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a b s t r a c t 

In this paper, we introduce a new ranking system where the data are preferences resulting from paired 

comparisons. When direct preferences are missing or unclear, then preferences are determined through 

indirect comparisons. Given that a ranking of n subjects implies ( n 2 ) paired preferences, the resultant 

computational problem is the determination of an optimal ranking where the agreement between the 

implied preferences via the ranking and the data preferences is maximized. Comparisons are carried out 

via simulation studies where the proposed rankings outperform Bradley–Terry in a particular predictive 

comparison. 
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. Introduction 

The problem of ranking can be simply stated and has an ex-

ensive literature in the statistical sciences. Given data on n sub-

ects, the objective is to determine a permutation (ranking) R =
(i 1 , . . . , i n ) where the interpretation is that subject i j is preferable

o subject i k whenever i j < i k . The term “preferable” depends on the

pplication and the methods used to determine the ranking de-

end on aspects of the data structure. 

In sport, ranking is an important problem. For example, in Na-

ional Collegiate Athletic Association (NCAA) basketball, there are

ver 300 teams competing in Division I where a typical team plays

nly a subset ( ∼ 25) of the other teams during a season. At the end

f the season, the NCAA Selection Committee is set with the task

f creating a tournament structure known as “March Madness” in-

olving 68 of these teams. In determining the invitees, team rank-

ngs (in terms of team quality) form part of the decision making

rocess. 
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Similarly, in NCAA football, various team rankings are regu-

arly reported during the regular season (e.g. Associated Press, FCS

oaches’ Poll, Sagarin, etc.). Although such rankings are no longer

sed for determining Bowl bids (i.e. identifying pairs of teams that

ompete in prestigious holiday matches), the rankings receive con-

iderable media attention and are available to the selection com-

ittee. Part of the intrigue involving the determination of the

ankings is that there are not many crossover matches involving

eams from different conferences. 

Ranking also occurs in non-sporting contexts. For example,

niversities rank students, employers rank job candidates, there

re rankings corresponding to the quality of journals, and so on.

learly, the type of data used to inform the rankings varies greatly

n the application. 

In this paper, we focus on the ranking problem associated with

CAA basketball. More specifically, we consider the ranking of n

ivision I teams ( n = 351 in 2015/2016). The data used to inform

ur ranking are the result of paired comparisons. Sometimes a

omparison is explicit (e.g. based on the result of one team play-

ng another team). In other instances, the comparison between

wo teams is determined by considering the results of matches in-

olving common opponents. Our approach searches for an optimal

anking R = (i 1 , . . . , i n ) which has maximal agreement between the

( n 
2 
) implied paired preferences via the ranking and the observed

ata preferences. The approach is appealing in its simplicity and

ts lack of assumptions. It may be regarded as nonparametric in the

ense that there is no underlying probability model. However, the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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approach provides computational challenges. For example, a simple

search amongst rankings is not possible since there are n ! ≈ 10 742 

potential rankings. 

Ranking methods based on paired comparison data originate

from the work of Thurstone [26] and Bradley and Terry [4] . The ap-

proach suggested by Park and Newman [19] is most closely related

to our approach in the sense that it is also nonparametric and ex-

tends comparisons to indirect matchups between teams. Park and

Newman [19] rank teams according to team wins w minus team

losses l in both direct and discounted indirect matches. The statis-

tics w and l correspond to a matrix-based network centrality mea-

sure involving adjacency matrices. 

From the seminal work by Thurstone [26] and Bradley and Terry

[4] , the statistical literature on methods for paired comparison data

has flourished. For example, many extensions to the original mod-

els have been considered such as the provision for ties in paired

comparisons [9] , multiple comparisons [20] , Bayesian implementa-

tions [6,8,17] and dynamic ranking models [12,13] which have been

used in chess. The treatment of the margin of victory in paired

comparison settings has also led to various models and methods.

