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A B S T R A C T

In this paper, we provide arrival time prediction combined with a cost index optimization model for short haul
flights. Our work is based on flight data of a European network carrier. We focus on predicting the arrival time
for incoming flights at two hub locations. Airlines focus on two aspects in their operations: Minimizing cost while
ensuring on-time arrivals. Especially network carriers with hub connections need to ensure that incoming flights
are on time for passenger, crew and aircraft transfer. The cost index is a tool for optimizing the aircraft’s speed. A
high cost index implies a faster flight. The cost of time is set in relation to the cost of fuel. Today there is no
model for arrival time prediction and integrated cost index optimization. We consider three different flight
distances to model the impact of cost index changes on gate arrival time. With our model airlines are able to
reduce the cost index without any tangible impact on their overall schedule. We conclude that the optimal cost
index level heavily depends on a flight’s distance, fuel costs and delay costs. Especially for short haul flights we
recommend lowering the cost index as a high cost index has limited impact on gate arrival time.

1. Introduction

Considering that reactionary delays made up more than 40% of all
delays in 2015 ensuring on time arrivals is a critical operational pro-
blem for airlines [33]. Operations control can implement several
measures during the flight and on the ground to ensure punctual arri-
vals. The cost index (CI) is a tool to influence arrival time. It basically
describes the speed of the aircraft. The CI defines the trade off between
time and fuel cost. An increased CI results in decreasing flight time and
increasing fuel cost and vice versa. According to [27] airlines can save
several millions a year by optimizing their cost index without impairing
their schedules. Today operations control are not able to accurately
integrate cost index models with their arrival time predictions. This is
due to the fact that time related costs are hard to quantify and short
term arrival time forecasting is lacking accuracy [21,30]. Oftentimes
delayed flights are flying with a high CI to recover time, even on such
short flight routes, where an increase in CI has very limited impact. En-
route flight phases are too short to tangibly reduce flight time by flying
faster. Time savings are often small and easily lost in the landing and
taxiing process.

Significant effort has been made by industry and researchers to
ensure the minimization of delays through strategic planning and ro-
bust scheduling [4]. Due to unforeseeable events and tight schedules

delays cannot be eliminated. In recent years, predictions focusing on
network wide delay propagation as well as on delay predictions for
single aircrafts were published [1,26]. Their work is closely connected
to the research field of arrival time prediction, which has entered the
focus of researchers and industry in the past years [20,21,30]. Espe-
cially the use of machine learning algorithms, for example the ones
used by the top five contestants of the GE-Flight Quest Kaggle compe-
tition, have shown to outperform linear models [30]. They were able to
increase the prediction accuracy of a flight’s runway and gate arrival
time by up to 40%. Similar results were achieved in other studies [17].
The accurate assessment of the most economic cost index represents a
crucial operational problem for airlines. The cost index optimizes the
speed of an aircraft to ensure minimum costs of fuel and time. Not only
the correct estimation of those different cost blocks is highly dependent
on the airline and its aircraft fleet, but even more critical is the correct
estimation of change in arrival time considering different cost indices.
Work on cost index optimization is rather limited. Cook et al. [10]
provide a generic tool for dynamic cost indexing (DCI). DCI is defined
as managing flight delay costs dynamicly through trading fuel burn
against cost of time. Airline manufacturer maintain cost index guide-
lines for their fleets [12,27]. Especially network carriers have a strong
interest in improving their arrival time predictions and lower their fleet
wide cost index. At their hub locations, long distance flights are fed by a
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large number of local connections. Owing to efficiency and cost pres-
sures tight schedules are implemented. Often times continental flights
are sped up to ensure that passengers reach their connections on time.
Due to the short cruise phases on continental flights, an increase of the
cost index only has a very limited effect on the flight’s overall total trip
time. In Fig. 1 we show an example of a flight and the impact of the cost
index on the flight’s arrival time.

In the current study, a machine learning ensemble is used to predict
an aircraft’s arrival time. But instead of predicting arrival times once
aircraft is airborne, we focus on predicting an aircraft’s arrival time at
the block-off moment. We implement linear regression and gradient
boosting machines as described by Friedman and Breiman [16]. Flight
data of a European network carrier from the year 2015 and 2016 is
used. The dataset consists of departing flights from over 200 continental
European cities, which are arriving at the airline’s hub locations. Var-
ious predictor variables related to weather data, airport congestion le-
vels and standard flight information are included. We provide accurate
arrival time predictions. Furthermore, the arrival times are predicted
for all cost index levels of the aircraft. With this information we can
calculate change in arrival time due to change in cost index. With our
model we can quantify the delay reduction and cost of decreasing delay
during the flight. With this information airlines are able to dynamically
adapt the cost index for each flight prior to departure considering
current delay and fuel cost.

Our research findings provide several important contributions to the
literature. First, to the best of our knowledge, we are the first to com-
bine arrival time prediction and dynamic cost indexing to a prescriptive
analytics solution focused on minimizing total costs of a flight. These
findings extend existing work of dynamic cost index optimization and
arrival time predictions. With this model airlines are able to quantify
and weigh fuel costs against cost of time and take more informed de-
cisions in their daily operations. Second, our results show that an en-
semble of machine learning algorithms is an adequate tool to predict an
aircraft’s arrival time. Through accounting for linear and non-linear
relationships of influencing factors and considering their inter-
dependencies, predictions reach a high accuracy. Furthermore we show
that a high prediction accuracy can already be achieved at the block off
moment of an aircraft. With an average block time of 100 min opera-
tions control have considerable time for analysis and decision making.

Third, our model is the first attempt to predict aircraft arrival time
with European airline information. Studies focused on US airspace are
numerous [2,17,20], but so far no study using European flight data has
been published. According to [15] there are several important differ-
ences between the European and US airspace, which make arrival time
forecasting for European airspace more complex. Even though the
number of controlled flights in the US exceeds the number of European
flights by more than 65%, European airspace is more fragmented. In-
stead of one air navigation service provider (ANSP), 37 ANSP are op-
erating for the European airspace. Each ANSP operates their own
system and procedures. Furthermore the military needs of all national
states need to be accommodated in airspace management. European
flights have larger amounts of enroute delay due to volume and capa-
city constraints. According to [8] a key difference between European
and US air space management is the prioritization of flights at the
airports. The US follows a first-come first-served basis contrary to the
European slot system. Considering those differences, forecasting flight
arrival time for European fights needs to be investigated as there are
major differences to the US system.

This paper is organized as follows. Section 2 reviews the relevant
literature. The prediction model is suggested in Section 3, wherein the
data, variables and the current baseline model are described. In
Section 4, the cost index model is explained. Section 5 reports the re-
sults of each model. Section 6 provides a brief conclusion and describes
implications for theory and practice in addition to limitations and di-
rections for future research.

