
Iloglu, Suzan; Albert, Laura A.

Article

An integrated network design and scheduling problem for
network recovery and emergency response

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Iloglu, Suzan; Albert, Laura A. (2018) : An integrated network design and
scheduling problem for network recovery and emergency response, Operations Research
Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 5, pp. 218-231,
https://doi.org/10.1016/j.orp.2018.08.001

This Version is available at:
https://hdl.handle.net/10419/246351

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2018.08.001%0A
https://hdl.handle.net/10419/246351
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

An integrated network design and scheduling problem for network recovery
and emergency response

Suzan Iloglu, Laura A. Albert⁎

Department of Industrial Engineering & Systems Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, United States

A R T I C L E I N F O

Keywords:
OR in disaster relief
P-median problem
Network restoration
Scheduling on parallel servers
Emergency response

A B S T R A C T

Effective recovery and restoration of infrastructure systems play a crucial role in recovery after disasters. This
issue is particularly critical when delivering time-sensitive services and commodities. Damage to infrastructure
can lead to disruptions and diminished capacity to respond to emergencies. We model the interdependencies
between infrastructure systems and service providers as a network model, where emergency responders deliver
critical services while network recovery crews repair damage to critical infrastructure. We present a novel ex-
tension to the P-median problem, where the objective is to minimize the cumulative weighted distance between
the emergency responders and the calls for service over the time horizon by coordinating the activities of two
types of service providers. We locate emergency responders (facilities) on a network over a finite time horizon
while network recovery crews install arcs. The installation part of the models is modeled as a scheduling problem
with identical parallel servers (the repair crews), where an arc can be used by the emergency responders when
installation is completed. We propose Lagrangian relaxation formulations of the models, which we solve using
subgradient optimization. A feasible solution is obtained using the Lagrangian relaxation, which provides an
upper bound to the original models. We test our models with both real-world data and data sets from Beasley’s
OR Library to demonstrate the effectiveness of the algorithm in solving large-scale models. The results give
insight into the optimal schedule for restoring critical arcs in a network when delivering critical services and
commodities after a disruptive event.

1. Introduction

Emergency services play an integral role in responding to emer-
gencies during and immediately after a disaster strikes to reduce both
human suffering and property loss. At these times, delivering time-
sensitive services and commodities is critically important for mini-
mizing the risk to human life and health. For example, in 2012,
Hurricane Sandy caused an estimated $65 billion in damage to the East
Coast of the United States including damaging road and transportation
infrastructure. The Tappan Zee Bridge, the Bayonne Bridge, the Hugh L.
Carey Tunnel, and the Queens-Midtown Tunnel were all seriously da-
maged by Hurricane Sandy [1]. As a result of damage to these bridges
and other transportation infrastructure, the affected regions experi-
enced increased congestion and commute times that lasted for days
after Hurricane Sandy [2]. The damage resulted in severe con-
sequences. For example, a fire that occurred during the hurricane in
Breezy Point, a neighborhood in the New York City borough of Queens,
destroyed 126 houses. Serious damage to the roads made it difficult for
responders to reach the houses in a timely manner, allowing the fire to

spread and ultimately destroy more houses [3]. Also, Hurricane Sandy
created 15 million cubic yards of debris due to the strong winds and
heavy rains. The debris blocked roads, tunnels and transportation cor-
ridors in the effected areas and made the trips longer [4].

Damage to critical infrastructure can make the delivery of emer-
gency services more difficult and increase response time during the
recovery period. For example, in many disasters, damaged roads may
have reduced capacity or may be impassable due to debris. Early stages
of disaster recovery necessitate repairing this damage to critical infra-
structure at the same time as critical services are delivered, thus aiding
emergency response efforts. This paper studies how to coordinate these
recovery efforts. We do so by introducing and analyzing integrated
network design and scheduling models that determine how two types of
service responders should work together to guide the restoration and
recovery of infrastructure such as roads so that emergency services can
be better delivered during the recovery period.

Few papers in the literature focus on interdependent infrastructure
and network recovery to quantify the performance of the dependent
infrastructures over a time horizon or planning period. However, there
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are some notable exceptions. Several papers formulate and solve net-
work restoration problems in which infrastructure systems with critical
system services are modeled as network flows [5]. Nurre et al. [6] in-
troduce a new integrated network design and scheduling problem
(INDS) that allows recovery crews to install nodes and arcs in the
network to maximize the cumulative weighted flow through the net-
work over a time horizon. This model can be used for short-term re-
storation and disaster preparedness activities. The installation compo-
nents of our models have similar constraints to the model proposed by
Nurre et al. [6].

Cavdaroglu et al. [7] propose an extension to INDS that also in-
cludes interdependencies between infrastructure systems. Instead of
studying the performance of the system, the researchers focus on how
quickly services are restored over the time horizon. Sharkey et al. [8]
extend the interdependent layered network model of Lee et al. [5,9] to
measure the performance of a system over the restoration period. They
build upon the work of Cavdaroglu et al. [7] to consider damage sce-
narios that require restoration decisions for all infrastructure. Nurre
and Sharkey [10] analyze 12 different INDS problems and show that all
INDS problems are at least NP-hard. A related paper by Gutfraind et al.
[11] introduces the neighbor-aided network installation problem as a
discrete optimization problem to minimize the total cost of recovering a
network. The authors propose a simple rule for recovering basic infra-
structure networks by choosing the most accessible damaged network
nodes in every iteration. Baxter et al. [12] introduce an incremental
network design problem with shortest paths that focuses on network
maintenance instead of network expansion in order to minimize the
total cost over the planning grid. Likewise, Engel et al. [13] propose a
theoretical framework to the incremental network design problem with
minimum spanning trees. Duque et al. [14] introduce the Network
Repair Crew Scheduling and Routing Problem (NRCSRP). They opti-
mize the accessibility of demands by scheduling and routing a single
recovery crew to repair roads starting from a single depot. Averbakh
and Pereira [15] introduce the Flowtime Network Construction Pro-
blem (FNCP) and the weighted version of this problem (FNCP-W). They
schedule the repairing of all unavailable vertices by a single recovery
crew with the objective to minimize the total recovery time of the
vertices.

We study network recovery in P-median model variations. Several
other studies address related issues of recovery, reliability, and vul-
nerability in P-median models. Wang et al. [16] consider simulta-
neously opening new facilities and closing existing facilities with the
objective of minimizing the total weighted travel distance for custo-
mers. They develop greedy interchange, Tabu search, and Lagrangian
relaxation heuristics for the model. Reliability is a related issue in P-
median models, where network damage is modeled as facilities that are
sometimes unavailable for service. Snyder and Daskin [17] present lo-
cation models that minimize cost, including the expected transportation
cost of facility failure, with the goal of choosing facility locations that
are concurrently reliable and inexpensive under traditional objective
functions. They present reliability models for the P-median and un-
capacitated fixed charge location problems, and they propose a La-
grangian relaxation algorithm to solve the models. Cui et al. [18]
propose a reliability facility location design model that extends the
work of Snyder and Daskin [17] to consider site-dependent failure
probabilities as opposed to identical failure probabilities for all loca-
tions. O’Hanley et al. [19] study the unreliable P-median problem by
considering site-dependent failure probabilities. They introduce a
technique to linearize site-dependent failure probabilities of the facil-
ities. A limitation of these papers is that they consider independent
facility failures rather than cascading failures, which limits their ap-
plicability and do not address network restoration.

Another stream of papers relevant to disasters and large-scale
emergencies studies vulnerability and protection strategies in location
models [20,21]. Church et al. [22] introduce the r-interdiction median
(RIM) problem and the r-interdiction covering (RIC) problem to identify

the most critical facilities in the systems. These papers address the
problem of identifying network protection strategies. The RIM model
eliminates r facilities to maximize the cumulative weighted distance,
and the RIC model maximizes the amount of demand no longer covered
after r facilities are removed. Losada et al. [23] propose a bilevel mixed
integer linear program to optimize resilience of the system against
worst-case losses. They account for recovery time of facilities and
multiple disruption probabilities over time in the model. Çelik et al.
[24] consider the Stochastic Debris Clearance Problem (SDCP), which
finds a sequence of roads to clear with the objective of maximizing
satisfied relief demand. They model SDCP using partially observable
Markov decision processes (POMDPs) that consider stochasticity in the
debris (demand).

