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A B S T R A C T

Cross-efficiency evaluation is an extension of data envelopment analysis that has been widely used in many
different applications aimed at producing a ranking of the set of decision making units. Besides the traditional
self-appraisal of units, cross-evaluation methods also take into account peer-appraisals, which are then sum-
marized into an overall performance measure. The standard approach for this aggregation process relies on an
equally-weighted average that disregards that some cross-efficiency scores might be considered more relevant or
reliable than others. This paper focuses on the aggregation process of cross-efficiency scores and proposes a new
approach for deriving meaningful aggregation weights for a more comprehensive evaluation of the units. Our
method integrates two complementary perspectives that weights should reflect: the discriminatory ability of the
information contained in the cross-efficiency matrix and the relative importance that can be attributed to each of
the peer-appraisals. In this sense, the approach presented here provides a more accurate evaluation of the units
than previous approaches and therefore it is likely to produce more meaningful rankings. Some numerical ex-
amples are provided that validate the approach proposed and examine the results obtained in comparison with
previous known methods.

1. Introduction

Data envelopment analysis (DEA), first introduced in [1], is a linear
programming technique useful for assessing the relative efficiency of a
homogeneous set of decision making units (DMUs) that operate in a
production system where multiple inputs are consumed to produce
multiple outputs. After four decades of development, there is still in-
tense research activity in the field both at a theoretical as well as em-
pirical level [2], which has proved DEA to be a valuable tool for per-
formance evaluation in many different contexts, with interesting
applications in health care, education, banking, manufacturing, etc.

In the traditional DEA model DMUs' performance is assessed using
an efficiency score defined as a ratio of a weighted sum of outputs to a
weighted sum of inputs. These efficiency scores are obtained through a
self-evaluation process, where each DMU is allowed to choose its own
set of optimal input and output weights that guarantee a maximum
efficiency ratio, as long as the scores of all DMUs calculated from the
same weights do not exceed one. According to this evaluation frame-
work, DMUs obtaining a unitary efficiency value are regarded as effi-
cient units whereas DMUs that are unable to attain the maximum ef-
ficiency level are considered to perform inefficiently.

This self-assessment scheme with total flexibility in weights selec-
tion is especially suitable for the identification of inefficient DMUs, but
very commonly too many units are classified as efficient performers not
allowing further discrimination or ranking among them, which may
result unsatisfactory in several decision contexts aiming at finding the
best performer. This lack of discrimination in DEA applications is well
documented, particularly when the number of inputs and outputs is too
high relative to the number of DMUs being evaluated, and some em-
pirical rules have been suggested to avoid too many units being clas-
sified as efficient [3]. Further research has been undertaken with the
aim of increasing the discriminative power of DEA. As a result, the
traditional model has been extended in different directions (see for
example [4,5] and references therein), including for example weight-
restriction models, super-efficiency models or common-weight models,
although perhaps the methods based on a cross-evaluation approach
stand among the most commonly used for ranking DMUs.

Cross-efficiency evaluation, firstly proposed in [6], complements
the traditional self-evaluation mode of DEA with a peer-evaluation
mode, in such a way that each DMU is also assessed using the most
favorable weight set of its peer DMUs. Consequently, in a cross-eva-
luation framework DMUs act both as evaluated and evaluating units.
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This evaluation scheme, where DMUs are repeatedly assessed using a
range of input and output weights instead of a single set of weights,
provides a more detailed view of the performance of DMUs, allowing a
glimpse of how sensitive the performance assessments of units are to
the weight pattern used. Eventually, the scores that a DMU obtains
when it is rated by its peers and the self-rated efficiency score are
averaged into an overall performance measure that summarizes the
different appraisals received by that DMU. As Doyle and Green [7] pose
it, cross-evaluation approaches enjoy the same connotations of a de-
mocratic process, in the sense that each and every DMU's preferences
regarding weights are taking into account within the evaluation pro-
cedure, and therefore the results obtained are likely to be considered as
a consensual assessment.

Besides this interesting feature, cross-evaluation approaches are
found to achieve complete discrimination among DEA-efficient units,
which is particularly effective for purposes of ranking. These ad-
vantages explain the extensive use of cross-efficiency based approaches
in applications involving performance evaluation of DMUs for decision-
making within a wide range of fields (see for example, [8–13]). The
relevance of this line of research has also been confirmed in the study
carried out by Liu et al. [2] who identified cross-efficiency related
studies to be one of the more active DEA research subareas in recent
years.

Despite the interesting advantages and vast applicability of cross-
efficiency evaluation, it has received some critics due to non-unique-
ness of cross-efficiency scores. Given that the optimal set of DEA
weights selected by each DMU is not necessarily unique, multiple cross-
efficiency scores can be obtained depending on the specific optimal
solution that the LP solver generates. To overcome this problem, Sexton
et al. [6] suggested the use of some secondary objectives to guide the
selection of a particular set of optimal weights in a specified direction.
Particularly, they proposed the so-called benevolent and aggressive
formulations, aimed at finding a set of weights that guarantee the op-
timal efficiency score of the evaluated DMU while making the others
DMUs' cross-efficiencies as large (for benevolent) or small (for ag-
gressive) as possible. Throughout the years, a great deal of research has
focused on this topic and many different secondary goal models have
been proposed to handle the non-uniqueness issue, either following a
benevolent or aggressive strategy [7,14,15] or introducing neutral ob-
jectives that avoid taking a position for or against the peers [16,17]. All
in all, the introduction of a secondary goal can be seen as an oppor-
tunity to intentionally specify a particular strategy for selecting weights
that makes the procedure better fit the desired aim of the analysis.
Moreover, it has significantly enriched the theoretical development of
the methodology.