2. Literature review

Several overlapping streams of literature provide the context for
studying arrival time prediction and cost index optimization.

2.1. Airline cost index

The ratio of the CI includes fuel and time related costs. Fuel costs
fluctuate depending on daily spot rates, location and the hedging
strategy of an airline. Time-dependent costs primarily include hourly
crew and maintenance costs. Delay costs are typically hard to quantify,
because they can vary depending on the magnitude of delay and the
airline’s policies [10,12,27]. The first stream is the literature on airline
cost indexing. As early as 1991, Honeywell Inc. has developed patented
technology to integrate a cost index parameter into arrival time fore-
casting [13]. Both Boeing and Airbus have published cost index stra-
tegies for their fleets. Furthermore, In [12] the current industry stan-
dard for cost indexing is described. Detailed reports are included for all
fleet types detailing fuel increases, speed limitations and operational
recommendations. Boeing puts the concept of cost indexing in context
with fuel conservation strategies. They state that airlines do not
leverage the cost index concept enough in their daily operations and
miss out on annual savings of up to$ 5 million by flying with higher cost
indices. According to Boeing lowering the cost index would have a
minor impact on schedule. Flight time increases would range from one
to three minutes for a 1.000 mile trip [27]. Cook et al. [10] develop a
generic tool for dynamic cost indexing, which allows pilots to change
the cost index during the flight. Through the use of case studies they
identify the key challenges for implementing a dynamic cost index,
which is the accurate estimation of time related costs, especially delay
costs, and data integration of external and internal sources. Further-
more [10] have considered the environmental impact of optimized CI
levels to reduce CO2 emissions. According to [10], two airlines which
were interviewed for case studies had differing views on the impact of
cost index optimization for short haul flights. Experts of Scandinavian
Airlines stated that time recovery for flights under 60 min is limited and
they should be flown with a low CI regardless. Contrary to that other
airlines stated that even small delay recoveries would be beneficial for
their operational efficiency. More recent work on the environmental
benefits of optimizing CI for different aircraft models was published by
Edwards et al. [14]. According to their results, optimal CI values can
vary tremendously depending on aircraft type and flight distance, but
CI optimization has a higher impact on long haul flights. Closely linked
to using cost indices for a delayed flight is the concept of speed opti-
mization to overcome delays. Aktürk et al. [2] include cruise speed as a
decision variable to shorten delays in a network and show that speeding
up an aircraft can reduce overall delay costs. Even though all studies
consider cost indexing to have an impact on flight times, they do not
explain their arrival time calculations in detail. So far no model in-
tegrates cost index optimization with detailed arrival time predictions.

2.2. Arrival time prediction

The second stream of literature concerns arrival time estimation.
According to [23], airlines use aircraft performance models together
with parametric or physics-based trajectory models to calculate flight
time. Often these tools are incapable of considering external influences
such as weather and airport congestion. Similar conclusions were
drawn by Glina et al. [17]. Even though there are more advanced
methods to predict an aircraft’s arrival time, airlines still heavily rely on
simple models due to a lack of data availability and real time data in-
tegration [22,28]. Proactive delay management is closely linked to ar-
rival time predictions. Researchers have focused on using classification
models to predict if an aircraft is delayed. Especially the detection of
periodic and reoccurring delays have been investigated. Early work in
the field of delay propagation was done by Peterson et al. [5,24]. In
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recent years, the use of predictive analytics in delay management has
entered the focus of researchers. Abdelghany et al. [1] developed an
airline’s integrated recovery approach by predicting schedule disrup-
tions and proposing an integrated recovery plan requiring only one
minute computing time. Similar work was done by Rebollo and Ba-
lakrishnan [26] concentrating on network delay states to forecast de-
parture delays 2–24 h in advance. Further work focusing on delay
prediction was published by Zonglei et al. [35] using machine learning
to train an unsupervised model on flight delay detection. Xu et al. [34]
focus on delay prediction for 34 major U.S. airports. They predict po-
sitive or negative delay. Tu et al. [31] analyze the distribution of delays
for departing flights.

In recent years interest in research focusing on predicting a flight’s
remaining flight time or arrival time has increased. Glina et al. [17]
aimed at predicting landing times once the aircraft is within a distance
of 60 nautical miles (NM) from the airport to optimize aircraft se-
quencing. A linear relationship between prediction accuracy and de-
creasing distance was observed. The approach was tested at the Dallas/
Fort Worth Int. Airport for a period of five days and delivered satisfying
results.[29] focus on taxi out time prediction for John F. Kennedy air-
port in New York. They use historical data based on airport surface
traffic. Srivastava [20] used random forest regression for arrival time
prediction and compared different sources of information and their
predictive power. The inclusion of aircraft and flight information to-
gether with weather data and runway utilization data delivered by far
the best results than any other combination of information. In the 2013
GE Flight Quest challenge a data science contest was hosted by GE
Aviation and Alaska Airlines. By providing extensive historical flight
data the companies aimed at getting real time big data analysis solu-
tions. The dataset included over 2.3 million U.S. domestic flights for a
period of several month. The winning team achieved a reduction of
prediction error by more than 40%. Especially the feature selection
proved to be a critical task in developing a superior predictive model
[30]. Kim [21] developed a non-parametric additive model to predict
flight arrival times for domestic flights arriving to Denver International
Airport. He highlights the importance of departure delay to accurately
forecast arrival times and achieve a root mean squared error of twelve
minutes.

2.3. Machine learning

In this section we give a brief overview of predictive modeling for
regression considering the most relevant machine learning algorithms
including gradient boosting machines, random forest and multivariate
linear regression. Fist, the CART algorithm (classification and regres-
sion trees) was introduced by Breiman [7] in 1984. It is the foundation
for random forest regression and builds on the idea of decision trees.
Random forest regression is a commonly used prediction algorithm in
data mining and machine learning. To overcome the drawback of over-
fitting, several trees are built and their prediction results are averaged.
The trees are de-correlated through bootstrap sampling, which ensures
random selection of predictor variables at each node split. Second,
Gradient boosting machines were developed by Friedman and Breiman
[16] in the late 90s. The algorithm is an additive ensemble, which
subsequently gives more weight to observations that are hard to clas-
sify. It is grown sequentially using a modified version of the original
dataset by adding a new weak learner to the model at each stage.
Through that shortcoming of existing weak learners are compensated
and overall prediction accuracy increases. The definition of the loss
function as well as parameter tuning are critical for model performance.
Third, a standard tool in predictive modeling is multivariate linear re-
gression focused on minimizing least squares. It is based on one re-
sponse variable being described by a set of predictor variables and their
regression coefficients. Continuous as well as categorical variables can
be used. The data needs to be linearly separable. For aircraft arrival
time prediction all of these methods have been used. Kim [21]

implemented a spline smoothing-based non-parametric additive model
to predict aircraft arrival time at the point of departure. Focusing on
flights arriving to Denver Int. airport the model achieved a prediction
accuracy of root mean squared error (RMSE) 12.2 min. Glina et al. [17]
used a quantile regression forest algorithm, which is an extension of
random forest providing conditional probability distributions. Overall
4000 flights were used to train and test the model. The algorithm
achieved high-fidelity predictions for aircraft landing times. Kern et al.
[20] showed that random forest regression outperforms traditional ar-
rival time predictions based on trajectory models. The random forest
was trained on a sample of 20,000 continental US flights and achieved a
mean absolute error reduction of over 40%. The winners of the GE
flight quest used a combination of random forest and gradient boosting
models to come up with their final solution. Other contestants such as
the third team implemented an ensemble of gradient boosting machines
and ridge regression trained on the previous stages residuals as part of
their final model [19]. The contestants of the GE flight quest compe-
tition all achieved high prediction accuracy of around 4.2 min for gate
arrival times.

