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A B S T R A C T

The use of discretization in decision analysis allows practitioners to use only a few assessments to estimate the
certain equivalent (CE) or expected value of a decision without knowing the functional form of the distribution
of each uncertainty. The discretization shortcuts are fast, but are created with a specific distribution, or families
of distributions in mind. The discretizations are not formulated with the decision problem in mind. Each dis-
cretization is specific to one uncertainty distribution, or is even more generalized. In this article, we introduce a
novel mathematical formulation for selecting an optimal discretization for a specific problem. With optimal
discretization, a decision analyst can use the newly-created shortcuts in repeated decisions and improve the
expected accuracy of the CE calculations.

1. Introduction

A common task in Decision Analysis is discretization, which involves
reducing probability distributions of uncertainties to just a few point
masses [13]. For many uncertainties in a Decision Analysis model,
determining the value of multiple points in a distribution, let alone, the
true distribution may be impossible or costly. Discretization is intended
to reduce the cost of calculating certain equivalents (CEs) and simplify
both communication and computation because it substitutes otherwise
complex and computationally intensive integrations to the evaluations
of just a handful of utilities. Discretizations significantly improve a
decision analyst’s ability to communicate with clients [16]. Even with
an increase in computing power, discretizations allow for human-un-
derstandable assessment and evaluation of decisions.

The discretization process can be thought of as having two distinct
components. The first component is to select the points that will be used
for discretization. Often, these points are chosen to be percentiles of the
original distribution. The second component of discretization is to as-
sign a probability mass to each point. An example of a discretization
applied to two common distributions is shown in Fig. 1.

Because of the usefulness of discretization, many methods for dis-
cretization exist [13]. One discretizations method divides the prob-
ability distribution into intervals based on values or cumulative dis-
tributions. Each interval is given a percentile equal to it median or its
mean. Finally, each interval is assigned a probability based on the size
of the interval. Another way of discretizing is to choose percentiles and
probabilities that match the moments of the original distribution.

Typically, the underlying distributions of the uncertainties are un-
known. As a result, these methods have given way to shortcut methods
that are easy to implement and work across a broad range of distribu-
tions. Decision analysts seek discretization methods that produce near-
correct certain equivalents across the entire class of decision problems
of interest. Typically the number of percentiles that a decision analyst
uses in a discretization is three, which provide a low, high, and most-
likely value.

Though shortcut methods are easy to use, they are not created with
the decision problem in mind. This can lead to reduced accuracy and
situations where the results of different strategies are within a few
percent of each other, sub-optimal decisions. Our method for choosing a
discretization differs from these methods in that we seek a set of dis-
cretizations that provide the lowest certain equivalent error over a large
set of potential distributions for a specific problem. The error particu-
larly matters when the certain equivalent of a decision is close to zero.
In a go, no-go decision, an error in the calculated certain equivalent
would result in the wrong decision. We generate problem-specific dis-
cretizations by solving an optimization problem that chooses the per-
centiles and the corresponding probabilities that minimize an error
metric over a large set of potential versions of a problem.

The main contributions of this article are: 1) We mathematically
formulate the problem of selecting an optimal discretization for a set of
decision problems. 2) We are able to derive tractable instances of this
optimization problem. These tractable instances allow us to compute
optimal discretizations for a specified set of decision problems. 3) Prior
discretization methods produce discretizations for each uncertainty in
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the decision problem. We introduce a joint discretization where the
probabilities of the percentiles of a discretization are not independent
from each other. The mathematical formulation for computing opti-
mized discretizations opens a new area of computing joint discretiza-
tions. Finally, we show that our methodology for computing in-
dependent and joint discretizations outperforms prior methods across a
set of computational examples.

This article is structured as follows. We begin with related work in
Section 2, describing some popular and novel methods of discretization.
Next we provide a general formulation for optimal discretization in
Section 3. The general formulation is followed by the a tractable in-
stance in Section 4.1 and modifications required to create a joint dis-
cretization in Section 4.2. In Section 5, we analyze two examples from
the literature to determine the benefits of optimal and joint dis-
cretization, and the effects of sampling and pre-determining percenti-
les.We conclude with a discussion and future work in Section 6.

2. Related work

Discretizations are typically divided into distribution-specific
methods and shortcuts. Distribution-specific methods require knowl-
edge of the probability density function (PDF) of an uncertainty’s dis-
tribution prior to discretization. These methods choose the discretiza-
tion based on some criteria of the original distribution that the decision
analyst is trying to match. Discretization shortcuts require experts to
assess a few (usually three) percentiles of the uncertainty’s distribution.
They do not require knowledge of the shape or moments and are easily
applied. A third type of method is a hybrid approach. This method
assumes limited knowledge of the underlying distribution and provides
a discretization based on this knowledge. Prior methods focus on
computing discretizations independently for each uncertainty. In areas
such as stochastic optimization there are more examples of multi-
variate discretizations [20]. We will review a few of these discretization
methods and compare them to our approach.

In a decision analysis project, if the client, decision analyst, or some
other expert knows the true distribution of each uncertainty, then the
decision analyst can determine the CE of even the largest problem using
Monte Carlo sampling or some other technique. With the true CE, the
decision analyst can recommend the strategy with the highest CE with
the certainty that this is the best recommendation. In reality, the form
of each uncertainty is unknown. The decision analyst will elicit as-
sessments for the uncertainties and apply a discretization to these un-
certainties to create an estimate of the CE.

Two common distribution-specific discretization methods are
bracket mean and Gaussian quadrature. Bracket mean, described by
McNamee and Celona [15], is also known as the equal areas

discretization. In bracket mean discretization, the PDF is partitioned
into three sections, with probabilities 0.25, 0.50, and 0.25. The per-
centiles assigned to each region represent the mean value within the
probability region. This method matches bounded means of the un-
certainty’s PDF. Though the method matches these bounded means for
each uncertainty, there is no guarantee that the discretization with
match the certain equivalent (CE) in the decision problem.

Miller III and Rice [16] and later Smith [19] proposed techniques
based on Gaussian quadrature (GQ). With a discretization of N points, it
is possible to match the first N2 1 moments of an uncertainty’s dis-
tribution. The idea behind matching the moments comes from con-
sidering expectations of low degree polynomials. A discretization that
matches an uncertainty in the first N2 1 moments, will produce the
same expectation for any N2 1 order polynomial. Smith [19] im-
proved the method for GQ by making it more efficient and provided
examples of how GQ matched the moments of the input distributions
([19], Table 2, P.345). GQ requires knowledge of the distributions
being discretized – at least its first N2 1 moments. If these are not
known in the literature, one may require complex numerical integra-
tions. An application of GQ also requires solving a multivariate system
of polynomial equations, which is easily computed with matrix ma-
nipulation software. The polynomial matching argument misses cross-
terms of the uncertainties when the utility depends on several un-
certainties. From a client perspective, this discretization may ask for
percentiles that are not easily assessed, such as the value of the un-
certainty at the 99.50th percentile. In contrast, our method is able to
limit the discretization’s percentiles to easily assessed values, directly
targets computing CEs, and the discretization is dependent on a set of
decision problems, as opposed to a single specific distribution.

Shortcuts are easy to use and generally perform well. Shortcut dis-
cretizations do not require knowledge of the distributions of the un-
certainties and apply the same discretization percentiles and prob-
abilities to all uncertainties. Two common shortcut methods are the
McNamee–Celona Shortcut (MCS) and the Extended Swanson–Megill
(ESM) method. Both of these discretization methods use the 10th, 50th,
and 90th percentiles. The Extended Swanson–Megill (ESM) method for
discretization is described by Hurst et al. [10] and is commonly used in
the oil and gas industries [2]. MCS assigns probabilities of
(0.25,0.50,0.25) while ESM assigns probabilities of (0.3,0.4,0.3) to each
of the respective percentiles. In examining several discretization
methods, Keefer and Bodily [13] proposed the Extended Pearson–Tukey
method. This method proposed using the 5th, 50th, and 95th percentile
with probabilities of (0.185,0.630,0.185). Keefer and Bodily [13] found
EPT outperformed several other methods. Additionally Hammond and
Bickel [8] found EPT to have the best performance among MCS, EPT,
and ESM when calculating average absolute error, average absolute
percent error, maximum error, and maximum percent error. While easy
to apply, these methods do not take into consideration specific
knowledge about the decision problem. In contrast, our method com-
putes an optimized discretization for a specific set of decision problems.