In this study, we make the following contributions:

1. We propose a new P-median problem variation that studies the in-
terdependency between two types of service providers: network
recovery crews who install arcs in the network and emergency re-
sponse crews who are located at available facility locations where
they deliver essential services. We schedule the installation of arcs
over a finite time horizon by network recovery crews. Emergency
responders can use these arcs once installation is complete to serve
demand in demand points. The goal is to minimize the weighted
cumulative distance between the emergency responders and the
demand points over the time horizon. An extension to this model
approximately models path-based arc installations between demand
and facility locations. The proposed models are novel in that they
coordinate the activities of two types of service providers, whose
restoration activities are interdependent.

2. We introduce Lagrangian relaxation techniques to efficiently solve
the models. We formulate and solve the Lagrangian relaxation dual
problems using subgradient optimization, which yields a lower
bound to the optimal objective function value. We propose heur-
istics to obtain a feasible solution to the models and an upper bound
to the optimal objective function value using the Lagrangian re-
laxation.

3. We conduct extensive computational studies to demonstrate how
these algorithms improve the time to solve the original models, and
we discuss key insights gained from solving the models. The model
solutions shed light on critical components of a network whose re-
storation can aid emergency response efforts.

The remainder of the paper is organized as follows. Section 2 pro-
vides the mathematical formulation of our models, applies the La-
grangian relaxation method to our models, and shows how to solve the
relaxed models using subgradient optimization. It also provides a
heuristic for finding feasible solutions to our models using the La-
grangian relaxation solution. Section 3 reports computational results
and discusses the practical insights obtained from the results. The
models and analysis shed light on the network components that should
be prioritized during network recovery. Section 4 provides concluding
remarks.

2. Model formulation

In this section, we introduce integrated network design and re-
storation models for recovering a network while providing emergency
response services, and we formulate the models as integer programming
models. The goal of the models is to coordinate the activities of two
types of crews: emergency responders and repair crews. This is done by
locating emergency responders and scheduling repair crews over a fi-
nite time horizon. At each time period, the models locate P emergency
responders at open facilities in the network. The models also assign
demand to open stations using available arcs in the network. This is
accomplished using a multi-period P-median model, where locations
are selected over time while allowing disrupted network components to
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be installed by network recovery crews over a time horizon. Some arcs
are initially available and can be used to assign demand to open stations
at any time period, and other arcs must be installed by the repair crews
over a finite time horizon and can be used upon installation. To guide
the decisions made over the time horizon, the objective is to minimize
the cumulative weighted distance between the emergency responders
and the demands over the time horizon. We first introduce the base
model, and then we introduce an extension to this model.

2.1. Integrated restoration and location problem (IRLP)

We start with a connected network =G I A( , ) where I is the set of
demand nodes and A is the set of initially operational arcs in the net-
work. Let J⊂ I be the set of potential facility locations and A′ consist of
all disrupted arcs that are not initially available in the network. Each
arc (i, j)∈A′ has an associated integral installation time pij and can be
installed by one of the K identical recovery crews over a finite horizon
of T time periods, which we model as a parallel machine scheduling
sub-problem [25]. Once installation is completed, an arc can be used by
the emergency responders to serve demand beginning in that time
period. Each demand node i∈ I has demand wit in time period

= …t T1, , , and every arc (i, j)∈A ∪A′ has distance dij. In each time
period, we locate emergency responders at P of the |J| potential facil-
ities, thus making the facility open, and we assign one of these open
facilities to each demand point i∈ I. The emergency responders can be
relocated in each time period. The objective is to minimize the cumu-
lative demand-weighted distance between the demand points and fa-
cility locations over the time horizon T.

The model has two parts: (1) the design part locates the emergency
responders at the available facilities and (2) the recovery part schedules
the installation of some of the arcs. There are two types of decision
variables that correspond to these two model parts. All decision vari-
ables are binary variables.

The design decision variables are

• =x 1ijt if arc (i, j)∈A ∪A′ is used to assign an emergency responder
at facility j to demand node i at time t and 0 otherwise, for

= …t T1, , , and
• =y 1jt if an emergency responder is located at j∈ J at time t and 0
otherwise, for = …t T1, , .

The recovery decision variables are

• =β 1ijt if arc (i, j)∈A′ is operational at time t and 0 otherwise, for
= …t T1, , , and

• =α 1kijt if network recovery crew k completes the installation of arc
(i, j)∈A′ at time t and 0 otherwise, for = …t T1, , .

We formulate our model as an integer programming model as fol-
lows.

∑ ∑=
= ∈ ∪ ′

Z w d xmin
t

T

i j A A
it ij ijt

1 ( , ) (2.1)

∑ = ∈ = …
∈ ∪ ′

x i I t Ts. t. 1 for , 1, ,
j i j A A

ijt
:( , ) (2.2)

∑ ≤ = …
∈

y P t Tfor 1, ,
j J

jt
(2.3)

− ≤ ∈ ∪ ′ = …x y i j A A t T0 for ( , ) , 1, ,ijt jt (2.4)

∈ ∈ ∪ ′ = …x i j A A t T{0, 1} for ( , ) , 1, ,ijt (2.5)

∈ ∈ = …y j J t T{0, 1} for , 1, ,jt (2.6)

≤ ∈ ′ = …x β i j A t Tfor ( , ) , 1, ,ijt ijt (2.7)

∑ ∑ ≤ = … = …
∈ ′ =

⎧
⎨⎩

+ − ⎫
⎬⎭

α k K t T1 for 1, , , 1, ,
i j A s t

T t p

kijs
( , )

min , 1ij

(2.8)

∑ ∑− ≤ ∈ ′ = …
= =

β α i j A t T0 for ( , ) , 1, ,ijt
s

t

k

K

kijs
1 1 (2.9)

∑ = ∈ ′
=

−

β i j A0 for ( , )
t

p

ijt
1

1ij

(2.10)

∑ ∑ = ∈ ′
= =

−

α i j A0 for ( , )
k

K

t

p

kijt
1 1

1ij

(2.11)

∈ ∈ ∈ ′ = …
= …

α β i j A k K
t T

{0, 1}, {0, 1} for ( , ) , 1, , ,
1, ,

kijt ijt

(2.12)

The objective (2.1) is to minimize the cumulative weighted distance
between the demands and the closest open facilities over the time
horizon. Constraint set (2.2) requires each demand node to be served by
one emergency responder at each time period using the initial or in-
stalled arcs. Constraint set (2.3) locates at most P emergency responders
at available facilities in the network in each time period. Constraint set
(2.4) ensures that only open facilities serve each demand node. Con-
straint sets (2.5) and (2.6) require the design decision variables to be
binary. Constraint set (2.7) ensures that the installable arcs in A′ can
only be used to assign demand nodes to facilities if the arcs have been
installed prior to the time they are used. This set of constraints links the
design unit with the recovery unit. Constraint sets (2.8)–(2.12) re-
present the network recovery unit of the model. Constraint set (2.8)
enforces the condition that at most one arc is installed by each recovery
crew in each time period, where =α 1kijt means recovery crew k begins
installation of arc (i, j)∈A′ at time − +t p 1ij and completes installation
at time t. This arc can then be used by the emergency responders
starting from time t. Constraint set (2.9) requires arc (i, j) to be op-
erational since =β 1ijt can only be set to one after installation is com-
plete. Constraint sets (2.10) and (2.11) ensure that βijt and αkijt cannot
be set to one before the processing time for arc (i, j). Constraint set
(2.12) requires the recovery decision variables to be binary.

