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A B S T R A C T

When considering fairness one must ask two fundamental questions. Firstly, what does it mean to be fair? And
secondly, how does one measure that fairness? Different authors have offered different notions and metrics to
address these questions. We provide arguments identifying where past metrics fall short, discuss how the un-
derlying motivations differ, and offer our own metric to address these issues. That is, we propose using a system’s
slowdown variance (SDV) as a measure for its fairness. Advantages of SDV are demonstrated via a suite of si-
mulation experiments which compare a range of established policies under a range of service time distributions.
These advantages include a decoupling of fairness from performance, an intuitive distinction between last come
first serve and processor sharing, as well as recognition of starvation within shortest remaining processing time.

1. Introduction

Fairness in queueing systems has been an active topic in the sto-
chastic modelling research community [19]. Perhaps the most funda-
mental questions in this domain are “What does it mean to be fair?” and
“How can fairness be measured?”. In the literature this is still a point of
debate. That is, there does not exist a universally agreed upon definition
of fairness. Moreover, different definitions of fairness may be in direct
conflict or be of questionable applicability in certain contexts. We do
not aim to determine which previously defined metrics are better than
others. Rather, we offer a notion of fairness which is motivated by past
definitions while looking to address some of the concerns these past
metrics raise. Specifically, we propose using the slowdown variance
(SDV) as a metric for fairness.

In order to understand the motivations behind our proposal, one
must first understand how fairness has been presented in the research
community. There are two fundamental views of fairness to consider:
temporal fairness (also referred to as seniority-based fairness) and pro-
portional fairness. Temporal fairness suggests that jobs should be served
in order of their seniority. That is, if job J1 arrives before job J2, then
job J1 should be completed before J2. A variety of fairness metrics such
as politeness and order fairness provide means to measure a policy’s
temporal fairness. Our work does not discuss temporal fairness or its
measures in any level of detail. For further reading, we direct the in-
terested reader to Wierman [18] and Avi-Itzhak and Levy [3]. Instead,
our work focuses on, and is inspired by, the notion of proportional
fairness. Proportional fairness posits that a job’s response time should
be proportional to its size. That is, informally, if a small job arrives

shortly after a large job, it may be fair for the small job to complete
before the large job does. In other words, the longer a job is going to
take to serve the more fair it is that it waits in queue. For a compre-
hensive discussion and comparison of metrics pertaining to both tem-
poral and proportional fairness, we direct the reader to Avi-itzhak et al.
[5].

Popular metrics for evaluating fairness are often times measures of
the system’s slowdown [6,7,10–12,17,20,21]. Here, slowdown is de-
fined as R/S, where R is the response time of a job and S is its size or
service time (this work uses the two interchangeably for ease of ex-
position). The justification of this metric stems from the proportionality
principle; it is fair that a job has a response time proportional to its
service time (larger jobs should wait longer). It is worth noting that
while researchers look to the slowdown as a base for fairness, slowdown
is also considered a measure of performance; the response time is
present in the numerator.

With regards to fairness, one of the first measures based off slow-
down was simply examining the maximum slowdown [7]. This gives
insight into the worst-case scenario and in turn bounds it in many cases,
but does not give a picture of how fair a system is in the average case.
To achieve a better overall understanding, authors began looking at
forms of the slowdown’s expectation, i.e.  R S[ / ]. The conditional ex-
pected slowdown [6] was introduced in response to growing interest in
size-based policies that were suspected of treating larger jobs unfairly.
It is defined as  R x x[ ( )/ ], where R(x) is the expected response time for
a job of size x. This metric provides finer-grained information than the
expected slowdown. For example, it allows one to determine if certain
job sizes are treated poorly.
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Wierman and Harchol-Balter [20] leveraged the conditional slow-
down to sort policies into categories. Based on the intuition that pro-
cessor sharing (PS) is an inherently fair policy, they judge whether a
policy is “Always Fair”, “Sometimes Fair”, or “Always Unfair”. If a
policy achieves a conditional expected slowdown that is less than or
equal to the conditional expected slowdown offered by PS for all job
sizes under any distribution it is Always Fair. If the conditional ex-
pected slowdown is less than or equal to that of PS for some job sizes
under some distributions (but not all) it is Sometimes Fair. However, we
find that this metric and criteria for evaluating proportional fairness
have drawbacks. For one, the analysis in [20] is confined to an M/G/1
setting and the authors comment that it is unknown whether similar
criteria can be derived for systems with general arrival processes and/
or with multiple servers. Also, the categorization of policies into Always
Fair, Sometimes Fair, and Always Unfair does not allow one to compare
policies that fall into the same category, resulting in a partial ordering
among policies.

In [13] Raz et al. proposed the Resource Allocation Queueing
Fairness Measure (RAQFM), which was studied further by Avi-Izthak
et al. in [4]. RAQFM is based off a discrimination measure, which in
essence determines how far a policy is from giving each job an equal
portion of the resource at every point in time. That is, it measures how
much a policy differs from PS. This gives means to determine a total
ordering of policies. However, this measure of fairness is still tightly
coupled to the assumption that PS is perfectly fair. This assumption
seems intuitive on the surface, but as will be seen later on in this work,
can at times be problematic. Around the same time, Avi-Izthak et al. [2]
also introduced the Slowdown Queueing Fairness measure (SQF). SQF,
alongside its distinction from the SDV, is discussed in more detail in
Section 2. In [2], it was proposed that a fair policy should offer every
job a constant slowdown. The authors argued that the expected slow-
down may not be sufficiently sensitive for evaluating fairness since
policies can have similar expected slowdowns but have different be-
haviours about the expectation. The idea is that one can measure fair-
ness with reference to an “ideally fair” slowdown.

Another means to measure fairness, the discrimination frequency, was
introduced by Sandmann in [15] and discussed within the wider fair-
ness framework in [16]. Here, a discrimination is counted every time
one of the following events occurs: 1) a job arrives after another but
completes before it, and 2) a job with greater remaining service time
upon another job’s arrival departs before the arriving job. Intuitively,
the less frequently discriminations occur, the more fair the system is.
Note, as is often the case with fairness, these two types of discrimina-
tion are in contention with each other. While the discrimination fre-
quency is most certainly an attractive means to capture the tension
between competing fairness properties, it belongs to a different school
of thought than slowdown-based metrics (which is our focus).