It is often known if the distributions of the uncertainties have spe-
cific shapes or are bounded. For example, when drilling for oil it can be
assumed that the percentage of oil to be recovered will be between 0
and 100%. To that extent, there are newer shortcuts that are based on
shape-specific assumptions. Hammond and Bickel [9] and Hammond
and Bickel [8] offer new shortcuts based on the Pearson and Johnson
families of distributions. Based on the specific zone of the assumed
distribution of the uncertainty, Hammond and Bickel [8] provide a
specific discretization to use. For example, a normal distribution is
symmetric and unbounded on either side. A log-normal distribution is
bounded from below, might be right-skewed, and unbounded from
above. These methods are similar to the shortcut methods, but address a
specific family of distributions. There are shortcuts for bounded, semi-
bounded, and unbounded distributions. The purpose is to provide a
better discretization that uses potentially available information while
still allowing for an unknown distribution. Distribution-specific

Fig. 1. These are two examples of the same three-point discretization applied to
a standard normal and a log-normal distribution. The placement of the points
on the independent axis are determined by the percentiles of the discretization,
and the height is based on the probabilities assigned.
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shortcuts are similar to the other discretization methods in that these
methods only take into account individual uncertainties as opposed to
the decision problem as a whole. In contrast, our method considers a set
of similar decision problems and discretizes all the uncertainties si-
multaneously.

Wallace and Hoyland [20] developed a technique based on non-
linear programming that can be used to generate a finite number of
discrete events that satisfy specific statistical properties. The main dif-
ference between Wallace and Hoyland [20] and our method is that they
consider a single distribution, and attempt to match potentially mul-
tiple statistical properties of that distribution using a small discrete set
of scenarios. On the other hand, we have potentially many distributions
and decision problems and we are looking for a single set of discrete
percentiles that return approximately correct CEs for all the decision
problems.

Most research has focused on matching aspects of a single un-
certainty’s distribution – for example, its moments or bounded means.
Brockett and Kahane [3] found that moment matching does not pro-
duce accurate CEs, partly because it does not take into account other
aspects of the decision problem such as the value function and the
utility function. Keefer [12] also tested the accuracy of three point
discretizations and found “substantial” (P.763) errors in the CEs they
produce. Three point discretizations can match the first five moments,
which may have contributed to the failure of moment matching in this
instance. While the uncertainty’s moments may match, the un-
certainties combine and are passed through a value function, a utility
function, and a certain equivalent calculation. In certain problems this
may result in CE errors because the distribution of the CE may be
completely different than any of the uncertainty distributions. Keefer
[12] further tested six shortcut methods to determine their CE errors,
with EPT identified as the best performer overall. Smith [19] found that
bracket median and bracket mean had higher errors when calculating
the CE than did EPT and GQ. In contrast to past methodologies, our
method focuses on matching the CEs of a set of decision problems. In
this way, the methodology can both capture lack of knowledge – be-
cause the discretization is based on a set of decision problems – and
specific knowledge about the decision problem structure – which is
incorporated through similarities in the set of decision problems.

3. General formulation for discretization

Optimal discretization finds a discretization for the uncertainties of
a problem that is going to be revisited frequently. In the problem there
are uncertainties whose distributions will change over time. For ex-
ample, each oil field will have different potential reservoir and recovery
ratio. In the consumer packaged goods industry every new product will
have a different potential market share and market size. The realiza-
tions of the uncertainties are fed into a value function, which computes
the net present value. Finally, there may be a utility function to convert
project values to certain equivalents.

The general discretization problem assumes independence among
the percentile values of the uncertainties. In the independent dis-
cretization, the percentiles chosen from one uncertainty are in-
dependent from one another. We still allow for dependence between the
values of uncertainties. In the examples we use in this article, the values
of one or more uncertainties depend on one or more other uncertainties.
We use various methods to determine those values. In an assessment
framework, the decision analyst would still elicit dependent (corre-
lated) assessments from the independent percentiles.

In our decision problem, the functional form of the uncertainties is
known. What we do not know is which decision problem we are facing
and consequently are unsure of the functional forms we will face when
needing to make a decision. The combination of all the potential un-
certainty distributions when applied to a value and utility function
come to define our set of decision problems, . To determine the CE of
one instance of , it is possible to compute the CE by means of Monte

Carlo sampling. When interacting with a client, a decision analyst does
not know the exact problem in they are addressing. We seek a dis-
cretization that works over all cases of . Let define a prior prob-
ability distribution over the potential decision problems . This is a
probability assignment on each problem d . This allows the deci-
sion analyst to specify that some decision problems are more likely than
others.

For a specific decision problem d , let CEd denote the certain
equivalent of decision problem d. Let be the set of allowable prob-
ability mass functions of the uncertainties. Let CEd(p) for p denote
the certain equivalent of decision problem d when the distribution p is
used for the uncertainties instead of the true distribution. In other
words, CEd(p) is the certain equivalent when we use the discretized
distribution instead of the true distribution of the uncertainties. We
want to find a p that matches CEd(p)≈ CEd for all decision pro-
blems d . A discretization with a perfect fit will have =CE CE p( )d d
for all d .

We begin by formulating discretization as an optimization problem.
This is a novel contribution to the area of discretization, and leads us to
the results in the rest of the paper. The discretization problem can be
formulated as an optimization as follows:

+Err d p E Err d parg min max ( , ) (1 )[ ( , )] ,
p d

d
(1)

where

=Err d p CE CE p
CE

( , ) ( ) ord d

d (2)

=Err d p CE CE p( , ) ( ) .d d (3)

Given a parameter λ ∈ [0, 1], optimization (1) defines the discretization
problem. The problem seeks to find a distribution p that yields the
minimum convex combination of worst case absolute error and ex-
pected absolute error, E Err d p( , ),d with respect to the distribution
. We use as the distribution of decision problems to indicate there

is a probability associated with each decision problem. Eq. (2) defines
the absolute percentage error in the CE when using the discretized
distribution of uncertainties instead of the true distribution. We also
include (3) as an alternative formulation to the error function when CEd
has values that are orders of magnitude different, such as when CEd may
be positive or negative. When λ is one, we seek a discretized distribu-
tion that yields the minimum worst case error. When λ is zero, we seek
a discretized distribution that yields the minimum average error over
the distribution of decision problems .

4. A tractable discretization instance

In order to determine an optimal discretization, we need to for-
mulate a model that is solvable by available software in a reasonable
amount of time. In this section, we give a specific and tractable instance
of the more general discretization problem described in the previous
section. We do this by defining a specific set of discretized probability
distributions , a specific set of problems , and a probability dis-
tribution over the problems. The optimal choice of p defines the
optimal discretization These definitions allow us to formulate the dis-
cretization problem as a tractable, though non-linear, integer program
(NLIP).

In this section we discuss our process for creating a tractable model.
In our process we have a challenge that prevents us from formulating
the model as we envision in Section 3. We discuss how we solve this
challenge. Finally, we find there are some assumptions we can relax and
provide a second tractable formulation. Solving a tractable discretiza-
tion instance requires defining the objective value, decisions, and
constraints with data such that the engines that solve the model are able
to solve it within a given time.
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4.1. NLIP formulation of discretization problem

The successful implementation of our NLIP requires we pre-calcu-
late CEd for each d . We estimate the CEd values through simula-
tion. Specifically, we sample the uncertainties from the distribution
combinations defined by d . From the simulation we compute un-
certainty values, a project value distribution, expected utility, and a
certain equivalent.

To formulate optimization (1) as a tractable NLIP, one key obstacle
to overcome is that the objective Err(d, p) is a non-linear function in p as
shown in (2). In this formula, CEd is already a constant we obtained
from our formulation, but CEd(p) is our calculated CE. The formula for
CEd(p) is given by

=CE p ln prob u pCertainEquivalent: ( ) · · ( ) ,d d
p

p d
(4)

=u x exp xwithexponentialutility: ( ) ( / ),d d (5)

=P X x pand ( ) (6)

where ρd is the risk tolerance, probp is the probability assigned to per-
centile combination p and ud(p) is calculated expected utility for deci-
sion problem d with percentile combination p. We use the exponential
utility function in this example. Different utility functions will change
the formulations for both ud(p) and CEd. Normally utility is expressed in
terms of the value of the project/decision, x. We are searching for the
optimal percentiles, so we used (6), the definition of the CDF, to relate p
to x.