We assume that all emergency responders locations j∈ J are con-
nected to each other so that emergency responders can change their
current positions at any time period with no cost by essentially moving
in the network using available arcs. As discussed in Averbakh and
Pereira [15], traveling speed in initially available components is faster
than installation speed so it is reasonable enough to have no cost as-
sociated with changing locations. Gendreau et al. [26] consider no cost
associated with relocation in their maximal expected coverage reloca-
tion problem (MECRP) formulation for emergency vehicles, however,
the model contains an upper bound on the number of waiting site
changes to limit relocation. This assumption is practical for our models
in two ways; first, emergency responders can change locations easily
and make other stations operational if they are responding to a call for
service on the network, and then move to another station upon com-
pletion. Second, as we discuss later, emergency responders do not
change locations often even there is no cost for doing so, and hence, this
assumption is not overly restrictive. Emergency responders could be fire
fighters, paramedics, and first responders, and emergency locations
could be fire and rescue stations as well as temporary facilities such as
schools, libraries, and other public buildings, which can be used as
community health service facilities after disasters. Hence, relocating
emergency responders depending on the demand and recovery process
could help to reach out more people. In the case when it is not practical
for emergency responders to change locations, we can simply re-
formulate our model as a static emergency responder location problem
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by restricting the location variables yjt to be identical for all time per-
iods by using yj for all j∈ J in (2.3), (2.4), and (2.6). In addition, we can
consider capacitated facilities to capture the availability of the emer-
gency responders by adding a capacity constraint for each potential
facility location j∈ J at each time period as follows:

∑ ≤ ∈ = …
∈

w x Q y j J t Tfor , 1, 2, , ,
i I

it ijt j jt

where Qj represents the capacity of the facility location j∈ J.
IRLP has two parts. The design part consists of constraint sets (2.2) –

(2.6) and the recovery part consists of constraint sets (2.8) - (2.12).
These two parts are linked by constraint set (2.7). Hence, Lagrangian
relaxation allows us to split the model into two parts. In the next sec-
tion, we discuss how to apply Lagrangian relaxation to this set of
constraints.

2.1.1. Lagrangian relaxation
Lagrangian relaxation is one of the most commonly used methods

for hard problems in combinatorial optimization. By dualizing the
constraints that make the problem “hard”, the Lagrangian problem
becomes an easier problem [27]. In IRLP, constraint (2.7) links the
design decision variables with the restoration decision variables. Ap-
plying Lagrangian relaxation to this set of constraints is advantageous
in several ways. First, doing so decomposes it into two parts (the design
part and the recovery part), which are included in the objective with a
penalty term. Therefore, the relaxation is easier to solve than the ori-
ginal model. Second, the Lagrangian relaxation problem solution offers
a lower bound on the optimal solution to the original problem. Third, a
feasible solution to the original model can be constructed from the
Lagrangian relaxation problem solution, which provides an upper
bound to the original problem. We use this upper bound as a cut in the
branch and bound tree when solving the original model, thereby re-
ducing the computation time needed to find an optimal solution.

Now, we present the Lagrangian relaxation problem formulation on
constraint set (2.7). Let uijt be Lagrangian multiplier for

∈ ′ = …i j A t T( , ) , 1, , , then we define Lagrangian relaxation problem
as following:

∑ ∑ ∑ ∑= + −
= ∈ ∪ ′ = ∈ ′

L u w d x u x β( ) min [ ]
t

T

i j A A
it ij ijt

t

T

i j A
ijt ijt ijt

1 ( , ) 1 ( , )

or we can rewrite L(u) as

∑ ∑ ∑ ∑= + −

− −
= ∈ ∪ ′ = ∈ ′

L u w d u x u β( ) min ( )

s. t. (2.2) (2.6) and (2.8) (2.12)
t

T

i j A A
it ij ijt ijt

t

T

i j A
ijt ijt

1 ( , ) 1 ( , )

The Lagrangian relaxation dual is

≥
L umax ( )

u 0

The Lagrangian relaxation dual remains NP-hard since the P-median
problem is embedded in it. However, in practice we can quickly solve
the Lagrangian relaxation dual problem using subgradient algorithm.
We discuss this next.

2.1.2. Subgradient algorithm
Subgradient optimization is used to solve the Lagrangian relaxation

problem and identify a lower bound to the original model by iteratively
adjusting the Lagrangian multipliers un in iteration n. Starting with the
given inputs, initial Lagrangian multiplier u0, initial upper bound L*,
and initial decreasing adaption parameter θ0, each iteration of the
subgradient algorithm updates the previous Lagrangian multiplier with
the step size in the positive subgradient direction. The algorithm checks
if the new bound is better than the previous one. We start with =θ 2,0

as suggested in [28]. If there is no improvement in the bound after more
than N⋆ iterations, we reduce θ by a factor of 1/2. If the change in the

Lagrangian multiplier is not smaller than ϵ after N iterations, the al-
gorithm terminates and returns Lbest, which is the best lower bound
found by the subgradient algorithm. We note that the choices for N and
N⋆ values are problem specific. We use =N 100 and =★N 2, and our
solution procedure is not sensitive to these values. We first solve the
linear programming relaxation of IRLP, and we use the “shadow prices”
for the dual variables associated with constraint set (2.7) as the initial
value for Lagrangian multiplier uijt

0 . Using this initial value of u0, we
optimize the Lagrangian relaxation dual problem using the subgradient
algorithm as in [29].

2.1.3. Lagrangian heuristic
We now present a heuristic that constructs a feasible solution for

IRLP using the Lagrangian relaxation problem solution. Let β y α, and
denote a feasible solution for the Lagrangian relaxation problem. Our
aim is to find x values that are feasible for constraint set (2.7). Let S1
denote the triplet (i, j, t), where the arc (i, j)∈A′ is operational at time t
and the location j is open at time t, defined as

= = = ∈ ′S i j t β y i j A{( , , ) 1 and 1, ( , ) }ijt jt1 . Let S2 denote the tri-
plet (i, j, t), where the facility j is open for arc (i, j)∈A, which are
initially in the network as = = ∈S i j t y i j A{( , , ) 1, ( , ) }jt2 .

To construct feasible solutions for each = …t T1, , and for each i∈ I,
we set =★x 1ij t for j⋆ that solves

∈★
∈ ∈ ∈{ }j w d w darg min min , min

j J j i j t S
it ij

j i j t S
it ij

:( , , ) :( , , )1 2

and set =x 0ijt for all other ∈ ∪ ′ = …i j A A t T( , ) and 1, , . This assigns
the demand node at i to the closest open facility j. The solution
β x y α, , and is feasible since the β , y αand values obtained from the
Lagrangian relaxation solution satisfy all constraints except the
Lagrangian relaxation constraint set (2.7). With this assignment of x ,
constraint set (2.7) is satisfied. Finding this feasible solution from the
Lagrangian relaxation for IRLP gives us an upper bound for the IRLP.
This upper bound is used as a cut value in the branch and bound tree of
the original problem to reduce the tree size and improve computational
time.

IRLP allows us to shorten direct arcs between demand points and
emergency responder locations by installing arcs without considering
other possible disrupted paths between same demand points and
emergency responder locations. To capture this, we include multiple
parallel versions of each disrupted arc in the network to allow in-
stallation of an arc to be completed in multiple ways. In the next sec-
tion, we introduce a component based integrated restoration and lo-
cation problem that allows us to include new installation structures in
the model to approximately include these additional features in the
model.

2.2. Component based IRLP (c-IRLP)

In this section, we present the component based IRLP (c-IRLP), an
extension of IRLP that considers multiple parallel versions of any in-
stallable arc to capture the component-wise benefits of installed arcs.
Instead of a single arc connecting i to j in A′ as in IRLP, we introduce
several components between i to j, each of which corresponds to a dif-
ferent road on a path that can be repaired. In the c-IRLP, if we use
location j to serve demand at i in a network, then we could possibly do a
quick repair of a component to decrease its distance and then repair
another component later to decrease its distance even more by re-
pairing another component in the path. Therefore, we allow for mul-
tiple parallel versions of the arc (i, j) for each of its disrupted compo-
nents, each with a different cost and processing time. In addition, the c-
IRLP allows a single repair of a component in the network to benefit
multiple arcs in A′ if multiple arcs share a common component such as a
road.

The c-IRLP starts with the same connected network =G I A( , ) as in
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IRLP. Different from IRLP, we define a new set C′ as an installable
component set and we install components instead of arcs. Each com-
ponent is associated with one or more arcs that all share the compo-
nent. To capture all arcs that benefit from installation of a component,
we define set AC(c) for each c∈ C′ that consists of arcs (i, j)∈A′ whose
distances are decreased after installing component c∈ C′. Note that

′ = ∪ ∈ ′A AC c( )c C is the set of arcs installed through components.
Each component c∈ C′ has an associated integral installation time pc

and can be installed by one of the K identical recovery crews over a
finite horizon of T time periods. Once installation of a component c is
complete, arcs in AC(c) associated with component c can be used by
emergency responders to serve demand at demand points.

