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a b s t r a c t 

The question we address is how robust solutions react to changes in the uncertainty set. We prove the 

location of robust solutions with respect to the magnitude of a possible decrease in uncertainty, namely 

when the uncertainty set shrinks, and convergence of the sequence of robust solutions. 

In decision making, uncertainty may arise from incomplete information about people’s (stakeholders, vot- 

ers, opinion leaders, etc.) perception about a specific issue. Whether the decision maker (DM) has to look 

for the approval of a board or pass an act, they might need to define the strategy that displeases the 

minority. In such a problem, the feasible region is likely to unchanged, while uncertainty affects the ob- 

jective function. Hence the paper studies only this framework. 

© 2018 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Robust optimization is proving to be a fruitful tool in the study

f problems with uncertain data. Since the seminal paper by Ben-

al and Nemirowski [1] , several authors have studied the prob-

em both in scalar and vector optimization settings (see e.g. [2–

] ). More recently, a detailed monograph has been devoted to the

opic [7] and survey papers [8,9] have collected the major issues

nd applications of robust optimization. 

The need for such a tool arises when a constrained optimiza-

ion problem (scalar or vector) depends upon uncertain param-

ters that may affect both the objective function and the con-

traints. This occurs in many real-world applications of optimiza-

ion in industries, energy markets, finance, to quote some fields

see e.g. [10–14] and the references therein), due to unknown fu-

ure developments, measurement or manufacturing errors, incom-

lete information in model development, and so on. In such cir-

umstances, stochastic programming is often applied, but this ap-

roach requires the choice of a probability distribution that can

ardly be motivated but for the technical capability of solving the

roblem. 
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In robust optimization, no arbitrary assumption on the distribu-

ion of parameters is required. Instead, a robust solution is defined

ntroducing a different optimization problem known as a robust

ounterpart that allows to find a “worst-case-oriented” optimal so-

ution. Since the seminal papers by Ben-Tal et al., robust optimiza-

ion has also been extended to multiobjective problems, see e.g.

15,16] and several theoretical issues have been investigated. A ma-

or problem in optimization theory that has been addressed only

ecently for robust optimization is the stability of solutions with

espect to the uncertainty set U , where parameters are assumed

o take values. In [16–18] , using set-optimization techniques, some

ell-posedness for robust optimization problems has been proven

nder quasiconvexity assumptions. 

In this paper, we investigate the behaviour of scalar and vector

obust optimization problems upon variation of the uncertainty set

. Indeed, in several applications of robust optimization, the de-

ision maker (DM) can act to reduce uncertainty, e.g. by improv-

ng the technology of measurement or manufacturing or acting on

takeholder perception on some issues, to steer the uncertainty

oward a desired level and eventually a desired robust solution.

athematically, we model this possibility allowing U to change.

e provide some estimates to locate the optimal values and the

ptimal solutions of a robust optimization problem with respect to

he solution of a problem without uncertainty. When multiobjec-

ive optimization problems are considered, the results make use of

et orderings introduced by Kuroiwa [19] . 
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The remaining sections of the paper are organized as follows.

In Section 2 we present the basic notation and develop our results

in the scalar case. Section 3 presents a decision-making issue that

can be addressed through our results. Not only does robust opti-

mization provide DMs with a worst-case solution concepts, it also

allows the “safe” solution to be steered toward a more desirable

solution, provided uncertainty, interpreted as stakeholders percep-

tion, can be influenced[A2]. An academic numerical example is also

provided. Further, in Section 4 the results are extended to a vector

optimization problem with uncertainty and then applied to a port-

folio selection model with two risky assets. 

2. Scalar case 

Throughout this paper R 

n denotes the Euclidean space of di-

mension n , 〈 x, y 〉 denotes the inner product of x and y , and ‖ x ‖ =√ 〈 x, x 〉 denotes the Euclidean norm of x . Given a lower bounded

function g : R 

n → R and a closed convex set X ⊆ R 

n , we consider

the problem 

inf 
x ∈ X 

g(x ) . (P)

A point x 0 ∈ X is a solution to (P) when g(x 0 ) = inf x ∈ X g(x ) . Given an

arbitrary ε > 0, we define x 0 ∈ X an ε-solution to (P) when g(x 0 ) ≤
inf x ∈ X g(x ) + ε. 

We introduce the uncertain optimization problem by 

inf 
x ∈ X 

f (x, u ) , (UP)

where X ⊆ R 

n is a closed convex set, f : R 

n × R 

p → R , u is an

uncertain parameter, with u ∈ U for some convex compact subset

U ⊆ R 

p . We assume f is continuous with respect to u and f ( · , u ) is

lower bounded on X for every u ∈ U . 

Problem (UP) has been studied extensively in the literature (see

e.g. [7] and the references therein) through its associated robust

counterpart 

inf 
x ∈ X 

max 
u ∈U 

f (x, u ) . (RP)

Various degrees of uncertainty can occur for the same objective

function. Here we also introduce a compact, convex subset U 0 ⊆ U
to represent the nominal instance of our robust optimization prob-

lem, as the least achievable uncertainty. Moreover, we consider

sets 

W 

λ := ( 1 − λ) U 

0 + λU , λ ∈ [ 0 , 1 ] , 

that provide average level of uncertainty. Clearly, 

W 

1 = U (high uncertainty) , 

W 

0 = U 

0 (low uncertainty) . 