When we formulate a non-linear IP by using formula for CE given by
(4) directly, our non-linear solver, Bonmin 1.8.4, we found it to be
intractable. To create a tractable formulation we linearize the objective
function. We choose to linearize Err(d, p) around the expected utility, E
[ud(x)]. We first substitute the equation for certain equivalent, (17),
into the definition of Err(d, p) to get

=Err d p
E u x

CE
( , ) 1

ln( [ ( )])
,d p d

d (7)

where Ep[ud(x)] is the expected utility of the decision problem under
the new discretized distribution p . Given a d , the only vari-
able in the above formula is Ep[ud(x)], and everything else is a constant.
We choose to linearize this equation, viewed as an equation in the
variable Ep[ud(x)] around the true expected utility E[ud(x)]. We choose
to linearize because this is easier for most solvers to solve. An extra
Taylor expansion term can be added to improve the accuracy of the
approximation at a cost of additional solve time. For brevity let Td, our
target utility, denote E[ud(x)].

To compute a linearization, we first drop the absolute value sign,
assuming the second summand of (7) is smaller than one. This gives

=f w
w

CE
( ) 1

ln( )
,d

d

which is now a continuous function of w. We create w as a shorthand for
the variable Ep[ud(x)]. We can now do a first order Taylor expansion of
this function around Td to get

+

=

f w f T w T

CE T
w T

( ) 0 ( )( )

·
( ).

d d

d

d d
d

This approximation is valid when the second summand of (7) is smaller
than one. This happens when w is greater than or equal to Td. A similar
argument, assuming that the second summand is greater than one,
yields the approximation w T( ),CE T d·

d
d d

which is valid when w is
smaller than or equal to Td. Together, these two linearizations can be
summarized as

=
CE T·d

d

d d (8)

Err d p E u x T( , ) · [ ( )] ,d p d d (9)

which is a linearization of Eq. (7). Fig. 2 plots an example of the true
error function and corresponding linearization. In the case where the
decision maker is risk neutral, we can skip the calculation of δd (8) and
just use =d CE

1
d
.

With this linearized objective function, we can now write an IP for
computing an optimal discretization as follows.
Indices and sets
i I :the set of uncertainties
vi V i :the set of percentile discretization of uncertainty i.

These are candidate percentiles for the uncertainty, such
as {5, 10, 15, 45, 50, 55, 90, 95}.

Vv i :a percentile combination for all uncertainties. v is a
vector of length I| |.

d :a finite, discrete set of decision problems
j J :the indexes for each of the J| | incompatible sets

discretizations
Parameters

:used to compute a convex combination of average and
maximum error

Td :the true expected utility for decision problem d
d :a shorthand for ,CE T·

d
d d

a constant used in linearization

Ni :the maximum number of percentiles per uncertainty for
the output discretization

U v( )d :the utility of the project value for decision problem d
and at percentile combination v

j :the incompatible discretizations, v, in set j
Pd :the probability assigned to decision problem, d
Decision variables
pv :the probability assigned to a combination of percentiles

v .
od :the over-estimation in approximating Td with a

discretized probability distribution
ud :the under-estimation in approximating Td with a

discretized probability distribution
z :the estimated max Err d p( , )d

Fig. 2. This is a sample of a linearization of the absolute percentage error and
the true absolute percentage error as a function of the expected utility. If the
results of the discretization are close enough to the true value, the linearization
of the error function is sufficient.
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x vi :the probability assigned to candidate percentile vi for
uncertainty i

yvi :1 if percentile vi is used for uncertainty i and 0
otherwise

+ +z P P u o
Formulation

min · (1 ) · ·( )d
d

d d d d
(10a)

+ =U p o u T dvs.t. ( )
V

d d d d
v

v
i (10b)

+z o u d·( )d d d (10c)

=x i I1.0
v V

v
i i

i

(10d)

y N i I
v V

v i
i i

i

(10e)

y i I j J1 ,
v

v
i j

i

(10f)

x y i I v V;v v
i ii i (10g)

=p x Vv
v

v iv
vi

i

(10h)

x i I v V0 1 ;v
i i

i (10i)

y i I v V{0, 1} ;v
i i

i (10j)

o u d, 0d d (10k)

Objective (10a) of the optimization model is to minimize a convex
combination of the largest error z and the average error. In this for-
mulation we show the generalized distribution on . The second term
of the objective function is the average error. In order to compute the
linearized error (9), we should compute the absolute value of the dif-
ference between Td and Ep[ud(x)]. The formula for Td is given for for-
mula (18) in Appendix A.1. Constraint (10b) computes the difference
between the target and expected utility. Constraint (10c) computes the
maximum error, z. Constraint (10d) forces the sum of the probabilities
for each uncertainty to sum to one. Constraint (10e) limits the number
of percentiles allowed for each uncertainty. Constraint (10f) forces only
a single low, a single medium, and a single high percentile in our dis-
cretizations. This helps the optimization engine find a solution faster.
For example, our low-percentile candidates are P5 and P10. Only one
may be selected for the deiscretization. Constraint (10g) forces the as-
signed probability to zero if the percentile is not used in the dis-
cretization. Constraint (10h) computes the probability assigned to a
percentile combination as a function of the probabilities of each of the
uncertainties. This is the only non-linear constraint in the formulation
and it enforces that the output distribution p is independent over
the uncertainties. The remaining constraints bound the probability
values between 0 and 1, make the indicator variables binary, and make
the underage and overage non-negative.

4.2. Joint discretization problem

A joint discretization differs from an independent discretization in
that the probability of a percentile combination is assigned in-
dividually, and is not the product of the probabilitiy assigned to each
percentile in the percentile combination. For a joint distribution, we
assign the probability to each percentile combination separately. This
relaxation increases the flexibility of the values assigned to a percentile
combination and it linearizes the model formulation. Previous dis-
cretization techniques only considered uncertainty discretizations in-
dependently. Because we consider a set of decision problems and

compute the best discretization for that set of problems, it is possible to
compute this joint discretization.

The feasible solutions for a joint discretization include the feasible
solutions for independent discretizations. As a result, computing an
optimal joint discretization is guaranteed to produce at least as good a
result as computing an optimal independent discretization.
Furthermore, computing an optimal joint discretization has the poten-
tial to decrease solution times, as it removes the non-linearity in Model
(10). By removing the non-linearity, we could also switch solvers from
Bonmin to CPLEX. In this section, we compute such optimal joint dis-
cretizations.

We alter Model (10) as follows to compute optimal joint dis-
cretizations The formulation drops variables xv

i and any constraints
where they appear. These are Constraints (10d) and (10h). We also add
the following constraints:

=p 1
Vv

v
i (11a)

p y V vv v,v i
i

v i (11b)

p 0.v (11c)

Constraints (11a) and (11c) ensure the variables pv compute a joint
probability. Constraint (11b) ensures the support of that joint prob-
ability is limited to the Ni percentiles for each uncertainty i. The result
of Constraint (11b) is that experts make the same number of assess-
ments as before.

5. Analysis

In this section we solve Model (10) for a sample problem given by
Smith [19]. We briefly describe the example here and more in depth in
Appendix A.1. We also apply the methodology to a second problem
originally given by Clemen [4] and expanded by Reilly [18] and further
described in Section A.2. We begin with the Smith [19] wildcatter
problem.

A wildcatter is a person that drills for oil in a previously un-
developed field, and will not know exactly what he or she will find. In
this simple model there are four uncertainties that impact the value of
the well: the oil price at which the wildcatter can sell, the amount of oil
in the well, the amount of oil the wildcatter can recover, and the cost of
the recovery. The exact distribution of the each uncertainty is un-
known. Rather than solving the problem with the functional forms used
by Smith [19], we use several candidate distributions as shown in
Fig. 3. Any one of the candidate distributions could be the true dis-
tribution. We use nine distributions per uncertainty resulting in a total
of 6561 decision problems, any of which is equally likely to be the true
problem. In this formulation we assume the risk tolerance is known at
the time of the problem definition. The objective of optimal dis-
cretization is to find the discretization that minimizes that error over all
the problems.

For each of the 6651 decision problems we use Latin hypercube
sampling as originally described by McKay et al. [14]. We generate
4,000,000 values for each uncertainty to generate a set of present va-
lues, . For each x X( ) we generate a utility and determine CEd using
(17) with a risk tolerance value, = $16, 000, 000. The distribution of
the CEd is found in Fig. 4. From each CEd we are also able to obtain a
target utility,Td, using (18). For each decision problem we also calculate
δd using (8).