The three streams of research stress the importance of optimizing a
flight’s cost index and the potential of machine learning to enhance
aircraft arrival time prediction. However, while they offer useful in-
sights into the potential benefits of cost index optimization, they do not
provide a detailed model for obtaining a cost minimum given arrival
time prediction. Our model is a step towards closing this gap. It can be
used to estimate a flight’s arrival time for each cost index level. Based
on this information the optimal cost index can be chosen for each flight
individually.

In the following sections we first describe the model and then show
its application on eight continental European flights. We illustrate how
the model serves as a useful tool to determine the feasibility of adapting
a flight’s cost index and estimate the monetary implications.

3. Model formulation

Contrary to the US data which is published by the U.S. Bureau of
Transportation Statistics, European flight data is not made publicly
available. Thus, previous studies focused on arrival time prediction for
the U.S. airspace. This study is the first to make use of a rich dataset of a
European airline. The data includes continental flights of the A320
fleet, which arrive at two hub locations. The dataset is comprised of
historical data for the year 2015 and 2016. Prediction accuracy was
evaluated on a new dataset. Besides the airline’s flight data the dataset
was enhanced with weather information and detailed data on the air-
ports’ capacity utilization. Incomplete flights with missing or wrong
values were excluded from the dataset. Furthermore all airports with
less than 20 flights per year were eliminated. In total, over 80,000
flights were used for model training, validation and testing.

We compare our prediction to the airline’s arrival time forecast. The
airline method is based on a flight planning tool, which considers dis-
tance, altitude, temperature and pressure to determine the optimal
flight level and route. Additionally headwind and tailwind are included
to calculate ground speed and therefore arrival time. The calculated
time is transmitted to air traffic control and used by the airline’s op-
erations control team. For a detailed description of the calculation
please refer to [32].

3.1. Target variable

The target variable is given by the overall trip time of a flight, rather
than the classification and prediction of delay scenarios. We refer to this
variable as the actual total trip time. Considering the high impact that
taxi times have on a continental flight’s total trip time, we focus on
predicting gate arrival time rather than runway arrival time. Therefore,
not only flight time is predicted, but the total trip including taxi times at
the departure and arrival airport is predicted. The total trip time is
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measured starting at the moment the aircraft leaves the gate (block off)
until the aircraft docks on to the gate at the destination (block on). The
gate arrival time is more important than the landing time, as this is the
most important time for any cost of time related cost index calculation.
The target variable (in minutes) was not changed and could be directly
extracted from the flight data file provided by the airline. Thus, only
positive values are available. Note that scheduled total trip time de-
notes the airlines flight schedule times and predicted total trip time is
the predicted time according to our ensemble model.

3.2. Predictor variables

With our prediction model we aim at generating a more accurate
arrival time prediction at the point of gate departure. In this study, we
consider the flight data of one airline only. Most of the variables were
already included in the original dataset provided by the airline.
Nevertheless, great effort was put into feature generation especially for
time related variables. As [20] show in their work, the combination of
flight data, weather forecasts and airport congestions levels lead to the
highest arrival time prediction accuracy. This is why we also included
all of these features in our model. Overall there are 71 features, six
categorical and 65 numerical. The features include information related
to the departure airport, information related to the arrival airport,
general flight and airline data, weather data and time related data. Due
to limitations in data types and number of factor levels, data transfor-
mation needed to be done for certain variables. These transformations
include simple conversions of the data format, such as changing a time
format to a numeric variable by converting it into minutes, as well as
more complex factor level conversions. The features as well as any data
transformation are explained in more detail in the following para-
graphs.

Information regarding the departure airport is considered an es-
sential feature for arrival time prediction. According to [21], departure
delay, i.e. the time between scheduled and actual off block, is an im-
portant predictor variable. We include it in our model by calculating
the difference between the scheduled block off time and the actual
block off time. Negative values indicate that the aircraft left the gate
earlier than scheduled. Furthermore categorical features such as
scheduled departure runway and departure stand are included.

Three additional features were generated for the departure airport.
Besides adding the country and city, which were both transformed to
numeric features due to algorithmic limitations of a maximum of 34
classes for categorical features, a variable called destination frequency

was added. The destination frequency represents the total number of
flights between two airports within one year. With this variable, we
quantify the effect of tacit knowledge of the crew and ground personal
that is shown in an efficient routine, due to frequently working to-
gether.

The structure of the arrival information is similar to the departure
dataset. It includes arrival airport and scheduled arrival runway. To
account for airport congestion detailed calculations for the number of
departing and arriving aircraft were constructed. These airport con-
gestion features include flights of all airlines operating at the airport.
Taking the scheduled landing time as reference point the number of
arriving and departing aircraft is calculated for five minute breaks
ranging from 30 min prior to landing until 30 min after landing. Thus,
24 numeric features are created depicting the number of aircraft de-
parting or arriving within the specific time window. This variable
creation process is based on the findings of [20]. The above described
approach delivered a higher prediction accuracy than the cumulative
score with time breaks including all previous stages.

The weather datasets are based on Terminal Aerodrome Forecasts
(TAF). TAF reports are issued according to the standards defined by the
International Civil Aviation Organization (ICAO). National meteor-
ological services publish TAF reports for all major civil airfields.
Scheduled departure and landing times are used to match TAF reports
for the arrival and departure airports. The report includes numeric
features such as cloud base, vertical and horizontal visibility, wind
speed, wind gust, wind direction as well as one categorical feature. Due
to large amounts of missing values certain variables such as tempera-
ture and atmospheric pressure had to be excluded. The categorical
feature describes overall weather conditions.