As in IRLP, each demand node i∈ I has demand wit in time period
= …t T1, , and in each time period, we locate emergency responders at

P of the |J| potential facilities. In this model we have multiple parallel
versions of the arc each with different cost, therefore, we consider the
distance between demand i and emergency responder location j using
component c as dcij. We also define d0ij as the initial distance between i
and j before any installation for arcs (i, j)∈A. Similar to IRLP, the
emergency responders can be relocated in each time period. The ob-
jective is to minimize cumulative demand-weighted distance between
the demand points and facility locations over the time horizon T.

The model has two parts as in IRLP, and all decision variables are
binary variables. In this model, we redefine the decision variables x, β,
and α. The variable y is the same as in IRPL.

The design decision variables are

• =x 1͠ cijt if arc (i, j)∈ A ∪A′ is used to assign an emergency responder
at facility j to demand node i at time t by using installed component
c and 0 otherwise, for = …t T1, , ,

• =x 1͠ ijt0 if arc (i, j)∈A is used to assign an emergency responder at
facility j at time t by using initially available arc (i, j)∈A and 0
otherwise, for = …t T1, , and

• =y 1jt if an emergency responder is located at j∈ J at time t and 0
otherwise, for = …t T1, , .

The recovery decision variables are

• =β 1͠
ct if component c∈ C′ is operational at time t and 0 otherwise,
for = …t T1, , , and

• =α 1͠ kct if network recovery crew k completes the installation of
component c∈ C′ at time t and 0 otherwise, for = …t T1, , .

We formulate our model as an integer programming model as fol-
lows.

∑ ∑ ∑ ∑ ∑= +
= ∈ ′ ∈ = ∈

Z w d x w d xmin ͠ ͠
t

T

c C i j AC c
it cij cijt

t

T

i j A
it ij ijt

1 ( , ) ( ) 1 ( , )
0 0

(2.13)

∑ ∑ ∑+ = ∈ = …
∈ ′ ∈ ∈

x x i I t Ts. t. 1 for , 1, ,͠ ͠
c C j i j AC c

cijt
j i j A

ijt
:( , ) ( ) :( , )

0

(2.14)

∑ ≤ = …
∈

y P t Tfor 1, ,
j J

jt
(2.15)

− ≤ ∈ ′ ∈ = …x y c C i j AC c t T0 for , ( , ) ( ), 1, ,͠ cijt jt (2.16)

− ≤ ∈ = …x y i j A t T0 for ( , ) , 1, ,͠ ijt jt0 (2.17)

∈ ∈ ′ ∈ = …x c C i j AC c t T{0, 1} for , ( , ) ( ), 1, ,͠ cijt (2.18)

∈ ∈ = …x i j A t T{0, 1} for ( , ) , 1, ,͠ ijt0 (2.19)

∈ ∈ = …y j J t T{0, 1} for , 1, ,jt (2.20)

≤ ∈ ′ ∈ = …x β c C i j AC c t Tfor , ( , ) ( ), 1, ,͠ ͠cijt ct (2.21)

∑ ∑ ≤ = … = …
∈ ′ =

+ −

α k K t T1 for 1, , , 1, ,͠
c C s t

T t p

kcs

min{ , 1}c

(2.22)

∑ ∑− ≤ ∈ ′ = …
= =

β α c C t T0 for , 1, ,͠͠
ct

s

t

k

K

kcs
1 1 (2.23)

∑ = ∈ ′
=

−

β c C0 for͠
t

p

ct
1

1c

(2.24)

∑ ∑ = ∈ ′
= =

−

α c C0 for͠
k

K

t

p

kct
1 1

1c

(2.25)

∈ ∈ ∈ ′ = …
= …

α β c C k K
t T

{0, 1}, {0, 1} for , 1, , ,
1, ,

͠ ͠kct ct

(2.26)

Constraint sets (2.13)–(2.20) and (2.22)–(2.26) are analogous to con-
straint sets (2.1)–(2.6) and (2.8)–(2.12) in IRLP, respectively. The ob-
jective (2.13) is to minimize the cumulative weighted distance between
the demands and the closest open facilities using available arcs after
component installations or initial arcs in the network over the time
horizon. Constraint set (2.14) requires each demand node to be served
by one emergency responder at each time period using the initial arcs or
arcs that become available after installation of components. The most
important change is in (2.21), which ensures that component c in C′ can
only be used to assign demand node i to facility j if the component c has
been installed prior to the time period and the installation of compo-
nent c shortens the distance between i and j (i.e., (i, j)∈AC(c)). Con-
straint set (2.21) links the design part with the recovery part as in IRLP.

As shown in Appendix A, unit processing times that are identical for
all components in C′ (i.e.,without loss of generality =p 1c for all c∈ C′)
allow us to remove many variables and constraints, which drastically
simplifies the integer programming formulation. In this simplified
version of the model, we select K components to install at each time
period instead of assigning component installation jobs to individual
recovery crews. This simplification results in decreased computational
times, even for experiments with long time horizons and large recovery
crews.

As in IRLP, the Lagrangian relaxation allows us to split the c-IRLP
model into two parts by relaxing constraint set (2.21). In the next
section, we discuss how we need to adjust the Lagrangian relaxation
algorithm we present in Section 2.1.1 to solve the c-IRLP.

2.2.1. Lagrangian relaxation and subgradient algorithm
Now, we present the Lagrangian relaxation problem formulation on

constraint set (2.21). Let ucijt be Lagrangian multiplier for
∈ ′ ∈ = …c C i j AC c t T, ( , ) ( ), 1, , , analogous to Lagrangian relaxation

in Section 2.1.1. Therefore, we briefly highlight new differences.
After simplifying the relaxed formulation, we can write the

Lagrangian relaxation problem L(u) as

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

= + +

−

− −

= ∈ ′ ∈ = ∈

= ∈ ′ ∈

L u w d u x w d x

u β

( ) min ( )

s. t. (2.14) (2.20) and (2.22) (2.26)

͠ ͠

͠

t

T

c C i j AC c
it cij cijt cijt

t

T

i j A
it ij ijt

t

T

c C i j AC c
cijt ct

1 ( , ) ( ) 1 ( , )
0 0

1 ( , ) ( )

The Lagrangian relaxation dual is

≥
L umax ( )

u 0

We solve the Lagrangian relaxation dual problem using a sub-
gradient algorithm as for IRLP. Algorithm 1 can be applied to the c-IRLP
with two minor modifications. Line 1 in the Algorithm 1 must change to
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= ∑ ∑= ∈L w d* t
T

i j A it ij1 ( , ) 0 and line 5 must change to = −γ x β: ͠ ͠
cijt
n

cijt
n

ct
n
. The

remaining parts of the subgradient algorithm in Section 2.1.2 remain
the same.

2.2.2. Lagrangian and linear relaxation heuristic
We now present a heuristic that constructs a feasible solution for the

c-IRLP. We do so by obtaining a feasible solution to the Lagrangian
relaxation of the c-IRLP, and enhancing the feasible solution using the
linear relaxation solution of the c-IRLP.