An extreme, yet meaningful situation is represented by U 0 = { u 0 } ,
i.e. absence of uncertainty, that also would coincide with λ = 0 . 

We are now interested in the family of robust counterparts to

(UP) 

inf 
x ∈ X 

max 
w ∈W 

λ
f (x, w ) . RP λ

When λ = 0 the robust counterpart shows the lowest level of un-

certainty achievable (possibly none at all) and accordingly we de-

note the special instance as 

inf 
x ∈ X 

max 
u ∈U 0 

f (x, u ) . (RP0)

The following notation will also be used throughout the paper 

E f ( x ) := max u ∈U f (x, u ) − max u ∈U 0 f (x, u ) ;
E f := sup x ∈ X E f (x ) ;

and 

E f := inf x ∈ X E f (x ) . 
learly, since U 0 ⊆ U , E f ( x ) ≥ 0, for all x ∈ X , but we need to assume

 f is finite. 

emark 1. We can provide some characterization of E f ( x ) and E f 
s follows: 

(i) If f ( x, u ) is continuous in x for every u ∈ U , then E f ( x ) is also

continuous. Hence E f is finite whenever X is compact. 

ii) Assume that U 0 + V ⊇ U for some compact convex subset V ⊆
R 

p . 

(a) If f ( x, u ) is subadditive with respect to u , the following

holds: 

E f (x ) ≤ max 
v ∈V,u ′ ∈U 0 

f (x, v + u 

′ ) − max 
u ′′ ∈U 0 

f (x, u 

′′ ) 

≤ max 
v ∈V,u ′ ∈U 0 

[ f (x, v ) + f (x, u 

′ )] − max 
u ′′ ∈U 0 

f (x, u 

′′ ) = max 
v ∈V 

f (x, v ) .

(b) If f ( x, u ) is affine with respect to u , i.e. f (x, u ) = 〈 g(x ) , u 〉 +
h (x ) , with g : R 

n → R 

p and h : R 

n → R , the following

holds: 

E f (x ) ≤ max 
v ∈V 

〈 g(x ) , v 〉 . 
In addition, if U 0 + V = U , then 

E f (x ) = max 
v ∈V 

〈 g(x ) , v 〉 , 
which, for U 0 = { u 0 } and U = B(u 0 ) , entails E f (x ) = ‖ g(x ) ‖ ,
where B(u ) is the closed unit ball in R 

p centred in u ∈ R 

p . 

ii) E f is finite without compactness of X in the following case:

n = p, f (x, u ) = 〈 Ax, u 〉 + h (x ) where A is an n × n orthogo-

nal matrix and h : R 

n → R , { b 1 , b 2 , . . . , b n } is an orthonormal

basis in R 

n , X = { α1 b 1 + α2 b 2 + · · · + αn b n | 1 
2 (α

2 
2 + · · · + α2 

n ) −
1 
2 ≤ α1 } , and { u 0 } ⊆ U 0 ⊆ U = B(u 0 ) − Ab 1 . Let V = B(0) − Ab 1 ,

then U 0 + V ⊇ U holds. Then, for any x ∈ X , 

E f (x ) ≤ max 
v ∈V 

〈 Ax, v 〉 = ‖ Ax ‖ − 〈 Ax, Ab 1 〉 = ‖ x ‖ − 〈 x, b 1 〉 ≤ 1 . 

The final inequality follows from the fact: 1 
2 (α

2 
2 

+ · · · + α2 
n ) −

1 
2 ≤ α1 implies 

√ 

α2 
1 

+ α2 
2 

+ · · · + α2 
n − α1 ≤ 1 . Therefore E f is fi-

nite, while X is unbounded. 

The following results provide an answer to how the level of un-

ertainty affects the robust optimal value (and possibly the robust

olution) of (UP) . We first provide the “location” of the optimal

alue, depending on the average uncertainty described by some λ. 

roposition 1 (Location of optimal values of (RP 

λ)) . 

(i) Let f ( x, u ) be convex with respect to u, then the following holds: 

inf 
x ∈ X 

max 
u ∈U 0 

f (x, u ) ≤ inf 
x ∈ X 

max 
w ∈W 

λ
f (x, w ) ≤ inf 

x ∈ X 
max 
u ∈U 0 

f (x, u ) + λE f . (1)

ii) Let f ( x, u ) be concave with respect to u, then the following holds:

inf 
x ∈ X 

max 
u ∈U 0 

f (x, u ) + λE f ≤ inf 
x ∈ X 

max 
w ∈W 

λ
f (x, w ) . (2)

roof. 

(i) Let w 

λ ∈ W 

λ, that is w 

λ = (1 − λu 0 ) + λu, for some u 0 ∈ U 0
and u ∈ U . From convexity with respect to u it follows that 

f (x, w 

λ) ≤ (1 − λ) f (x, u 

0 ) + λ f (x, u ) , for all x ∈ X. 

Hence, recalling that U 0 ⊆ W 

λ for every λ∈ [0, 1], we have 

max u ∈U 0 f (x, u ) ≤ max w ∈ W 

λ f (x, w ) 
= max u 0 ∈U 0 , u ∈U f (x, (1 − λ) u 

0 + λu ) 
≤ (1 − λ) max u 0 ∈U 0 f (x, u 

0 ) + λmax u ∈U f (x, u ) 
= max u ∈U 0 f (x, u ) + λE f (x ) , for all x ∈ X. 