Additionally features related to the flight and the aircraft are in-
corporated. These range from aircraft and fuel type to total take-off
weight. Air distance, great circle distance and maximum altitude are
included. Furthermore, data of the airline includes scheduled times for
the different flight segments such as taxi times and total trip time. To
enhance prediction accuracy we created derived features of the total
trip time and taxi times. One feature focuses on the taxi-out time until
the landing time. Another one on the scheduled flight time. It was de-
rived by subtracting scheduled taxi times from scheduled total trip
time. As shown in Figs. 2 and 3, time and distance related variables
have a strong linear relationship with the actual total trip time. The
correlation coefficient for the distance and time related variables with
actual total trip time ranges from 0.981 to 0.986. Therefore, we include
those variables in our model as important features for an accurate total

Fig. 2. Air and ground distance have a correlation coefficient of 0.981 with actual total trip time.

A. Achenbach, S. Spinler Operations Research Perspectives 5 (2018) 265–279

269



trip time prediction.
According to [21,25], features describing the time of day are im-

portant for estimating delays. In our model, time related features in-
clude variables generated from the flight date such as month, season
and weekday. Besides, we analyzed peak hours during the day and
created the feature “Time of day” to account for peak hours in the
morning and evening. Another feature that was created focuses on the
number of days until the next national holiday to account for increases
in travel before major holidays. Furthermore, time related features in-
clude a binary variable to account for weekends and two variables fo-
cusing on the hour of departure and arrival. All time and date related
features that were generated are numerical. For our optimization model
the scheduled flight times are especially important. They will be
adapted to generate CI specific arrival time predictions. The adaptation
of features is further explained in the Section 1 focusing on the opti-
mization model. Please refer to Appendix A for a list of all features and
detailed information on data origin and transformation.

3.3. Predictive model

For our prediction model we implement and test several machine
learning models. Our final model is based on an ensemble of a gradient
boosting machine and linear regression. Ensembles of different models
are frequently used for predictive modeling. We develop an ensemble
model that is trained on the residual of the previous stage. Through the
use of an ensemble model we are able to combine linear regression and
gradient boosting. Furthermore, we include different features in each
stage of the ensemble. With the combination of two predictive algo-
rithms, we account for linear and non-linear relationships in the data.
The whole system was implemented in R version 3.2.5. Besides “gbm”
standard data preprocessing packages such as “dplyr”, “stats”, “time-
series” and “zoo” were used. The ensemble takes less than three minutes
to run.

In the following, each ensemble stage of the model detailing the
features and parameter settings is explained. Variable selection was
based on literature reviews such as [17,19,20]. Furthermore, im-
portance rankings were derived by individual models for variable se-
lection. The final model was developed through a highly iterative
process with the goal of optimizing error rates and standard deviation.
Many ensemble combinations as well as single models were run to
determine the best combination of features and structure of the en-
semble. The ensemble model outperformed any individual model. The
number of ensemble stages and the variables used in each stage were

organized according to their subject area. Therefore, we include subsets
with general information, weather and airport congestion levels. Also
the prediction of flight segments was tested, but did not result in a
superior prediction accuracy compared to predicting the arrival time at
once. Instead of decreasing overall prediction error, the errors of each
individual segment (taxi-out time, flight time, taxi-in time) add up to a
larger inaccuracy. This is due to the fact that the error of the taxi times
is as large as the error of the flight time. Considering that taxi times
account for a smaller proportion of total trip time, overall prediction
accuracy is less than in the ensemble model focusing on total trip time.
A detailed list of the features used for each model stage is included in
the Appendix B.

The first stage is a linear regression consisting of a subset of highly
informative variables. Most of the variables are numeric and have a
strong linear relationship with the actual total trip time. They include
scheduled total trip time, scheduled flight time, block off delay, season,
time of day, scheduled arrival runway, planned take-off weight as well
as planned air and ground distance. This subset of variables is included
in all other stages of the ensemble. These include the predicted values
in minutes and denote the total trip time from the block off moment
until the aircraft reaches the gate at the destination airport (block on).
The aim of the feature selection for the first stage favors features, which
increase overall prediction accuracy. In the first stage we aim for an
initial accurate arrival time prediction, which is further enhanced in the
next stages of the ensemble model. Thus, features that considerably
increase overall prediction accuracy were included in the first stage.

In the second stage, predictions are made by a gradient boosting
machine using a subset of the features not including weather and air-
port congestion data. The target variable is not actual total trip time,
but the residual of the previous stage, which is calculated by sub-
tracting actual total trip time from predicted total trip time. The vari-
ables included in this stage are departure stand, scheduled departure
runway, departure airport, arrival airport, aircraft type, planned max-
imum altitude, weekday, month, scheduled taxi out and taxi in times as
well as a binary variable for days on the weekend. The feature selection
in the second stage focuses on features, which further fine-tune the
initial prediction. Those features did not have a prominent effect in the
linear regression, but showed an improved prediction accuracy in the
gradient boosting model.

In the third stage, weather information such as weather conditions
at the arrival and departure airport are used to make a prediction.
Weather data includes over 15 different measures. None of the weather
features has a very high variable importance score compared to the

Fig. 3. Planned flight time and total trip time have a correlation coefficient of 0.986 with actual total trip time.
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other weather features. Thus, all weather features were included
without any further reduction.

Stage 4 of the ensemble model combines capacity utilization in-
formation for the arrival airport according to the concept proposed by
[20]. For every thirty minutes prior and after landing, five minute
buckets are created detailing the number of flights to depart and land
during these times. Also in this stage, the initial prediction is further
fine-tuned with additional information. Depending on the time of day
different traffic patterns are important for prediction accuracy. For
every flight each traffic related feature is calculated and included in the
prediction of the forth stage. Please refer to Fig. 4 to see a graphic
display of the ensemble model.

3.4. Performance evaluation

The models were trained and tested using data from 2015 and 2016.
Root mean squared error, mean absolute error and standard deviation
are used for model evaluation.
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N is the number of predicted values. ci and vi are the predicted and
actual total trip time respectively. After training the ensemble with over
60,000 flights, fine tuning and cross validation was done with a vali-
dation dataset of 14,000 flights. The final ensemble was tested on a set
of 6000 flights. The datasets are made up of flight data ranging from
January 2015 until April 2016. The datasets are generated through
random sampling.

