as a whole,
without considering the deployment between locations. The aggregated
number of fulfilled rentals is also decided in order to account for up-
grading decisions. On a second phase, the deployment, empty transfers
and consequent stock decisions are made, as well as the pricing deci-
sions, also implying the decision on the number of rentals fulfilled. The
second phase thus consists on solving the original Capacity-Pricing
Model where the acquisitions (for the overall pool of locations) are
fixed inputs. The mathematical programming models used for the first
and second phase are adaptations from the model presented in
Section 2.2 and are detailed in Appendix A.3.

4.3. Structure of the tests

Proposed solution method:. To assess the performance of the solution
method proposed in Section 3, each of the forty instances (see
Section 4.1) was run twice. Firstly, the BRKGA was run with a fully
random generation zero. Secondly, the heuristically generated initial
prices were added to this generation when running the BRKGA. This
makes it possible to measure the impact of using these initial prices.

To implement the BRKGA, the “brkgaAPI” [31] was adapted. Apart
from the size of the chromosomes that is strictly dependent on the
number of rental types and vehicle groups of the instance (see
Section 3.1), the remaining main parameters were kept constant for all
instances. The default values suggested in Toso and Resende [31] were
adequate for the problem herein considered and thus used (Table 2). No
parallel decoding was applied and one independent population was
considered. This was due to the fact that the decoding procedures are
based in mathematical models and are therefore significantly more
complex and time-consuming than the ones usually used with this
metaheuristic. Finally, the stopping criterion chosen for the BRKGA
procedure was the solving time (1 h).

As for the heuristic generation of initial prices, a time limit was set
for the group and time period decomposition and relaxation. The con-
struction-generated prices are virtually immediate to generate. The
group decomposition and the relaxation involve solving INLP models,
as discussed in Section 3.2. For each of these models, a time limit of
10 min was set. As for the time period decomposition, two series of
single-period Constraint Programming models were solved (for the two
types of objective functions), with a time limit of also 10 min.

As for the final MIP run used to solve to optimality the best pricing
strategy, a time limit of 10 min was applied, although it was never
reached.

Comparison baseline:. Besides the proposed solution method, a baseline
was developed based on the sequential resolution of the same problem

Table 2

Main BRKGA parameters that are similar for all instances.
Parameter Value
p Size of population 50
pe Fraction of population to be the elite-set 0.20
pm Fraction of population to be replaced by mutants 0.10
p Probability that offspring inherits an allele from elite parent 0.70
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(see Section 4.2). Each instance was solved as well using this method. In
order to be conservative when assessing the performance of the
proposed method, the time limit for the baseline was set to be
slightly bigger than the actual maximum total time to solve when
using the integrated method — 2 h and 40 min (9600 s).

Exact approach to the Capacity-Pricing Model:. In order to validate the
need for a non-exact solution method, the mathematical model
presented in Section 2.2 was solved using a non-linear solver for each
instance, with the same time limit set for the proposed method.

Technical details:. The algorithms, Mathematical Programming models
and Constraint Programming models were developed in C+ +/IBM
ILOG Concert Technology and were run on a HP Z820 Workstation
computer with 128GB of RAM memory, and with 2 CPUs (Xeon E5-
2687W 0 @ 3.10 GHz). The MIP and MINLP Solver used was CPLEX
12.6.3 and the CP solver used was CPLEX CP Optimizer 12.6.3.

4.4. Results and discussion

In the remainder of this section, the results will be presented and
discussed. Four main issues will be discussed in more detail: the ad-
vantages and disadvantages of feeding heuristically generated initial
prices to BRKGA’s “generation zero”, which initial solutions perform
the best, the overall performance of the integrating approach versus the
sequential baseline, and the advantages and disadvantages of using a
non-exact approach to this problem.

Impact of using initial prices

One of the novelties of the proposed approach was the use of
heuristically generated initial pricing strategies to compose part of the
initial generation of the BRKGA framework. It is thus important to
understand how this part of the methodology impacts the overall per-
formance in terms of solution quality and solving time.

First and foremost, using heuristically generated initial prices is
significantly beneficial for the solution quality. Fig. 9 presents the im-
provement on the final solution obtained by the full methodology (in-
cluding heuristically generated initial prices) versus a similar BRKGA
procedure but with a fully random generation zero. The detailed values

100%

—e— Instances with scale factor = 1

—o— Instances with scale factor = 100
80%

60%

40%

20%

15%

Otyo

Instances increasing in size (|R| x [G]) —

Fig. 9. Improvement on final solution MIP objective function value: heur-
istically generated initial prices added to generation zero versus fully random
generation zero.
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that support this figure can be found in Table A.2, on Appendix A.4. As
observed, adding heuristically generated initial prices to the initial
generation improves significantly the final solution, with results at least
15% better and, for some instances, more than 50%.

This level of improvement is due to the fact that the heuristically
generated initial prices represent significantly good solutions. This
statement is supported by two facts: (1) the fitness of the initial pricing
strategies is consistently the best fitness of the initial generation, and
(2) BRKGA has less room to evolve when these good solutions are di-
rectly added to the initial generation.