Danna et al. [30] uses an approach to obtain a feasible solution to a
mixed integer programming model better than the current incumbent
solution by enhancing the solution using a linear relaxation solution.
We use a similar approach. We can obtain an incumbent solution using
the Lagrangian relaxation, however, it does not satisfy the constraint set
(2.21). Contrarily, the linear relaxation solution satisfies all of the
constraint sets except the integrality constraints. We combine these two
solutions to find a feasible solution that satisfies all of the constraint sets
by first identifying the variables that take the same values in the La-
grangian and linear relaxation solutions, and fixing these variables, thus
forming a partial solution. Let x y, denote values of the design decision
variables for the Lagrangian relaxation problem solution, and let x y,
denote values of the design decision variables for the linear relaxation
problem solution. Then we define sets = =S c i j t x x{( , , , ): }cijt cijt1 and

= =S j t y y{( , ): },jt jt2 which denote the values of x͠ and y variables that
have the same values in the Lagrangian and linear relaxation solutions,
respectively. Note that the values of x͠ and y are integer in the set S1 and
S2. We fix the values of the x͠ and y variables in the c-IRLP for the
indexes in the sets S1 and S2, respectively. Then, we solve the c-IRLP
that yields a solution that is feasible for the constraint sets (2.13)–(2.26)
and is an upper bound for the optimal objective function. Even though
we solve an NP-complete problem, this method can be computationally
efficient since many of the variables are fixed in this procedure. For
example, in our experiments in the following section, we fix approxi-
mately 80 to 90 percent of x͠ variables and 5 to 10 percent of y variables
that have the same values in the Lagrangian and linear relaxation

solutions. In addition, we use sets S1 and S2 to set starting values for the
variables x and y, respectively, in the standard implementation. Using
the partial solution as a starting point helps the solver obtain an in-
cumbent solution faster than without setting the starting point. Hence,
this approach can improve the computation time compare to the
computation time of the model using standard implementation.

3. Computational results

In this section, we present and analyze computational results using
both real-world data representing road infrastructure and emergency
medical calls for Hanover County, Virginia, United States and data sets
from Beasley’s OR Library [31].

3.1. Computational results for IRLP

Computations for IRLP were performed on a computer with a
2.6 GHz Intel Core 5 Duo Processor with 8GB of RAM. We used CPLEX
12.6.2.0 to solve the integer programming model that was coded in
GAMS. Each experiment was run with a 3600-s time limit.

The Hanover County data has =I 125 demand nodes and =J 16
fire and rescue stations (available facilities). We assume that our
available facilities and demand nodes are located in the center of each
grid point. Since disasters are rare, the emergency calls for service
observed after a single disaster may be insufficient to represent the
anticipated demand for all demand points. Therefore, we use data ag-
gregated over a 31 month period to estimate post-disaster demand, and
we assume that the demand that would occur in a short period of time
after a disaster is proportional to the aggregated demand data over a
long period. This assumption appears to be reasonable based on the
data we collected after Hurricane Irene in 2011. We use real distances,
dij, in miles, from facility location j to call location i in the disrupted arc
set ′ =A 325, where dij≤ 6 and in the initial connected network arc set
A, where dij>6. In addition, lengthened versions of the arcs in A′ are
contained in the initial connected network arc set A, where =A 2000.

1: Initialize:
An initial value u0 ≥ 0 (assign as the shadow price associated with the Lagrangian relaxation con-
straint in the linear programming relaxation)
θ0 := 2
Lbest = −∞
L∗ =

∑T
t=1
∑

(i, j)∈A witdi j

2: Subgradient iterations
3: for n := 0, . . . ,N do
4: Solve for L(un) which yields x and β
5: γn

i jt := xn
i jt − βn

i jt

6: tn := θn(L∗ − L(un))/||γn||2 step size
7: un+1 := max{0, un + tnγn}
8: if ||un+1 − un|| < ε then
9: Stop

10: end if
11: Lbest = max(Lbest, L(un))
12: if Lbest does not improve after N� iterations then
13: θn+1 := θn/2
14: else
15: θn+1 := θn

16: end if
17: n := n + 1
18: end for
19: return Lbest

Algorithm 1. Subgradient optimization algorithm for IRLP.
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Processing times, pij, are integers randomly generated from a discrete U
[1, 3] distribution. We allow =P 8 available facilities to be open in
each time period. Since our model considers short-term repair of the
road network components, we consider the time horizon as a day and
vary the number of time periods T and the number of network recovery
crews K.

We also test the model and algorithm with two data sets, each
consisting of 100 demand nodes from Beasley’s OR Library un-
capacitated P-median data sets (Pmed1 and Pmed3). The data sets
provide a graph, which we use as the initial graph =G I A( , ), the
number of open facilities P, and arc distances associated with each arc.
In both data sets, we set =J I and wit are randomly generated from a
continuous uniform U(0, 1) distribution for each demand node i∈ I. We
assume wit stays the same at each time period = …t T1, , for each de-
mand node i∈ I. The installable arc set A′ contains the three shortest
arcs for each demand point. The distances of the arcs in A′ are equal to
the values in the original data set from Beasley’s OR Library.
Lengthened versions of these arcs are contained in the set of initially
available arcs A. The distances of the lengthened arcs in A are increased
by half of their original distances from Beasley’s data for each arc that
also appears in A′. The distances of the remaining arcs in A are not
disrupted, and therefore they are equal to the original distances given in
Beasley data. Processing times pij for each arc (i, j)∈ A′ are randomly
generated from a discrete uniform U[1, 2] distribution. We consider
each time horizon as a day and vary the time horizon T and the number
of network recovery crews K in the computational experiments as in the
Hanover County data experiments.

Tables 1 and 2 summarize the objective values and running times
for the Hanover County data set and for the data sets from Beasley’s OR
Library, respectively. The |A|, |A′| and |J| columns report the number of
arcs initially in the network, number of installable arcs, and the number
of facility locations, while the columns labeled K and T report the
number of recovery crews and the length of the time horizon. The
“Lagrangian Relaxation (LR) Lower Bound” column reports the lower
bound values obtained from the Lagrangian relaxation and the running
time in seconds in parentheses. The LR lower bounds are better than the
lower bounds obtained from the linear programming relaxations for all
experiments in Tables 1 and 2. The Lagrangian heuristic identifies
upper bounds for the optimal values, which are shown in the “La-
grangian Relaxation (LR) Upper Bound” column. The column “Optimal

Solution Using LR Upper Bound” reports the objective function value
and the cumulative computation time in parentheses. These solutions
are found using the Lagrangian heuristic upper bound as a cut value in
the branch and bound tree of the original model. With this improve-
ment, all instances in Table 1 were solved to optimality within the
3600-s limit, and the optimality gap of almost all instances decreased
within the 3600-s limit in Table 2. The last column entitled “Optimal
Solution Without Using Upper Bound” reports the optimal objective
function value and the computation time in parentheses when using
CPLEX without the Lagrangian heuristic upper bound. The computation
time in the column “Optimal Solution Using LR Upper Bound” includes
the CPLEX time to solve the linear relaxation, to obtain the upper bound
using Lagrangian relaxation, and to solve the model. The computation
time in the column “Optimal Solution Without Using Upper Bound”
only includes the time to calculate the optimal solution for the original
model.

The choice of step size in the Lagrangian relaxation is important,
since the convergence of the algorithm depends on the step size. We

observe that the Polyak step size formula = −★
tk

θ L L u
γ

( ( ))k k

k 2 [32] results in
a fast convergence in the subgradient algorithm for computational ex-
periments for the Hanover County and Beasley’s OR Library’s data sets.

In Table 1, ten of the fifteen experiments solve to optimality within
the 3600-s limit without using the upper bound, while in Table 2, nine
of the eighteen experiments solve optimally within the 3600-s limit
without using the upper bound. As we can observe in the Tables 1 and
2, CPLEX requires more time to find an optimal solution over the longer
time horizons, which is not surprising, since the number of decision
variables and the number of constraints increase with the length of the
time horizon T. Total times using different methods are comparable.
Using the upper bound as a cut value in the branch and bound tree
improves the computation times for thirteen of the fifteen and eight of
the eighteen experiments (shown in boldface) in the two rightmost
columns in Tables 1 and 2, respectively. In addition, using the upper
bound as a cut value in the branch and bound tree decreases the op-
timality gap for six out of eighteen experiments (shown in boldface) in
Table 2. Also, in the experiment with =T 10 and =K 3 for the Pmed3
data set, the resulting best integer feasible solution using using the
upper bound as a cut value in the branch and bound tree is better than
the best integer feasible solution without using upper bound.