3.5. Tuning of hyperparameters

Hyperparamters are values that set up machine learning algorithms
operators. Different data patterns require different hyperparameters to
optimally generalize the data. The hyperparameters for the gradient
boosting were determined through a grid search. Random search was
also considered for hyperparameter optimization, but due to the low
number of dimensions grid search was chosen. Grid search can be easily
implemented and computations can be parallelized [6]. N.trees

Fig. 4. Overview of ensemble model.
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describes the number of trees that are grown. Learning rate, also known
as shrinkage, reduces the impact of each additional tree by penalizing
the importance of each consecutive iteration. The interaction depth
describes the number of splits done in each tree. We chose a large
number to allow for complex tree structures. The number of trees
(ntree) ranged from 100 to 500, learning rate was set between 0.1 and
0.4 and interaction depth was either 10, 20 or 40. Minimum observa-
tions in the final node were kept constant with 100. In Fig. 5 examples
of hyperparameter tuning results for the first gbm stage are displayed.
As we can see in the graph, the best RMSE is achieved with a learning
rate of 0.1, ntree of 100 and interaction depth of 10. The RMSE for the
ntree values of 250 and 500 is almost the same. The RMSE deteriorates
with higher learning rate values, even when the number of trees are
increasing. Interaction depth did not have a high influence on RMSE. A
higher interaction depth lead to a slight increase in RMSE. Therefore
the superior GBM settings are as following: n.trees = 100, learning rate
= 0.1, interaction depth = 40, minimum number of observations in
terminal node = 100. The GBM settings are the same in all stages ex-
cept for the learning rate. The hyperparameter tuning in those stages
showed an optimal learning rate of 0.15 for the third and fourth stage.

4. Aircraft performance data and model

4.1. Cost index data

The cost index sets cost of time (Ctime) in relation to cost of fuel
(CFuel).

=CI C
C

time

Fuel (4)

To calculate a flight’s cost index, several data sources are needed.
First of all, the cost of fuel needs to be known. This can be easily derived
from daily fuel spot prices. Some airlines implementing fuel hedging
might have to adapt those daily rates according to their current hedging
strategy. The cost of jet fuel is subject to daily variations depending on
the oil market, location and amount. Cost of time are much harder to
calculate. They are made up of marginal costs for each additional
minute of flight time. Personnel as well as equipment costs, such as

maintenance costs and hourly usage fees for engines, need to be in-
cluded. Since crews are paid on a monthly fixed salary basis only ad-
ditional costs for overtime add to overall crew cost. At the end of a
month airlines accumulate crew hours that are higher than hours cov-
ered by the base salary. These additional hours need to be averaged
over the month and year respectively. Different costs and working
hours for cabin crew and pilots need to be considered. Thus, an airline
can determine marginal cost of their crew for each additional minute.
The accuracy of this heuristic depends on an airline’s ability to depict
crew costs and working hours correctly. The costs might vary de-
pending on the seniority of the crew. Equipment maintenance cost also
differ depending on the aircraft’s age. Focusing on one aircraft family
marginal costs for an additional hour of flight can be derived from the
airlines yearly equipment maintenance costs. In case of rented engines
hourly usage fees need to be added. On top of that delay costs have to
be considered. It is quite difficult to decide on a specific value for delay
costs per minute. Studies such as [9,11] have suggested costs of 80 € for
every five minutes of delay for the aircraft type A320. Delay costs in-
clude hard costs for re-booking the passenger as well as soft costs such
as passenger dissatisfaction. The estimation of those values strongly
depend on the airline. Ball et al. [3] provide an innovative review of
delay costs also considering passenger delay costs.

Because of the limited information of time related costs we model
the cost of time as a function of fuel costs for a given cost index. Thus,
we are able to display the cost of fuel for each cost index level. This
information serves as a threshold for decision making. Cost of time
needs to be equal or higher than fuel costs for the respective cost index
multiplied by the overall time saved at the specific CI (TCI). An example
of this calculation is given in Table 1, where the TCI is specified as
minimum cost of time considering fuel costs. Since airline lack the
capability to accurately calculate cost of time, the calculation of
thresholds serves as decision guideline. If the airline staff estimates TCI
to be larger than fuel costs, an increase in CI is reasonable.

Aircraft performance models are provided by the aircraft manu-
facturer. It is possible to model a flight considering different cost index
levels to understand the effect of a changed cost index on an aircraft’s
flight time and fuel usage. It is important to note that the models’
calculations depend on a specific subtype of an aircraft fleet. For our

Fig. 5. Increasing interaction depth leads to a slight increase in RMSE. Overall a low learning rate delivers superior results. The effect of number of trees on RMSE
depends on learning rate and interaction depth.
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model the data of the most frequently used aircraft, the Airbus A320,
was considered. Furthermore, it is important to note that the distance of
a flight can have a significant impact on the aircraft performance
model. To show the validity of our approach the aircraft performance
model was developed for different distances. In the aircraft perfor-
mance model distances are measured in nautical miles (NM). It includes
distances of 300 NM up to 1200 NM. Cost index levels from 0 to 100 in
steps of ten were generated. It is important to note that the aircraft
performance model focuses on the flight time of the aircraft. Fuel and
time calculations start at take-off and end at touchdown. Thus, it only
shows the percentage change in time and fuel for the flight time of the
aircraft and not for the total trip time. The remaining segments of the
total trip time, such as taxi-in and out times, are not included.
Considering that the cost index will not have an influence on taxi times,
it is reasonable to use the same taxi times for all CI levels. Furthermore,
normal flight conditions are assumed.

4.2. Optimization of cost index model

To determine the optimal cost index for each flight we first calculate
the change in flight time for each cost index level. Secondly, we run the
prediction model to generate arrival time prediction with the altered
cost index related features and finally we generate thresholds at which
a higher cost index becomes optimal. Our optimization is a full enu-
meration of all solutions. The optimal solution considers minimum
delay and fuel costs.

To show the effect of cost index optimization for various distances,
the aircraft performance model was applied to eight different origin-
destination (OD) pairs. For each OD pair the following process was used
to estimate the fuel and time values. First, we need to define a baseline
for our fuel cost and time calculation. According to the airline personnel
the standard CI is set to 30. When analyzing the actual flown CI for all
OD pairs we use in our study, this was confirmed. The analysis showed

that a CI between 29 and 32 was the most commonly used CI on the
selected routes. Therefore the cost index level 30 was chosen as a
baseline for all OD pairs. This baseline was then used to calculate the
estimated change in time according to the aircraft performance model.
For example, a flight with a distance of 510 NM has an average flight
time of 78 min. This value was set as CI 30.

Using the change in percentage given by the aircraft performance
model for 500 NM, the expected flight time is calculated for the other CI
levels. Keeping all other values the same, only the three variables af-
fected by a change of flight time were altered. These include the
scheduled flight time, scheduled time from block off until landing and
the scheduled total trip time. These new values of expected flight time
are used in the following to predict a flight’s arrival time. Considering
the eleven different cost index levels (CI={0, 10, 20, ... , 90, 100}) one
flight was predicted eleven times. The results are eleven different ar-
rival time estimates for one flight considering different cost index le-
vels. To ensure the correctness of the model we tested each OD pair
with 25 different flights.

According to the aircraft performance model the following time
savings can be achieved by varying the cost index level. A short flight of
300 NM and approximately 52 min flight time at cost index 0 will be
able to decrease the flight time by 3 min to a total flight time of 49 min
at CI 100. This is approximately 5.7%. A flight with 500 NM and a total
flight time of 79 min at CI 0 can decrease flight time by 5 min at CI 100 ,
which is 6.3%. A flight of 1200 NM and 174 min total flight time at CI 0
can reduce the flight time to 166 min for CI 100, which equals 4.6%. In
Fig. 6 the percentage change in flight time are displayed.