(3)

It follows that 

inf max f (x, u ) ≤ inf max f (x, w ) ≤ inf max f (x, u ) + λE f . 
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ii) The proof follows along the same lines. 

�

Under further assumptions, we can obtain a better result. 

orollary 1. If f ( x, u ) is affine with respect to u, then both (1) and

2) hold. If, in particular, U 0 = { u 0 } , U = B(u 0 ) and f (x, u ) =
 g(x ) , u 〉 + h (x ) , with g : R 

n → R 

p and h : R 

n → R , the following

olds: 

nf 
 ∈ X 

f (x, u 

0 ) + λ inf 
x ∈ X 

‖ g(x ) ‖ ≤ inf 
x ∈ X 

max 
w ∈W 

λ
f (x, w ) ≤ inf 

x ∈ X 
f (x, u 

0 ) 

 λ sup 

x ∈ X 
‖ g(x ) ‖ . 

oreover if n = p, g(x ) = Ax, and A is an n × n orthogonal matrix,

hen the following holds: 

nf 
 ∈ X 

f (x, u 

0 ) + λ inf 
x ∈ X 

‖ x ‖ ≤ inf 
x ∈ X 

max 
w ∈W 

λ
f (x, w ) ≤ inf 

x ∈ X 
f (x, u 

0 ) + λ sup 

x ∈ X 
‖ x ‖

The following proposition is an immediate consequence of

roposition 1 . 

roposition 2. Let f ( x, u ) be convex with respect to u. Then every

olution of problem ( RP λ) is an ε-solution of problem ( RP 0 ) with ε =
E f . 

Moreover, the robust optimal values of the robust counterparts

 RMP λ) converge to those of the nominal instance ( RP 0 ), as uncer-

ainty decreases. 

roposition 3 (Convergence of the optimal values of

RP 

λ)) . Assume f ( x, u ) is convex with respect to u. Hence, 

nf 
 ∈ X 

max 
w ∈W 

λ
f (x, w ) → inf 

x ∈ X 
max 
u ∈U 0 

f (x, u ) (4)

s λ↓ 0 . 

roof. The proof is immediate from Proposition 1 . �

emark 2. (4) holds in the following cases: 

(i) f (x, u ) = 〈 g(x ) , u 〉 + h (x ) , g : R 

n → R 

p is continuous, h : R 

n →
R , and X is bounded (including a linear problem with bounded

feasible region); 

ii) f (x, u ) = 〈 g(x ) , u 〉 + h (x ) , g : R 

n → R 

p is bounded on X , and h :

R 

n → R (including a problem with unbounded feasible region,

see (iii) of Remark 1 ). 

emark 3. Observe that Proposition 3 requires no convexity as-

umption with respect to x . 

Finally, some convergence of robust solutions to ( RMP λ) toward

he robust solution with lowest uncertainty to ( RP 0 ) can also be

roved. 

roposition 4 (Convergence of the optimal solutions of

RP λ)) . Assume that for every λ∈ [0, 1] functions max w ∈W 

λ f (x, w )

re convex and l.s.c. with respect to x on the convex closed set X.

ssume further that the set of solutions of ( RP 0 ) is nonempty and

ompact. Let λn ↓ 0, set W 

n = W 

λn and assume x n = x λn 
∈ X are

olutions of problem ( RP λ). 

Then there exists a subsequence x n k of x n such that x n k → x ∈ X

nd x is a solution of ( RP 0 ). 

roof. From Proposition 2 we know that for every n, x n is an ε-

olution of ( RP 0 ) with ε = λn E f . The assumptions guarantee that

here exists a subsequence of x n converging to a solution of ( RP 0 )
see e.g. [20] ). � a  
. An application 

A recent contribution by Hu and Mehrotra [21] applied a ro-

ust framework, so-called McRow (multicriteria robust optimiza-

ion with weight set), to address a multiobjective optimization

roblem through (linear) scalarization. Within the same line, other

apers have used similar techniques to model a decision-making

roblem involving the satisfaction of several stakeholders. Similar

rguments apply to management science, politics, as well as R&D

roject selection [11,22,23] . 

Basically, any decision-making process implies the need to face

onflicts among stakeholders who, ultimately, must approve a cer-

ain action. Whether it is a management strategy that needs to

e accepted by a board, an environmental policy or an act to be

assed by a government, stakeholder disagreement, due to differ-

nt opinions or perceptions, must be addressed. We assume that

 decision is represented by some vector x ∈ X ⊆ R 

n , where X is

he feasible region, modelling budget, cultural, technical, etc. con-

traints. A group of r stakeholders shares the same criteria l k ( x ),

 = 1 , . . . , p, to evaluate the decision. As an example, we can think

f the decision to build some logistic infrastructure that must be

valuated according to the revenues, environmental consequences,

ecurity, etc. Without loss of generality, we can assume that each

riteria has to be minimized, hence we define a vector-valued loss

unction l : X ∈ R 

n → R 

p . Each party involved (e.g. environmental

ctivists, entrepreneur, residents, trade unions, etc.) has a different

pinion about the relative importance of each criteria and, hence,

efines a different vector of nonnegative weights u s = (u s 
1 
, . . . , u s p ) ,