The set of percentile combinations is drawn from a Cartesian pro-
duct of the candidate percentile for each uncertainty. We define ⊗Vi as
the set of potential percentile combinations. We allow each of the four
uncertainty percentiles to be in the set {5, 10, 45, 50, 55, 90, 95}. This
represents the set of potential assessment values we might ask an expert
to give for each uncertainty. This set is neither inclusive, nor ex-
haustive. These are illustrative choices, and a decision analyst may add
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or remove percentiles. An increase in candidate percentiles may im-
prove accuracy, and it will increase computational complexity. For each
decision problem we have 2401 potential percentile combinations. we

will choose =3 814 of those percentile combinations and assign them
probabilities to create our optimal discretization. For this discretization
instance, we are defining the distributions in ⊗Vi as independent over
the uncertainties. For each of the p2401 we calculate the utility for
each decision problem d using (16) to calculate Ud(v) for each
v∈ ⊗Vi. This provides the data we need to populate our optimization
model.

We begin our comparison of optimal discretization to four incum-
bent distributions. These are the MCS, ESM, EPT, and HB methods.
These discretization each use three percentiles and assign probabilities.
With four uncertainties in the problems, this yields 81 potential out-
comes for each decision problem. We use the percentile from each
discretization to get a value from the decision problem’s uncertainty
distributions inverse CDF. We compute the project value and utility
based on the samples. Finally, we compute the CE using the prob-
abilities assigned to each percentile. This gives us an estimated CE for
each decision problem. We compare the estimated CE using the dis-
cretization to the CE we obtained by using the simulation for the same
problem using the equation

CE CE p
CE

100* ( ) .d d

d (12)

We create a distribution of errors for each discretization method and
present them in Fig. 5. The HB and EPT methods use more extreme
percentiles like the 5th and 95th percentiles. The MCS and EPT dis-
cretizations use the 10th and 90th percentiles. The accuracy of the
discretizations with more extreme values is visible in Fig. 5. We use two
measures of accuracy. The first is the worst-case error. This is the lar-
gest absolute value of a percent error from the true CE across all de-
cision problems. The other error metric is the average of the absolute
errors. When we measure the worst case error, HB has a worst-case of
1.75% and EPT has a worst case of 1.47%. ESM has an absolute worst
case error of 2.02% and MCS has a worst case of 6.34%. The mean
absolute errors of HB and EPT are both 0.25%. HB has a slightly better
performance in terms of absolute error, but when rounded to the
nearest hundredth of a percent, they are the same. MCS and ESM have
average absolute errors of 1.30 and 0.41%, respectively. In the wild-
catter example, the standard deviation of Err(d, p) is larger and the
mean CE is further away from 0 when the discretizations using the
extreme (5th and 95th) percentiles is used.

In this section, we solve Model (10) using two parameters for λ.
When we set = 1, we minimize the worst case error, when we set

= 0, we minimize the average error.

5.1. Independent discretization

In creating optimal discretizations we have two goals in mind. The

Fig. 3. Each uncertainty has nine candidate distributions. The reservoir, price,
and cost distributions are bounded from below at zero. The recovery distribu-
tion is bounded by 0 and 100%. Though most distributions are similar in shape,
we also included a uniform distribution in as potential distribution for the
fraction of the reserves that may be recovered.

Fig. 4. The distribution of CE values for the decision problems created from all
the combinations of potential distributions for each uncertainty and a single
risk tolerance.

Fig. 5. The distribution of percent errors for four shortcut methods.
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first goal is to find discretizations that minimize (10a). The second goal
is to find this solution quickly. We define quickly rather loosely. If this
is being done for an ongoing project, we want to be able to generate an
optimal discretization for the client between sessions; Otherwise, we
want to have the discretizations computed for the next time a decision
problem comes up.

We solved the complete model, with all the candidate percentiles for
each decision problem. We also solved different versions of problem (1)
using subsets of the candidate discretizations or using a subset of the
decision problems. By limiting the candidate discretizations, we are
able to reduce the number of variables. Specifically, when we reduce
the number of candidate percentiles to three, we are able to solve the
model as a continuous problem instead of as a non-linear mixed-integer
problem. Our candidate percentiles for the full problem are P5, P10,
P45, P50, P55, P90, P95. Some of the most popular discretization
methods use either P10, P50, P90 or P5, P50, P95. We try these two sets
of three plus the full set. Our second way of reducing the computational
time is to reduce the number of decision problems by sampling
them.We test how the results differ when we chose to minimize the
worst-case discretization error and when we try to minimize the
average discretization error.

5.2. How much benefit do we get from optimizing an independent
discretization?

The calculation of the certain equivalent is given by multiplying the

probability of each percentile of each uncertainty to determine the
probability of an outcome. There may be a covariance among the re-
sulting values, but the percentiles are treated as independent. In the
case of the four uncertainties in our sample problem, the probability of
any one outcome is the product of the probability of each of the in-
dividual uncertainties. The drawback of the nonlinear approach is the
that there are few available solvers, and large problems generally take
too long to solve. For example, in our test problem, solving the full
problem with = 0.0 using Bonmin 1.8.4 using an Intel 6-core I7
processor running at 2.6 GHz, the average time to generate the model
and solve the problem was 129,937.72 s (1.5 days). This problem has
6651 decision problems and over 15,000,000 nonzeros.

The results from of the optimization are shown in Fig. 6. When
comparing to HB, which has the best results in Fig. 5, independent
discretization improves the worst case mean error and the standard
deviation of error.

5.3. How much do we lose by solving a smaller sample of decision problems?

Given the intractability of solving for 6651 decision problems with
20,736 possible combinations of percentiles for the uncertainties, we
tested the effects of sampling the decision problems. In sampling the
decision problems, we randomly select a subset of the decision pro-
blems and then applied the optimal discretization for that problem to
the entire set of problems. The results are displayed in Fig. 7. We test
the sampling with 1, 5, 10, and 20% of the 6651 decision problems. We

Fig. 6. The histogram of results compares HB, which has the best average error of the incumbent methods with the optimized discretizations using both the optimal
average and optimal worst-case preferences. The optimized results show a reduction in average absolute error of 56% and a reduction of worst-case error of 74%.

Fig. 7. As the number of samples increases in percentage, the overall accuracy of the discretization improves. After 10% of the samples, the average error is 1% worse
than the optimum using the entire set of decision problems.
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test this method using the worst case and the best average objectives.
The solve time increases roughly linearly with the number of decision
problems that we sample. Sampling with 1% took 24 min, sampling
with 10% took just under 3 h, and sampling with 20% took just under
6 h. Solution quality, as measured as the increase in objective value
from the optimal value with 100% sampling improves with the number
of samples, but not linearly. Sampling with 1% results in a 34% increase
in the average error, sampling with 10% results in an increase of 1% in
the average error, and sampling with 20% results in and increase of
1.4% in the average error. The increase in average error in the sampling
is likely due to the randomness of the sampling. When we looked at the
solution quality, there is a noticeable difference between choosing

= 1 and = 0. For the smaller samples (< 20%), minimizing the
worst case led to varying degrees of over fitting, with increases in worst
case error of 25, 15.7, and 6% for the 1, 10, and 20% samples respec-
tively. Sampling the decision problems results in roughly linear
speedups in performance with a small loss of accuracy.

5.4. How much do we lose by restricting the candidate percentiles?

Some of the most common discretizations use either P10, P50, P90
or P5, P50, P95. In comparing both the shortcut methods and the dis-
cretization results, it seems the most accurate discretizations come from
using the more extreme percentiles. If P5, P50, P95 are more accurate,
it may be better to only consider these percentiles and optimize the
probabilities. Given the P10, P50, P90 discretizations are also popular,
we also want to know what improvement in accuracy we can expect
when considering the more extreme percentiles. We solve the problem

using either the maximum error or the average error objectives. The
first improvement is the rapid speedup in solution time. The range of
reduction is from 99.5 to 99.9% reduction in the time required to
generate a discretization. The solution times were in the 100–300 s
range. When limiting the candidate discretizations to P10, P50, P90, the
mean absolute error is 4.8% lower than the mean absolute error using
the HB shortcut. It should be pointed out this slight improvement comes
using less-extreme values than those required by HB. In comparison to
using all the candidate percentiles from a full optimization, the mean
absolute error is still 117% worse when using P10, P50, P90. These
results are shown in Fig. 8. Using the P5, P50, P95 percentiles improves
the accuracy of the optimal discretization while solving quickly. The
optimized discretization increases worst case error by just 0.25% over
the optimal results obtained from considering all the percentiles. This
result is shown in Fig. 9.