As one can surmise there are several philosophies when measuring
fairness. Moreover, fairness can be extremely sensitive to context. For
example, what one deems to be fair for clients on a web-server, may be
drastically different compared to what one deems to be fair for custo-
mers in a grocery store checkout. One notable difference between these
two contexts is that in the grocery store checkout customers are free to
see when other customers arrive, when they leave, how many items
they are purchasing, etc. (white-box service), while on a web-server
clients are often oblivious to how they are served relative to others
(black-box service). This white-box/black-box differentiation can be
seen in the fairness metrics as well. If for a given metric two policies
with identical arrival and departure times for all jobs can be evaluated
as having different levels of fairness then that metric is a white-box
metric, otherwise, it is a black-box metric. Metrics like discrimination
frequency and RAQFM are concerned with the details of how jobs are
being served – how often jobs are being over taken, at a given point in
time do all jobs have an equal share of the processor, etc; they are
white-box metrics. On the other hand, metrics such as SQF, expected
slowdown, and conditional slowdown are only concerned with the end

performance, and have no regard as to how that performance is
achieved; they are black-box metrics.

Our work’s motivations are consistent with [2], but we offer a
complementary viewpoint. We suggest that a truly fair policy would
ensure that the ratio between a job’s size and its response time remains
constant (or as close to constant as possible). Therefore, the closer the
SDV is to zero, the more fair a policy is. As observed in [2], we shall see
that using this basis for fairness will provide insights that using ex-
pected or conditional slowdown would otherwise not capture. Most
notably, using the expected slowdown or the conditional slowdown is
known to equate two well-known policies, processor sharing and last
come first serve, in terms of their fairness. However, we find evidence
that SDV will determine one to be more fair than the other, as will be
discussed in Section 3. Furthermore, since SDV is a black-box metric, for
consistency of context and application this work focuses on comparing
it against other black-box metrics.

Any mention of SDV in the literature has been brief – to our
knowledge no such study or presentation of SDV exists. One possible
explanation for this absence is that analytic expressions for SDV are
difficult to determine (this appears to be a fundamental problem, as we
have made attempts to generate analytic results). As such, we sacrifice
analytic tractability in order to examine these ideals of fairness em-
pirically. The contributions of this paper include, but are not limited to,

1. The introduction and justification of using SDV as a fairness metric,
found in Section 2.

2. An extensive simulation study pertaining to SDV and expected
slowdown under different scheduling policies and distributions,
found in Section 3.

3. Several key observations and insights into the behaviour of SDV
across these different configurations, also found in Section 3, which
enriches the overall discussion of fairness.

2. Definitions and justification

As stated previously when discussing fairness, there are two im-
portant aspects which must be made clear. Firstly, what does it mean to
be fair? And secondly, how does one quantify fairness? As seen in
Section 1 these are subjective issues. Nevertheless, we believe metrics
for fairness exist which are grounded in intuition, and moreover, such
metrics are independent/decoupled from performance.

We proceed by addressing the broad but fundamental question of
what it means to be fair. Consider a scenario where each customer C has
exact knowledge of its size, or service time, denoted by SC, as well as its
response time, denoted by RC, but no knowledge of how it is served.
Suppose that customer C1 has a service time of one minute, =S 1,C1 and
a response time of three minutes, =R 3C1 . With no information about
other customers, they may simply perceive this as typical system per-
formance. When a second customer C2 is introduced, things become
more complicated. Continuing with the example, let =S 2C2 and

=R 2,C2 so that <S S ,C C1 2 but >R RC C1 2. Therefore, we argue that even
an impartial onlooker would view C1 as being treated unfairly, as it
requires less system capacity yet has a longer response time. As such, C1

is likely to be dissatisfied. This dissatisfaction stems from C1’s ex-
pectation of treatment relative to others. That is, it stems from C1’s
notion of fairness.

In this small example it is intuitive that all parties would agree the
system is not fair. However, when is the system fair? A perfectly fair
system can be demonstrated by considering the previous example
where the response times vary according to the scheduling policy im-
plemented. Assume the previous example was implementing the policy
denoted by π1. That is, under π1, =R 3C1 and =R 2C2 . Under another
policy, denoted by π2, suppose that =R 1C1 and =R 3C2 . Lastly, under
policy three, denoted by π3, suppose that =R 1.5C1 and =R 3C2 .
Assuming both customers arrive at the same instant, a realization of
these three policies is illustrated in Fig. 1, and the values are
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summarized in Table 1.
Looking at these policies in greater detail allows one to begin for-

malizing fairness. As discussed previously, π1 is an intuitively unfair
policy. Inspecting π2 one discovers some positive aspects. Specifically,
the customer with the larger size experiences a longer response time
than the customer with the smaller size. This would seem to agree with
what most would consider fair. A natural next question is if one has a
longer service time, how much longer should one have to wait? The
answer to this question is, unsurprisingly, dependent on the experience
of the other customers, or customer in this case. Under π2, C1 has a
response time equal to its service time, while C2 has a response time
greater than its service time. It is our stance that such a configuration is
inherently unfair. In π1, C1 is unfairly treated, while in π2, C2 is unfairly
treated. With this in mind we move our focus to π3. Similar to π2, under
π3 the customer with a longer service time, C2, also has a longer re-
sponse time. Here however, the response time of C1 does not equal its
service time. That is, >R SC C1 1. The response time of C1 is 1.5 times
greater than its service time, i.e. =R S/ 1.5C C1 1 . With respect to fairness,
we now have a benchmark to compare against. That is, customers do
not necessarily perceive the system as unfair if they experience longer
than typical response times, but rather they perceive it as unfair if their
response time is inordinately large relative to their service time (com-
pared to the experience and size of other customers). Here,

=R S R S/ /C C C C1 1 2 2. In other words, both customers have equal slow-
downs. From here, fairness can formally be defined.