 = 1 , . . . , r, for each criterion. Hence, each stakeholder faces the

ndividual optimization problem that is the minimization of the

calarized loss function L (x, u s ) = 〈 l ( x ) , u s 〉 
nf 
 ∈ X 

L (x, u 

s ) = L ∗(u 

s ) , (5)

here L ∗( u s ) provides the s th stakeholder with the most desirable

utcome, even if it may not be granted by the strategy proposed by

he DM. Hence, given a course of action x ∈ X , chosen by the DM,

e can measure the dissatisfaction of each stakeholder as the dis-

ance between the scalarized value of the loss function and L ∗( u s ),

amely 

 s ( x, u 

s ) = L (x, u 

s ) − L ∗(u 

s ) . (6)

he DM must minimize the weighted sum of dissatisfaction among

he stakeholders 

nf 
 ∈ X 

r ∑ 

s =1 

μs d s ( x, u 

s ) , (7) 

here μs ≥ 0 represents the relative importance or influence each

takeholder has and 

∑ r 
s =1 μs = 1 . 

In real-world applications, precise values of u s are not likely

nown in advance, leading to uncertainty in the problem. We as-

ume that for all s = 1 , . . . , r, u s ∈ U s ⊆ R 

p , with U s convex and

ompact and we set U := U 1 × · · · × U r , u = (u 1 , . . . , u r ) ∈ U . An

verly conservative DM would like to minimize the maximum dis-

atisfaction originated by the decision, leading to the following ro-

ust counterpart 

nf 
 ∈ X 

sup 

u ∈U 
f (x, u ) , (8) 

here f (x, u ) = 

∑ r 
s =1 μs d s (x, u s ) . 

We assume now that U models the highest uncertainty, while

he DM may wish to limit it to a smaller subset U 0 ⊆ U . We as-

ume U 0 = 

{
u 0 

}
, with u 0 = (u 0 , 1 , . . . , u 0 ,r ) , that is the DM’s opin-

on or perception, although the case where U 0 is not a singleton

ight also be of some interest. When projects or policies require

pproval by a board of stakeholders, it is common knowledge that
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the DM seeks consensus by not just trying to please as many stake-

holders as possible, but also by steering the stakeholders’ view-

points towards the DM’s own, i.e. toward U 0 . Any activity (adver-

tising, campaigns, lectures, lobbying, etc.) to change the attitude of

the stakeholders will possibly result in a reduction of uncertainty.

According to the notation of the previous section, we shall consider

the set W 

λ as the uncertainty set reachable by consensus, where

λ = 0 is the largest consensus reachable and λ = 1 means no ac-

tion has been taken to influence the stakeholders. Hence, we have

a desired optimization problem, the nominal instance, 

inf 
x ∈ X 

f (x, u 

0 ) , (9)

where f (x, u 0 ) = 

∑ r 
s =1 μs d s (x, u 0 ,s ) and a robust optimization

problem 

inf 
x ∈ X 

sup 

u ∈W 

λ

f (x, u ) . (10)

According to the results proved in the previous section, we have

the following result to provide the location of the solution depend-

ing on the strength of the campaign enforced. 

Corollary 2. Assume that U 0 = { u 0 } . Then 

(i) we have 

inf 
x ∈ X 

f (x, u 

0 ) ≤ inf 
x ∈ X 

sup 

u ∈W 

λ

f (x, u ) 

≤ inf 
x ∈ X 

f (x, u 

0 ) + λ
r ∑ 

s =1 

μs sup 

x ∈ X 
sup 

u s ∈U s −u 0 ,s 
d s (x, u 

s ) ;

ii) when λ↓ 0, we have 

inf 
x ∈ X 

sup 

u ∈W 

λ

f (x, u ) → inf 
x ∈ X 

f (x, u 

0 ) . 

Proof. Since L ∗( u s ) is a super-linear function as the infimum of lin-

ear functions, it follows that d s ( x, u s ) are sub-linear functions as

the sum of a linear function and a sub-linear function. Hence, the

result follows from Propositions 1 and 3 and Remark 1 . �

Example 1. Let r = 2 , n = 1 and p = 2 . Assume the loss func-

tion is l ( x ) = ( x, −x ) and X = [ 1 , 2 ] . Let u 1 = (u 1 
1 
, u 1 

2 
) ∈ U 1 =

{ (α, 1 − α) | α ∈ [0 . 2 , 0 , 8] } and u 2 = (u 2 
1 
, u 2 

2 
) ∈ U 2 = { (α, 1 − α) |

α ∈ [0 . 3 , 0 , 7] } , so that problem (5) is reduced to 

inf 
x ∈ [ 1 , 2 ] 

( 2 u 

s 
1 − 1 ) x 

for each s = 1 , 2 . Therefore, 

argmin 

x ∈ X 
f (x, u 

s ) = 

{ { 1 } if u 

s 
1 > 0 . 5 

[1 , 2] if u 

s 
1 = 0 . 5 

{ 2 } if u 

s 
1 < 0 . 5 

and 

L ∗(u 

s ) = 

{
2 u 

s 
1 − 1 if u 

s 
1 ≥ 0 . 5 , 

2 

(
2 u 

s 
1 − 1 

)
if u 

s 
1 < 0 . 5 , 

(11)

while 

d s ( x, u 

s ) = 

{(
2 u 

s 
1 − 1 

)
x − 2 u 

s 
1 + 1 if u 

s 
1 ≥ 0 . 5 (

2 u 

s 
1 − 1 

)
x − 2 

(
2 u 

s 
1 − 1 

)
if u 

s 
1 < 0 . 5 

(12)

for each s = 1 , 2 . 