Less attention has been paid in the literature to the issue of the
aggregation of the self and peer evaluated cross-efficiencies into a
single cross-efficiency score for each unit. In the standard approach the
cross-efficiency score of each DMU is defined as the average of the
cross-appraisals received, and although other aggregation measures
could also be adopted, they are rarely applied [18]. Particularly, the use
of a simple average implicitly assumes that the assessments provided by
all the DMUs are equally relevant or reliable. However, this is not ne-
cessarily always the case and several arguments can be used to justify
that attaching equal aggregation weights to all the cross-efficiency
scores may not be completely satisfactory and can fail to reflect the real
performance of the evaluated units [19]. In this sense, grounded in the
belief that using a weighted average aggregation introduces a higher
degree of modeling flexibility that may lead to more accurately as-
sessments of DMUs' performance, some authors have studied the cal-
culation of relative importance weights to be used during the ag-
gregation of cross-efficiency scores, and a few approaches have
subsequently been developed that differ in the way the notion of DMUs
importance is tackled.

In this work an alternative method is proposed to derive aggregation
weights that estimate the relative importance of the cross-efficiencies

provided by different DMUs. The rationale of our approach develops
from known strategies for weight elicitation in multicriteria decision
making, given that the scores that need to be aggregated in a cross-
evaluation scheme bear a notable resemblance with the ratings of an
alternative set across a number of criteria. Particularly, we suggest
considering two components in the definition of the importance
weights: an intrinsic component, which is intended to reflect how much
information can be inferred from the DMUs appraisals for a dis-
crimination purpose, and a contextual component, which is intended to
reflect how relevant or valuable the DMUs appraisals can be considered
within the background conditions where the evaluation process takes
place.

The rest of the paper is organized as follows. Section 2 describes the
traditional cross-evaluation approach and how the aggregation of cross-
efficiency scores is tackled in the literature. In Section 3 an alternative
approach that computes relative importance weights for cross-effi-
ciency aggregation is presented. Then, some numerical examples from
the DEA literature are examined in Section 4 to illustrate the applica-
tion of our approach in comparison with the traditional average cross-
efficiency and other weighted cross-efficiency approaches and finally,
some concluding remarks are provided in Section 5.

2. Average and weighted cross-efficiency evaluation

Let us consider n production units or DMUs, each of them being
evaluated in terms of r inputs and s outputs. Using the standard nota-
tion, let xij and ykj be nonnegative values denoting respectively the
amount of input i consumed and the amount of output k produced by
the jth DMU (i=1, …, r, k=1, …, s, j=1, …, n). In this setting, the
original DEA ratio model developed in [1] allows each DMU to choose
an optimal set of input and output weights to achieve the maximum
efficiency score, defined as the ratio of the weighted sum of outputs to
the weighted sum of inputs, constrained to no other DMU scoring more
than one. Therefore, for each DMU q under evaluation the following
non-linear program is formulated:
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which can be suitably transformed into an equivalent linear program
that is usually known as CCR model, named after its authors Charnes,
Cooper and Rhodes:
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Problem (2) must be solved n times in order to obtain a set of op-
timal weights u*kq, v*iq (i=1, …, r, k=1, …, s) and the efficiency scores
Eqq for all the units analyzed q∈{1, …, n}, allowing a classification of
the DMU set into efficient ( =E 1qq ) and non-efficient (Eqq<1) units.
When the most preferred weights for a given DMU are used to compute
an efficiency score for the other DMUs we obtain the so-called cross-

efficiency values, =
∑
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(j=1, …, n) which represent the

evaluation of DMU j under the perspective of DMU q. The resulting
n× n values can be gathered into a matrix that will be referred to as
cross-efficiency matrix (CEM), which is represented in Table 1. As seen,

M. Carrillo, J.M. Jorge Operations Research Perspectives 5 (2018) 256–264

257



the entries in each column of the CEM contains the evaluations pro-
vided by the corresponding DMU (rating DMU) while each row com-
piles the efficiency scores attained by the corresponding DMU (rating
DMU) with respect to the optimal weighs of the peers. Being this so, the
self-evaluated efficiency values lie on the leading diagonal positions.

A row-wise exploration of the CEM gives an image of the perfor-
mance of each unit across the different perspectives determined by all
the units. Then, the cross-evaluation method proceeds by aggregating
the self and peer cross-efficiency scores in each row into a single value,
called cross-efficiency value, that will be used for a ranking perfor-
mance of the DMU set.

Two main issues arise in relation to the practical application of
cross-efficiency evaluation methods. First, given that program (2) may
have multiple optimal solutions, multiple values of cross-efficiencies Ejq
for q ≠ j can therefore be obtained, depending on the particular op-
timal weight pattern used by DMU q for the assessments. To solve this
ambiguity, Sexton et al. [6] proposed the use of a secondary objective
function for the choice among the alternative optimal solutions to
problem (2). They suggested that a DMU could assume a benevolent or
aggressive attitude towards the other DMUs, in the sense of selecting
weights that maintain its own self-evaluated score while being as ad-
vantageous (for benevolent) or harmful (for aggressive) as possible to
the others DMUs. Following this principle, the formulations proposed
by Doyle and Green [7] are perhaps the most commonly-used in ap-
plications. Their secondary-goal models are expressed as follows:
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representing linear surrogates for the maximization (for a benevolent
approach) or minimization (for an aggressive formulation) of the
average of the peer DMUs' scores when assessed with the weights of the
qth DMU. Several alternative secondary goals have been formulated
throughout the years that approach benevolent or aggressive strategies
from different perspectives [14,20]. Regarding the selection between
both schemes, some authors argue that benevolent formulations can be
considered more consistent with the classical DEA spirits based on
being as favorable as possible to each DMU, while aggressive models
are deemed more beneficial as regards the discrimination problem [15].
Alternatively, to avoid taking a position for or against the peers, further
methodological options have emerged that determine an optimal
weight set for each unit without being particularly benevolent or ag-
gressive to the others. The so-called neutral models are only concerned
with obtaining the most favorable result for the unit under evaluation

without paying attention to the effect of the selected weights on the
peer DMUs [21,22].