Definition 1. Fair: A system is said to be perfectly fair if, and only if,
for all jobs Ji and Jk, =R S R S/ /J J J Ji i k k. In other words, a system is
perfectly fair if the slowdown is constant.

There are a few things to note regarding this definition. Unlike some
other definitions of fairness, ours is completely decoupled from per-
formance (to the best of our knowledge, Avi-Itzhak et al. [2] is the only
other work where such decoupling is present). That is, a system can be
perfectly fair while having poor performance. This can be seen in the
extreme case where the system never processes jobs. A less extreme case
can be seen by viewing π2 and π3 in Fig. 1. Here C1 has a lower response
time under π2 than under π3, while at the same time C2 has equal re-
sponse time under both policies. Therefore, if performance were the
only concern π2 would be the better policy. Under Definition 1, π2 is not
perfectly fair, while π3 is. There is no denying that π2 would be pre-
ferable to π3 (from a performance viewpoint), as every job does at least
as well under π2. The crucial point for our work is that we are defining
the fairness of a policy in isolation, i.e. jobs under policy π3 only know
how well other jobs do under π3, not how well they would do under π2.
So, π3 is seen as fair, but has sub-optimal performance. This example

should serve to reinforce the notion of the decoupling of fairness from
performance.

Due to the stochastic nature of these systems, i.e. random arrival
times, job sizes, etc., a perfectly fair policy (which is also stable) in
general does not exist. However, using this definition as an ideal to
strive towards, it would seem one should be able to reason that one
policy is more fair (or less unfair) than another. For small systems and
toy examples, like the ones presented earlier in this section, it is clear
which policies are preferred, if being fair is the ultimate goal. However,
when these systems are viewed over longer periods of time with many
events occurring, it becomes harder to rely solely on intuition to de-
termine which policy is more fair. And where it may be easy to find
specific examples of clearly fair or unfair sample paths, one must also
consider the aggregate behaviour. Therefore, to compare the fairness of
policies, it is imperative to have a metric. The metric we propose to
measure the fairness of a system is the slowdown variance (SDV), i.e.
Var(R/S).

The first and perhaps most important property of SDV to note is that
by Definition 1, if a system is perfectly fair then SDV is zero, i.e.

=R SVar( / ) 0. Moreover, from the definition of variance the higher the
SDV is the further the system is from being perfectly fair. In other
words, SDV provides a means to rank the fairness of a set of policies.
Returning to our example, without using a metric such as SDV, the most
we could say about the three policies is that π3 is perfectly fair, while π1
and π2 are not. Intuitively, π2 is more fair than π1; it is more fair for the
longer job to wait behind the shorter one. When the SDVs of these two
policies are calculated and used as a measure of fairness, it agrees with
our intuition that π2 is more fair than π1. That is, letting Var(R/S)π

denote the SDV under policy π, <R S R SVar( / ) Var( / )π π2 1.

2.1. Comparing slowdown variance to other fairness metrics

Having given our definition of what it means to be fair, and fur-
thermore, how to measure that fairness, it is instructive to compare
these ideas against existing fairness metrics. As seen in Section 1 there
are many different metrics to compare against. With that in mind we
feel our metric is most closely related to SQF and other slowdown
metrics. Perhaps the most natural metric to compare SDV against is the
expected slowdown (ESD). The first major differentiation is that, as
mentioned before, SDV is primarily concerned with fairness, while ESD
is coupled to the performance of the system. Moreover, while ESD in-
corporates the notion that larger jobs should wait longer, it lacks a strict
definition of perfect fairness.

Even with just these distinctions in mind, it is not surprising that
these two metrics often disagree on which policy is more fair. A valid
question remains: does ESD disagree with SDV only due to its coupling
to performance? In other words, if  ≤R S R S[ / ] [ / ]π π1 2 and

<R S R SVar( / ) Var( / )π π2 1 must it then be true that  <R R[ ] [ ]π π1 2? To
show that this is not always the case, we offer a counterexample.
Consider two policies π1 and π2, each of which serves two jobs, denoted
by J1 and J2. Let the sizes and arrival times of J1 and J2 be denoted by

=S 51 and =S 4,2 and =a 01 and =a 3,2 respectively. For the coun-
terexample to be valid, it must hold that ≤R S R SAvg( / ) Avg( / )π π1 2 and

Fig. 1. Time-lines of the three policies, black portions represent when a customer is receiving service.

Table 1
Summary of metrics associated with C1 and C2.

Policy RC1 RC2 R S/C C1 1 R S/C C2 2

π1 3 2 3 1
π2 1 3 1 1.5
π3 1.5 3 1.5 1.5

V.J. Maccio et al. Operations Research Perspectives 5 (2018) 133–144

135



<R S R SVar( / ) Var( / )π π2 1 (the metrics disagree on which policy is the
fairer of the two), while ≥R RAvg( ) Avg( )π π1 2 (the policy which ESD
favours, does not have a smaller expected response time). That is, the
ESD under π1 is not lower due to its coupling to performance, but rather
ESD and SDV disagree strictly due to their conflicting notions of fair-
ness.

Following through with the example, let the service discipline of π1
and π2 follow that illustrated in Fig. 2. That is the departure times of J1
and J2 are 9 and 7, and 7 and 9, under policies π1 and π2 respectively.
The corresponding values of interest can be seen in Table 2. Here it is

seen that SDV and ESD disagree on which policy is more fair (ESD fa-
vours π1 while SDV favours π2), but the average performance of the two
policies is equal. Therefore, the disagreement of SDV and ESD cannot be
attributed to ESD coupling to performance, and must instead be at-
tributed to their underlying notions of fairness.