For example, Harville [14] , Harville [15] considers linear models

where truncations are imposed on large margins of victory. A cen-

tral idea is that teams should not have an incentive for running up

the score. Mease [18] considers a model based on normal likeli-

hoods and penalty terms that attempts to correspond to human

judgments. A general review of the literature related to paired

comparison methods is given by Cattelan [7] . Rotou et al. [22] re-

view methods that are primarily concerned with dynamic rankings

where data are frequently generated such as in the gaming indus-

try. 

In Section 2 , we describe our approach which is intuitive and

simple to describe. However, the method gives rise to challenging

computational hurdles for which we propose a stochastic search

algorithm. For example, we demonstrate how time savings can

be achieved in the calculation of our metric which measures the

agreement between the implied ranking preferences and the data

preferences. The algorithm implements a simulated annealing pro-

cedure which optimizes over the n ! candidate rankings. Section 3

assesses the proposed ranking procedure by forecasting matches

based on established ranks. We first investigate our procedure in

the context of real data from previous NCAA basketball seasons.

We compare our rankings with rankings obtained by other popu-

lar procedures. Our second example is based on simulated NCAA

basketball data where the underlying strengths of the teams are

specified. This allows us to compare forecasts against the truth.

The final forecasting example is based on data from the 2016/2017

English Premier League season. This is a substantially different

dataset in that we have a much smaller number of teams ( n = 20 ).

In Section 4 , we consider various nuances related to our approach.

In particular, we compare our procedure to the Bradley–Terry ap-

proach where we observe the proposed method places more im-

portance on individual matchups than Bradley-Terry. We conclude

with a short discussion in Section 5 . 

2. Approach 

Our approach is based on data arising from paired comparisons.

In basketball, this represents a data reduction since each team

scores a specific number of points in a game. However, sometimes

the actual number of points scored can be misleading. For exam-

ple, in “blowouts”, teams often “empty their benches” near the end

of a game, meaning that regular players are replaced by players

who do not typically play in competitive matches. In such cases,

margins of victory may not be representative of true quality. Inter-

estingly, a requirement of the computer rankings used in the for-

mer BCS (Bowl Championship Series) for NCAA football was that
he computer rankings should not take into account margin of vic-

ory [10] . 

With respect to paired comparison data, it is straightforward to

etermine the preference when one team plays another team in

 single game. We let h denote the number of points correspond-

ng to the home court advantage in NCAA basketball. If the home

eam defeats the road team by more than h points, then the home

eam is the preferred team in the paired comparison. Otherwise,

he road team is the preferred team. 

Our ranking procedure requires the specification of the home

eam advantage h . And since our approach does not contain a sta-

istical model, the estimation of h must be done outside of the pro-

edure. In NCAA basketball, Bessire [3] provided an average home

eam advantage of h = 3 . 7 points. The value h = 3 . 7 roughly agrees

ith Gandar et al. [11] who estimated a home court advantage

f 4.0 points in the National Basketball Association (NBA). Since

n NBA game is 48 min in duration and a college game is only

0 min in duration, the mapping from h = 4 . 0 in the NBA to col-

ege is 4 . 0(40 / 48) = 3 . 3 . In an independent calculation, we stud-

ed pairs of NCAA basketball teams during the 20 06/20 07 through

015/2016 seasons. Suppose team A played at home and defeated

eam B by h A points ( h A is negative for a loss). And similarly,

uppose team B then played at home and defeated team A by

 B points ( h B is negative for a loss). In this matchup, home ad-

antage is estimated by (h A + h B ) / 2 , and h is obtained by av-

raging these terms over all matchups. In the 26,206 matchups

here pairs of teams played more than once with both home and

way matches, we estimated the home court advantage as h = 3 . 4

oints. Therefore, although there is a range of estimates for the

ome team advantage h in NCAA basketball, it appears safe to as-

ume that h ∈ (3.0, 4.0). The reason why this is important is that

he determination of binary preferences in paired comparisons (the

tatistic used in our ranking procedure) is insensitive to h ∈ (3.0,

.0). Therefore, we arbitrarily set the home team advantage at

 = 3 . 5 points. When a game is played at a neutral site, then h = 0 .

hereas there is frequent discussion of differential home team ad-

antages for individual teams (as opposed to an overall home court

dvantage h for all teams), we are inclined to believe that differen-

ial advantages are primarily the manifestation of multiple compar-

son issues [24] and unbalanced schedules. 