The eight OD pairs were selected based on their distances. They
include short distance flights around 300 NM, medium distance flights
of 500 NM to 600 NM and long flights of 800 NM or 1200 NM. For all
calculations the aircraft performance model of the A320 fleet was used
as they are the most commonly used aircraft type for all OD pairs. Short
distance OD pairs include flights from Hamburg to Frankfurt (285 NM),

Table 1
Example of a flight with time and fuel cost calculation according to aircraft performance model.

Cost Index 0 10 20 30 40 50 60 70 80 90 100

Total trip time 82 82 81 80 79 78 77,5 77 77 77 77
Change in total trip time (min.)a 2 2 1 0 −1 −2 −2.5 −3 −3 −3 −3
Change in fuel consumption (kg)a −60 −50 −30 0 30 60 90 120 135 150 160
Cost of Fuel (0,42€ /kg) −25.20 −21.00 −12.60 0.00 12.60 25.20 37.80 50.40 56.70 63.00 67.20
TCI (€ /min.) 12.60 10.50 12.60 0.00 −12.60 −12.60 −15.12 −16.80 −18.90 −21.00 −22.40

a acc. to aircraft performance model

Fig. 6. Decrease in flight time as a function of cost index (CI:0-100). We observe that the change in flight time varies depending on the distance. For flights of 300 NM
the maximum decrease in flight time is 4%. For longer flights (800–1200 NM) a maximum decrease of 6.5% can be achieved.
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Milan to Munich (294 NM) and Düsseldorf to Munich (307 NM). The
aircraft performance model derived for 300 NM was used. The routes
Manchester to Frankfurt (509 NM), London to Munich (528 NM) and
Rome to Frankfurt (609) make up the OD pairs for medium distance
flights. The aircraft performance models for 500 NM and 600 NM were
used respectively. The dataset included only a limited number of OD
pairs with a distance of more than 800 NM, but for those OD pairs a
sufficient number of flights is available. Therefore, only two OD pairs
were chosen for long distances. These include Stockholm to Munich
(798 NM) and Moscow to Frankfurt (1,222 NM). Aircraft performance
models for 800 NM and 1200 NM were used to estimated changes in
time and fuel consumption. Fuel usage can vary up to 9,2% depending
on the CI level. With longer distances the variability of fuel decreases.
In Fig. 7 the percentage increase in fuel usage for each CI level and
respective distance is displayed. Please refer to the Appendix D for
detailed insights to the aircraft performance model for each OD pair.

Due to the fact that planned fuel data for taxi-in is missing, we
deducted double the average amount of planned taxi-out fuel from total
planned fuel to get an average amount of fuel used during the flight.
These values are in line with the fuel amounts shown in the aircraft
performance model. Fuel is not a feature in the predictive model, but it
needs to be considered for cost calculation. With a total number of
eleven arrival time estimates for each flight, we are able to calculate the
optimal cost index by fully enumerating all eleven options for CI 0 to CI
100. The change in fuel usage was altered according to the aircraft
performance model data provided for fuel. Considering the new esti-
mates of arrival time we can calculate the change in fuel cost depending
on the CI.

5. Results

Our results consist of prediction results for the machine learning
ensemble model focused on arrival time prediction and the integration
of the cost index in the arrival time prediction. First, we outline the
results of the ensemble model. Second, we show how the cost index can
be integrated in arrival time prediction and the optimization model in

determining the optimal cost index for each flight.

5.1. Prediction results

We divided our data into three parts consisting of a dataset for
training, validation and testing. Our final results are based on the
predictions run on the test dataset. The ensemble seems to be the most
accurate prediction model considering all evaluation criteria. The
baseline model consists of the airline’s scheduled time of arrival cal-
culation provided by operations control. In Table 2, the prediction re-
sults of the ensemble and the scheduled time of arrival calculation are
shown.

In summary, the ensemble of gradient boosting machines and linear
regression outperformed the airline’s existing model. As expected, the
prediction performs well compared to the baseline method of the air-
line. Prediction accuracy is improved by 30% for RMSE and 40% con-
sidering MAE. Such high improvements in prediction accuracy are
comparable to the results of the GE flight quest challenge. Furthermore
[17,20] have shown that machine learning algorithms, such as random
forest, can outperform standard trajectory models in arrival time pre-
diction. We also implemented a random forest model. It was able to
achieve comparable accuracy, but only at the cost of significantly larger
model size and increased computing time.

In Fig. 8, the error histogram of our predicted total trip times is
shown. The amount of flights with more than five minutes deviation of
their actual total trip time amounts to 32.8% . For flights with more
than ten minutes deviation this value decreases to 7.4% (Table 2). Both
of these values are important performance indicators for the airline.
Considering that, previously, flights with more than five or ten minutes
deviation from their actual trip time accounted for 60.6% and 33.4%,
we observe that our model’s accuracy has increased total trip time
prediction substantially. We attribute the performance improvement to
the additional data sources, which include information beyond linear
aspects.

When considering the improvement in prediction performance from
the initial stage up to the 4th stage, the model shows an RMSE im-
provement of 9.78%, MAE improvement of 11.68% and a decrease in
SD by 7.35%. Please refer to Table 4 to see the improvements of each
stage of the ensemble model. Single stage models did not perform as
good as the ensemble model. In Table 3 the results of a single stage
linear regression and gradient boosting model including all variables at
once are compared to the results of the ensemble model. Especially the
separate inclusion of weather data (Stage 3) and air traffic information
(Stage 4) in the ensemble are important as shown in Table 4.

Fig. 7. Increase in fuel usage as a function of cost index (CI:0-100). The increase in fuel consumption is quite similar for all distances. For shorter flights the fuel usage
can increase by more than 9%. For distances of 1200 NM the maximum increase is 5.5%.

Table 2
Comparison of results.

Method RMSE MAE SD Dev.> 5min. Dev.> 10min.

Airline forecast 8.5 6.80 5.10 60.6% 33.4%
Ensemble model 5.90 4.31 4.03 32.8% 7.4%
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In Fig. 9 the most important variables for linear regression (absolute
t-value) are shown. The variable importance was estimated by running
the model on the full dataset including all variables at once. Variable
importance is not fully representative for the ensemble model due to
variable selection and inclusion of GBM. Nevertheless, the predicted
importance measures were used in model generation and testing. As we
can see in Fig. 9 the most important variables for linear regression, such
as distance, scheduled trip times, arrival runway and features related to
time, are also essential features in our ensemble model.