Table 1
Improvements in the optimal solutions for IRLP using Lagrangian upper bounds for the Hanover County data. Computational time, in seconds, is shown in the
parentheses. “Optimal Solution Using LR Upper Bound” reports the objective function value and the computation time using CPLEX Lagrangian heuristic upper bound
in the branch and bound tree and “Optimal Solution Without Using Upper Bound” reports the optimal objective function value and the computation time when using
CPLEX without the Lagrangian heuristic upper bound.

|A| |A′| |I| |J| P K T Linear Relaxation
Lower Bound

Lagrangian Relaxation(LR)
Lower Bound

Lagrangian Relaxation(LR)
Upper Bound

Optimal Solution Upper
Bound Using LR

Optimal Solution Upper
Bound Without Using LR

2000 325 125 16 8 3 10 39.42 (4) 42.43 (9) 49.48 (14) 45.19 (25) 45.19 (16)
2000 325 125 16 8 4 10 38.75 (3) 41.81 (12) 49.06 (16) 44.44 (49) 44.44 (35)
2000 325 125 16 8 5 10 38.13 (4) 41.32 (14) 49.11 (17) 43.79 (57) 43.79 (83)
2000 325 125 16 8 3 15 57.59 (5) 62.17 (30) 73.69 (29) 66.07 (224) 66.07 (674)
2000 325 125 16 8 4 15 56.33 (11) 61.35 (48) 79.58 (56) 64.76 (198) 64.76 (967)
2000 325 125 16 8 5 15 55.25 (16) 60.15 (31) 72.42 (39) 63.66 (568) 63.66 (1006)
2000 325 125 16 8 3 20 75.06 (17) 81.49 (33) 97.16 (41) 86.30 (272) 86.30 (1946)
2000 325 125 16 8 4 20 73.17 (24) 79.90 (46) 97.00 (55) 84.38 (466) 84.38 (1946)
2000 325 125 16 8 5 20 71.57 (39) 78.71 (57) 96.71 (68) 82.81 (548) 82.81 (793)
2000 325 125 16 8 3 24 88.63 (30) 96.36 (56) 117.11 (67) 102.12 (552) 102.12 (1965)
2000 325 125 16 8 4 24 86.21 (50) 94.24 (78) 117.61 (88) 99.70 (372) 99.75 (3600)

(Gap 0.06%)
2000 325 125 16 8 5 24 84.19 (77) 92.84 (105) 115.00 (120) 97.85 (464) 97.95 (3600)

(Gap 0.17%)
2000 325 125 16 8 3 30 108.43 (67) 118.46 (95) 143.62 (107) 125.27 (2001) 125.99 (3600)

(Gap 0.6%)
2000 325 125 16 8 4 30 105.19 (152) 115.86 (194) 143.88 (209) 122.27 (865) 124.00 (3600)

(Gap 1.58%)
2000 325 125 16 8 5 30 102.50 (230) 113.90 (261) 144.05 (289) 119.99 (1228) 120.00 (3600)

(Gap 0.02%)

S. Iloglu, L.A. Albert Operations Research Perspectives 5 (2018) 218–231

224



Tables 1 and 2 report algorithm running times and objective func-
tion values. We can further examine the solutions produced by the
models. To do so we represent the objective function value as the sum
of the objective function value recorded in each time period, which
captures the minimum cumulative weighted distance

∑= = …
∈ ∪ ′

z w d x t T, for 1, ,t
i j A A

it ij ijt
( , )

and = ∑ =Z z .t
T

t1
We compare our results to two static comparison cases that consider

a single time period time =T 0 and = ∞T . To do so we solve the ca-
nonical P-median problem with network =G I A( , ) for =T 0 and with

= ∪ ′G I A A( , ) for = ∞T , which reflect the network when no arcs and
all arcs are installed, respectively. We report the objective function
values, in Fig. 1 and the locations of the open facilities in Table 3. This
allows us to compare emergency responder locations in the model so-
lutions to those prior to recovery efforts in damaged networks ( =T 0)
and in networks that are fully functional ( = ∞T ).

Fig. 1 shows the values of zt over the time horizon for the experi-
ment =K 5 and =T 10 using the Hanover County data set. The ob-
jective function value zt starts with highest value at =t 0 (refers to a
single time period =T 0) since no arcs are installed yet, and it decreases
over the time horizon as the network recovery crews finish installing
arcs from A′, which are then used by the emergency responders to
decrease the average distance. The best possible single period objective
function value occurs at = ∞t when all arcs are installed.

Table 3 shows locations of the open facilities over the time horizon
for the instance with =K 5 and =T 10. The locations of open facilities
change two times during this experiment, which are also indicated in
Fig. 1. In time period 2, Facility 1 closes and Facility 15 opens, and in
time period 7, Facility 8 closes and Facility 9 opens. By allowing the
model to change the location of some of the emergency responders, the
average distance between nodes and emergency responders is further
reduced between time periods. Hence, changing emergency responder

locations improves emergency responders response times during the
recovery phase. We observed at most two changes in the locations of
the emergency responders in all of the computational experiments re-
ported in Table 1 even there is no cost for doing so. In some of our
experiments not reported in this study, we observed up to 5 changes in
locations when a large portion of the road infrastructure is damaged
(i.e., |A′| is large relative to |A|).

Fig. 3 provides a visual representation of the optimal restoration
plan for the instance with =K 5 and =T 10 including the arcs used to
assign demand to an emergency responder for time periods 0, 5 and 10.

Table 2
Improvements in the optimal solutions for IRLP using Lagrangian upper bounds for Beasley’s data. Computational time, in seconds, is shown in the parentheses.
“Optimal Solution Using LR Upper Bound” reports the objective function value and the computation time using CPLEX Lagrangian heuristic upper bound in the
branch and bound tree and “Optimal Solution Without Using Upper Bound” reports the optimal objective function value and the computation time when using CPLEX
without the Lagrangian heuristic upper bound.

|A| |A′| |I| |J| P K T Linear Relaxation
Lower Bound

Lagrangian Relaxation
Lower Bound

Lagrangian Relaxation
Upper Bound

Optimal Solution Using
LR Upper Bound

Optimal Solution Using
LR Upper Bound

Pmed1 10,000 300 100 100 5 3 10 28,434.87 (157) 29,500.21 (209) 31,960.94 (213) 30,244.43 (327) 30,244.43 (1195)
4 10 27,890.37 (173) 29,259.65 (201) 32,060.34 (205) 29,979.35 (769) 29,979.35 (887)
5 10 27,484.74 (171) 29,183.47 (231) 31,660.91 (236) 29,793.31 (785) 29,793.31 (562)
3 15 41,577.88 (421) 43,805.66 605) 47,719.55 (611) 44,853.09 (1086) 44,853.09 (3171)
4 15 40,843.32 (301) 43,682.06 (346) 47,693.86 (353) 44,509.49 (1237) 44,509.49 (2040)
5 15 40,384.06 (245) 43,651.92 (348) 48,254.89 (514) 44,296.61 (1244) 44,296.61 (1332)
3 20 54,504.287 (591) 58,289.95 (737) 63,433.44 (624) 59,403.17 (3600) 59,443.37 (3600)

(Gap 0.05%) (Gap 0.18%)
4 20 53,733.75 (477) 58,205.75 (606) 64,102.98 (612) 59,011.63 (2636) 59,024.50 (3600)

(Gap 0.07%)
5 20 53,274.33 (611) 58,146.70 (736) 62,707.89 (742) 58,798.15 (2122) 58,798.15 (2141)

Pmed3 10,000 300 100 100 10 3 10 19,870.12 (71) 20,772.03 (89) 22,988.81 (91) 21,514.02 (1260) 21,514.02 (1381)
4 10 19,356.51 (73) 20,519.53 (94) 23,155.06 (98) 21,325.4 (3420) 21,325.4 (2878)
5 10 18,971.67 (85) 20,397.49 (97) 23,147.13 (100) 21,199.18 (3600) 21,206.93 (3600)

(Gap 0.48%) (Gap 0.45%)
3 15 28,777.47 (359) 30,686.42 (580) 34,663.63 (586) 31,947.38 (3600) 32,155.81 (3600)

(Gap 0.05%) (Gap 1.19%)
4 15 28,065.82 (344) 30,531.11 (396) 34,770.12 (402) 31,948.37 (3600) 31,779.40 (3600)

(Gap 1.49%) (Gap 0.97%)
5 15 27,603.22 (254) 30,488.25 (299) 34,774.21 (305) 31,308.17 (3600) 31,309.97 (3600)