Assume μ1 = μ2 = 

1 
2 , i.e. the DM equally weights the dissatis-

faction of each stakeholder. Hence, problem (7) is reduced to 

inf 
x ∈ [ 1 , 2 ] 

1 

2 

d 1 (x, u 

1 ) + 

1 

2 

d 2 (x, u 

2 ) . 

In view of (12) , we can compute 

sup 

(u 1 ,u 2 ) ∈U 

1 

2 

d 1 (x, u 

1 ) + 

1 

2 

d 2 (x, u 

2 ) = 

{
−0 . 5 x + 1 if x ∈ [ 1 , 1 . 5 ] , 
0 . 5 x − 0 . 5 if x ∈ ( 1 . 5 , 2 ] . 
herefore, the robust solution is x ∗ = 1 . 5 . 

When U 0 = U 0 
1 

× U 0 
2 

= { (0 . 5 , 0 . 5) } × { (0 . 5 , 0 . 5) } , we have 

inf 
 ∈ X 

f (x, u 

0 ) = 0 and 

r ∑ 

s =1 

μs sup 

x ∈ X 
sup 

u s ∈U s −u 0 ,s 
d s (x, u 

s ) = 1 . 5 , 

y direct calculation, and then we have 

 ≤ inf 
x ∈ X 

sup 

u ∈W 

λ

f (x, u ) ≤ 1 . 5 λ

rom Corollary 2 . 

Corollary 2 guarantees that enforcing lobbying strategies that

pread consensus leads to a robust optimal value close to the tar-

et of the DM. Moreover, it also provides a suitable location of the

obust optimal value in terms of distance from the desired one. Fi-

ally, applying also Proposition 2 , we have that the robust solution

o problem (10) is an ε-solution of problem (9) . 

roposition 5. Let l k be convex for all k = 1 , . . . , p and l.s.c. Assume

hat the set of solutions to problem (9) is nonempty and compact and

n ↓ 0 . Let x λn 
∈ X be a solution to problem (10) for each W 

λn . Then

here exists a subsequence of x λn 
converging to a solution x̄ of prob-

em (9) . 

. Multiobjective case 

We now consider the multiobjective optimization problem 

in 

x ∈ X 
g(x ) , (MP)

here g : R 

n → R 

m and X ⊆ R 

n is a closed convex set. In vec-

or optimization, the notion of a solution to (MP) is not unique

see e.g. [24] ). A point x 0 ∈ X is said to be an efficient solution to

MP) when 

( Im (g) − g(x 0 )) ∩ (−R 

m 

+ ) = { 0 } , 
here Im( g ) is the range of g or, equivalently, there does not exist

 ∈ X such that g ( x ) ≤ g ( x 0 ) and g ( x ) � = g ( x 0 ), where a ≤ b if a ∈ b −
 

m + whenever a, b ∈ R 

m . 

A point x 0 is said to be a weakly efficient solution to

MP) when 

( Im (g) − g(x 0 )) ∩ (−int R 

m 

+ ) = ∅ 
r, equivalently, there does not exist x ∈ X such that g ( x ) < g ( x 0 ),

here a < b if a ∈ b − int R 

m + . 
Also the set of efficient (respectively, weakly efficient) solutions

f problem (MP) is denoted by Eff(MP) (respectively, WEff(MP)).

e set Min ( MP ) = { g(x ) : x ∈ Eff ( MP ) } and WMin ( MP ) = { g(x ) :

 ∈ WEff ( MP ) } to denote the set of optimal values corresponding

o efficient and weak efficient solutions, respectively. 

We now consider an uncertain multiobjective optimization

roblem: 

in 

x ∈ X 
( f 1 (x, u 1 ) , . . . , f m 

(x, u m 

) ) , (UMP)

here f i : R 

n × R 

p → R , i = 1 , . . . , m, are continuous functions

ith respect to u i , with u i ∈ U i for some convex compact subset

 i ∈ R 

p . 

When m = 1 , problem (UMP) becomes a scalar uncertain min-

mization problem. Recently, Kuroiwa and Lee [15] introduced the

obust counterpart of (UMP) , defined as 

in 

x ∈ X 

(
sup 

u 1 ∈U 1 
f 1 (x, u 1 ) , . . . , sup 

u m ∈U m 
f m 

(x, u m 

) 

)
. (RMP)

 robust efficient solution to (UMP) is defined as a vector x 0 ∈ X

hat is an efficient solution to (RMP) . A robust weakly efficient so-

ution to (UMP) is defined as a weakly efficient solution to (RMP) . 
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Similarly to the previous section, consider convex compact sets

 

0 
i 

⊆ U i ⊆ R 

p , i = 1 , . . . , m, to represent the lowest degree of un-

ertainty achievable on each criterion. Likewise, the sets 

 

λ
i 

:= ( 1 − λ) U 

0 
i 

+ λU i λ ∈ [ 0 , 1 ] 

epresent intermediate degrees of uncertainty on each criterion i =
 , . . . , p. As in the scalar case, we assume max 

u ∈U 0 
i 

f i (·, u ) is lower

ounded on X for all i = 1 , . . . , m, and we set for all i = 1 , . . . , m 

E f i ( x ) := max u ∈U i f i (x, u ) − max u ∈U 0 
i 

f i (x, u ) ;
E f i := sup x ∈ X E f i (x ) ;

and 

E f i := inf x ∈ X E f i (x ) ;
ssuming E f i is finite, see Remark 1 , for all i = 1 , . . . , m . 