In fact, the best of these initial pricing strategies (evaluated in terms
of their fitness — see Section 3.1.3) is for all instances the best of the
initial generation (1). Tables A.3 and A.4, in Appendix A.4, present the
detailed results for the fully random BRKGA run and the run with ad-
ditional heuristic initial prices. These tables include the best fitness
obtained for the initial and last generations, the number of generations
that the method was able to evolve within the time limit, and the final
MIP run objective function value and gap. Moreover, for the run with
additional heuristic initial prices (Table A.7), the best fitness obtained
by these added initial prices is presented and it is possible to observe
that it always matches the best fitness of the initial generation.

Moreover, there are significant differences when comparing the
evolution that BRKGA is able to achieve (i.e., how much the best fitness
of each generation increases from the initial to the last). Fig. 10 depicts
this evolution (in percentage of increase from initial to last generation),
discriminating the scale factor of the instances (i.e., the size of the
market considered) and whether the “fully random generation zero”
version of BRKGA or the “initial prices added to generation zero” ver-
sion of BRKGA was used. Although the size of the market did not in-
fluence significantly this evolution, the type of methodology used did.
When these (good) initial pricing strategies were added to the initial
generation, the evolution was significantly smaller (2).

Other interesting conclusion of Fig. 9 is that there is a difference on
the improvement achieved by heuristically generating initial prices
when comparing the size of the markets considered (scale factor). The
improvement is bigger for instances that represent markets of the size as
the one in study (scale factor = 1), for the same number of rental types
and vehicle groups. This means that the procedures to generate initial
pricing strategies are especially efficient for smaller markets. This is an
expected result since generating initial prices often involves solving
complex models with a limit on solution time: the smaller the instance,
the better solutions are obtained.

Furthermore, there is a difference when comparing sizes of in-
stances (indicated by the number of rental types and vehicle groups):
the improvement achieved by adding initial prices to the initial gen-
eration tends to be more significant for bigger instances. This might be
explained by the fully-random BRKGA loosing impetus when the solu-
tion space increases significantly.

Nevertheless, the boost on solution quality obtained by inserting
heuristically generated initial prices on generation zero of the BRKGA
procedure comes with a price to pay: the additional time to solve.

40%

Prices added to gen. 0,

scale factor = 1

Prices added to gen. 0,

scale factor = 100
Fully random gen. 0,

scale factor = 1

Fully random gen. 0,
scale factor = 100

20%

Evolution

0%
Instances increasing in size (|R| x [§]) —

Fig. 10. Evolution of BRKGA: last generation best fitness versus initial gen-
eration best fitness.

Operations Research Perspectives 5 (2018) 334-356

3,679 39 7,564
o
o]
iz
<]
2
[}
2]
£
o 547
g 3294 T
7]
a0
]
-
4
<
Group de- Con Time BRKGA Final Total
composition  -struc decom-  evolution MIP
+ Relaxation  -tion position run

Fig. 11. Average time to solve each each component of the proposed method.

Fig. 11 shows the average time to solve each component for all in-
stances. In Appendix A.4, the discriminated values for each instance can
be found on Table A.5. These results reflect the time limits discussed on
Section 4.3. Group decomposition and relaxation, which imply solving
(M)INLP models, take more time than the other procedures to generate
initial prices. However, as it will be discussed in the following para-
graphs, they have a good performance. Also as expected, the MIP run to
generate the final complete solution is fairly quick.

Overall, the generation of initial prices increases significantly the
solving time. Nevertheless, this increase seems to be more than justified
by the boost on solution quality obtained. Moreover, although the
BRKGA is not able in average to evolve much of these already very good
initial solutions, it is important to ensure that local optima are being
avoided and that the variability of the solutions are improved as much
as possible within a realistic time-frame. In fact, it is important to bear
in mind that the ultimate goal of such a methodology is to be applied in
a decision support system to help companies make better plans.
Considering the time horizon of this problem, which aims to plan for a
full selling season, 2 or 3 h, even if multiplied by a finite number of
different runs to test different scenarios or strategic options (see
Section 5 for a more detailed discussion on this topic), seem to be a
small price to pay.

Initial heuristic prices — Comparing sources

Since the different sources of the initial prices added to the initial
generation of BRKGA take a significantly different amount of time to
solve, it is important to analyze their performance in terms of solution
quality. The performance is evaluated by the following measures: (1)
the number of times the initial price with the best fitness for some in-
stance was generated by this specific source, and (2) how close were in
average the fitness values of the initial prices generated by this source
to the best fitness of the instance (translating each fitness value into a
percentage of the instance’s best fitness), as well as the stability (or
variability) of this closeness (measured by its standard deviation).
Fig. 12 presents these measures for the four sources of heuristically
generated initial prices. Also, Table A.6 in Appendix A.4 details for each
instance the best fitness obtained by each source.

The standard deviation of the measure “percentage of best price” is
included to clarify the variability of the quality of the initial prices
generated by each source. Nevertheless, this variability could be as-
certained by the other two measures. In fact, if a certain source provides
a significant number of times the best price of the instance but has a
relatively low average percentage of best price — as happens for con-
struction — it is due to a high variability of the quality of the generated
prices.

Except for time decomposition, all sources provide more than once
the initial price with the best fitness of the instance. Relaxation achieves
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Fig. 12. Performance of the sources of initial prices: frequency of generation
and closeness to the best initial price generated for each instance.

this for more than half of the instances. Construction of naive/obvious
solutions seems to be quite powerful too. Nevertheless, as discussed
above, it is not very stable. As expected, for the same instance if some
obvious pricing strategy is very good some other is bound to be quite
bad. Group decomposition is not often the best initial pricing strategy
source yet it is very stable and, in average, significantly close to the best
initial price. As for time decomposition, it is never the source of the best
price and the average percentage of the best price is also penalized for
that. Nevertheless, it shows the less variability of all sources and also
consumes less time than group decomposition and relaxation.