Although this is only a small example, the results can be extended to
a more general case. The astute reader may have noticed that π1 and π2
are following the well known policies LCFS and PS, respectively. For an
M/G/1 queue it is known that  =R R[ ] [ ]LCFS PS and furthermore
 =R S R S[ / ] [ / ]LCFS PS [10]. Note that while the values of the average
slowdown differ in Table 2, this is only across one potential sample path
and not a contradiction of the equality of the expectations. It will also
be seen in Section 3 that our simulation results strongly suggest that Var
(R/S)PS<Var(R/S)LCFS. In other words, if ESD is used as a metric for
fairness, LCFS would be deemed just as fair as PS, which we argue
would contradict typical intuition. However, as will be seen in
Section 3, SDV avoids this issue.

As mentioned in Section 1, another potential metric for fairness is

Fig. 2. Time-lines of π1 and π2, black portions represent when a job is receiving service, while striped/grey portions represent a job is receiving shared service.

Table 2
Example of ESD vs SDV.

Average response time Average slowdown SDV

π1 6.5 1.40 0.320
π2 6.5 1.45 0.005

Fig. 3. Simulation results for system where service times are constant: =a 1.
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the Slowdown Queueing Fairness (SQF) measure from [2]. This metric
was formulated using similar arguments we present to justify SDV. That
is, all jobs should have equal slowdown. Of course the question re-
mains, what is the difference between these two metrics, and why
would one use one over the other?

To guide our discussion, we first present the definition of SQF:

      

  

= − = −

+

SQF R R S S R R S RS

R S S

[( ( [ ]/ [ ]) ) ] [ ] ( [ ]/ [ ]) [ ]

( [ ]/ [ ]) [ ].

2 2

2 2

For comparison, the definition of SDV is:

 = −SDV R S R S[( / ) ] [ / ] .2 2

One noticeable difference between these two definitions is that SQF
depends directly on the second moment of the service time distribution,
whereas SDV depends on the second moment of the slowdown. One
may see this as a small difference but the implications are drastic.
Suppose that the service time distribution is such that  S[ ]2 is large (the
Pareto distribution for example). In this case, (E[R]/E[S])2E[S2] can
become the dominating term for SQF, since 1≤ (E[R]/E[S])2. This
becomes more problematic once one notes that E[S2] is independent of
the employed policy, resulting in fairness being insensitive to the choice
of policy. On the other hand, all terms present in SDV, dominant or not,
are dependent on the employed policy. Moreover, if the second moment
of the service time distribution is infinite, policies become incompar-
able to each other, i.e. they are all equally unfair. This observation is
even more troublesome once one realizes that distributions in which
fairness is a concern are more often than not distributions where the
service time variance is extremely high. Therefore, we argue that under
the distributions of interest, i.e. heavy tailed, decreasing failure rate,
etc., SQF could be a problematic choice. This issue could be one of the
reasons [2] limited their experiments to non-heavy tailed distributions.

While the above criticism is certainly a concern, we would be remiss
if we did not point out a notable advantage SQF has over SDV. SQF
leads to closed form expressions in the case of an M/G/1 queue,
whereas for SDV, analytic results are difficult to arrive at. In fact, to the
best of our knowledge an expression for the slowdown variance of an
M/G/1 queue under any scheduling policy remains unknown.

3. Simulation and discussion

The SDV of a system is difficult to analyse directly, even for single
server systems implementing well known policies. As such, to examine
the effects of policy choice on SDV, and in turn system fairness, we rely
on simulation. All simulations are of M/G/1 queues, where we varied
the system’s service time distribution, policy, and load, using basic
Matlab libraries. Each simulation was run for 10,000,000 arrivals and
departures. In most cases this was sufficient to observe convergent
behaviour. The one exception to this were the simulations for Pareto
distributed service times, which were run for 1,000,000 arrivals. We are
aware that in general one would wish to run simulations with under-
lying Pareto distributions for a longer period of time to allow for con-
vergent behaviour, however, due to the nature of these distributions
(larger jobs remaining in the system longer), runtime complexity re-
quired us to limit the number of arrivals. To verify the simulations, all
known analytic results we are aware of were sanity checked. For ex-
ample, the expected response time of PS and LCFS are extremely close
to equal for all simulations, SRPT always has the lowest expected re-
sponse time, LAS has the lowest expected response time among all blind
policies for Pareto service times [8], FCFS and P-ROS have extremely
close to equal expected response times for exponential service time, etc.

To grant the reader a comprehensive understanding of the simula-
tion results, for each service time distribution we present the expected
response time, response time variance, expected slowdown, and

Fig. 4. Simulation results for systems where service times follow an Erlang distribution: =k 2, =μ1/ 0.5.
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slowdown variance. It is worth noting that the y-axes on the graphs
corresponding to slowdown/response time variance are logarithmic.
One may also note the exclusion of the aforementioned SQF metric from
our experiments. We would conjecture that SDV fairness results would
be comparable to those of SQF for low variance distributions, while for
high variance distributions, SQF is problematic (as discussed in
Section 2). Therefore, we narrow our discussion to a focused compar-
ison of SDV to ESD. While not written under the intent of public use, all
source code can be found at [1]. Moreover, as mentioned in Section 1,
we chose to limit our discussion and simulations to black-box metrics.

3.1. Policies

Although most policies which we simulate are well known, for the
sake of completeness we give their definitions in full.

FCFS (First come first serve): Jobs are served in the order that they
arrive.

LCFS (Last come first serve - preemptive resume): Jobs are
scheduled in order of how recently they arrived to the system. If a job
arrives while another is being processed, the job being processed is
placed back into the queue and the most recent arrival is processed.

PS (Processor sharing): All jobs are given equal share of the pro-
cessor’s capacity.

LAS (Least attained service): The job with the least attained ser-
vice gets priority. If there is more than one job with the least attained
service, they are processed using processor sharing. Note, this policy is
also referred to as Foreground-Background Processing.

P-ROS (Random order of service - preemptive resume): Jobs are
served in random order. If a job is being processed when a new job
arrives, the job being processed is preempted and placed back into the
queue. A job is then randomly selected from the queue.

SRPT (Shortest remaining processing time): Jobs are scheduled

in order of remaining service time. If a job arrives that has a smaller
service time than the one currently being processed, the job in process
is preempted by the arriving job and placed back into the queue. If a job
is placed back into the queue, no accumulated service is lost (pre-
emptive resume).