5.5. What benefit do we derive when we remove the independence of
uncertainties?

The results in solving the problem with a nonlinear solver have
mixed results. Though the improvement in accuracy is substantial,
some instances take days to solve. In a large business problem with 12
or 15 uncertainties, the size of the problem could become intractable.
Previous discretization methods focused on individual uncertainties,
which were combined to create a distribution of the decision problem
values. We propose a new approach which relaxes the independence of
uncertainty percentiles and creates a joint distribution.

Joint discretization improves both performance time and the

Fig. 8. Limiting the candidate percentiles to 10-50-90 reduces the error in comparison to the shortcut methods, and is worse that when considering a larger
assortment of candidate percentiles.

Fig. 9. Limiting the candidate percentiles to 5-50-95 reduces the error in comparison to the shortcut methods, and is worse that when considering a larger assortment
of candidate percentiles.
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accuracy of the discretizations. The solution time using CPLEX 12.5 is
just under 2 h for the mean absolute error, and about 1 h and 40 min for
the worst case error. This compares favorably to the 1.5 and 1.2 day
solution times for the independent discretizations. The joint dis-
cretization also reduces the mean absolute error by 34% in comparison
to the independent discretization. In comparison to the shortcut
methods, this is a 71% reduction in mean absolute error of the best-
performing shortcut (HB). For the worst case error, the joint dis-
cretization reduces the error by 41% when compared to the in-
dependent discretization, and it reduces the worst case error by 86%
when compared to the best shortcut method (EPT). These results are
visible in Figs. 10 and 11.

Joint discretization has another benefit over independent dis-
cretization. As seen in Appendix A.3 a joint discretization does not use
every possible percentile combination. For both a practitioner and a
client, this means there are fewer assessments required. For example, if
there are two correlated uncertainties for a decision problem and three
discretized values for each uncertainty, then 12 assessments are re-
quired. First, the first uncertainty must be assessed at its low, base, and
high values, and then the correlated uncertainty must also be assessed
for its low, base, and high values for each value of the first uncertainty.
In contrast, joint discretization often omits certain percentile combi-
nations, reducing the number of assessments.

5.6. What is the value provided by optimal discretization?

In order to determine the effectiveness of optimal discretization, we
determine how much of a boost in CE do we expect to get from using

optimal discretization instead of shortcut discretizations. We define our
value based on whether the decision changes based on the results of the
discretization. If the results of two discretizations both indicate that the
company should initiate a project, their value is the same because the
decision is the same. In this section, we modify the problem in order to
induce an increase in different decisions and compare the results.

We adjust the initial capital required in Eq. (15) so that the median
CE is now zero. In half the decision problems, the best decision is now
to pass on the project. The histogram of the project values is the same as
in Fig. 4 but shifted lower by $3.50MM. With several decision problems
having CEs near zero, we modify the equation for Err(d, p) to be Eq. (3).
This changes the formula for the error approximation equation, Eq. (9),
to

Err d p
T

E u x T( , ) [ ( )] .d

d
p d d

(13)

Using a new values for δd in Model (10), we solve the same set of
models again to obtain optimal discretizations. For each discretization
we determine the additional value derived from knowing the true dis-
tributions of the uncertainties as opposed to using the discretizations of
the uncertainties. From our initial Monte Carlo integration, we de-
termine the CEd of each decision problem. We compare CEd to the
CEd(p) given by the discretization. In our sample problem the two
strategic options are to initiate the project, or to not initiate the project.
The outcomes from the discretizations are to correctly initiate or pass
on the project, or to incorrectly initiate or pass on the project. We de-
fine relative cost (RC) as the expected additional cost of using a dis-
cretization instead of knowing the functional form of the uncertainties.
For each decision problem d , RCd is the mean absolute value of the
CEd when the wrong decision is made due to the discretization and zero
otherwise. For example, when the true CE is 100, and the discretized CE
is negative, the value of having the true CE is 100. When the true CE is
10,000, and the discretized CE is 1, both CE values will recommend
initiating the project. In this case, the value of knowing the true CE is 0.
The relative cost of the discretization for a decision problem, d is as
follows:

=
> <
< >RC

CE CE CE p
CE CE CE p

if 0 and ( ) 0
if 0 and ( ) 0

0 otherwise.
d

d d d

d d d

(14)

over all the decision problems. The discretization with the lowest re-
lative cost is the discretization where the decision from using the dis-
cretization matches the decision that would come from knowing the
functional forms of the uncertainties the most. The higher the RC, the
worse a discretization is in terms of value. We can compare the average
RC for the different discretizations to determine how much additional
value one method has over another.

We begin by comparing the RC for the shortcuts. Fig. 5 indicates the
MCS shortcut tends to have the largest RC values. Among the shortcuts,
this produces the largest RC. Again, EPT and HB perform better than
MCS and ESM. This time, the average RC for ESM is only 35.28% worse
than EPT. This compares to the average error being about 67.08%
worse than HB. In absolute terms, the additional value provided by EPT
over ESM is $35.48, which for a project with an average CE of $52,
642.89 is only 0.07%. It is likely different decision problems with a
more strategic options and a larger range of project values will result in
larger RC differences (Fig. 12).

The optimized discretizations showed a surprising range of RC as
seen in Fig. 13. At one extreme, the optimizations using average error
had RC values of $1.62 and $4.04 for the joint discretization and in-
dependent discretization respectively. This means knowing the func-
tional forms of the uncertainty distributions provides almost no value
above using a discretization (as long as the assessments are accurate).
At the other extreme, the optimizations using worst case error per-
formed substantially worse than the shortcuts. The RC for worst case

Fig. 10. A comparison of the independent and joint discretization method re-
sults.

Fig. 11. A comparison of the independent and joint discretization method re-
sults.
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errors were $695.30 and $201.09 for the joint discretization and in-
dependent discretization respectively. The reason behind this complete
flip in performance is that minimizing worst case error tends to focus on
the most extreme-valued decision problems. For the joint discretization,
the true CEs of the decision problems where the optimal discretization
leads to the wrong decision, has a range between $72, 903 and $79,
812. The independent discretization has a range between $72, 903
and $5884.

Sampling the decision problems and limiting the percentiles yields
similar results as compared to the original decision problems and error
function. The general exception is that worst-case optimization under-
performed its best average counterpart (in terms of samples and al-
lowed percentiles). In six out of 30 runs minimizing the worst case had
a lower RC than minimizing the average error. The best-performing
methods used the more extreme percentiles. Using more samples typi-
cally resulted in better results, but not always. For instance, the best RC
came from solving the joint discretization optimization using 20% of
the decision problems and the best average. It yields a RC of only $0.52.
This is a result of serendipitous sampling. The worst result comes from
optimizing for the worst case, maintaining independence of

uncertainties, and using 10th, 50th, and 90th percentiles. This dis-
cretization had a RC of $840.59.

5.7. How well do the discretizations work with new uncertainty distributions
when applied to the original problem?

So far this method has performed extremely well when optimized
against a training set of distributions. We call it a training set as it is
used in the same way as a training set is used in predictive analytics. In
predictive analytics set of data is used to generate model parameters; in
our case these are the discretizations. The results of the first model are
tested against another set of data in order to determine if the model
works for the entire set of data. It can also be noted that if the problem
to be solved is from one of a potential set of distributions, the decision
analyst can estimate the CE of every uncertainty distribution combi-
nation and come up with a distribution of the CE. In a situation like this,
the process of optimization does not help the decision-making process.
In practice, all potential distributions for every uncertainty should be
used in the optimization model.

To test the performance of the optimal discretization we change the

Fig. 12. The distribution of the relative cost (of not knowing the true distributions of the uncertainties) for four shortcut methods. The value of knowing the true
distribution for most of the decision problems is $0. This means most of the time, the discretization is on the right side of 0. In some cases, as with MCS, the relative
cost can be as high as $100, 000. Note: there were a large number of observations at zero, which were removed to better visualize the remaining observations.

Fig. 13. The distribution of the relative cost comparing EPT with the results from optimal average error for joint and independent discretizations and optimal worst-
case independent discretization using only the 10th, 50th, and 90th percentiles. The worst case optimization has the most decision problems and highest RC of any
discretization we test. For this discretization, the RC of one of the decision problems is over $140, 000. Note: Each distribution has a large frequency of values at zero
that we have removed to better show the scale of the non-zeros.
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functional form of all the uncertainties. We begin by using the historical
pricing of the West Texas Intermediate benchmark. We downloaded the
prices from the United States Energy Information Administration for the
front month Cushing, OK Crude Oil Future Contract available on the US
Energy Information Administration web site. We used the reservoir and
cost data distributions from the original Smith [19] paper, and we used
a beta(3,27) distribution for the recoverable oil percentage. We chose
this number to have a mean of 10% and would range between 1.5% and
26%. When comparing to the distributions in Fig. 3, this tends to be on
the low side, but within the realm of the feasible.