In conclusion, all sources show some advantages, with results that
seem to be highly dependent on the instance, and it thus seems rea-
sonable to keep all of them in the procedure. Once again keeping the
“big picture” of the ultimate application in mind, the modular structure
of this part of the methodology also renders it easy to be translated into
a decision support system, where these modules or sources can be
turned on and off depending on the time/performance trade-off of the
decision-maker.

Performance versus baseline

Comparing the proposed methodology with the sequential baseline
presented in Section 4.2 establishes a quantitative proof of the value of
integrating capacity and pricing decisions in car rental. This is, in fact,
one of the main contributions of this work, as the integration of these
decisions, although conceptually supported by other works (see
Section 1), is now quantitatively justified versus a more traditional
sequential or hierarchical approach.

The sequential baseline defined in Section 4.2 gives an upper bound
on the value that can be actually obtained by companies, since it has
(slightly) more processing time and is already using the novel model
proposed, which is a detailed and enhanced representation of the pro-
blem. That is to say that it was designed to make the comparison be-
tween approaches fair and the relative performance of the integration
measured in a conservative way.

Fig. 13 shows for each instance the improvement in terms of the
final solution objective value obtained by the integrating versus the
baseline (sequential) approach. It is possible to observe that the im-
provement is extremely significant, growing exponentially with the size
of the instances. For every instance, the proposed approach is better
than the sequential approach. Moreover, it was able to solve the two
biggest instances, which could not be solved by the sequential method
and are thus not represented. Considering the instances that could be
solved, the average of improvement in objective value is 139%, yet it
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Fig. 13. Improvement of proposed integrating method versus baseline se-
quential approach, in terms of best objective value.

can go up to approximately 900%. Table A.7, in Appendix A.4, details
the improvement achieved for each instance.

Exact vs. non-exact approach to the Capacity-Pricing Model

The mathematical model presented in Section 2.2 was implemented
in a non-linear solver in order to evaluate the extent to what a
straightforward exact approach could perform well and thus assess the
need for non-exact solution methods for this problem.

Table 3 shows the overall results and Table A.8, on Appendix A.4,
details these results. For 13 out of 40 instances, using this exact ap-
proach would lead to slightly better or similar results than using the
proposed method. It is interesting to notice that the solver was always
stopped by the time limit, even when running these instances.

In 27 out of 40 instances the proposed heuristic method outperforms
the non-linear solver. In fact, for 7 of these instances, the exact solver is
not even able to find a feasible solution different from the “trivial so-
lution” (where all decision variables are set to 0 and the best objective
value is also 0). For the 20 instances where the solver is able to find
other feasible solutions, the proposed heuristic method achieves in
average 204% of improvement on the objective value. It is interesting
to notice that the size of the instances (measured by the number of
rental types |R| times the number of vehicle groups IG) is likely not the
only factor influencing the ability of the exact solver to find good so-
lutions.

Overall, these results support the importance of developing heuristic
solution methods as the one presented in this work to tackle the
Capacity-Pricing Model.

5. Conclusions

This paper tackled the integration of capacity and pricing problems
in car rentals, which are significantly relevant — both academically and
for practitioners. A new integrating mathematical model was proposed,
as well as a solution procedure based on its decomposition, guided by a
biased random-key genetic algorithm. The value of integrating these
problems was established and empirically measured by successfully
comparing the results of the proposed solution method with the ones
obtained by a hierarchical and sequential approach.

The solution methodology herein proposed may be used by com-
panies to support their decisions, since it was built on a realistic model
and is relatively fast to produce good solutions. In fact, as previously
discussed, its average solving times and modular structure allows for it
to be used as part of a decision support system where the final user
could run the procedure several times for different scenarios, such as
different levels of investment on the fleet or different demand forecasts.
At the same time, it would be possible to select different sources of
heuristically generated initial prices to better control time to solve and
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Overall comparison of the best values obtained by the proposed solution method (here denoted BRKGA) and by the non-linear solver (here denoted INLP).

# instances Average size indicator (IR| X IG1) Average improvement on best objective value: BRKGA vs. INLP
BRKGA worstperformance than INLP 4 2339 —2%
BRKGA similarperformance to INLP 9 695 0%
BRKGA better performance than INLP 27
— INLP: 1+ feasible solutions 20 3693 204%
— INLP: trivial solution 5 3441 -
— INLP: no feasible solutions 2 11845 -

Capacities:

Stockg—

Profit = function (p dl,l)

Needs:

Demand,_1,q-1

= function(wg),)

Stockg—»
= function(w§))

Stocky = +oo

= function (p dm)

Demand,_1,q-2
= function (p dl,z)

Demand,_5 q-1
= function (p dz,l)

Demand,_j q—>
= function (p dz,z)

Fig. 14. Representation as a “transportation” problem, with capacities on the origin nodes (stock of vehicle groups) and needs on the destination nodes (demand for
related rental types): zoom in a specific location (s = 1) and time (¢t = 1). The notation follows the mathematical model notation presented in Section 2.2.1 and, for

variability of solutions.

As for future work, the better development, modeling and integra-
tion of the demand-price relationship in the model could be developed.
In order to obtain more realistic and robust solutions, the stochasticity
of demand could be considered. Moreover, further economic studies
could help develop a more precise demand input for the model, thus
leading to more accurate results.