FSP (Fair sojourn protocol): Jobs are scheduled in the order in
which they would complete in a processor sharing queue.

While most of the above policies are well known in the queueing
literature, FSP deserves some special attention. It is known that under
FSP every job will depart at least as soon as it would under PS [9]. In
turn this makes an interesting case when comparing the fairness of
these two policies (FSP and PS). FSP is strictly improving performance,
while at the same time no individual is doing worse (relative to when
they would depart under PS). However, individuals may do worse re-
lative to others, potentially leading to an unfair system overall. This is a
general case of the first example given in Section 2, where π3 is the most
fair policy, but π2 has strictly better performance.

The simulation results are sorted into three broad categories, first
those with increasing failure rates (IFR distributions), second those with
decreasing failure rates (DFR distributions), and lastly specific dis-
tributions which offer some additional insights.

3.2. Results for IFR distributions

Within the set of IFR distributions, we begin with the simplest:
constant service times. Here, an observation immediately worth noting
is that a number of policies become equivalent. Specifically, FCFS,
SRPT, and FSP will process jobs in the same order. It is known that FCFS
will minimize the response times when the service time distributions
have an increasing failure rate amongst policies that do not use size
information (blind policies) [14], i.e. FCFS, LCFS, P-ROS, LAS, and PS.
This leads to the well known result that when service times are

Fig. 5. Simulation results for systems where service times follow a uniform distribution: =a 0.5, =b 1.5.
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constant, FCFS will yield optimal slowdown amongst blind policies.
What may not be as intuitive is how FCFS (and therefore SRPT and FSP)
would perform when it comes to fairness. It would be reasonable to
hypothesize that a policy such as PS would be more fair than FCFS in
this case, since at a glance PS tries to be fair at every point in time. This
is not the case however, as can be seen in Fig. 3-(d), FCFS has lower
SDV than PS for all simulated loads. This is somewhat surprising since
PS is thought to be fair by construction (as discussed in Section 1). One
explanation for this is the following. Consider jobs which arrive to an
empty system. Under FCFS, they have equal response times and slow-
downs. Therefore, conditioning on jobs which arrive to an empty
system, the SDV is zero. Under PS another job could arrive, causing the
job currently in service to wait longer than it would have otherwise.
This argument can be extended to finding an arbitrary number of jobs
upon arrival. That is, if a job arrives, and no others arrive until said job
is complete, the response time of that job is equal under FCFS and PS.
When one begins to condition on jobs arriving after it however, the
response time for PS changes (inducing more variance), while under
FCFS the response time is independent of subsequent arrivals. An im-
plication of this behaviour is that doing something which is viewed as
fair at a given time point (such as PS), can result in an unfair system.
Overall this is a positive result, since it shows performance and fairness
are not in direct contention with each other. In other words, the policy
which has the best performance, may also be the most fair.

Observation 1. It is possible for a policy to have the best performance,
while being the most fair. As an example, across all simulated policies,
when service times are constant, FCFS, SRPT, and FSP have the best
performance while also being the most fair.

For the remainder of the IFR simulations, SRPT and FSP continue to
perform well, although not necessarily the best, while in some cases

FCFS performs poorly. This is not unexpected however, as policies such
as SRPT and FSP use service time information, while policies such as
FCFS, LCFS, PS, and LAS are blind. This is demonstrated in Figs. 4 and
5.

Under the Erlang-2 system we see that there is a difference in the
rankings of policies in terms of ESD and SDV. It was shown in [8] that
for Erlang-2 systems LAS will yield optimal slowdown despite max-
imizing the expected response time and one can observe this in our
results (Fig. 4). Despite performing well in expectation, LAS is out-
performed at higher utilizations in terms of SDV by PS, i.e. its ranking is
load dependent. This load dependent ordering is not a product of large
jobs rarely receiving service, i.e. starvation, since FSP mimics the ser-
vice order of PS which always gives large jobs at least part of the total
processing power. Rather, this is due to small jobs experiencing unfair
performance i.e. inordinately small response times. When the load be-
comes large, the expected number of jobs in the system becomes large
in turn. As such, even under a policy which avoids starvation, such as
PS, large jobs would expect to have large (albeit reasonable) response
times. Moreover, under a policy such as PS, the penalty for having a
large number of jobs in the system would also be felt by the small jobs.
This is the distinguishing factor when comparing PS to FSP. While the
large jobs are not being starved, it is true the large jobs take on the
entire penalty of having many jobs in the system. This leads to small
jobs getting a free pass through the system under FSP. This in turn leads
to a high SDV and an unfair system. It remains curious though, that
SRPT still does well here from a fairness standpoint, as it would seem a
similar argument could be applied, implying it should also be unfair.
One explanation for this is SRPT is not constrained to worry about
starvation, which interestingly gives it the freedom to be more fair
overall. Due to the distribution being IFR, extremely large jobs are not
likely to appear. Thus, perhaps this disregard of starvation is justified in

Fig. 6. Simulation results for systems where service times follow a bounded hyper-exponential distribution; =p 0.75,1 =p 0.25,2 =μ1/ 1.24,1 =μ1/ 0.24,2 and lower
bound of 0.01, where pi denotes the probability of sampling from an exponential distribution with corresponding rate μi.
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this setting. With all that in mind, we leave the specifics of this beha-
viour for this specific distribution as an open question. Other issues
regarding SRPT and starvation will be seen in Section 3.3.

Observation 2. For two policies π1 and π2, the ordering of fairness can
be load dependent.