Examining the price distribution in the original Smith [19] paper
and in Fig. 3, we determined the oil price was somewhere between $10
and $50. The WTI price data begins on April 4, 1983, with a price of
29.44 and remains below $50 until October 5, 2004. We use he daily
closing price to populate our price distribution in our first example.

In a second test, we wanted to see if the methodology might also be
applicable to shale drillers. In this test case, we used recent prices. We
used the two years of price history, from September 14, 2015 until
September 12, 2017. We also doubled the capital cost of drilling a well,
and we doubled the production rate. Because we used historical data,
our distributions as seen in Fig. 14 have their own shapes. Even the data
pulled from a 20 year seems to be multi-modal.

In both examples, we estimate the CE using the Latin hypercube
technique. We applied the discretization percentiles and probabilities
that we generated previously. These are available for reference in

Appendix A.3. We chose the best average and worst case discretizations
for all candidate percentiles as well as the 5, 50, 95, and 10,50, 90
optimized discretizations. It should be noted none of the uncertainty
distributions in our new problem (the test set) were any of the dis-
tributions used to calculate the optimal discretizations (the training
set). We find that without having the new distributions in the training
set, some of the very best performing optimal discretizations from
Sections 5.2 and 5.5 underperformed the shortcuts. We also find that
the consistently best-performing discretization is an optimized dis-
cretization.

The results from this example indicate that simplicity is best. The
results are shown in Fig. 15. The best-performing discretization is the
independent discretization that discretizes using the 10 50 90 per-
centiles. In general, the optimized 10 50 90 shortcuts performed
better using the new distributions in the example problems, while in the
training sets, the optimized 5 50 95 discretizations performed
better. In the first example, the mean is much further away from zero,
so differences in percent error tend to be closer. In the second example,
the mean is much closer to zero, and differences are greater. It should
be noted that just as with the optimal discretizations, the shortcuts also
vary in their performance between the two examples. In the first ex-
ample, ESM has the best performance of all the shortcuts we test. MCS,
which is also a 10 50 90 shortcut performs better than HB and EPT,
which use more extreme values.

Fig. 14. The oil price distributions, when drawn from historical data, do not resemble any of the distributions we have used to train the model.

Fig. 15. West Texas Intermediate oil prices representing a twenty year history and oil prices representative of the oil prices during the fracking boom in the united
states.
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5.8. How well do the discretizations work with other problems?

So far the numerical analysis has focused on the Wildcatter problem
introduced by Smith [19]. We now present a shorter analysis of Eagle
Airlines, first introduced by Clemen and Reilly [5]. A short description
of Eagle Airlines is given in Appendix A.2. For this problem we also
have four important correlated uncertainties, price, hours, capacity,
and operational cost that affect the value of purchasing an airplane for
passenger and charter trips. For each of these uncertainties we created a
set of potential uncertainties. These are shown in Fig. 16. With the
Cartesian combination of each of these uncertainties we determined the
expected value (risk neutral) of the purchase decision. The distribution
of the expected value of the purchase is given by Fig. 17.

We solve for the independent discretizations using
P P P10 50 90, P P P5 50 95, and free discretizations. We apply
the resulting discretizations to the correlated uncertainties of the true
dristributions to determine the error of the optimized discretizations
and the shortcut methods. These results are shown in Fig. 18, and we
resent the discretizations in Appendix A.3.

In this example, the best discretization for the training set that uses
some potential distributions to generate the discretization uses
P P P5 50 95 for each uncertainty, with values similar to EPT. When
we determine the error using various discretizations and using the true

distributions given by Montiel and Bickel [17]. The discretization using
the P P P10 50 90 percentiles has the least absolute error from the
true expected value. Though this example does not provide absolute
proof, the Eagle Airlines example shows that a less extreme set of
percentiles is more robust for determining the CE or expected value of a
project when the true distributions are unknown and may not be part of
the training set.

These examples should not be taken as conclusive. They illustrate
that the improved performance of an optimized discretization or a
shortcut is dependent on the distributions of the uncertainties. The
results show optimal discretizations can have robust results for a spe-
cific type of decision problem that is repeatable. A result we do not
show in Fig. 15 is that worst-case optimization consistently under-
performs the average-case optimization. We also found independent
discretizations outperform joint discretizations. Finally, we find that
discretizations that only use a sample of the data still perform within a
few percentage points of the best one. A ten percent sample performs
the best over the examples we test. We believe the degradation in
performance in both the shortcut and optimized discretizations in
comparison to the 10 50 90 discretizations is due to over-fitting and
the use of extreme results to provide an initially better fit.

6. Discussion, conclusion, and future work

In the computational experiments we performe, optimized dis-
cretization of Model (1) improves on existing discretization methods.
This improvement can be over worst-case Err(d, p), average Err(d, p), or
both. Furthermore, the methodology provides a large amount of flex-
ibility. First, one could exchange the function Err(d, p) for something
other than absolute percent CE error – potentially repeating the line-
arization process described in Section 4.1 as we did in Section 5.6.
Second, the methodology is able to compute both independent and joint
discretizations – a significant improvement over past methods that
focus solely on independent discretizations.

Based on our findings, we make recommendations to the practi-
tioner who would like to improve the accuracy of their discretizations
and value of their recommendations. We believe more testing is ne-
cessary before choosing between joint and independent discretization
methods. While a joint discretization generally provides more accurate
discretizations over the training problems, they may over-fit. When
using a joint discretization, it is important to have a large number of
training problems.

In our tests, the 10% sample size results offer significant error

Fig. 16. The potential distributions for the four uncertainties of Eagle Airlines.
None of these distributions is the true distribution of the given problem.

Fig. 17. The histogram of the expected value of the various uncertainty dis-
tribution combinations.

Fig. 18. A summary of selected discretizations using the example of Eagle
Airlines given by Clemen and Reilly [5]. All errors are less than 0.14% with the

=P P P10 50 90 turning out the best.
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reduction over shortcuts (70%) and reduce the time for the non-linear
optimization by 90%. We do not know if this improvement in perfor-
mance while maintaining and edge in accuracy will hold with other
problems. The time required for non-linear optimization solvers to
generate solutions can take days, and it is worth experimenting with
smaller sample sizes to generate results that are better than shortcuts in
a reasonable amount of time.

We recommend using an average error method over a worst-case
error method. The analysis of the relative cost of the worst-case analysis
tends to show that optimizing to the worst case provides the least value
of any discretization method. Optimizing over the average error pro-
vided the highest value discretizations. The results when using the re-
commended problem size and discretization method are shown in
Fig. 19.

From our observations, the computation time required for finding
an optimized discretization increases linearly in due to increases in
the number of constraints. Computing optimized joint discretizations
depends on solving a mixed integer linear program which is generally
faster than computing optimized independent discretizations. In both
independent and joint discretization the computation time increases
exponentially with the number of uncertainties, and the number of
candidate percentiles.

We found optimized discretizations make a greater use of the 5th
and 95th percentiles relative to the use of the 10th and 90th percentiles.
Alpert and Raiffa [1] noted that assessing more extreme values is also
more prone to error, and the results from Hammond and Bickel [8], 9]
also make use of more extreme percentiles. An expert that has twice the
experience is likely to have seen twice the number of extreme events,
and is likely to be able to better assess the value of those extreme
events. The result is that someone who is assessing the 95th percentile,
may only be assessing a value at the 90th percentile. This adds an ad-
ditional uncertainty to the set of decision problems. In future work we
plan to determine whether using more extreme assessments results in
better estimates of the true CE given different assumptions regarding
the accuracy of the assessments.

There is a potential for introducing novel algorithms for computing
optimized discretizations. For example, the number of variables for
both independent and joint discretizations grows exponentially with the
number of possible percentiles. It may be possible to construct column
generation algorithms [6] that iteratively introduce these variables as
needed. This process is likely easier with the linear mixed integer
program for computing optimized joint discretizations.

The computation time increases linearly with the size of the decision
problem set . However, it may also be possible to reduce the size of
while maintaining the quality of the resulting optimized discretization.
One could view the expected error portion of the objective function of
Model (1) as a type of stochastic optimization, where the scenarios are
the decision problems in . There is then a potential of using scenario
reduction techniques [7] to reduce the size of .