Having obtained the cross-efficiency matrix, a second issue that has
to be addressed to complete the cross-evaluation procedure concerns
the aggregation of the cross-efficiency scores in CEM. The simple
average is by far the most commonly-used aggregation measure, with
little attention being paid in the literature to alternative aggregation
schemes in comparison with the many pages devoted to alternative
secondary goals. Therefore, the traditional approaches compute the
average cross efficiency (ACE) of DMU j as the arithmetic mean of the n
cross-efficiency scores that it receives when systematically evaluated by
all the units, which are found in the jth row of the CEM:
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j

q

n

jq
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However, a reasonable alternative to the simple average that is
likely to produce more comprehensive assessments is a weighted
average, with weights determined to approximate the importance of
each individual cross-efficiency score instead of assuming the same
importance for all of them. Then, for some given importance weights
adding up to 1, the weighted cross efficiency (WCE) of DMU j is com-
puted as:

∑=
=

w EWCEj
q

n

q jq
1 (5)

Not many studies have considered the use of relative importance
weights for cross-efficiency aggregation. One of the pioneering con-
tributions in this regard was proposed by Wu, Liang and Yang [23],
who used game theory concepts with significant computational burdens
to derive aggregation weights based on the Shapley value in the co-
operative game. Wang and Chin [24] later suggested that self-rated
efficiencies should play a more important role in the aggregation than
peer-rated efficiencies, for all the evaluated DMUs. Working on this
idea, they used an ordered weighted averaging (OWA) operator for the
aggregation process, in such a way that each DMU would always attach
the greater weights to the more favorable assessments received. The use
of OWA operators allows additional flexibility into the modeling pro-
cess by adjusting the orness degree, which measures to what extent the
aggregation emulates the maximum operator. In that way, as the se-
lected orness degree gets closer to 1, more weight is put on the highest
assessment and more cross-scores are discarded from the aggregation.
However, an important drawback of this approach is that the weights
attached to the cross-efficiencies provided by a given DMU will be
different across the evaluated units, which causes that the overall cross-
efficiency values are hardly comparable and the ranking derived can be
put under question [25,26]. This shortcoming is addressed in [27] by
using an induced ordered weighted averaging (IOWA) approach, where
the order of importance of the DMUs is determined by the order-in-
ducing variable selected, that should be related to the evaluations
provided by the DMUs, while the intensity of importance (i.e., the value
of the aggregation weights) is determined by the orness degree and the
particular method used for deriving the weights (the minimax disparity
approach, in the above case), irrespective of the magnitudes of the
cross-efficiency scores.

From a different perspective, Wang and Wang [28] proposed some
interesting approaches to compute importance weights for the DMUs
based on the analysis of the assessments they provide. Their least-
square dissimilarity approach considers that those evaluating units
providing assessments that deviate too much from the other DMUs'
assessments are more unreliable and therefore they should be assigned
the lower weights. Alternatively, their least-square deviation approach
attaches the bigger weights to the DMUs providing scores with
minimum deviation from the optimal DEA efficiency scores. A similar
approach was also used in [29] who aimed at reducing the incon-
sistencies in the evaluation process by minimizing the deviation

Table 1
Cross-efficiency matrix (CEM).

Rated DMU Rating DMU

1 … q … n

1 E11 … E1q … E1n
⋮ ⋮ ⋮ ⋮
j Ej1 … Ejq … Ejn
⋮ ⋮ ⋮ ⋮
n En1 … Enq … Enn
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between the entropy values of self and peer-evaluated scores.
Admittedly, choosing aggregation weights for summarizing the in-

formation contained in the CEM remind us of the problem of selecting
criteria weights for evaluating alternatives in multicriteria decision
making (MCDM), if we identify criteria with CEM columns. In that
context, a well-known principle states that a criterion that rates all al-
ternatives very similarly does not offer any additional information and
therefore it becomes useless for the decision-making process, since it
does not help discriminating among the alternatives [30,31]. Recently,
Song and Liu [19] noticed that, according to this principle, it is rea-
sonable to attach the lower importance weights to the evaluating DMUs
that provide similar cross-efficiency scores across all the evaluated
units, and methods that fail to comply with this rule may eventually
lead to unsatisfactory cross-evaluation. Based on that conception, they
propose to use the variation coefficient method based on the Shannon
entropy of the cross-efficiency scores as an alternative to deviation
approaches like the used in [29] and also in [28].

Following this line of reasoning, next section presents a proposal
that takes ideas for weight elicitation from the field of MCDM and ex-
tends the work in [19] by complementing the importance weight based
on discriminatory ability with a second component reflecting the re-
levance that can be attributed to the evaluating DMUs in their peers’
view.