Finally, as it was previously mentioned, this sector shares important
characteristics with emerging mobility systems, such as carsharing,
namely fleet mobility and flexibility, heavy dependency on efficiency
and high occupation rates, and the ability to use prices to manage de-
mand. This work can thus be extended, e.g. by allowing the free floating
of the fleet (dropping-off vehicles in any location, not only previously
established locations), to help carsharing companies better manage
their fleet and pricing schemes. In Wagner et al. [32], the challenges
posed by the spatial flexibility of free float are identified and the

Appendix A

A.1. Insights on model and problem structure

authors propose a model to explain the variation of activity through the
proximity of certain points of interest. Building on this type of demand-
modelling techniques, the work developed in this paper can be further
extended to the rapidly expanding market of carsharing.
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The mathematical model developed on Section 2.2 brings some structural insights to the problem at hand. An analogy can be made between
specific sections of this formulation and transportation problems modeled with linear programming. One of the main differences resides in the fact
that most of the conventional parameters of transportation problems (capacities, needs, unit costs,...) are, in this formulation, decision variables.
Nevertheless, interesting insights can help understand the problem structure and model behavior.

Fig. 14 depicts this analogy for a section of the problem consisting of a specific location and time. For clarity, the problem is here simplified: it
considers only owned fleet (O), two vehicle groups g = {1, 2}, two types of rentals r = {1, 2} and two different antecedence levels a = {1, 2}, and it is
focused on a specific location s = 1 and time period ¢ = 1. In this small example, both rental types r = {1, 2} refer to rentals that start in the same
location and period of time, yet r = 1 requests a vehicle of group g = 1 and r = 2 of group g = 2. Also, the upgrading policy of the company states
that a rental type requesting group g = 1 can be upgraded to a vehicle of group g = 2, but not the other way around.

The origins of the transportation problem (nodes on the left) are the different vehicle groups plus a virtual node that represents all rental requests
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Table A.1

Main characteristics of the generated instances.
Instance Base Scale # rental # vehicle Size indicator

instance factor types (RI) groups(G) (Rl x 1gD)
[28]

1 8 1 428 1 428
2 8 100 428 1 428
3 18 1 486 1 486
4 18 100 486 1 486
5 3 1 517 1 517
6 3 100 517 1 517
7 5 1 562 2 1124
8 5 100 562 2 1124
9 12 1 572 2 1144
10 12 100 572 2 1144
11 20 1 831 3 2493
12 20 100 831 3 2493
13 11 1 865 3 2595
14 11 100 865 3 2595
15 19 1 922 3 2766
16 19 100 922 3 2766
17 13 1 924 3 2772
18 13 100 924 3 2772
19 1 1 564 5 2820
20 1 100 564 5 2820
21 4 1 948 3 2844
22 4 100 948 3 2844
23 7 1 724 4 2896
24 7 100 724 4 2896
25 6 1 742 4 2968
26 6 100 742 4 2968
27 9 1 793 4 3172
28 9 100 793 4 3172
29 14 1 1046 4 4184
30 14 100 1046 4 4184
31 16 1 1141 4 4564
32 16 100 1141 4 4564
33 17 1 933 5 4665
34 17 100 933 5 4665
35 15 1 1182 4 4728
36 15 100 1182 4 4728
37 2 1 1234 5 6170
38 2 100 1234 5 6170
39 10 1 2369 5 11,845
40 10 100 2369 5 11,845

Table A.2

Improvement on final solution MIP objective function value: heuristically generated initial prices added to generation zero versus fully random generation zero.
Instance of Instance of Size Improvement for Improvement for
scale factor scale factor indicator scale factor = 1 scale factor = 100
=1 =100 (Rl x 16
1 2 428 30.2% 19.3%
3 4 486 25.5% 21.4%
5 6 517 25.7% 18.1%
7 8 1124 35.8% 18.8%
9 10 1144 33.1% 16.5%
11 12 2493 45.6% 29.7%
13 14 2595 48.6% 34.4%
15 16 2766 45.9% 24.2%
17 18 2772 49.3% 33.5%
19 20 2820 50.2% 22.2%
21 22 2844 48.4% 33.7%
23 24 2896 48.7% 29.7%
25 26 2968 42.9% 23.9%
27 28 3172 48.6% 22.2%
29 30 4184 51.9% 28.6%
31 32 4564 53.3% 30.8%
33 34 4665 52.9% 36.3%
35 36 4728 55.6% 30.8%
37 38 6170 44.5% 28.9%
39 40 11,845 48.7% 37.2%