(Gap 0.12%) (Gap 0.14%)
3 20 37,456.98 (475) 40,710.83 (588) 46,627.35 (595) 43,303.03 (3600) 47,968.59 (3600)

(Gap 3.09%) (Gap 12.5%)
4 20 36,679.15 (338) 40,623.7 (466) 46,216.43 (472) 42,070.64 (3600) 42,081.40 (3600)

(Gap 1.15%) (Gap 1.15%)
5 20 36,214.41 (254) 40,617.78 (388) 46,249.88 (394) 41,438.53 (3600) 41,470.72 (3600)

(Gap 0.06%) (Gap 0.29%)

Fig. 1. Objective function value for IRLP accrued in each time period for =K 5
and =T 10 for the Hanover County data set, where =t 0 represents the ob-
jective value without any repair and = ∞t represents the objective value after
all arcs are installed.
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Thin lines show arcs from A and thick lines show installed arcs from A′
used in the optimal solution for given time periods. Fig. 3(a) shows the
optimal solution with initial arcs in the network selected from A.
Fig. 3(b) and (c) show the solution after five and ten time periods, re-
spectively, and the thick black lines in these sub-figures illustrate the
arcs that have been installed. The number of installed arcs changes
depending on the number of recovery crews, the time periods, and
processing times of the installed arcs. Our computational experiments
suggest that it is best to install arcs that are connected to the most
critical facility locations prior to and after emergency responders are
located there. As a result, the recovery crews are essentially co-located
with the emergency responders. The solutions can help decision-makers
decide where to initially locate emergency responders after a disaster
strikes, as well as how to move these responders during the recovery
phase. The solutions therefore shed light on how to prioritize the in-
stallation of arcs in a recovery plan to aid in the delivery of time-critical
services.

3.2. Computational results for component based IRLP (c-IRLP)

Computations for the c-IRLP were performed on a computer with a
1.4 GHz Intel Core 5 Duo Processor with 4GB of RAM. We used Gurobi
6.5.2. to solve the integer programming model that was coded in

Table 3
Open facilities for IRLP for the Hanover County data set in each time period for =K 5 and =T 10. =T 0 shows open facilities using only initial arcs in the network,

= ∞T shows open facilities after repairing all arcs.

Time periods t

Facilities =T 0 1 2 3 4 5 6 7 8 9 10 = ∞T

1 × × ×
2
3 ×
4 × × × × × × × × × × × ×
5
6 × × × × × × × × × × × ×
7 × × × × × × × × × × × ×
8 × × × × × × ×
9 × × × ×
10 × × × × × × × × × × × ×
11 ×
12
13
14 × × × × × × × × × × ×
15 × × × × × × × × × ×
16 × × × × × × × × × × ×

Table 4
Open facilities for the c-IRLP for the Hanover County data set in each time period for =K 5 and =T 10. =T 0 shows open facilities using only initial arcs in the
network, = ∞T shows open facilities after repairing all components.

Time periods t

Facilities =T 0 1 2 3 4 5 6 7 8 9 10 = ∞T

1 × × × × × × × × × × × ×
2
3 × × × × × × × × ×
4 × × × × × × × × × × × ×
5
6 × × × × × × × × × × × ×
7 × × × × × × × × × × × ×
8 × × × × × × × × × × ×
9
10 × × × × × × × × × × × ×
11 ×
12
13
14 × × ×
15 ×
16 × × × × × × × × × × ×

Fig. 2. Objective function value of the c-IRLP accrued in each time period for
=K 5 and =T 10 for the Hanover County data set, where =t 0 represents the

objective value without any repair and = ∞t represents the objective value
after all components are installed.
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Python. Each experiment was run with a 3600-s time limit.
We use the Hanover County data set as described in Section 3.1 for

the c-IRLP with ′ =C 971 installable components. The sets AC(c) re-
present the arcs in A′ that are shortened when component c∈ C′ is in-
stalled, with |AC(c)|≤ 5 and ∪ = ′∈ ′AC c A( )c C . Processing times for in-
stallable components, pc, are integers randomly generated from a
discrete U[1, 5] distribution. If the installation of a component affects
several arcs, the processing time of the component is assigned as a
randomly generated integer from a discrete U[2, 5]. As in IRLP, we
allow =P 8 available facilities to be open in each time period, and we
vary the number of time periods T and the number of network recovery
crews K in the computational experiments.

Table 5 summarizes the objective values and running times for the
Hanover County data set. The |A|, |C′| and |J| columns report the

number of arcs initially in the network, number of installable compo-
nents, and the number of facility locations, while the columns labeled K
and T report the number of recovery crews and the length of the time
horizon. The “Lagrangian Relaxation (LR) Lower Bound” column re-
ports the lower bound values obtained from the Lagrangian relaxation
and the running time in seconds in parentheses. The LR lower bounds
are better than the lower bounds obtained from the linear programming
relaxations for all experiments in Table 4. We report the upper bound
we obtained from Lagrangian and linear relaxation heuristic introduced
in Section 2.2.2 in the column “Lagrangian and Linear Relaxation Upper
Bound” which yields better upper bounds than the upper bounds using
the Lagrangian heuristic. The “Optimal Solution w/ Starting Partial
Feasible Solution” column reports the optimal solution and the com-
putation time when we set starting values for variables x and y for the

Fig. 3. The installation of arcs for IRLP for the Hanover County data set for optimal restoration effort =K 5 and over the time horizon =T 10. Figure (a) shows the
solution using initial arcs. The thick arcs represent installed arcs in A′ that have been installed up until time periods 5 and 10 in Figures (b) and (c), respectively. The
thin arcs represent arcs in A used in the solution.
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indexes in the set S1 and S2 that we describe in the Section 2.2.2. Note
that the computation time includes the time to compute sets S1 and S2.
The last column entitled “Optimal Solution w/ Standard Implementa-
tion” reports the optimal objective function value and the computation
time in parentheses when solving the model using standard im-
plementation. A time limit of 3600 s was imposed for all instances. Six
out of nine experiments are solved optimally while three out of nine
experiments yielded a solution with an optimality gap of less than
0.26% within the time limit. We observe that using the Lagrangian and
linear relaxation heuristic, we obtain an upper bound within 3% of the
optimal solution value within 2074 s for each experiment. In eight out
of nine experiments, computational times of the upper bound are
shorter than the computational times of the optimal solution using
standard implementation. In addition, when we set starting values for
the variables x and y for indexes in S1 and S2, respectively, five out of
nine experiments result in faster computation times or an improved
gap.

Fig. 2 shows the values of zt over the time horizon for the c-IRLP
instance with =K 5 and =T 10 using the Hanover County data set. We
observe a decreasing pattern in the objective function value zt over the
time horizon as the recovery crews install components from set C′ and
then emergency responders use arcs which benefit from the installed
components. Table 5 shows the locations of the open facilities over the
time horizon for same instance. The locations of open facilities change
once during this experiment, which are also indicated in Fig. 2. In time
period 3, Facility 14 closes and Facility 3 opens.

Fig. 4 provides a visual representation of the optimal restoration
plan for the instance with =K 5 and =T 10 including the arcs used to
assign demand to an emergency responder for time periods 0, 5 and 10.
Thin lines show arcs from A and thick lines show arcs from A′ whose
distances shorten by using installed components from C′ and used in the
optimal solution up until that time period. At the end of the time
horizon 10, 39 components were installed and 42 arc distances were
shortened using those installed components. The number of installed
components changes depending on the number of recovery crews, the
time periods, and processing times of the installed components. As in
IRLP experiments, the c-IRLP computational experiments suggest that it
is best to install components that are beneficial to the most critical
facility locations prior to and after emergency responders are located
there with a more realistic and practical setting.

4. Conclusions

In this paper, we introduce an integrated restoration and location
problem (IRLP) and model the interdependencies between critical

infrastructure systems and service providers. We study a P-median
model variation with the goal of minimizing the cumulative weighted
distance between emergency responders and demand nodes over a time
horizon. We also introduce the c-IRLP, an extension to this model to
approximately model components of disrupted arcs between demand
and facility locations. The models can be used to model the delivery of a
variety of time-sensitive critical services after a disaster event occurs.
The models provide insight into how the activities of the two types of
service providers should be coordinated and which network compo-
nents should be restored sooner during recovery.