3. Integrated aggregation weights for cross-efficiency evaluation

The approach presented here is theoretically supported by well-
known techniques for measuring attribute importance in MCDM. A
close relationship between DEA and MCDM has been highlighted on
different occasions [32], and that connection comes into sight once
again when facing the selection of aggregation weights for computing
cross-efficiency scores, a task that bears a close resemblance to the
problem of measuring criteria importance for the assessment and
ranking of a given set of alternatives. To see this, the CEM should be
interpreted as a decision matrix where n alternatives (rated DMUs) are
evaluated under n different criteria (represented by the different DEA-
weights used by rating DMUs).

The problem of measuring importance weights for criteria has re-
ceived considerable attention in MCDM. Undoubtedly, considering
equal weights can be deemed a practical, acceptable option in many
decision contexts, but it seems much more reasonable to admit that not
all the criteria are equally relevant for the decision making process,
which has led to many different approaches for the computation of
weights. In that regard, Zeleny's view is that in a given decision situa-
tion attribute weights should be related to the concept of intrinsic in-
formation contained in the decision matrix and, in parallel, to a concept
of a priori importance that reflects the evaluation background [30]. In
order to simultaneously account for both dimensions, an overall im-
portance weight can be formulated as a multiplicative combination of
them. As a result, the weight values obtained integrate the merits of the
two notions included.

According to this general scheme, a new approach for cross-effi-
ciency evaluation is proposed as follows:

Step 1. Determination of the intrinsic weight component. As is widely
accepted in MCDM, attributes that rate all available alternatives very
similarly are not helpful in making a decision. In this sense, the relative
importance of a given criterion should be proportional to its ability to
discriminate among the alternatives. In our context this means that the
cross-efficiency scores obtained from a given evaluating DMU that
generates similar scores across all DMUs should be assigned a smaller
weight when computing the aggregate score. Consequently, we will
define intrinsic information weights in direct proportion to the dis-
persion degree of the data as given by the coefficient of variation.
Therefore, for each column q in CEM we compute

=
∑ −

= …= E E

E
q nCV

( )
, 1, ,q

n i
n

iq q

q

1
1

2

(6)

where = ∑ =E Eq n i
n

iq
1

1 , and then the intrinsic information weights will
be determined by

=
∑ =

λ
CV

CVq
q

q
n

q

1

1 (7)

Step 2. Determination of the contextual weight component. To account
for the evaluation background we will define importance weights that
represent the relevance of each evaluating DMU in the view of the peer
DMUs. Inspired by the way that peer-citations that an author receives
are used in academic contexts to judge his/her relevance in the field, we
propose to estimate the importance of a DMU in terms of how highly it
ranks when its performance is compared to others by a group of peers.

To take this idea into practice, let us consider the matrix =R R( )zt
where Rzt represents the ranking order of unit z according to the eva-
luations provided by unit t. We assume than when two or more units tie
for a certain position, all of them receive the same (minimum) ranking
order and then subsequent ranks are skipped in such a way that the
position of the units ranked below them is unaffected. In this way, the
columns of R highlight the preference order that each evaluating unit
expresses with regard to the performance efficiency of its peers.

Our goal is to aggregate the preferential information in R to obtain a
measure of the overall standing of each unit in terms of the quality and
frequency of the ranking places earned. The problem of aggregating
individual preferences expressed as ordinal rankings is rather common
in studies of voting and elections, as well as in sporting championship
where the final result of a competition must combine the results ob-
tained in a series of games or trials. The simplest models for consensus
formation are based on positional scoring rules that assign pj points to
each jth-ranked position and then compute the total number of points
that the units get in terms of their ranking positions. Any strictly de-
creasing sequence of points could be used in this fashion to obtain a
measure that summarizes the intensity of preference of each candidate
over the others. In particular, Borda method is a well-known example of
a positional scoring rule, which is commonly used in Social Choice
theory. In Borda method, each candidate gets n points for each first
place vote received, n-1 points for each second place vote received, and
consecutively this way down to 1 point for each last place vote re-
ceived.

Then, using the marks defined according to Borda's rule by
= + −p n j1j , and considering the matrix =M m( )zt with mzt being the

number of times that DMU z has earned the tth ranking position, the
score Sq computed as = ∑ =S p mq j

n
j qj1 can be taken as a measure of the

relevance attributed to the qth DMU by the group of peers. Then, the
weights reflecting contextual information about the importance of
DMUs will be taken in direct proportion to this score as follows:

=
∑ =

λ
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Sq
q

q
n

q

2

1 (8)

Step 3. Computation of integrated aggregation weights. In order to ob-
tain overall importance weights for the aggregation of cross-effi-
ciencies, we perform a multiplicative combination of both previous
components, that after normalization leaves us with the following:

=
∑ =

w
λ λ

λ λq
q q

q
n

q q

1 2

1
1 2

(9)

Step 4. Computation of the weighted cross-efficiency score and ranking.
Finally, the peer cross-efficiency scores are weighted and aggregated
using (5) and the DMUs are ranked accordingly.

From the procedure described, the following properties are derived:

1. For all q wq≥ 0 holds, with =w 0q if and only if all assessments
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provided by DMU q are identical, in which case the consideration of
those evaluations in the aggregate score is irrelevant for the final
ranking of the units. Since that is a rather unusual occurrence,
wq>0 ∀q in practice and therefore all the peer-evaluations are ef-
fectively taken into account during cross-evaluation.

2. The integrated aggregation weights approach the estimation of the
relative importance of the cross-efficiency scores through two
complementing perspectives that simultaneously account for the
discriminatory ability of the DMUs as well as the relevance attrib-
uted to DMUs according to the peers.