Average 44.3% 27.0%
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Table A.3
Proposed solution method - results for fully random BRKGA (without heuristically generated initial prices).
Instance Best fitness Best fitness # generations Final MIP OF Final
generation last value MIP
Zero generation gap
1 42,804 56,153 182 56,147 0%
2 3,879,500 4,908,510 245 4,908,490 0%
3 51,435 68,815 301 68,814 0%
4 4,862,010 5,997,660 184 5,997,660 0%
5 65,714 87,933 293 87,933 0%
6 6,142,810 7,877,400 289 7,877,400 0%
7 34,446 45,570 221 45,559 0%
8 3,084,800 3,924,010 310 3,923,860 0%
9 36,584 48,961 236 48,951 0%
10 3,177,430 4,106,230 280 4,106,070 0%
11 56,201 64,770 63 64,750 0%
12 4,945,060 5,645,490 59 5,645,440 0%
13 59,889 70,108 49 70,096 0%
14 5,306,280 5,955,530 54 5,955,480 0%
15 61,698 71,712 53 71,699 0%
16 5,470,600 6,174,840 53 6,174,680 0%
17 65,041 75,846 53 75,821 0%
18 5,755,090 6,499,770 49 6,499,680 0%
19 32,557 38,720 45 38,692 0%
20 2,852,850 3,301,400 41 3,301,250 0%
21 63,118 73,281 49 73,271 0%
22 5,592,730 6,290,130 50 6,290,060 0%
23 38,718 44,815 41 44,798 0%
24 3,334,590 3,752,240 43 3,752,090 0%
25 46,298 54,649 47 54,625 0%
26 4,097,910 4,680,220 43 4,680,120 0%
27 41,062 48,569 61 48,555 0%
28 3,593,020 4,116,970 77 4,116,700 0%
29 64,546 72,491 34 72,462 0%
30 5,629,730 6,185,670 36 6,185,630 0%
31 77,776 85,802 28 85,780 0%
32 6,795,650 7,303,810 28 7,303,520 0%
33 51,107 56,805 31 56,783 0%
34 4,417,890 4,826,680 33 4,826,640 0%
35 78,408 86,524 30 86,503 0%
36 6,777,220 7,307,780 31 7,307,720 0%
37 75,955 84,580 32 84,558 0%
38 6,614,440 7,294,210 39 7,294,080 0%
39 161,692 170,322 16 170,274 0%
40 14,656,500 15,212,500 15 15,212,500 0%

that will not be fulfilled, i.e. not assigned to a group. The capacity in the origins represents the number of vehicles of the specific group available at
the specific location and time and is a function of the acquisition decision for this group. For the virtual “no-group” origin node, the capacity is
unlimited.

The destinations (nodes on the right) are the requests for the rental types, with a certain antecedence. The need of each destination is the demand
of each rental type, for each antecedence, which is a function of the corresponding pricing decision (here the chosen price level is represented as
Pdra =Y cp P X Grgp)-

The unitary link “parameters” are here also highly dependent on the pricing decision. They represent the profit obtained from fulling a rental,
which is a function of the price charged. If an upgrade is offered, there is a penalization to account for. All links with origin in “no-group-node” have
a null profit.

In this problem, for a specific time and location, the flow between origins — available fleet — and destinations — rental requests — represents the
actual number of rentals fulfilled. The limitations on the number of rentals by the stock of available vehicles and by the demand for each type of
request reflect the main constraints of the problem, presented before. This type of analogy allows to better understand the structure of the problem
and the relationship between the different decisions.

A.2. Constraint programming single-period model

Considering the indices and parameters and based on the Capacity-Pricing Model presented in Section 2.2, the following single-period Constraint
Programming model was developed.

Note that each single-period model tackles a different set of rental types R;: dout = t, consisting of the ones whose starting date (dout) falls within
the considered time period t.

Decision variables
The following table presents the decision variables, as well as their domains.
g, =1{1,...P} price level charged for rental type r with antecedence a

wk = {0,...,ubwk}
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Table A.4
Proposed solution method - results for BRKGA with heuristically generated initial prices.
Instance Best fitness initial solutions Best fitness generation zero Best fitness last generation # generations Final MIP OF value Final MIP gap
1 73,087 73,087 73,087 137 73,087 0%
2 5,856,040 5,856,040 4,908,510 150 5,856,790 0%
3 86,301 86,301 68,815 139 86,329 0%
4 7,279,250 7,279,250 5,997,660 110 7,279,330 0%
5 110,504 110,504 87,933 129 110,548 0%
6 9,291,210 9,291,210 7,877,400 118 9,301,070 0%
7 61,889 61,889 45,570 72 61,878 0%
8 4,647,930 4,647,930 3,924,010 113 4,662,610 0%
9 65,101 65,101 48,961 66 65,139 0%
10 4,669,800 4,669,800 4,106,230 94 4,782,210 0%
11 93,649 93,649 64,770 23 94,248 0%
12 7,305,510 7,305,510 5,645,490 31 7,321,720 0%
13 103,769 103,769 70,108 18 104,172 0%
14 7,969,430 7,969,430 5,955,530 25 8,003,950 0%
15 104,247 71,712 19 104,624 0%
16 7,658,140 7,658,140 6,174,840 26 7,667,490 0%
17 113,191 113,191 75,846 18 113,213 0%
18 8,664,240 8,664,240 6,499,770 26 8,674,780 0%
19 58,140 58,140 38,720 19 58,121 0%
20 4,024,910 4,024,910 3,301,400 18 4,033,130 0%
21 108,267 108,267 73,281 19 108,768 0%
22 8,388,140 8,388,140 6,290,130 32 8,406,700 0%
23 66,509 66,509 44,815 18 66,613 0%
24 4,826,660 4,826,660 3,752,240 18 4,865,230 0%
25 77,619 77,619 54,649 20 78,055 0%
26 5,797,090 5,797,090 4,680,220 19 5,796,600 0%
27 71,358 71,358 48,569 28 72,141 0%
28 5,006,880 5,006,880 4,116,970 34 5,030,720 0%
29 110,077 110,077 72,491 13 110,046 0%
30 7,949,970 7,949,970 6,185,670 21 7,954,810 0%
31 131,509 131,509 85,802 16 131,486 0%
32 9,550,530 9,550,530 7,303,810 21 9,552,340 0%
33 86,853 86,853 56,805 15 86,827 0%
34 6,577,990 6,577,990 4,826,680 20 6,579,660 0%
35 134,592 134,592 86,524 17 134,573 0%
36 9,548,500 9,548,500 7,307,780 22 9,557,750 0%
37 122,101 122,101 84,580 20 122,145 0%
38 9,387,120 9,387,120 7,294,210 26 9,399,680 0%
39 253,300 253,300 170,322 9 253,255 0%
40 20,864,700 20,864,700 15,212,500 12 20,864,600 0%