The robust multiobjective counterpart associated to W 

λ
i 

is 

in 

x ∈ X 

(
max 

w 1 ∈W 

λ
1 

f 1 (x, w 1 ) , . . . , max 
w m ∈W 

λ
m 

f m 

(x, w m 

) 

)
. RMP λ

e now study the behaviour of the solutions of ( RMP λ). For nota-

ional simplicity, we set: 

(i) f λ(x ) := 

(
max 

w 1 ∈W 

λ
1 

f 1 (x, w 1 ) , . . . , max 
w m ∈W 

λ
m 

f m 

(x, u m 

) 
)

; 

ii) E f := 

(
E f 1 , . . . , E f m 

)
; 

ii) E f := 

(
E f 1 , . . . , E f m 

)
. 

By definition, f 0 ≤ f λ and 0 ≤ E f ≤ E f . 

Remember that A ⊆ R 

m is said to be R 

m + -closed if A + R 

m + is

losed and A is said to be minorized if there exists a ∈ A such

hat a + R 

m + ⊇ A . When Im ( f λ) is R 

m + -closed for λ∈ [0, 1], we can

ee that Min (RMP λ) is nonempty and the domination property for

m ( f λ), that is, 

m ( f λ) ⊆ Min 

(
RMP 

λ
)

+ R 

m 

+ (13) 

olds, since Im ( f λ) is minored by the lower boundedness assump-

ion of max 
u ∈U 0 

i 
f i (·, u ) on X , see for example Lemma 3.5 and The-

rems 3.3 and 4.3 in [24] . The domination property is important in

he theory of decision making. We need the following relation be-

ween sets introduced in [19] . For A, B ⊆ R 

m , we use the notation 

 ≤l B if A + R 

m 

+ ⊇ B, 

r, equivalently, if for every b ∈ B , there exists a ∈ A such that a ≤ b

olds. The relation is reflexive and transitive, but not antisymmet-

ic. By using the notation, the inclusion in the domination property

13) can be written as follows: 

in 

(
RMP 

λ
)

≤l Im ( f λ) . 

e now discuss the locations of the robust efficient or weakly ef-

cient optimal values. 

roposition 6. Assume that Im( f 0 ) is R 

m + -closed. Then the set rela-

ion 

in 

(
RMP 

0 
)

≤l Im ( f λ) 

olds for every λ∈ [0, 1] and, hence, in particular 

Min 

(
RMP 

0 
)

≤l Min ( RMP 

λ) and 

WMin 

(
RMP 

0 
)

≤l WMin ( RMP 

λ) . 

roof. For every x ∈ X , by using the domination property for Im( f 0 ),

here exists ˆ x ∈ X such that f 0 ( ̂  x ) ∈ Min ( RMP 0 ) and f 0 ( ̂  x ) ≤ f 0 (x ) .

rom f 0 ( x ) ≤ f λ( x ), then we have 

f λ(x ) = f 0 ( ̂  x ) + ( f λ(x ) − f 0 (x )) + ( f 0 (x ) − f 0 ( ̂  x )) 

∈ Min ( RMP 

0 ) + R 

m 

+ . 

his shows Min (RMP 0 ) ≤ l Im( f λ). �
roposition 7. Assume that for all i = 1 , . . . , m, f i ( x, u i ) is convex in

oth variables x ∈ X and u i ∈ U i , and Im( f λ), λ∈ [0, 1], is R 

m + -closed.

hen the set relation 

Min 

(
RMP 

λ
)
≤l Im 

(
f 0 

)
+ λE f 

olds and, hence, in particular 

Min 

(
RMP 

λ
)
≤l WMin 

(
RMP 

0 
)

+ λE f . 

roof. By contradiction, if the set relation WMin 

(
RMP λ

)
≤l 

m ( f 0 ) + λE f does not hold, there exists x̄ ∈ X such that f 0 ( ̄x ) +
E f �∈ WMin 

(
RMP λ

)
+ R 

m + . From the convexity of f i ( · , u i ) and the

omination property for Im( f λ), WMin 

(
RMP λ

)
+ R 

m + is closed con-

ex. Indeed, by using the domination property for Im( f λ), 

m ( f λ) ⊆ Min 

(
RMP 

λ
)

+ R 

m 

+ ⊆ WMin 

(
RMP 

λ
)