3. The higher weights are attained to DMUs that provide reliable as-
sessments and at the same time show a high discriminatory ability
whereas DMUs that provide unreliable assessments or show an ex-
tremely low discriminatory ability are assigned low weights.

As a consequence, the proposed cross-evaluation procedure is ex-
pected to produce fair and convincing assessments and ranking results.

4. Numerical examples

In this section different datasets from the DEA literature are used to
illustrate the application of the proposed method for weighted cross-
efficiency aggregation and compare the results obtained with other
approaches. The cross-efficiency matrix obtained by the aggressive
formulation of Doyle and Green [7] will be taken as our starting point
for each of the examples considered, since we are assuming that dis-
crimination of the given alternatives is a key objective of the analysis.
Example 1. Table 2 contains a dataset used in [33] for the efficiency
evaluation of fourteen international passenger airlines that are
evaluated in the light of three inputs (x1: aircraft capacity, x2:
operating cost, x3: non-flight assets) and two outputs (y1: passenger
kilometers, y2: non-passenger revenue). The last column of Table 2
shows the CCR efficiency of the fourteen airlines or DMUs, showing that
as far as half of them are efficient and therefore a cross-efficiency
analysis can be particularly convenient for achieving a better
discrimination and ranking of the analyzed units.

For a comprehensive aggregation of the self and peer assessments
we will apply the proposed procedure to compute aggregation weights
that simultaneously reflect the intrinsic information contained in the
CEM and the contextual information about the evaluating criteria
(DMUs), as reported in Table 3. The intrinsic component (λq

1) is derived
from the coefficient of variation criterion, and therefore it takes into
consideration the discriminatory ability of the assessments provided by
different DMUs, while the contextual component (λq

2) accounts for the
importance that can be attributed to each evaluating unit by the whole
DMU set in terms of the ranking orders they earn. The integrated ag-
gregation weights, defined in a multiplicative fashion, successfully
combine both ideas. Table 4 shows the aggregate scores (with the

corresponding ranking order in parentheses) obtained with the de-
scribed cross-evaluation process in comparison with the traditional
average approach (ACE), Song and Liu's method [19] and the weighted
least square deviation method by Wang and Wang [28]. Certain simi-
larities are clearly observed, particularly between the proposed ap-
proach and Song and Liu's approach.

To get further insights into the ranking results obtained, the
Spearman rank correlation coefficients are used to see how well the
ordinal ranks obtained with different approaches correlate to each
other. The figures reported in Table 5 provide evidence of a statistically
significant (at least at a 0.01 level) association of ranks, which validates
the consistency of the ranking method proposed here. Particularly, the
highest correlation is observed between Song and Liu's method and the
proposed approach as expected, given that both are based on the
multicriteria principle of intrinsic information, while the Wang and
Wang's approach shows the lowest correlation figures denoting a dif-
ferent rationale in its conception.
Example 2. Consider the case study described in [34] for the evaluation
of 15 Chinese thermoelectric enterprises in terms of four inputs (x1:

Table 2
Input and Output data for 14 passenger airlines.

DMUs x1 x2 x3 y1 y2 CCR efficiency

1 5723 3239 2003 26,677 697 0.868
2 5895 4225 4557 3081 539 0.338
3 24,099 9560 6267 124,055 1266 0.948
4 13,565 7499 3213 64,734 1563 0.958
5 5183 1880 783 23,604 513 1
6 19,080 8032 3272 95,011 572 0.977
7 4603 3457 2360 22,112 969 1
8 12,097 6779 6474 52,363 2001 0.859
9 6587 3341 3581 26,504 1297 0.948
10 5654 1878 1916 19,277 972 1
11 12,559 8098 3310 41,925 3398 1
12 5728 2481 2254 27,754 982 1
13 4715 1792 2485 31,332 543 1
14 22,793 9874 4145 122,528 1404 1

Table 3
Intrinsic weights (λq

1), contextual weights (λq
2) and integrated aggregation

weights (wq) for Example 1.

Evaluating DMU CVq λq
1 Sq λq

2 wq

1 0.248 0.044 97 0.065 0.039
2 0.503 0.089 18 0.012 0.015
3 0.409 0.072 87 0.058 0.058
4 0.248 0.044 113 0.076 0.046
5 0.591 0.104 139 0.093 0.134
6 0.563 0.099 81 0.054 0.074
7 0.251 0.044 110 0.074 0.045
8 0.245 0.043 79 0.053 0.032
9 0.278 0.049 94 0.063 0.043
10 0.480 0.085 116 0.078 0.091
11 0.579 0.102 151 0.101 0.143
12 0.277 0.049 133 0.089 0.060
13 0.427 0.075 153 0.102 0.107
14 0.563 0.099 123 0.082 0.113

Table 4
Results of different cross-evaluation approaches for Example 1.

DMU ACE Song and Liu Wang and Wang Integrated approach

1 0.599 (12) 0.553 (12) 0.789 (8) 0.533 (10)
2 0.165 (14) 0.142 (14) 0.193 (14) 0.123 (14)
3 0.623 (11) 0.603 (9) 0.786 (9) 0.596 (9)
4 0.673 (7) 0.646 (7) 0.853 (7) 0.638 (7)
5 0.798 (1) 0.804 (1) 0.886 (4) 0.818 (1)
6 0.638 (9) 0.650 (6) 0.767 (12) 0.652 (5)
7 0.648 (8) 0.575 (10) 0.867 (6) 0.531 (11)
8 0.585 (13) 0.521 (13) 0.756 (13) 0.488 (13)
9 0.631 (10) 0.560 (11) 0.785 (10) 0.523 (12)
10 0.681 (6) 0.627 (8) 0.785 (11) 0.612 (8)
11 0.774 (2) 0.713 (3) 0.947 (2) 0.692 (3)
12 0.731 (5) 0.668 (5) 0.909 (3) 0.643 (6)
13 0.750 (3) 0.681 (4) 0.957 (1) 0.659 (4)
14 0.732 (4) 0.733 (2) 0.881 (5) 0.735 (2)

Table 5
Spearman's rank correlation coefficients for Example 1.