w2 = {0, ...,ubw©®}

L/O _
g T

L/O
Y, s1s2g

L/O _
rag —

L/O
T

0, ...
= {0,...

0, ...

={0,..

, 2ubwl/0}
,2ubwt/0}

,ubu}

,prevWe/0 4 uby}

Number of vehicles of group g acquired by leasing available at location s. The domain upper bound is based on the
maximum demand for all rental types, considering the sum of all antecedence levels:
ubwl = Ere’R[ 2., max{DEM,,}

P

Number of vehicles of group g acquired for the owned fleet available in location s (only for ¢t = 0). The domain
upper bound is based on the available budget:

o _ B
ubw® = lC—gJ

Number of leased (L) or owned (O) vehicles of group g located at s. The domain upper bound is based on
purchases, yet not limited to them (interconnected time periods).
Number of leased (L) or owned (O) vehicles of group g transferred from location s1 to location s2 (starting on this
time period). The domain is limited by the stock available.
Number of fulfilled rentals requested as rental type r with antecedence a that are served by a leased (L) or owned
(O) vehicle of group g. The domain upper bound is based on the maximum demand for each specific rental type
and antecedence:
ubu = max{DEM,}

P

Auxiliary variable: total leased (L) or owned (O) fleet of group g. The domain upper bound is given by the
purchases of previous time periods plus the upper bound of the current rentals:

prevWto =% Zg [ngS/O]t,

Also, since the single-period model was developed to be solved sequentially for all time periods, all inputs (parameters) that are given by the
result of the decision variables from the previous time period will be noted with the prefix P. Note that the variable that represents the decision on

L/O L/O

the number of rentals to fulfill that start in the specific t, u;;,~ hasIR;| elements on the first index while the input Pu,q," that stores these decisions for
past time periods, has a corresponding number of IR| elements.
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Table A.5
Time to solve each component of the proposed method..
Time [s]
Instance Group decomposition + Relaxation Construc-tion Time period decomposition BRKGA Final MIP run Total
1 1512 5 605 3612 1 5735
2 3037 4 511 3624 0 7177
3 1643 4 468 3601 1 5717
4 3047 4 422 3626 0 7100
5 3040 5 510 3612 1 7167
6 3034 5 469 3607 0 7114
7 3057 5 516 3626 9 7213
8 3109 5 473 3624 2 7212
9 3057 5 518 3652 3 7234
10 3069 0 565 3641 3 7279
11 3217 5 573 3750 69 7615
12 3215 5 579 3609 5 7412
13 3242 6 481 3723 43 7496
14 3291 5 625 3699 3 7623
15 3270 5 578 3643 38 7534
16 3265 5 535 3756 4 7566
17 3265 5 480 3646 21 7417
18 3271 5 531 3651 4 7463
19 3279 5 525 3725 41 7575
20 3269 0 632 3635 7 7544
21 3283 5 530 3726 46 7589
22 3267 5 582 3648 4 7506
23 3289 5 578 3792 109 7772
24 3317 5 684 3744 5 7754
25 3296 5 531 3648 51 7530
26 3300 5 585 3705 5 7600
27 3342 0 534 3679 46 7601
28 3338 5 489 3655 14 7501
29 3613 5 584 3615 92 7910
30 3584 5 596 3643 6 7834
31 3729 5 593 3811 85 8223
32 3703 5 596 3738 6 8048
33 3775 4 546 3681 185 8191
34 3759 5 549 3738 4 8054
35 3784 5 491 3671 117 8069
36 3773 5 597 3611 25 8011
37 4364 5 599 3751 195 8913
38 4455 5 510 3729 29 8728
39 10,319* 6 530 3764 224 14,843
40 9,592* 6 585 3756 58 13,997
* Run despite size limitation discussed on Section 3.2. Not included in average.
CP model
Absolutely myopic objective function.
max Profit from fulfilled rentals — Buying cost—Leasing cost (for the time period)
— Ownership cost — Empty transfer cost — Penalty for upgrading=
IRl A G G s
max 3| D Uy + w2 [PRI g | — Do | D W |COS,
r=1 a=1 g=1 g=1 \ s=1
G G s S G
- z fgLLEAE - Z fgo Om\]g - Z Z Z yslisth + ysolsth TC&'SlSZ
g=1 g=1 s1=1 s2=1 g=1
G A
- Do g + ule [PYU
g=1 reR€ a=1 a7