Under uniformly distributed service times, a similar but reversed
effect is observed. That is, FSP performs the best and is the most fair,
while SRPT begins to become unfair as the load increases. We argue this
is due to the lower bound ( =a 0.5) imposed on the uniform distribu-
tion. Unlike with the Erlang-2 distribution, jobs cannot be extremely
small compared to the mean. In fact, the bound on the distribution
limits the largest possible job to be only = =b a/ 1.5/0.5 3 times larger
than the smallest possible job. As such, when SRPT gives a job priority
over another, it is known that the now highly prioritized job cannot be
drastically smaller than the now low priority job. Worse yet, if a slightly
smaller job arrives while the low priority job is waiting to receive
service, that job is guaranteed to depart before the one which was
waiting. On the other hand, because FSP employs the departure order of
PS, it may still be the case that a job may depart before a smaller one, if
it was waiting longer. Taking these ideas into account under a uniform
distribution it becomes reasonable to expect SRPT will become rela-
tively unfair at higher loads, while at higher loads FSP becomes the
most fair. Given the fact that the uniform distribution has low variance,
previous observations for FCFS under constant service times remain
applicable.

3.3. Results for DFR distributions

Arguably the more interesting and problematic distributions are
those which are DFR. This is because such distributions are apt to
produce massive jobs relative to their means. This provides two broad

challenges. First, if jobs cannot be preempted, slowdown is con-
siderably increased, as many small jobs can get stuck behind one large
job. Second, if jobs can be preempted, many small jobs could overtake
the large job in priority, leading to large job starvation. We simulated
hyper-exponential and Pareto distributions. It is worth noting that in
the figures of this section, some curves are absent due to known be-
haviours which lead to results that are orders of magnitude worse than
the majority of the policies. For example, the expected response time of
FCFS under the Pareto distribution is infinitely large. Furthermore, in
Fig. 6 job sizes are given a lower bound; the reasoning behind this is
discussed in Section 3.4.

As with the IFR distributions, SRPT and FSP are positive policies
from the viewpoint of performance. It is well known that SRPT mini-
mizes all moments of the response time under all distributions for single
server systems. Furthermore, if one were using a traditional fairness
metric, such as expected slowdown, it would be difficult to make a case
to employ any policy other than SRPT, as SRPT also has the lowest
expected slowdown. Another well known property of SRPT, however, is
that it starves large jobs. As argued in the previous section, starvation is
unfair. Therefore, one would expect to see SRPT perform poorly under a
fairness metric, especially under a heavy-tailed distribution where these
starvation issues are amplified. SDV is consistent with this notion. In
Fig. 7-(d) not only does SRPT fail to be the most fair, but is one of the
least fair policies simulated. This of course arises due to the amount of
time large jobs must wait before they depart. In contrast, under SRPT,
an extremely small job is likely to have a slowdown of one, the
minimum achievable. That is, SRPT is unfair in two respects; it gives
both an unfair disadvantage to large jobs and an unfair advantage to
small jobs. Hence SDV captures inherent unfairness which SRPT in-
vokes, whereas the expected slowdown not only fails to capture the
issue of starvation, but goes further by implying SRPT to be the most
fair of all simulated policies.

Fig. 7. Simulation results for systems where service times follow a Pareto distribution: =α 1.5, =x 0.5m , where α and xm are the shape and scale parameters,
respectively. Note that the graph of Var(R) vs. ρ has been excluded due to the high variance of the Pareto distribution.
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When it comes to FSP, the expected slowdown does capture some of
the unfair qualities as the load increases, as was previously discussed
for IFR distributions. These unfair tendencies are amplified in the SDV,
where under heavy loads PS, P-ROS, and LAS are all deemed more fair
than FSP. Looking to the ESD, only LAS (and SRPT) are deemed more
fair than FSP. It still remains then, that while FSP and SRPT may be
positive choices from a performance standpoint, they may be extremely
unfair.

Observation 3. While the non-blind policies SRPT and FSP seem like
attractive choices from the viewpoints of  R[ ] and  R S[ / ] they could be
extremely unfair from the viewpoint of Var(R/S). That is, Var(R/S)
captures the unfairness of large jobs being starved, and small jobs
receiving an unfair advantage.

The previous observation does not imply that if one wishes to be fair
under the Pareto distribution then one must sacrifice performance.
Here, one sees favourable results for LAS. Firstly, for DFR distributions,
LAS is known to be an optimal blind policy. While SRPT and FSP
slightly outperform it, LAS remains competitive with access to sig-
nificantly less information. Moreover, when one examines the SDV of
LAS it is seen that it also is the fairest of all blind policies, and for high
loads, it is the fairest of all policies, blind or otherwise.

Observation 4. For all DFR experiments, of all the blind policies, LAS
achieves the lowest expected response time, while remaining the most
fair, i.e. achieving the lowest Var(R/S). Furthermore at high loads, LAS
is the most fair over all simulated policies.

3.4. M/M/1 and bounded distributions

Until now, there was an important set of distributions which we

excluded from our simulations. That is, distributions which have a
significant probability of generating jobs which have an extremely
small size. An example of such a distribution is the well known ex-
ponential distribution. Here service times are not bounded away from
zero, and moreover, the mode of the density equals zero (an indicator
that small jobs are likely to be generated). As will be seen, such dis-
tributions present difficulties when simulating non-preemptive policies,
when moments of the slowdown are a concern.

Looking to Fig. 8, this effect can be viewed explicitly. Here the
service times are exponentially distributed, i.e. the system is an M/M/1
queue. Viewing the FCFS and P-ROS curves for SDV, one finds them to
be jagged. This is not a product of true steady state behaviour, but
rather a consequence of the system converging slowly to said steady
state behaviour. That is, the simulation results can potentially be
dominated by a small number of jobs (or in this case, one). It is noted
that this slow convergence is emphasized more in non-preemptive po-
licies. Consider a system with a single job present with a remaining
service time equal to the mean service time. Now consider the case
when a job arrives which is very small compared to the mean service
time. For the sake of discussion, assume the new job is one thousandth
the size of the mean. Under a policy without preemption that new job
will have a slowdown of at least one thousand since it has to wait for
the current job to complete. This is an inordinately large slowdown, and
in turn impacts the SDV drastically. However, because the probability
of such a small job being generated, while non-negligible, is still small,
simulation results can be skewed to such a job being generated (or not
generated) during its runtime.