Equally
weighted

Song and
Liu

Wang and
Wang

Integrated
approach

Equally weighted 1.000 0.938 0.833 0.895
Song and Liu 1.000 0.758 0.982
Wang and Wang 1.000 0.719
Integrated

approach
1.000
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annual production time (h), x2: total coal consumption (1000 tons), x3:
total water consumption (1000 tons), x4: total electric power
consumption (10 kWh)) and two outputs (y1: total industrial output
value (10,000 RMB), y2: generating capacity (10 kWh)). Table 6 reports
the evaluation data as well as the CCR efficiency scores which identify
seven DMUs as efficient performers. In order to achieve a full ranking of
the DMUs according to their performance, a cross-evaluation analysis is
conducted as explained in Section 3. Table 7 shows the importance
weights used for the aggregation of the cross-efficiency scores, that
were obtained following the procedure that integrates the intrinsic
information (λq

1) and background information (λq
2). The resulting

weighted cross-efficiency is compared in Table 8 with the traditional
average cross-efficiency and other two weighted-average approaches in
the literature. Once again, we see how the use of different aggregation
weights has a non-negligible effect on the overall cross-efficiency value
and the resulting ranking order, which emphasizes the importance of
selecting an appropriate set of weights for the aggregation.

The Spearman's rank correlation coefficients listed in Table 9 reveal
statistically significant positive association of ranks at a 0.01 level be-
tween all the methods considered, despite relying on different con-
ceptions about DMU importance. Noteworthy, the new approach and
Song and Liu's approach seem to provide the most highly correlated
rankings, which can be explained by the fact that both methods are
built on a similar basis that computes aggregation weights according to
the dispersion degree of the data. However, the approach proposed here
additionally takes into account the importance of each evaluating unit
as perceived by the peers, in such a way that a low contextual weight

would reduce the overall importance of that unit even if it presented a
high intrinsic weight, that is, a high discriminatory ability. In that
sense, since DMUs have been given an opportunity to judge the relia-
bility of the peer-evaluation scores, the cross-evaluation results ob-
tained with this method will be likely considered as fair and reliable.
Example 3. Table 10 shows a real-world dataset presented in [35]
concerning 14 Chinese city commercial banks. Each bank is described
using three inputs (x1: fixed assets, x2: employees´ pay, x3: general
expenses) and two outputs (y1: profit, y2: loans), all of them measured
in thousand Yuan. CCR efficiency scores, reported in the last column of
Table 10, find that six banks are performing efficiently.

The results of the proposed weighted cross-evaluation approach in
comparison with León et al.’s approach [27] are presented in Table 11.
For both methods, the aggregation weights, the weighted cross-effi-
ciency score and the ranking derived are reported. For the computation
of IOWA weights, we have used an inducing variable based on the
entropy of the evaluations provided by each DMU, as proposed in [27].
In order to obtain positive aggregation weights for all the units, we have

Table 6
Input and output data for 15 Chinese thermoelectric enterprises.

DMUs x1 x2 x3 x4 y1 y2 CCR efficiency

1 8092 819.8 4647.3 180 45,526 155,355 0.965
2 5000 1067.2 2200 910 78,878 209 1.000
3 8760 1879.3 75,920.5 324.8 13,523 3782 0.085
4 4498 2618.6 17,503.9 24,357 179,815 53,979 1.000
5 8760 3253.6 33,493.3 219 276,299.4 716,472 1.000
6 8440 3057.6 782,956 440 231,083 705,561 1.000
7 8760 781.6 10,691.6 19,082.6 47,065 1482 0.709
8 7140 3013.2 583,762 203.1 218,698.9 712 0.971
9 6404 95.6 610.6 1144.7 3222.7 7053 0.435
10 8760 940.1 493,131 28,324.1 150 387,546.5 1.000
11 8760 208.5 272 1000 5378 14,685 0.480
12 8760 863.3 1344 2.13 56,807 151,143 1.000
13 8760 98.7 3700 765.65 7862 3210 0.932
14 5139 38 613.2 1200 2995 6167 0.927
15 4224 62.4 9160 1320.46 5456 7274.4 1.000

Table 7
Intrinsic weights (λq

1), contextual weights (λq
2) and integrated aggregation

weights (wq) for Example 2.

Evaluating DMU CVq λq
1 Sq λq

2 wq

1 1.144 0.063 141 0.078 0.066
2 1.391 0.077 121 0.067 0.069
3 0.483 0.027 54 0.030 0.011
4 1.305 0.072 126 0.069 0.068
5 1.918 0.106 212 0.117 0.167
6 1.533 0.085 147 0.081 0.093
7 0.481 0.027 81 0.045 0.016
8 1.218 0.067 89 0.049 0.045
9 0.690 0.038 94 0.052 0.027
10 1.038 0.057 68 0.037 0.029
11 1.847 0.102 106 0.058 0.080
12 3.564 0.197 171 0.094 0.250
13 0.481 0.027 127 0.070 0.025
14 0.481 0.027 136 0.075 0.027
15 0.483 0.027 141 0.078 0.028

Table 8
Results of different cross-evaluation approaches for Example 2.