Alternative: less myopic objective function (different leasing cost term).
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Table A.6
Comparison of the best fitness obtained by each approach to generate initial prices (best value for each instance highlighted).
Instance Group Time Relaxation Construction
decomposition decomposition
1 73,040 43,363 73,087 66,141
2 5,762,000 3,057,180 5,856,040 5,380,860
3 86,238 38,051 86,301 78,033
4 6,945,850 3,260,770 7,279,250 6,649,860
5 110,504 46,330 110,341 100,056
6 8,911,330 4,788,130 9,291,210 8,546,980
7 61,889 35,081 61,107 55,109
8 4,070,060 2,531,770 4,647,930 4,305,980
9 65,101 37,676 64,189 58,167
10 4,669,800 2,836,990 4,632,280 4,493,570
11 83,492 55,080 93,649 88,474
12 5,115,850 4,694,010 7,305,510 6,871,040
13 83,727 57,776 103,769 97,267
14 5,382,840 5,137,320 7,969,430 7,538,400
15 83,720 62,568 104,247 97,992
16 5,700,040 4,808,470 5,717,840 7,658,140
17 92,592 52,242 113,191 104,677
18 5,909,810 4,851,550 8,664,240 8,235,850
19 58,140 33,132 54,507 52,179
20 3,676,720 2,717,660 3,308,830 4,024,910
21 92,313 62,265 108,267 101,476
22 5,782,670 5,087,590 8,388,140 7,997,890
23 63,790 41,376 66,509 61,862
24 3,903,230 3,395,280 4,826,660 4,654,030
25 73,544 45,364 77,619 74,272
26 4,767,000 3,895,570 4,724,890 5,797,090
27 64,423 42,227 71,358 66,208
28 3,891,500 3,136,800 3,661,660 5,006,880
29 86,325 63,046 110,077 102,936
30 5,766,210 5,217,100 5,781,400 7,949,970
31 102,272 77,070 131,509 123,660
32 7,005,540 6,272,680 7,005,540 9,550,530
33 77,371 54,172 86,853 81,755
34 4,521,370 4,108,220 6,577,990 6,232,290
35 105,184 73,569 134,592 125,208
36 6,945,900 6,363,110 6,945,900 9,548,500
37 104,925 73,008 117,303 122,101
38 6,748,610 5,572,490 6,748,610 9,387,120
39 224,797 130,562 159,451 253,300
40 17,314,300 11,503,500 15,803,700 20,864,700
Table A.7
Improvement of proposed integrating method versus baseline sequential approach.
Instance of Instance of Size Improvement for Improvement for
scale factor scale factor indicator scale factor = 1 scale factor = 100
= =100 (R X G)
1 2 428 6.4% 4.4%
3 4 486 4.2% 3.0%
5 6 517 6.9% 4.4%
7 8 1124 5.3% 1.0%
9 10 1144 6.0% 3.1%
11 12 2493 145.9% 150.0%
13 14 2595 9.6% 88.2%
15 16 2766 67.5% 174.6%
17 18 2772 4.7% 32.9%
19 20 2820 57.1% 106.3%
21 22 2844 126.1% 161.2%
23 24 2896 79.1% 125.8%
25 26 2968 112.8% 205.1%
27 28 3172 85.2% 98.6%
29 30 4184 242.4% 179.4%
31 32 4564 128.2% 427.8%
33 34 4665 100.3% 332.7%
35 36 4728 900.6% 572.9%
37 38 6170 149.7% 363.3%
39 40 11,845 - -
Average 117.8% 158.7%
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Table A.8
Comparison of the best values obtained by the non-linear solver (INLP) and BRKGA with heuristically generated initial prices.
Instance Size indicator BRKGA best INLP best Improvement
(Rl x 16 value value BRKGA vs. INLP
1 428 73,082 73,059 0%
2 428 5,854,440 5,852,920 0%
3 486 86,349 86,306 0%
4 486 7,276,740 7,275,560 0%
5 517 110,562 110,482 0%
6 517 9,299,180 9,309,570 0%
7 1124 61,709 61,790 0%
8 1124 4,661,830 4,652,980 0%
9 1144 64,730 65,042 0%
10 1144 4,814,190 4,855,770 —-1%
11 2493 96,716 83,401 16%
12 2493 7,346,430 0
13 2595 105,274 106,594 -1%
14 2595 7,954,920 5,742,290 39%
15 2766 105,954 104,982 1%
16 2766 8,108,450 5,192,100 56%
17 2772 113,830 115,564 —2%
18 2772 8,663,270 7,672,260 13%
19 2820 56,125 44,669 26%
20 2820 4,042,860 2,921,580 38%
21 2844 108,628 110,285 —2%
22 2844 8,378,750 6,100,250 37%
23 2896 66,729 39,086 71%
24 2896 4,675,110 0
25 2968 78,988 44,493 78%
26 2968 5,827,720 0
27 3172 71,909 66,283 8%
28 3172 5,400,970 3,901,760 38%
29 4184 102,913 75,652 36%
30 4184 7,949,700 0
31 4564 130,884 71,048 84%
32 4564 9,555,990 667,525 1332%
33 4665 82,036 58,443 40%
34 4665 6,234,340 0
35 4728 134,346 64,661 108%
36 4728 9,549,240 1,688,550 466%
37 6170 122,200 28,783 325%
38 6170 9,400,800 689,945 1263%
39 11,845 253,245
40 11,845 20,864,600
max Profit from fulfilled rentals — Buying cost—Leasing cost (for the entire leasing period)
— Ownership cost — Empty transfer cost — Penalty for upgrading=
IR A G G s
max Z Z Z u,flg + “r?:g PRI, or | — Z Z Wg COS,
r=1 a=1 g=1 g=1 \ s=1
G G s S G
- Z fgLLEAgLPg - Z ngOWZVg - Z Z Z ysliSth + yscl)Sth Tcgﬂsz
g=1 g=1 s1=1 s2=1 g=1
G A
- Z Z u,flg + “r?:g PYU
g=1 rerg a=1 (]8)
Stock calculating constraintsOwned fleet.
INXgs + wg, t=0
[Pxgl,_, + ONYg, + ONUg,
A A
s. tlxg =4+ Z Z Pu,?a,g - Z Z Pu,o,a,g Vg, s
rery a=1 reR a=1 t>0
s s
+2 Viosgt—TTig—1 ~ > Yoegi-1
Leased fleet. =t =1 19)
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0, t=0
[Pxgl,_, + ONYg + ONUjg,
A
L L
+ z Pu,’(Lg - Z E Pum,g
rery a=1 reRW a=1
st . g 0<t<LF
+Zycsgt TTes—1 Zyscgl 1
e=1
L
xk = FWhs Vg s
[Pxgl,_, + ONYg + ONUj,
A
L L
+ Z z Puy e — Z Z Pu; e
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L L
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L L
+wg; — [Pwy S]szngl’