The sensitivity analysis gave further insight to the prediction ac-
curacy depending on certain data subsets. In general the prediction
performs best with short flights. In the dataset flights with a scheduled
flight time below 70 min, scheduled total trip time below 100 min and
air distance smaller than 1000 km significantly outperformed flights
with increased distances or flight times. Prediction accuracy of national
flights are higher than international flights. Surprisingly, the influence
of distance does not explain the difference between departure airports.
When looking at a national level, we see that flights from Sweden with

Fig. 8. Absolute error in minutes: Difference between actual total trip time and predicted/forecasted total trip time. Negative values indicated earlier arrival than
predicted/forecasted and positive values indicate later arrival than predicted/forecasted.

Table 3
Comparison of single stage models with ensemble model.

Method RMSE MAE SD

Linear regression 6.54 4.88 4.35
Gradient boosting 6.16 4.54 4.16
Ensemble model 5.90 4.31 4.03

Table 4
Results of Ensemble model.

Stage Model RMSE MAE SD

1 Linear regression 6.54 4.88 4.35
2 GBM (General) 6.15 4.53 4.15
3 GBM (Weather) 5.98 4.39 4.07
4 GBM (Airport Traffic) 5.90 4.31 4.03

Fig. 9. Variable importance plot: Linear regression including all variables. Absolute t-value as measurement. Not fully comparable to linear regression in the
ensemble model due to variable selection and different ensemble stages.
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almost 1.5 times the average distance have a significantly higher pre-
diction accuracy compared to flights from Italy. This might be due to
airport inefficiencies or weather conditions. Not surprising is the effect
of several other factors. For example prediction performs worse for
flights arriving during peak hours in the morning or evening, during
weekdays compared to weekends as well as during the winter month,
where adverse weather conditions are more likely to occur.
Furthermore, there are other less obvious discoveries. According to the
sensitivity analysis the deviation in block off time, either leaving early
or late by more than ten minutes, decreases prediction accuracy by
more than 15%. When comparing these results to the airline’s sched-
uled arrival time forecast and applying the same sensitivity analysis the
following two discoveries stand out. First of all we observe that in most
cases the airline’s forecasts reacts similarly to changes in certain vari-
ables. For example the decrease in prediction accuracy with increasing
flight time and distance is similar to the results of the ensemble model.
However, the prediction errors are larger. Contrary to the results of the
predictive model, several categorical variables are not important for the
airline’s scheduled arrival time forecast. These include season, weekday
and month. In the Appendix C a comparison of total trip time predic-
tions obtained from the airline’s forecast and the ensemble model is
shown. The column “Scheduled” refers to the airline’s forecast. “Actual”
refers to the flight’s actual total trip time and “Predicted” to the en-
semble model’s predicted total trip time.

5.2. Optimization results

The results show that the prediction is sensitive to changes in
scheduled total trip time, scheduled time from block off until landing
and scheduled flight time. All three variables are one of the ten most
important predictors in our ensemble model.

To ensure the validity of our results, cost index optimization for one
route was tested on 25 different flight movements of one OD pair. First
of all we can see that the change in CI level has a similar effect on all 25
flights of the same OD pair. Furthermore we compared the results of
different flights with similar distances to verify the outcome.
Considering different OD pairs with similar distance the effect of flight
time changes according to the a change in CI level are also comparable.
With these results we are confident that our prediction model is able to
accurately depict changes in flight time for total trip time prediction.
Table 5 shows the impact of a change in CI levels for the short, medium
and long distance flights considering all OD pairs of the category.

For flights with an average distance of 300 NM the flight time
constitutes roughly 72% of total trip time. Taxi times account for the
remaining trip time and are comparatively large parts due to the short
flight time. Even though the flight time can be reduced by up to three
minutes, the total trip time is not impacted strongly. For short haul
flights the average decrease of trip time from CI 0 to CI 100 range
between half a minute and one minute. These results are consistent for
all short flights with an average distance of 300 NM. Comparing the
change in minutes to the total trip time and flight time, a change in CI
from 0 to 100 can lead 1.24% savings in total trip time (Table 5).

The increase in achievable time savings is larger with longer flight
times. For flights with an average distance of 500 to 600 NM the flight
time constitutes 77% of the total trip time. According to the results a

reduction in total trip time of up to two minutes is possible. Comparing
the time reductions achieved by an increase in CI, time savings of
1.81% for total trip time and 6.41% for flight time can be reached with
the highest CI level (Table 5).

This effect is even stronger for the two flights with a distance of
800 NM and 1200 NM. Flight time accounts for more than 85% of total
trip time. According to the aircraft performance model flight time re-
ductions of up to three minutes can be achieved by increasing the cost
index to CI 100. The results of our model show that an increase in CI
from 0 to 100 can decrease the total trip time by 2.1% for the 800 NM
flight and 1.5% for the 1200 NM flight. This is equal to a reduction of
around eight minutes in flight time and three minutes in total trip time.

Through calculating the change in fuel consumption for each CI
level we can derive the cost of fuel. We refer to the average commodity
price for jet fuel in the year 2015, which is 0.42 € /kg [18]. Considering
the complex cost structures for cost of time, we model cost of time as a
function of fuel cost. In Fig. 10, we show examples for the flight dis-
tances and the effect of different cost of time values on the optimal cost
index. The graphs show an overview of the effect of cost of time on
optimal CI levels. In the graph three curves are shown. The dotted line
depicts fuel cost. The dashed line show cost of time and the solid line is
the total cost. All values are in reference to CI 30. Thus, negative values
of cost are also possible. The total cost curve greatly varies depending
on the distance of the flight and the cost of time. We set cost of time
equal to 10 € /min., 100 € /min. and 500 € /min. to show the effect on
total cost. The white sphere shows the global minimum and the black
sphere the global maximum. The optimal cost index is equal to the
global minimum.

In the following, we describe the step increase in cost of time, at
which a new cost index becomes optimal. Short haul flights are the
most insensitive to a change in cost of time. With small amounts of cost
of time the optimal CI is 0. Only at a cost of time of 50 € /min. CI 0 is no
longer optimal. Due to the limited effect of total trip time reduction the
optimal cost index does not exceed CI 90. Time savings level off beyond
CI 60. CI 60 should not be exceeded, because an increase beyond CI 60
results in a large increase in cost of fuel with tiny cost of time reduc-
tions. CI 100 is never optimal and less favorable than a lower CI. As we
can see in 10 CI 90 is not optimal, even when cost of time reaches 500 €
/min. Therefore, CI 90 becomes optimal only at very high costs per
minute, which need to be larger than 500 € /min. Flights with an
average distance between 500 NM and 600 NM are more sensitive to
changes in cost of time. CI 0 is not optimal as soon as cost of time
reaches a value of 22 € /min. For cost of time ranging from 22 € to
110 € the optimal CI varies from CI 20 to CI 50. Also for these flights CI
100 is only optimal at very large cost of time. For the two flights with a
distance over 800 NM CI 100 becomes optimal at a cost of time of 152 €
/min. The amount of minutes that can be saved by an increase in cost
index are higher and therefore the impact of increased cost of time is
stronger. CI 0 is not optimal once cost of time reach a value greater than
4 € per minute.