In our analysis we used a linearization of absolute percentage error.
Optimal discretization is flexible in its ability to use multiple objective
functions. Other objectives we have considered are measuring deviation
from expected value or adding additional terms to the Taylor expansion
of the error function. It is our recommendation that the Taylor expan-
sion of the objective function be linear if possible so as to keep solution
times as short as possible. In conclusion, optimized discretization can
help decision analysis practitioners create discretizations that are spe-
cific to their current projects and perform better than alternate meth-
odologies. Intuitively, the key difference between optimized dis-
cretizations and other discretization methods is that optimized
discretizations take as input an entire decision problem set and a
valuation function like (15). This allows optimized discretizations to
focus on producing lower CE errors than using traditional discretiza-
tion.
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Appendix A

A1. Wildcatter problem description

This appendix provides the details of the decision analysis problem described by Smith [19]. We cover the uncertainties and their PDFs, the
valuation model, the utility and CE functions, and the sources of risk. We take variants of this basic problem to construct our decision problem sets in
the article.

Fig. 19. A joint discretization that samples 10% of the decision problems yields results that are better than shortcuts, solve quickly, and are close in terms of resulting
error to the use of 100% sampling.
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The problem described by Smith [19] is a wildcatting decision problem. There are four uncertainties that determine the project value. These are
the oil price, reservoir volume, recovery rate, and production cost. We refer readers to the [19] for a visualization of the influence diagram. The
present value of the project given realizations for the four variables is

=
>

Value
p c k exp T C p c

C p c

1 ·( )· ·(1 ( · ) if

if , (15)

where v is the reservoir volume; r is the recovery rate; p is the oil price; c is the production cost k is a fixed production rate of 100,000 barrels per
year; =T r v k· / is the years of production; δ is a fixed discount rate of 5% per year; and C are the initial capital expenditures of $2.5 million. In the
project valuation using Formula (15) the wildcatter will lose money for each barrel pumped if p≤ c. Even if the wildcatter has already made the
decision to expend capital costs C, he or she may choose to not drill when each additional unit of production is not profitable.

The PDFs of the uncertainties defined by Smith [19] are:
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The PDFs of the uncertainties and are shown in Fig. 20. Smith [19] has additional visualizations of the cumulative distribution functions for the
uncertainties and the project value. These make for an interesting problem because the distributions take on many shapes, some are non-symme-
trical, and the cost is dependent on the oil price. The reservoir uncertainty follows a lognormal distribution and is bounded from below at 3.5M
barrels. The recovery uncertainty is a gamma distributions bounded from below at 0%. It is not bounded from above, though in practical terms it
should be 100%. The oil price uncertainty follows a beta distribution with bounds at 8 and 48 dollars per barrel. Finally, the cost follows a normal
distribution with a mean and standard deviation that are functions on the price.

From the project values, we are able to generate the project utility. From the expected utility we are able to generate a CE. Smith [19] uses an
exponential utility function to convert the project value, x to a utility, u(x), with a risk tolerance parameter ρ. The expected utilities are converted to
a CE. The combination of the uncertainty PDFs, the valuation model, the utility function, and the risk tolerance value ρ combine to make one problem
instance d . For all problem instances in our decision problem sets, the functions for the utility and CE are defined as:

=u x exp xUtility: ( ) ( / )d d (16)

=CE ln E u xCertainEquivalent: · ( [ ( )])d d d (17)

=T exp CETarget: ( / ).d d d (18)

With this exponential utility function, utility values are between and 0, and projects with a CE of zero have a utility of −1. Lower risk

Fig. 20. The original distributions are similar to the candidate distributions given in Fig. 3. As a point of reference, when using the optimal discretizations, the
independent worst-case had an error of 0.0369%, the best average discretization had an error of 0.0613%. The joint best average discretization yields an error of
0.0199% and joint worst case discretization yields an error of 0.0823%. HB, EPT, ESM, MCS had errors of 0.0357, 0.0411, 0.0337, and 0.6197% respectively.
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tolerances penalize losses more. An infinite risk tolerance makes the CE to be equal to the expected value of the project. Given a d , we can
compute a CE numerically by sampling project values based on the uncertainty distributions, converting values to expected utility, and expected
utility to a CE.

A2. Eagle Airlines

Eagle Airlines is a problem described by Clemen [4] and further refined by Clemen and Reilly [5] and Reilly [18] in the area of fleet expansion.
Here we used the information from [18] and the distributions given by Montiel and Bickel [17]. In this problem the owner of Eagle Airlines must
decide whether or not to expand his fleet with the addition of one plane. The alternative is to invest the money in a money market earning a certain
return. The problem has several uncertainties, and the ones determined to be of significance are price (P), hours flown (H), capacity (C), and
operational cost (O). The owner is risk neutral and will make the decision based on comparing the expected profit to the risk-free return of the money
market.

In addition to the uncertainties, the owner uses the following parameters in the profit calculation:
Parameter Value Description

CR 0.5 Charter ratio
PF 40% Percentage financed
I 11.5% Risk-free interest rate
PU $87, 500 Purchase price
IN 20,000 Insurance cost
CP P3.25· Charter price
N 5 Number of seats

The true distributions for the uncertainties are:
Uncertainty Distribution Parameters Range
P Beta = =9, 15 [$81.94, $133.96]
H Beta = =9, 15 [66.91, 1, 136.26]
C Beta = =9, 15 [0, 1]
O Normal = =µ 245, 11.72 ( , )

The formulas for revenue, costs and profits are:

= + +Cost H O IN PU PF I· · · (19)

= +Revenue CR H CP CR H C N P· · (1 )· · · · (20)

=Profit Revenue Cost (21)

Furthermore, the uncertainties are have a Spearman rank correlation with each other:
Spearman correlation

Uncertainty P H C O
P 1
H 0.5 1
C 0.25 0.5 1
O 0 0 0.25 1

In order to calculate the expected mean for this problem we use the simulation methods descibed in [11] to generate values for the uncertainties.
For the discretizations, we generate the correlated uniform values from the percentile discretizations which we then use to generate the Pearson rank
correlated uncertainty values. When using rank correlation, the values we get for each percentile for an uncertainty, say H, will be different when we
use different percentiles for P.

A3. Discretization values

We present selected joint and independent discretization values for the Wildcatter problem and then Eagle Airlines. The shortcut names are the
same as used in the article. The optimized discretization names are coded. The first code is either “NLP” or “MIP”. Independent discretizations are
solved with a non-linear programming solver and hence have the code “NLP”. Joint discretizations are solved with a mixed-integer programming
solver and hence have the code “MIP”. The next code is either a zero or a one. Zero indicates the discretization is solved to minimize the average
error. A one indicates the discretization is solved to minimize the worst case error. The next three numbers are optional. These numbers indicate
whether specific percentiles are used. For example, “5_50_95” indicates the 5th, 50th, and 95th were the only percentiles allowed in the discretization.
The final code indicates how many sample decision problems are used to create the discretization.
Wildcatter Independent Discretizations

Percentiles Probabilities
Discretization Uncertainty Q1 Q2 Q3 P1 P2 P3
MCS Reservoir 0.10 0.50 0.90 0.25 0.50 0.25
MCS Recovery 0.10 0.50 0.90 0.25 0.50 0.25
MCS Price 0.10 0.50 0.90 0.25 0.50 0.25
MCS Cost 0.10 0.50 0.90 0.25 0.50 0.25
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ESM Reservoir 0.10 0.50 0.90 0.30 0.40 0.30
ESM Recovery 0.10 0.50 0.90 0.30 0.40 0.30
ESM Price 0.10 0.50 0.90 0.30 0.40 0.30
ESM Cost 0.10 0.50 0.90 0.30 0.40 0.30
HB Reservoir 0.04 0.50 0.96 0.16 0.67 0.16
HB Recovery 0.05 0.50 0.95 0.18 0.63 0.18
HB Price 0.04 0.50 0.96 0.16 0.67 0.16
HB Cost 0.04 0.50 0.96 0.16 0.67 0.16
EPT Reservoir 0.05 0.50 0.95 0.18 0.63 0.18
EPT Recovery 0.05 0.50 0.95 0.18 0.63 0.18
EPT Price 0.05 0.50 0.95 0.18 0.63 0.18
EPT Cost 0.05 0.50 0.95 0.18 0.63 0.18
NLP_1.0_5_50_95_all Reservoir 0.05 0.50 0.95 0.25 0.61 0.14
NLP_1.0_5_50_95_all Recovery 0.05 0.50 0.95 0.27 0.50 0.23
NLP_1.0_5_50_95_all Price 0.05 0.50 0.95 0.03 0.86 0.11
NLP_1.0_5_50_95_all Cost 0.05 0.50 0.95 0.21 0.63 0.16