DMU ACE Song and Liu Wang and Wang Integrated approach

1 0.506 (5) 0.422 (4) 0.604 (10) 0.360 (3)
2 0.522 (3) 0.358 (5) 0.743 (4) 0.278 (5)
3 0.037 (15) 0.023 (15) 0.065 (14) 0.016 (15)
4 0.489 (6) 0.343 (6) 0.692 (8) 0.253 (6)
5 0.786 (1) 0.695 (2) 0.924 (1) 0.616 (2)
6 0.508 (4) 0.423 (3) 0.709 (6) 0.353 (4)
7 0.310 (11) 0.176 (12) 0.549 (11) 0.124 (12)
8 0.355 (10) 0.214 (8) 0.634 (9) 0.14 (9)
9 0.217 (13) 0.142 (13) 0.329 (12) 0.106 (13)
10 0.085 (14) 0.082 (14) 0.039 (15) 0.049 (14)
11 0.224 (12) 0.177 (11) 0.275 (13) 0.142 (8)
12 0.786 (2) 0.816 (1) 0.775 (2) 0.872 (1)
13 0.366 (9) 0.194 (10) 0.701 (7) 0.133 (11)
14 0.447 (7) 0.271 (7) 0.735 (5) 0.195 (7)
15 0.385 (8) 0.207 (9) 0.744 (3) 0.140 (10)

Table 9
Spearman's rank correlations for Example 2.

Equally
weighted

Song and
Liu

Wang and
Wang

Integrated
approach

Equally weighted 1.000 0.973 0.879 0.943
Song and Liu 1.000 0.820 0.977
Wang and Wang 1.000 0.746
Integrated

approach
1.000
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selected an orness degree equal to 0.65.1 Note that these two methods
are not completely opposed in their rationale. In fact, in the IOWA
approach the order of importance of the evaluating units is determined
by the entropy value of the CEM columns, which is an indicator of the
amount of information contained in the CEM. However, the different
modeling assumptions used for the computation of weight values
naturally lead to different outcomes, and although the ranking results
obtained with both approaches are fairly consistent, with a Spearman's
rank correlation coefficient ρ=0.96, some differences can be observed,
particularly in the top 5 ranking places. Since rankings can eventually
have consequences for decision making, evaluated units may well be
interested in monitoring the procedures used to elaborate the ranked
lists. Using aggregation weights that account for the relevance that
DMUs attribute to their peers is an interesting option in order to prevent

final results to be affected by possibly unfair assessments.
Example 4. We finally consider a classical example studied by Sexton
[36] and frequently revisited in the literature. The data provided in
Table 12 describes six nursing homes that are evaluated in terms of two
inputs (x1: staff hours per day, x2: supplies per day measured in
thousands of dollars) and two outputs (y1: total Medicare-plus
Medicaid-reimbursed patient days (104), y2: total privately paid
patient days (104)) and their CCR efficiency scores. The results for
different cross-evaluation approaches are summarized in Table 13,
where once more the differences in the modeling assumptions become
explicit, particularly for Wang and Wang's method which is based on a
rationale that do not relate to the amount of information contained in
the CEM. Different rankings are almost inevitable when different
methods are used, and it is inappropriate to say which is the most
rational ranking or which is the best strategy, given that it depends to a
large extent on the evaluation context and the preferences of decision
makers. For that reason, it is imperative for managers and investors to
be aware of the modeling assumptions underlying the procedures used
to derive the ranking results. In that sense, the cross-evaluation
procedure proposed here fits particularly well for highly competitive
situations, where countries, firms or institutions are being evaluated
and certain economic or financial decisions are being taken on the
ranked lists derived. In those cases, DMUs will be interested in avoid
unfair outcomes so they will likely be more willing to accept a set of
aggregation weights that accounts for the reliability of the assessments
received.

Table 10
Input and output data for 14 Chinese banks.

DMUs x1 x2 x3 y1 y2 CCR efficiency

1 775,310 283,893 644,280 2,193,085 26,392,924 1.000
2 1,120,795 679,087 1,674,877 3,262,998 91,799,733 0.854
3 5,086,018 420,404 2,867,703 2,845,104 57,320,923 0.442
4 1,114,333 1,239,207 3,187,168 4,474,572 148,341,428 0.974
5 1,178,797 1,155,569 2,433,518 5,680,038 159,941,475 1.000
6 5,810,688 332,044 2,466,586 3,789,997 85,298,079 0.715
7 3,203,353 2,864,359 6,617,403 9,625,877 342,827,271 0.818
8 150,570 207,802 877,996 636,046 21,152,061 1.000
9 1,267,597 296,940 1,820,934 3,298,603 118,767,291 1.000
10 1,015,688 142,024 1,577,106 2,518,447 75,256,873 1.000
11 1,154,635 619,940 2,327,875 2,253,330 98,880,747 0.773
12 1,088,335 95,372 1,221,129 2,414,775 57,757,208 1.000
13 2,172,992 635,475 2,721,211 4,980,404 121,962,186 0.827
14 2,397,820 624,031 3,529,395 5,098,041 142,564,629 0.769

Table 11
Results of different cross-evaluation approaches for Example 3.