Through considering cost of time as a function of fuel cost we are
able to show the difference between flights. Distance and flight time
have a large impact on the amount of minutes that can be saved with an
increase in CI. Comparing the short flights of 300 NM to the longer
flights of more than 800 NM, we see that the required cost of time to

Table 5
Percentage change in Flight time and Total trip time (%).

Cost Index 0 10 20 30 40 50 60 70 80 90 100

Short Flight time 0.00 0.35 1.82 3.45 4.73 5.49 5.80 5.86 5.85 5.88 5.82
Total trip time 0.00 0.08 0.38 0.67 0.95 1.15 1.23 1.24 1.24 1.25 1.24

Medium Flight time 0.00 0.17 1.37 2.87 4.25 5.29 5.95 6.29 6.42 6.44 6.41
Total trip time 0.00 0.04 0.38 0.79 1.18 1.48 1.67 1.77 1.82 1.84 1.81

Long Flight time 0.00 1.44 2.43 3.16 3.76 4.26 4.66 4.97 5.17 5.31 5.46
Total trip time 0.00 0.49 0.79 0.99 1.20 1.38 1.52 1.61 1.67 1.71 1.77
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change from one CI level to the next varies greatly.Therefore we re-
commend to fly short haul flights with a distance below 500 NM at a
cost index of 20. Only at substantial increases in cost of time CI should
be adapted. Due to a limited effect on saved time CI 60 should not be
exceeded for short haul flights. For flights with a distance of 500 to
600 NM we recommend not to exceed CI 80 as our analysis has shown
that a higher CI is only optimal at very high cost of time. For normal
conditions CI 20 is recommended. For flights with a distance greater
than 800 NM we recommend a CI between 30 and 40. Considerable

time savings can be achieved with an increase in CI. Furthermore, the
full envelope of CI levels should be used as our analysis has shown that
CI 100 is optimal at a cost of time exceeding 152 € /min. With this
information airline operations are able to take more differentiated de-
cisions for CI level changes of continental flights.

5.3. Managerial implications

Our model is the first model, which is able to give high fidelity

Fig. 10. Optimal cost index: Considering fuel cost and different cost of time for the distances 300 NM, 600 NM and 1200 NM we see the variability in cost index.
Black square equals maximum cost. Grey square, equals minimum total cost.
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arrival time predictions before the flight departs. Through the early and
accurate prediction operations control has more time to analyze and
decide on measures to ensure smooth operations. Previously such ac-
curate arrival time predictions were only available 30 min prior to
landing. Considering that continental European flights have an average
total trip time of 100 min, the time window for decision making in-
creases by more than 60 min. Integrating cost index optimization with
arrival time predictions has not been done before. With this study we
are able to quantify the effect of cost index changes on an aircraft’s
arrival time. CI 30 is a common CI for most continental European
flights. The results presented in this study show that a CI lower than 30
is more economical in case of small cost of time. A decrease of their
aircraft’s cost index saves fuel without any strong effect on total trip
time and therefore arrival time. This is in line with the recommenda-
tions published by Cook et al. [2,10]. Considering that today the
standard CI is 30, decreasing it to CI 20 would result in a fuel reduction
of up to 100 kg per flight. With fuel costs at an all time low (0.42 € /kg)
total cost savings amount to 42 € per flight. Although this is not a large
amount, it is multiplied by the large number of flights per year. Fur-
thermore a CI reduction, which will have no considerable impact on
arrival times, should be considered from an environmental perspective
as it will result in a reduction of greenhouse gas emissions. Nevertheless
it is important to note that cost of time can greatly impact the optimal
CI. As we have shown with our model increasing the cost index to re-
duce flight time works, but the overall impact in saved minutes is often
not more than 2%. Nevertheless in case of very high cost of time CI 100
can be optimal. This applies especially for flights with distances over
800 NM.

6. Conclusion and outlook

In this paper we apply machine learning to large amounts of flight
data. The goal is to model aircraft arrival time more precisely. Several
features such as weather forecasts, time related features and airport
congestion data, have shown to be important predictor variables. Our
prediction is able to improve airline operations, as it provides reliable
and accurate arrival time predictions at the point of departure.
Furthermore we provide insights to the effects of CI levels on gate ar-
rival time. Through altering the scheduled trip times of a flight ac-
cording to the time savings associated with the CI level, we can gen-
erate arrival time predictions for the different CI levels. With the
accurate arrival time prediction and the cost index optimization model,
airlines can reduce CI levels without any tangible impact on overall
punctuality. Often time savings achieved through a high cost index are
lost in the descent and taxi phase. As we show in our model increasing
the CI level is in many cases not an efficient option to decrease total trip
time. Furthermore, there is a critical trade-off between fuel consump-
tion and minimizing a flight’s total flight time. Although cost index
optimization is a very popular tool used by airlines to decrease a flight’s
trip time, its benefit has not been quantified comprehensively. With our
model airlines gain insight in the impact of CI levels on arrival times
and through this they are able to lower CI levels, while maintaining
efficient and punctual operations. The arrival time prediction results in
lower delay costs and the cost index optimization allows for significant
fuel savings.

There are several limitations to this research. First our data focuses
on one airline. It would be interesting to apply the model to an airline of
similar size and set-up to test the results on an unrelated sample.
Furthermore we considered cost of time per minute for CI optimization.
Often cost of time cannot be calculated per minute for all cost groups.
Additional cost for personnel and equipment can be depicted as mar-
ginal costs per minute, but delay costs often only occur, if a flight does
not reach the airport at a certain time. In the aircraft performance
model normal flight conditions are assumed. Weather conditions,
especially wind, can influence an aircraft’s speed immensely. Therefore
we see the lack of en-route weather conditions as a limitation of the

aircraft performance model.

6.1. Future research

To conclude we outline several interesting future research oppor-
tunities based on our model. A natural extension of this study would be
developing a more accurate and integrated estimate of delay costs so
that the cost index optimization can rely on more realistic data. First of
all the calculation of all costs related to time need to be investigated
further. A model able to combine cost blocks based on the minute of
additional flight time as well as cost blocks only occurring, if a flight
passes a certain threshold would be optimal. This approach depends on
airline’s capability to accurately calculate all cost blocks related to an
aircraft’s arrival time. Secondly this work is focused on continental
flights with short en-route phases. Therefore it would be interesting to
investigate the influence of cost index changes and resulting cost op-
timizations for intercontinental flights with longer en-route phases.
Third the model can be extended by including additional levers that can
have an impact on arrival times. These levers could include permissions
to fly direct during the flight, prioritized landing and taxiing or gate
swaps.
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