We develop integer programming formulations of our models. We
introduce Lagrangian relaxation dual problems to obtain a lower bound
to the models. A subgradient algorithm is used to solve the Lagrangian
relaxation dual problems. Solving the models using Lagrangian re-
laxation results in a better lower bound than the linear relaxation lower
bound in all computational experiments we report. We further develop
a Lagrangian heuristic to identify a feasible solution to IRLP model,
which provides an upper bound that is used to decrease the size of the
branch and bound tree. Using the upper bound obtained from the
Lagrangian heuristic, we show an improvement in the computational
time of IRLP. For comparison, we also show the time to solve original
model without the upper bounds. Numerical experiments with real-
world data sets and with data from Beasley’s OR Library are used to
examine the quality of the Lagrangian relaxation lower bound and the
improvement in IRLP. For the c- IRLP, we develop a Lagrangian and
linear relaxation heuristic by using a feasible solution to Lagrangian
relaxation of the c-IRLP and enhancing the feasible solution using linear
relaxation of the c-IRLP. The resulting upper bound from the
Lagrangian and linear relaxation heuristic improved the Lagrangian
relaxation heuristic upper bound in all cases tested. We also use this
enhanced feasible solution to set starting values for some variables in
the standard implementation. This approach helps the solver obtain an
incumbent solution faster than without setting starting values, and
hence, leads to improved computational times for some experiments.
Numerical experiments with real-world data are used to examine the
quality of the Lagrangian relaxation lower bound, as well as the
Lagrangian and linear relaxation heuristic upper bound.

After an extreme event, damage to infrastructure systems can delay
the delivery of essential services. These proposed models and analysis
demonstrate the importance of modeling the interdependencies be-
tween infrastructure systems and emergency services. Solutions to the
models provide a plan for restoring the most critical network compo-
nents to the models and provide insight into how to deliver essential
services during the recovery. We were able to solve most instances in
less than one hour of CPU time for Hanover County and Beasley’s data

Table 5
The optimal solutions and bounds for the c-IRLP for the Hanover County data. Computational time, in seconds, is shown in the parentheses. ”Lagrangian and Linear
Relaxation Upper Bound” reports the upper bound obtained from the Lagrangian and linear heuristic and the computation time using Gurobi. “Optimal Solution w/
Starting Partial Feasible Solution” reports the optimal objective function value and computation time when we set starting values. “Optimal Solution w/ Standard
Implementation” reports the optimal objective function value and the computation time when using the standard implementation with Gurobi.

|A| |C′| |I| |J| P K T Linear Relaxation
Lower Bound

Lagrangian Relaxation
Lower Bound

Lagrangian & Linear
Relaxation Upper Bound

Optimal Solution w/
Starting Partial Feasible
Solution

Optimal Solution w/ Standard
Implementation

2000 971 125 16 8 3 25 93.52 (43) 96.93 (82) 104.49 (196) 102.35 (219) 102.35 (176)
2000 971 125 16 8 4 25 89.47 (46) 93.73 (85) 101.79 (381) 99.22 (262) 99.22 (281)
2000 971 125 16 8 5 25 86.30 (56) 91.35 (113) 99.76 (651) 96.91 (638) 96.91 (1371)
2000 971 125 16 8 3 30 109.12 (58) 113.85 (107) 123.46 (282) 120.41 (446) 120.40 (360)
2000 971 125 16 8 4 30 104.22 (102) 110.01 (163) 120.27 (629) 116.78 (978) 116.78 (217)
2000 971 125 16 8 5 30 100.40 (226) 107.31 (303) 117.74 (1283) 114.24 (3600) 114.24 (3600)

(Gap 0.11%) (Gap 0.03%)
2000 971 125 16 8 3 35 124.22 (85) 130.41 (146) 141.85 (651) 138.17 (1093) 138.17 (1295)
2000 971 125 16 8 4 35 118.01 (187) 126.04 (278) 138.21 (1797) 134.09 (3600) 134.15 (3600)

(Gap 0.01%) (Gap 0.05%)
2000 971 125 16 8 5 35 114.08 (205) 123.19 (292) 135.04 (2074) 131.08 (3600) 131.27 (3600)

(Gap 0.13%) (Gap 0.26%)
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sets, which suggests that the models can be used to aid decision makers
with emergency response and recovery issues in real-time after a dis-
aster.

There are several directions which the models can be extended.
First, other objectives such as coverage are often used to model the
quality of service in disaster settings. Second, we could take transpor-
tation restrictions under consideration, where both emergency re-
sponders and recovery crews can only move to “adjacent” facilities or
components in sequential time periods. In the next section, we present a
new model that consider coverage objective and also consider reloca-
tion restrictions for emergency responders.
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Fig. 4. The installation of arcs for the c-IRLP for the Hanover County data set for optimal restoration effort =K 5 and over the time horizon =T 10. Figure (a) shows
the solution using initial arcs. The thick arcs in Figure represent installed components in C′ that have been installed up until time periods 5 and 10 in Figures (b) and
(c), respectively. The thin arcs represent arcs in A used in the solution.
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Appendix A

In the original c-IRLP problem, we consider each component in the set C′ to have an associated processing time. One particular case of interest is
when each component in C′ has identical processing times. Without loss of generality, we assume that all processing times are one. In this case, we
can simplify the formulation, and we present the simplified formulation here.

In the recovery unit, we no longer need to assign component installations to individual network recovery crews. Instead, we select the K
components that are installed by any of the network recovery crews in each time period. As a result, the design decision variables x ,͠ cijt

∈ ′ ∈ ′ = …c C i j A t T, ( , ) , 1, , and yjt, ∈ = …j J t T, 1, , remain the same. The recovery decisions variables are simplified to:

• =ξ 1ct if one of the recovery crews completes the repairing of component c∈ C′ and 0 otherwise, for = …t T1, , .

The integer programming model is formulated as follows.

∑ ∑ ∑ ∑ ∑= +
= ∈ ′ ∈ = ∈

Z w d x w d xmin ͠ ͠
t

T

c C i j AC c
it cij cijt

t

T

i j A
it ij ijt

1 ( , ) ( ) 1 ( , )
0 0

(A.1)

∑ ∑ ∑+ = ∈ = …
∈ ′ ∈ ∈

x x i I t Ts. t. 1 for , 1, ,͠ ͠
c C j i j AC c

cijt
j i j A

ijt
:( , ) ( ) :( , )

0
(A.2)

∑ ≤ = …
∈

y P t Tfor 1, ,
j J

jt
(A.3)

− ≤ ∈ ′ ∈ = …x y c C i j AC c t T0 for , ( , ) ( ), 1, ,͠ cijt jt (A.4)

− ≤ ∈ = …x y i j A t T0 for ( , ) , 1, ,͠ ijt jt0 (A.5)

∈ ∈ ′ ∈ = …x c C i j AC c t T{0, 1} for , ( , ) ( ), 1, ,͠ cijt (A.6)

∈ ∈ = …x i j A t T{0, 1} for ( , ) , 1, ,͠ ijt0 (A.7)

∈ ∈ = …y j J t T{0, 1} for , 1, ,jt (A.8)

∑≤ ∈ ′ ∈ = …
=

x ξ c C i j AC c t Tfor , ( , ) ( ), 1, ,cijt
s

t

cs
1 (A.9)

∑ ≤ = …
∈ ′

ξ K t Tfor 1, ,
c C

ct
(A.10)

∈ ∈ ′ = …ξ c C t T{0, 1} for , 1, ,ct (A.11)

The objective and constraint sets (A.1)–(A.8) are the same as in the c-IRLP. Constraint set (A.9) ensures that a component can be used to assign
demand only if its installation was completed at any time prior to time t. Constraint set (A.10) ensures that the number of component installed cannot
exceed the total number of recovery crews. Constraint set (A.11) requires the recovery decision variables to be binary.

Computational experiments suggest that this formulation drastically improves computational time when solving the models using off-the-shelf
MILP solvers such as Gurobi as compared to the original component based IRLP formulation, particularly in cases when there are a large number of
recovery crews.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ejor.10.1016/j.ejor.10.1016/j.orp.2018.
08.001.
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