Capacity on origins / needs on destinations constraints.

G
E u[;lg + umg < DEM,qq,, VreR,a
g=1
A
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Z Urag Z Yscg Xgs Vg s
reRY! a=1

Business-related constraints.

A
UPGyg =0= . (u,’;,g + u,oag) =0 VreR,g

G
D, wCOS, < BUD
1 g=1

M«

(only for t=0)

N

Other constraints.
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S S t—1
~3 Y 3 [Py] z
t,
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A.3. Sequential resolution strategy

Operations Research Perspectives 5 (2018) 334-356

(20)

@21

(22)

(23)

24

(25)

The sequential resolution strategy presented in Section 4.2 was developed as a baseline to assess the performance of the integration strategy and
consists on solving two models sequentially: an acquisition plan model and a pricing and deployment plan model. The mathematical formulation of

these models will be presented in this appendix.

A3.1. Acquisition plan model

Considering the indices and parameters and based on the Capacity-Pricing Model presented in Section 2.2, the following MIP adaptation was
developed for the acquisition plan. Moreover, this model also requires as inputs the average price level (avgq,) and average demand (avgDEM,) per

rental type, which were linearly derived from each instance (see Section 4.1).

Decision variables:

Wth Number of vehicles of group g acquired by leasing at time ¢t = {0, ...,T — 1}
WgO Number of vehicles of group g acquired for the owned fleet available at time t = 0
ng/ 0 Number of leased (L) or owned (O) vehicles of group g at time ¢
”ré/o Number of fulfilled rentals requested as rental type r that are served by a leased (L) or owned (O) vehicle of group g
fL/O Auxiliary variable: total leased (L) or owned (O) fleet of group g at time ¢

Mathematical Integer Program (MIP)
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R G G
max Z [ Z ur'g + ug]PRIavgqg,g,r - Z [

¢ (T ¢ (T G
L 0 L 0
- [Z gt)LEAg - [ng[)OWNg - E, [u,g + u,g)PYU
g=1\ t=1 g=1\ t=1 g=1 reré (26)
Stock calculating constraints.
s
S X0 =X+ D, [ONYgO,S + ONUgS)
s=1
S S
+Z u,g—z Zu,g Vg t>0
s=1 re’Ri’:‘[ s=1 reryy! 27)
S
[0.5emlxh = xk + ), (ONYng + ONUng)
5=
s
L L
+ 2 ug = u
s=1 reryy s=1 reryy
+ W Vg 0<t<LP (28)
s
xh=xt_ + ) (ONYthS + ONUng,)
s=1
s s
NI ED D IRT
s=1 re'Rf‘{‘t s=1 rERgf‘,[
+ wgf[,l - ng:[—LPg—l Vg, t>LE (29)
s
[0.2c’m]x§?0 = Z INXgC; + wgo, Vg
s=1 (30)
L
Xg0 =0 Vg (€X0)]
Capacity on origins / needs on destinations constraints.
G
D |ug + ug | < avgDEM, vr
g=1 (32)
ué/O < xgl:égutr,soutr Vrg (33)
Business-related constraints.
Up + ug < UPGy, g X M vrg (34
G
>, wPCOS, < BUD
g=1 (35)
Other constraints.
L/0 _ L/IO L/O
fgt =Xg =+ Z Upg Vgt
reRyse (36)
wy € Z§ Vg te{0,.,T—1}
w) ez Vg
xHCezy Vgt
u,é/ Cezf Vrg
L/O +
fgt S/ Vgt 37)

A3.2. Pricing and deployment plan model
Considering the indices and parameters, decision variables and the Capacity-Pricing Model presented in Section 2.2, the following adaptation was

355
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developed. The adaptation consists on an extension of the model (with the same decision variables), with the addition of two constraint groups. The
main difference resides on the overall acquisition plan (aggregated for all locations), which is an input that comes from the MIP model presented
above. This input will be mentioned as Pw. The additional constraints are:

s

D W = Pwg; Vgt

s=1 (38)
s

Lwg=Pw) Vg

s=1 (39)

A.4. Complete tables of results

Supplementary material
Supplementary material associated with this article can be found, in the online version, at 10.1016/j.0rp.2018.10.002.
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