+ R 

m 

+ ⊆ Im ( f λ) + R 

m
+

his shows WMin 

(
RMP λ

)
+ R 

m + = Im ( f λ) + R 

m + . From the convexity

f f i ( · , u i ), we have that f λ is R 

m + -convex, therefore Im ( f λ) + R 

m + 
s convex. Also from the R 

m + -closedness of Im( f λ), Im ( f λ) + R 

m + is

losed. By using the strong separation theorem, there exist α =
( α1 , . . . , αm 

) ∈ R 

m \ { 0 } and β ∈ R such that 

 α, f 0 ( ̄x ) + λE f 〉 < β ≤ 〈 α, y 〉 
old for every y ∈ WMin 

(
RMP λ

)
+ R 

m + . It is easy to show that

∈ R 

m + . Also by using the domination property for Im f λ, Im f λ ⊆
in 

(
RMP λ

)
+ R 

m + holds. By putting y = f λ( ̄x ) , 

β ≤〈 α, f λ( ̄x ) 〉 
= 

m ∑ 

i =1 

max 
u 0 

i 
∈U 0 

i 
,u i ∈U i 

ᾱi f i ( ̄x , (1 − λ) u 

0 
i + λu i ) 

≤
m ∑ 

i =1 

max 
u 0 

i 
∈U 0 

i 
,u i ∈U i 

ᾱi 

(
(1 − λ) f i ( ̄x , u 

0 
i ) + λ f i ( ̄x , u i ) 

)

= 

m ∑ 

i =1 

ᾱi 

(
max 
u 0 

i 
∈U 0 

i 

f i ( ̄x , u 

0 
i ) + λE f i ( ̄x ) 

)

≤
m ∑ 

i =1 

ᾱi 

(
max 
u 0 

i 
∈U 0 

i 

f i ( ̄x , u 

0 
i ) + λE f i 

)
= 

〈
ᾱ, f 0 ( ̄x ) + λE f 

〉
< β. 

his is a contradiction. Then the set relation WMin 

(
RMP λ

)
≤

m ( f 0 ) + λE f holds. The latter set relation is clear. �

emark 4. The convexity assumption on f i ( · , u i ) in

roposition 7 can be weakened by the R 

m + -convex-likeness of

 

λ or, equivalently, R 

m + -convexity of Im( f λ), that is Im ( f λ) + R 

m + is

 convex set. 

orollary 3. Assume that for all i = 1 , . . . , m, f i ( x, u i ) is convex in

oth variables x ∈ X and u i ∈ U i , and Im( f λ), λ∈ [0, 1], are R 

m + -closed.

hen the set relations 

Min 

(
RMP 

0 
)
≤l WMin 

(
RMP 

λ
)
≤l WMin 

(
RMP 

0 
)

+ λE f (14) 

old. 

Let C be the family of all R 

m + -closed-convex minorized

onempty subsets of R 

m , that is, A ∈ C if and only if A + R 

m + is

 nonempty closed convex set, and there exists a ∈ R 

m such that

 + R 

m + ⊇ A . We define a binary relation ≡ on C by A ≡ B if A +
 

m + = B + R 

m + for any A, B ∈ C. Then ≡ is an equivalence relation

nd we can define the equivalence class [ A ] = { B ∈ C | A ≡ B } and

he quotient set C/≡= { [ A ] | A ∈ C} , for further details see [25] . For
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a bounded base of R 

m + , for example D = { d ∈ R 

m + | ‖ d‖ = 1 } , func-

tion H : (C/≡) 2 → R , defined as 

H(A, B ) := H([ A ] , [ B ]) := sup 

d∈ D 

∣∣∣inf 
a ∈ A 

〈 d, a 〉 − inf 
b∈ B 

〈 d, b〉 
∣∣∣, 

is a metric, see [26] for details. Then, from (14) , we have the fol-

lowing result. 

Corollary 4. Under the assumptions of Corollary 3 , we have 

H( WMin ( RMP 

λ) , WMin 

(
RMP 

0 
)
) ≤ λ‖ E f ‖ . (15)

and 

[ WMin ( RMP 

λ)] → [ WMin 

(
RMP 

0 
)
] as λ ↓ 0 

in the metric H. 

Proof. Put A = WMin 

(
RMP 0 

)
and B = WMin ( RMP λ) . The relations

(14) imply 

inf 
a ∈ A 

〈 d, a 〉 ≤ inf 
b∈ B 

〈 d, b〉 ≤ inf 
a ∈ A 

〈 d, a 〉 + λ‖ E f ‖ 

for all d ∈ D . Hence we have (15) . �

Proposition 8. Assume that for all i = 1 , . . . , m, f i ( x, u i ) is convex in

both variables x ∈ X and concave in u i ∈ U i , and Im( f 0 ) is R 

m + -closed.

Then the set relation 

WMin 

(
RMP 

0 
)
≤l Im 

(
f λ

)
− λE f 

holds and, hence, in particular 

WMin 

(
RMP 

0 
)
≤l WMin 

(
RMP 

λ
)

− λE f . 

Proof. The proof follows along the same lines as the proof of

Proposition 7 , by using the separation theorem for a closed

convex set WMin 

(
RMP 0 

)
+ R 

m + and the domination property for

Im( f 0 ). �

Corollary 5. Assume that f i (x, u i ) = 〈 g i (x ) , u i 〉 + h i (x ) , where g i :

R 

n → R 

p are convex, h i : R 

n → R , i = 1 , . . . , m, and Im( f λ) is R 

m + -
closed. Then the set relations 

WMin 

(
RMP 

0 
)

+ λE f ≤l WMin ( RMP 

λ) ≤l WMin ( RMP 

0 ) + λE f 

(16)

hold. Moreover, if U 0 
i 

= { u 0 
i 
} and U i = B(u 0 

i 
) , i = 1 , . . . , m, then the

following holds: 

WMin 

(
RMP 

0 
)

+ λ
(

inf 
x ∈ X 

‖ g 1 (x ) ‖ , . . . , inf 
x ∈ X 

‖ g m 

(x ) ‖ 

)
≤l WMin ( RMP 

λ) ≤l WMin ( RMP 

0 ) 

+ λ

(
sup 

x ∈ X 
‖ g 1 (x ) ‖ , . . . , sup 

x ∈ X 
‖ g m 

(x ) ‖ 

)
. 