Wildcatter Independent Discretizations
Percentiles Probabilities

Discretization Uncertainty Q1 Q2 Q3 P1 P2 P3
NLP_0.0_5_50_95_all Reservoir 0.05 0.50 0.95 0.15 0.66 0.18
NLP_0.0_5_50_95_all Recovery 0.05 0.50 0.95 0.20 0.60 0.20
NLP_0.0_5_50_95_all Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP_0.0_5_50_95_all Cost 0.05 0.50 0.95 0.19 0.62 0.19
NLP_0.0_10_50_90_all Reservoir 0.10 0.50 0.90 0.35 0.34 0.31
NLP_0.0_10_50_90_all Recovery 0.10 0.50 0.90 0.27 0.46 0.27
NLP_1.0_10_50_90_all Price 0.10 0.50 0.90 0.16 0.62 0.22
NLP_1.0_10_50_90_all Cost 0.10 0.50 0.90 0.35 0.41 0.24
NLP_0.0_all Reservoir 0.05 0.50 0.95 0.20 0.61 0.19
NLP_0.0_all Recovery 0.10 0.55 0.95 0.26 0.57 0.17
NLP_0.0_all Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP_0.0_all Cost 0.10 0.55 0.95 0.29 0.53 0.18
NLP_1.0_all Reservoir 0.05 0.55 0.90 0.22 0.52 0.27
NLP_1.0_all Recovery 0.05 0.55 0.90 0.32 0.33 0.36
NLP_1.0_all Price 0.05 0.50 0.90 0.25 0.44 0.31
NLP_1.0_all Cost 0.10 0.55 0.95 0.28 0.52 0.19

Wildcatter Independent Discretizations
Percentiles Probabilities

Discretization Uncertainty Q1 Q2 Q3 P1 P2 P3
NLP_0.0_66 Reservoir 0.05 0.45 0.95 0.13 0.67 0.20
NLP_0.0_66 Recovery 0.05 0.50 0.95 0.20 0.61 0.19
NLP_0.0_66 Price 0.05 0.50 0.95 0.18 0.64 0.18
NLP_0.0_66 Cost 0.05 0.50 0.95 0.19 0.62 0.19
NLP_0.0_328 Reservoir 0.10 0.50 0.95 0.18 0.64 0.19
NLP_0.0_328 Recovery 0.05 0.50 0.95 0.20 0.60 0.20
NLP_0.0_328 Price 0.05 0.50 0.95 0.18 0.64 0.18
NLP_0.0_328 Cost 0.05 0.45 0.95 0.15 0.64 0.20
NLP_0.0_656 Reservoir 0.10 0.50 0.95 0.20 0.61 0.19
NLP_0.0_656 Recovery 0.05 0.50 0.95 0.20 0.61 0.19
NLP_0.0_656 Price 0.05 0.50 0.95 0.18 0.64 0.18
NLP_0.0_656 Cost 0.10 0.55 0.95 0.29 0.52 0.19
NLP_0.0_1312 Reservoir 0.10 0.55 0.95 0.24 0.59 0.18
NLP_0.0_1312 Recovery 0.05 0.50 0.95 0.20 0.60 0.20
NLP_0.0_1312 Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP_0.0_1312 Cost 0.10 0.55 0.95 0.29 0.53 0.18
NLP_0.0_all Reservoir 0.05 0.50 0.95 0.20 0.61 0.19
NLP_0.0_all Recovery 0.10 0.55 0.95 0.26 0.57 0.17
NLP_0.0_all Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP_0.0_all Cost 0.10 0.55 0.95 0.29 0.53 0.18

Wildcatter Joint Discretizations
Reservoir Quantile Recovery Quantile Price Quantile Cost Quantile MIP_1.0_10_50_90_all MIP_0.0_10_50_90_all
0.10 0.10 0.90 0.90 0.088
0.10 0.50 0.10 0.10 0.086
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0.10 0.50 0.50 0.10 0.133 0.026
0.10 0.50 0.50 0.90 0.047
0.10 0.50 0.90 0.10 0.156
0.10 0.90 0.50 0.50 0.065
0.10 0.90 0.90 0.10 0.049
0.10 0.90 0.90 0.50 0.023
0.50 0.10 0.10 0.90 0.135
0.50 0.10 0.50 0.90 0.254 0.109
0.50 0.50 0.50 0.10 0.048
0.50 0.50 0.50 0.50 0.052
0.50 0.50 0.90 0.50 0.051
0.50 0.90 0.50 0.90 0.030
0.50 0.90 0.90 0.50 0.045 0.022
0.90 0.10 0.10 0.50 0.031
0.90 0.10 0.10 0.90 0.001
0.90 0.10 0.50 0.50 0.057
0.90 0.50 0.10 0.10 0.057 0.102
0.90 0.90 0.10 0.50 0.061
0.90 0.90 0.50 0.50 0.172
0.90 0.90 0.90 0.50 0.100

Wildcatter Joint Discretizations
Reservoir Quantile Recovery Quantile Price Quantile Cost Quantile MIP_1.0_all
0.10 0.05 0.55 0.90 0.033
0.10 0.50 0.55 0.45 0.064
0.10 0.50 0.55 0.90 0.176
0.10 0.95 0.55 0.45 0.060
0.45 0.05 0.55 0.45 0.040
0.45 0.05 0.55 0.90 0.100
0.45 0.50 0.05 0.10 0.147
0.45 0.50 0.55 0.10 0.035
0.45 0.50 0.55 0.45 0.158
0.45 0.95 0.55 0.45 0.006
0.90 0.05 0.55 0.10 0.008
0.90 0.05 0.55 0.45 0.047
0.90 0.95 0.95 0.10 0.111
0.90 0.95 0.95 0.45 0.016

The next joint discretization is for the average error minimization. The number of non-zero percentile combinations is much larger here, which
gives a more robust answer when computing out-of-sample percent errors.
Wildcatter Joint Discretizations
Reservoir Quantile Recovery Quantile Price Quantile Cost Quantile MIP_0.0_all
0.05 0.10 0.05 0.10 0.045
0.05 0.10 0.50 0.10 0.010
0.05 0.10 0.50 0.55 0.018
0.05 0.55 0.05 0.10 0.001
0.05 0.55 0.05 0.95 0.013
0.05 0.55 0.50 0.10 0.049
0.05 0.55 0.50 0.95 0.035
0.05 0.55 0.95 0.10 0.004
0.05 0.90 0.05 0.55 0.013
0.05 0.90 0.05 0.95 0.001
0.05 0.90 0.95 0.10 0.026
0.50 0.10 0.05 0.95 0.020
0.50 0.10 0.50 0.55 0.111
0.50 0.55 0.50 0.10 0.046
0.50 0.55 0.50 0.55 0.210
0.50 0.55 0.50 0.95 0.060
0.50 0.55 0.95 0.55 0.007
0.50 0.90 0.50 0.10 0.060
0.50 0.90 0.95 0.55 0.047
0.50 0.90 0.95 0.95 0.028
0.95 0.10 0.05 0.95 0.007
0.95 0.10 0.50 0.55 0.028
0.95 0.10 0.95 0.10 0.060
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0.95 0.55 0.50 0.55 0.002
0.95 0.55 0.50 0.95 0.015
0.95 0.55 0.95 0.95 0.003
0.95 0.90 0.05 0.55 0.074
0.95 0.90 0.50 0.10 0.000
0.95 0.90 0.50 0.55 0.001
0.95 0.90 0.50 0.95 0.004

Eagle Airlines Independent Discretizations
Percentiles Probabilities

Discretization Uncertainty Q1 Q2 Q3 P1 P2 P3
NLP_0.0_5_50_95_all Price 0.05 0.50 0.95 0.186 0.629 0.185
NLP_0.0_5_50_95_all Hours 0.05 0.50 0.95 0.184 0.632 0.184
NLP_0.0_5_50_95_all Capacity 0.05 0.50 0.95 0.190 0.620 0.190
NLP_0.0_5_50_95_all Operating Cost 0.05 0.50 0.95 0.185 0.630 0.185
NLP_0.0_10_50_90_all Price 0.10 0.50 0.90 0.308 0.386 0.306
NLP_0.0_10_50_90_all Hours 0.10 0.50 0.90 0.293 0.415 0.292
NLP_0.0_10_50_90_all Capacity 0.10 0.50 0.90 0.270 0.461 0.269
NLP_0.0_10_50_90_all Operating Cost 0.10 0.50 0.90 0.318 0.373 0.309

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.orp.2018.09.002.
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