Doyle and Green (1994) León et al. Integrated approach

DMU wq ACE Ranking wq WCE Ranking wq WCE Ranking

1 0.071 0.608 (7) 0.059 0.465 (12) 0.065 0.482 (11)
2 0.071 0.615 (6) 0.016 0.550 (8) 0.043 0.531 (6)
3 0.071 0.241 (14) 0.050 0.197 (14) 0.015 0.210 (14)
4 0.071 0.653 (5) 0.110 0.652 (5) 0.082 0.591 (5)
5 0.071 0.804 (2) 0.093 0.757 (2) 0.110 0.707 (4)
6 0.071 0.360 (13) 0.024 0.293 (13) 0.026 0.315 (13)
7 0.071 0.589 (8) 0.076 0.566 (7) 0.057 0.523 (8)
8 0.071 0.554 (11) 0.119 0.603 (6) 0.065 0.529 (7)
9 0.071 0.821 (1) 0.067 0.758 (1) 0.113 0.762 (2)
10 0.071 0.777 (3) 0.101 0.736 (3) 0.130 0.765 (1)
11 0.071 0.509 (12) 0.084 0.493 (11) 0.047 0.463 (12)
12 0.071 0.770 (4) 0.127 0.712 (4) 0.153 0.761 (3)
13 0.071 0.585 (9) 0.033 0.507 (10) 0.048 0.511 (10)
14 0.071 0.565 (10) 0.041 0.510 (9) 0.045 0.513 (9)

Table 12
Input and output data for six nursing homes.

DMUs x1 x2 y1 y2 CCR efficiency

1 1.50 0.2 1.40 0.35 1.000
2 4.00 0.7 1.40 2.10 1.000
3 3.20 1.2 4.20 1.05 1.000
4 5.20 2.0 2.80 4.20 1.000
5 3.50 1.2 1.90 2.50 0.977
6 3.20 0.7 1.40 1.50 0.867

1 Recall that an orness degree of 0.5 would assign equal weights to all DMUs
and when the orness degree equals 1.0 only one DMU would be assigned a
nonzero weight.
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5. Conclusions

Cross-efficiency evaluation is an extension of data envelopment
analysis that has been widely used within different fields for ranking
decision making units according to their performance. The main idea of
cross-efficiency evaluation relies on the combination of the traditional
DEA self-evaluation mode with a peer-evaluation mode where the op-
timal DEA weights selected by DMUs are also used to assess their peers.
Since all the evaluations that a DMU receives are eventually averaged,
the overall cross-efficiency score represents a quite complete assess-
ment of the performance of units when appraised under a range of
preferences (defined by the input and output weights), which brings an
appealing democratic connotation into the whole evaluation process. A
vast number of applications have proved the ability of the approach for
effectively differentiating performance among all units, thus allowing a
meaningful ranking of the DMU set.

Most cross-evaluation approaches are based on a simple average of
the cross-efficiency scores. However, it has been pointed out how the
assessments provided by different DMUs may not be equally useful for
discrimination purposes, and not all the units should necessarily be
equally relied on in their evaluating role due to possibly extremely
specialized selection of weights. In those circumstances the cross-eva-
luation results might be affected by potentially unfair assessments, and
the use of a weighted instead of a simple average becomes a plausible
strategy to account for the relative importance of the DMUs, therefore
introducing a greater degree of flexibility in the model that allows for
more realistic evaluations.

Working along this line, in this paper the computation of aggrega-
tion weights for cross-efficiency evaluation is further investigated on
the basis of two basic assumptions. First, if the aggregate score is aimed
at discriminating the units, the aggregation weights should take into
account the discriminatory ability of the peer-assessed cross-effi-
ciencies. Second, if the aggregate score is expected to be fair, the re-
liability of DMUs as evaluating units should also be acknowledged.
These assumptions are consistent with the MCDM conception that
considers attribute weights as measures that simultaneously comprise
the intrinsic information provided by attributes as well as their con-
textual importance. In order to put this idea into practice, the ag-
gregation weights are then defined as the multiplicative combination of
two components. The intrinsic weight component reflects the dis-
crimination power of the DMUs, which is here defined in direct pro-
portion to the coefficient of variation of the vector of cross-efficiencies
provided by each DMU. The contextual weight component reflects the
relevance of each DMU within the background where the evaluation
takes place, and is obtained through an original quantification of the
reputation that the DMU enjoys in the view of its peers.

The numerical examples presented illustrate the practical applica-
tion of the proposed approach and demonstrate that it represents a
valid methodological option that contributes to DEA cross-efficiency
evaluation and complements previous existing methods. The approach
presented uses ideas from the field of multicriteria decision making to
define aggregation weights that reflect the importance of the evaluating
units from two complementing perspectives and, as a consequence, this

method can be said to involve a rather comprehensive mechanism for
deriving aggregation weights that is expected to provide more realistic
assessments and rankings than previous weighted approaches that rely
on a single aspect. Besides, since DMUs perceptions about their peers
are taken into consideration, the democratic character of the cross-
evaluation approach is enhanced and all the units are likely to accept
the results obtained. All in all, it has become clear that including re-
lative importance weights in the cross-efficiency aggregation process
may have a critical impact on the ranking order of the studied units and
therefore, the customarily application of the average aggregation in
cross-efficiency evaluations should be carefully reconsidered.
Particularly, the alternative aggregation presented here can be specially
useful in extremely competitive situations where the ranking positions
determine any kind of investment or economic decision.

Lastly, the procedure presented can be extended by changing the
way the two components of the derived weights are handled. For ex-
ample, the use of variation coefficient method for the intrinsic com-
ponent can be substituted by other multiciriteria approaches such as the
standard deviation method, entropy method or CRITIC method.
Likewise, different scoring systems other than Borda's rule could also be
used to estimate the importance of DMUs in terms of the ranking po-
sitions.
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