From (16) , we also have the following result. 

Corollary 6. Under the assumptions of Corollary 5 , we have 

λ‖ E f ‖ ≤ H( WMin ( RMP 

λ) , WMin ( RMP 

0 )) ≤ λ‖ E f ‖ . 

Example 2. Fliege and Werner [27] proposed an application to

portfolio selection of robust optimization. They considered a fi-

nancial market with n risky assets defined on a suitable proba-

bility space in a single period setting. We assume their multivari-

ate distribution has parameters μ and � representing the vec-

tor of expected returns and the variance–covariance matrix, re-

spectively. We also assume X � = ∅ is the convex and compact set

of feasible portfolios and that portfolio weights add up to 1 (i.e.

X ⊆
{

x ∈ R 

n : 
∑ n 

i =1 x i = 1 
}

). 
The efficient frontier in portfolio optimization is obtained as the

et of solutions of the following problem: 

in 

x ∈ X 
( f 1 ( x ) , f 2 ( x ) ) , (17)

here 

f 1 ( x ) = x T �x, 

f 2 ( x ) = −〈 μ, x 〉 . 
owever, the nominal values of μ and � are not known before

he optimal portfolio is selected, although their realization will af-

ect the payoff. The DM, therefore, faces an uncertainty problem

hat we can model by assuming U 1 ⊆ R 

n and U 2 ∈ R 

n 2 are the un-

ertainty sets of μ ∈ R 

n and � ∈ R 

n 2 , respectively, where we rep-

esent the matrix � as a vector � with n 2 components. 

Following the approach in [27] , the multiobjective robust coun-

erpart is 

in 

x ∈ X 

(
max 
�∈U 2 

f 1 ( x ) , max 
μ∈U 1 

f 2 ( x ) 

)
(18)

Assuming 
(
μ0 , �0 

)
∈ U 2 × U 2 is a nominal instance (e.g. the one

hat will be realized or the one can be expected under some arbi-

rary distribution assumption), Fliege and Werner [27] defined the

oss of efficiency due to uncertainty, i.e. choosing the robust solu-

ion by Crespi et al. (18) . 

Through results proved in Section 4 , we can provide an esti-

ation of the loss of efficiency under weak efficiency. Indeed, both

 1 and f 2 satisfy the assumptions in Propositions 7 and 8 and the

ubsequent corollaries. For the sake of simplicity, we assume n = 2

nd 

= 

(
σ 2 

1 , σ
2 
2 , σ1 , 2 , σ1 , 2 

)
∈ R 

4 , 

= ( μ1 , μ2 ) ∈ R 

2 , 

hile uncertainty sets are 

 

λ
1 = ( 1 − λ) μ0 + λU 1 , 

 

λ
2 = ( 1 − λ) �0 + λU 2 , 

here U 1 = B 

(
μ0 

)
⊆ R 

2 and U 2 = B 

(
�0 

)
⊆ R 

4 are neighbourhoods

f the nominal instances. Feasible portfolios are defined in X :=
( x 1 , x 2 ) ∈ R 

2 : x 1 ≥ 0 , x 2 ≥ 0 , x 1 + x 2 = 1 
}
, i.e. no short sales are

llowed. By direct calculations we obtain 

E f 1 ( x 1 , x 2 ) = x 2 1 + x 2 2 = ‖ ( x 1 , x 2 ) ‖ 

2 

and 

E f 2 ( x 1 , x 2 ) = ‖ ( x 1 , x 2 ) ‖ 

. 

Therefore, we have E f 1 = E f 2 = 1 and E f 1 = 

1 
2 , E f 2 = 

√ 

2 
2 . Hence,

ombining Propositions 7 and 8 , we obtain 

WMin ( RMP 

0 ) + λ

[
1 
2 √ 

2 
2 

]
≤l WMin ( RMP 

λ) ≤l WMin ( RMP 

0 ) 

+ λ

[
1 

1 

]
, 

hile Corollary 6 gives 
√ 

3 

2 

λ ≤ H( WMin ( RMP 

λ) , WMin ( RMP 

0 )) ≤
√ 

2 λ. 

oncluding remarks 

In this paper we investigate the stability of robust solutions to

hanges in the uncertainty set. Scalar results are proved and then

xtended to multiobjective optimization. In both settings, under

ild assumptions we manage to define upper and lower bounds

or the robust optimal values. We identify possible areas of appli-

ations of the obtained results to decision making and to portfolio

election by linking our results to the models developed in [21,27] .
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urther investigations will address the generalization of the ob-

ained results and other possible areas of application. 

Among lines of future research, a possible topic is the case

hen the level of uncertainty differs on each component of the

bjective function. However a first rough approach to this instance

an be obtained by setting in the framework of this paper, λ to

e the maximum of all possible λi (assuming a different uncer-

ainty on each component). Therefore the upper and lower bounds

roved in this paper provide also a first approximation of bounds

n the more general setting. 
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