To demonstrate this slow convergence is indeed due to extremely
small jobs, we direct the reader to Fig. 9. In this experiment, service
times follow an exponential distribution shifted slightly to the right, i.e.
a lower bound is imposed on the service times. When this is done one

Fig. 8. Simulation results for systems where service times are exponentially distributed: =μ1/ 1.
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notes the curves exhibit an anticipated shape. That is, in contrast to the
simulation with exponentially distributed service times, the curves are
smooth and increasing with the load. This effect can be seen further
(and more drastically) when comparing Fig. 10 (hyper-exponential
service times) to Fig. 6 (hyper-exponential service times with a lower
bound), where again, the hyper-exponential distribution has a sig-
nificant probability of generating extremely small jobs.

Having a lower bound on the service times is not an unreasonable
assumption in many domains, e.g. computing, healthcare, tele-
communications, etc. As such, we argue that in practice these systems
would exhibit a reasonable convergence to steady state, unlike that
exhibited by the curves in Figs. 8 and 10. In other words, the slow
convergence for service time distributions which generate extremely
small jobs is more of a theoretical issue, rather than a practical one.

Observation 5. When the service time distribution is prone to
generating arbitrarily small jobs, non-preemptive policies converge
slowly to steady state. This in turn makes simulating the SDV for such
systems problematic.

3.5. Summary

Although it was seen that determining if one policy is more fair than
another can be sensitive to the service time distribution, some general
observations can be made which hold across all of our simulations.
Firstly, and perhaps not surprisingly, the SDV of all policies increases
with the load. There is a good deal of intuition behind this. One notes
that for a system with a load close to zero, the vast majority of jobs will
arrive to an empty system and are likely be processed before another
job arrives. Thus most jobs will have a slowdown of one, and therefore
most jobs will have equal slowdowns; implying the system SDV to be

close to zero. On the other hand, when the load is close to one, the
variance of the number of jobs that an arriving job sees is high, and
furthermore, the variance of the number of jobs that arrive before said
job is processed is also high. This in turn leads to a high variance in
response times, and high variance in slowdown.

Observation 6. Var(R/S) appears to increase with utilization.

Measures of slowdown are often thought of as a mix between fair-
ness and performance. One of the primary motivations to developing a
fairness metric different from the expected slowdown was the bother-
some equivalence,  =R S R S[ / ] [ / ]PS LCFS [14], since taken alongside
the well known equivalence  =R R[ ] [ ] ,PS LCFS would imply that LCFS
and PS are equally fair. This goes against a strong intuition (as we ar-
gued previously), that simply by construction PS is more fair than LCFS.
When examining our simulations however, one notes that for all si-
mulated distributions LCFS has a higher SDV than PS, and is therefore
less fair. In other words, PS always performs just as well as LCFS, while
also remaining the more fair of the two policies.

Observation 7. For all experiments, Var(R/S)PS<Var(R/S)LCFS and
from analysis it is known  =R R[ ] [ ]PS LCFS.

Continuing with PS, it is noted that while for many of the simula-
tions PS is a competitive policy with respect to fairness, this is not al-
ways the case. This is perhaps surprising since it would seem PS is fair
by construction (at every point in time every job has an equal slice of
the processor). Specifically, for distributions with low variance, PS can
be seen as an unfair policy. Thus, enforcing fairness at every point in
time, can lead to an unfair system overall. Another interesting result
from these simulations regarding PS is the load dependency of FSP.
While previously observed that the ordering of SDV is load dependent,
FSP seems to be the most sensitive to it. Since FSP works off of PS it is

Fig. 9. Simulation results for systems where service times are exponentially distributed but bounded away from zero: =μ1/ 0.99, and a lower bound of 0.01 (giving a
mean of 1).
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clear that all jobs do just as well under FSP as they would under PS, and
on the surface this may seem like a favourable result (and it is for
performance), but as discussed in Section 2, such a preference to small
jobs can result in unfair treatment to larger ones, and in turn create an
unfair system (often times putting FSP in the lower half of the simulated
policies for higher loads).

Observation 8. While PS is thought of as fair by construction,
according to Var(R/S) it can in fact lead to unfair systems overall, in
particular when the service time distribution has low variance.

Although for Pareto distributed service times SRPT was shown to be
quite unfair due to starvation, under almost all other simulated dis-
tributions, SRPT was shown to be the most fair policy. This is a fa-
vourable observation because it is well known that SRPT stochastically
minimizes the response time of the M/G/1 queue. As noted before, it is
possible for a policy to win on all fronts, i.e. have the lowest expected
response time as well as the lowest SDV. It seems with regard to SRPT
this observation can be made in a stronger fashion.

Observation 9. For all experiments, for all simulated policies π,
 ≤R R[ ] [ ]SRPT π and Var(R/S)SRPT≤Var(R/S)π except under
Uniform and Pareto distributions.

These results complement works and surveys that have been done
on SRPT. An investigation into the unfairness of SRPT is given in [6,20]
where the authors comment that while some jobs of a certain size may
be treated very unfairly, SRPT may offer better slowdown in expecta-
tion in the majority of cases. In [20] SRPT was classified as “Sometimes
Fair” and the authors suggest that SRPT can be used in a wide variety of
situations. Even if the conditional mean slowdown is high for some
distributions it might not impact how fair a policy is as a whole. For
distributions with high variance it is intuitive that the SDV of SRPT

would be high. When examining Pareto service times, one can in-
formally view jobs as two classes: small jobs and large jobs, where the
large jobs are several orders of magnitude greater than the mean. Then
the system can be approximated as one with strict static priorities be-
tween the two classes (small jobs have priority over large jobs). Once
this is realized the issue of starvation and unfairness becomes even
clearer.

4. Conclusion

While fairness is a subjective concept, we identified several short-
comings of existing slowdown-based metrics. As such, we made a case
for using the slowdown variance (SDV) as a metric for fairness, where
the lower a system’s SDV, the more fair it is. Through simulation we
showed several key insights into the behaviour of SDV which, across a
wide range of service time distributions, overcame the aforementioned
shortcomings of previous metrics. Specifically, for the M/G/1 queue,
SDV always considers PS to be more fair than LCFS, SDV considers
SRPT to be extremely unfair under Pareto distributed service times, due
to starvation and giving an unfair advantage to small jobs, and SDV
provides a decoupling of performance from fairness. Regarding future
work on the subject, we would like to formally show some of the ob-
servations made through simulation, such as arrive at closed form ex-
pressions for Var(R/S)PS, Var(R/S)LCFS, and Var(R/S)SRPT for general or
specific service time distributions; as an alternative to closed form ex-
pressions tight bounds on the SDV may also be insightful. Furthermore,
more numerical experiments can be run on systems other than the M/
G/1 queue, such as M/G/C, open Jackson networks, etc. Clearly, SDV
behaviours have yet to be explored in great detail, but we hope to start
a discussion surrounding it as research on fairness evolves. We also
hope that some of the insights here inform the general discussion of

Fig. 10. Numerical results for systems where service times follow a hyper-exponential distribution: =p 0.75,1 =p 0.25,2 =μ1/ 1.25,1 =μ1/ 0.25,2 where pi denotes the
probability of sampling from an exponential distribution with corresponding rate μi.
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what it means for a queueing system to be fair.

Acknowledgement

This research was funded by the Natural Sciences and Engineering
Research Council of Canada. We would also like to thank the two re-
viewers of this paper for their constructive feedback as well as their
valuable guidance through past research.

References

[1] Source code. http://www.cas.mcmaster.ca/~macciov/publications.html; Accessed:
2017-04-12.

[2] Avi-Itzhak B, Brosh E, Levy H. SQF: a slowdown queueing fairness measure. Perform
Eval 2007;64(12):1121–36.

[3] Avi-Itzhak B, Levy H. On measuring fairness in queues. Adv Appl Probab
2004;36(3):919–36.

[4] Avi-Itzhak B, Levy H, Raz D. A resource allocation queueing fairness measure:
properties and bounds. Queueing Syst 2007;56(2):65–71.

[5] Avi-itzhak B, Levy H, Raz D. Quantifying fairness in queuing systems: principles,
approaches, and applicability. Probab Eng Inf Sci 2008;22(4):495–517.

[6] Bansal N, Harchol-Balter M. Analysis of SRPT scheduling: Investigating unfairness.
Proceedings of the 2001 ACM SIGMETRICS international conference on measure-
ment and modeling of computer systems. 2001. p. 279–90.

[7] Casanova H, Desprez F, Suter F. On cluster resource allocation for multiple parallel
task graphs. J Parallel Distrib Comput 2010;70(12):1193–203.

[8] Feng H, Misra V. Mixed scheduling disciplines for network flows. SIGMETRICS
Perform Eval Rev 2003;31(2):36–9.

[9] Friedman EJ, Henderson SG. Fairness and efficiency in web server protocols.

SIGMETRICS Perform Eval Rev 2003;31(1):229–37.
[10] Harchol-Balter M. Performance modeling and design of computer systems:

queueing theory in action. Cambridge University Press; 2013.
[11] Krashinsky R, Balakrishnan H. Minimizing energy for wireless web access with

bounded slowdown. Wireless Netw 2005;11(2):135–48.
[12] Oliner AJ, Sahoo RK, Moreira JE, Gupta M, Sivasubramaniam A. Fault-aware job

scheduling for BlueGene/L systems. Proceedings of the 18th international sympo-
sium on parallel and distributed processing. IEEE Computer Society; 1999. p.
64–74.

[13] Raz D, Levy H, Avi-Itzhak B. A resource-allocation queueing fairness measure.
SIGMETRICS Perform Eval Rev 2004;32(1):130–41.

[14] Righter R, Shanthikumar JG, Yamazaki G. On extremal service disciplines in single-
stage queueing systems. J Appl Probab 1990;27(2):409–16.

[15] Sandmann W. A discrimination frequency based queueing fairness measure with
regard to job seniority and service requirement. Proceedings of Euro-NGI con-
ference of next generation internet networks. 2005. p. 106–13.

[16] Sandmann W. Quantitative fairness for assessing perceived service quality in
queues. Oper Res 2013;13(2):153–86.

[17] Wierman A. Fairness and classifications. SIGMETRICS Perform Eval Rev
2007;34(4):4–12.

[18] Wierman A. Scheduling for todays computer systems: bridging theory and practice.
Carnegie Mellon University; 2007. Ph.D. thesis.

[19] Wierman A. Fairness and scheduling in single server queues. Surv Oper Res Manage
Sci 2011;16(1):39–48.

[20] Wierman A, Harchol-Balter M. Classifying scheduling policies with respect to un-
fairness in an M/GI/1. Proceedings of the 2003 ACM SIGMETRICS international
conference on measurement and modeling of computer systems. SIGMETRICS ’03.
2003. p. 238–49. ISBN: 1-58113-664-1

[21] Zotkin DN, Keleher PJ. Job-Length estimation and performance in backfilling
schedulers. Proceedings of the eighth international symposium on high perfor-
mance parallel and distributed computing. IEEE Computer Society; 1999. p.
236–43.

V.J. Maccio et al. Operations Research Perspectives 5 (2018) 133–144

144

http://www.cas.mcmaster.ca/~macciov/publications.html
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0001
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0001
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0002
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0002
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0003
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0003
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0004
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0005
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0006
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0006
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0007
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0007
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0008
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0008
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0009
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0009
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0010
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0010
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0011
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0011
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0011
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0011
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0012
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0012
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0013
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0013
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0014
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0014
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0014
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0015
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0015
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0016
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0016
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0017
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0017
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0018
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0018
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0019
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0020
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0020
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0020
http://refhub.elsevier.com/S2214-7160(18)30007-1/sbref0020

	On slowdown variance as a measure of fairness
	Introduction
	Definitions and justification
	Comparing slowdown variance to other fairness metrics

	Simulation and discussion
	Policies
	Results for IFR distributions
	Results for DFR distributions
	M/M/1 and bounded distributions
	Summary

	Conclusion
	Acknowledgement
	References