More generally, suppose that two teams have played each other

ore than once. Let p A i and p B i be the points scored by Team A

nd Team B respectively in the i th game. Then from Team A’s per-

pective, define the differential 

 i = 

{ 

p A i − p B i − h if Team A is the home team 

p A i − p B i + h if Team B is the home team (1)

n this case, Team A is the preferred team in the particular paired

omparison if the average of its d i values is positive. 

When two teams have played each other directly, then we use

1) to determine the preference, and we refer to this as a level L 1 
reference. With n = 351 NCAA basketball teams, there are ( n 

2 
) =

1 , 425 potential paired comparisons. Based on the 5948 matches

hat took place in 2015/2016, 3918 level L 1 preferences were ob-

erved. The level L 1 preferences represent only 6.38% of the poten-

ial ( n 
2 
) paired comparisons. 

We now consider cases where Team A and Team B have not

irectly played against each other. Our approach for determining

references in these situations borrows on ideas from the RPI (Rat-

ngs Performance Index) where strength of schedule is considered;

ee [2] for a definition of RPI. Specifically, suppose that Team A

nd Team B have a common opponent Team C. Then (1) can be

sed to obtain an average differential d̄ AC from the point of view of

eam A versus Team C. Similarly, (1) can be used to obtain an aver-

ge differential d̄ from the point of view of Team B versus Team
BC 
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. If d̄ AC > d̄ BC , then Team A is the preferred team in the paired

omparison of Team A versus Team B. Now, suppose that Team A

nd Team B have multiple common opponents C i . In this case, if
 

i d̄ AC i 
> 

∑ 

i d̄ BC i 
, then Team A is preferred to Team B. When two

eams do not play one another directly but have common oppo-

ents, then we refer to the resulting preference as a level L 2 pref-

rence. In the 2015/2016 dataset, L 2 preferences represent 54.95%

f the potential ( n 
2 
) paired comparisons. 

We extend the preference definition so that the data can be

sed to further determine preferences. Suppose now that Team A

nd Team B do not play each other directly and that they have no

ommon opponents. However, imagine that Team A has an oppo-

ent and that Team B has an opponent who have a common op-

onent. For example, suppose Team A plays Team C, Team B plays

eam D, Team C plays Team E and that Team D plays Team E. With-

ut going into the notational details and using a similar approach

s previously described, a differential d̄ AE can be determined via

he AC and CE matchups. Similarly, a differential d̄ BE can be deter-

ined via the BD and DE matchups. Then d̄ AE can be compared

ith d̄ BE to determine the data preference between Team A and

eam B. We refer to preferences of this type as level L 3 preferences.

n the 2015/2016 dataset, L 3 preferences represent 38.67% of the

otential ( n 
2 
) paired comparisons. We therefore see that 6.38% +

4.95% + 38.67 = 100% of the potential ( n 
2 
) paired comparisons are

ither of levels L 1 , L 2 or L 3 . Referring to the popular 1993 movie

Six Degrees of Separation” starring Will Smith, we observe three

rather than six) degrees of separation in the 2015/2016 NCAA bas-

etball season. 

We now make a small adjustment in the definition of prefer-

nces. Occasionally, there are “ties” in the preferences. For exam-

le, in the 2015/2016 NCAA basketball season, there were 18 cases

ut of the 3,918 level L 1 preferences where a tie occurred. This

as the result of two teams playing each other twice, one game

n each team’s home court. In both games, the home team won by

he same margin leading to d̄ = 0 . There are various ways of break-

ng the tie to determine the preference. For example, you might set

he preference according to the most recent match. Our approach

hich we use throughout the remainder of the paper is to set the

reference for both teams equal to 0.5. 

Having defined level L 1 , L 2 and L 3 preferences using the NCAA

asketball data, we note that the data preferences are not nec-

ssarily transitive. For example, it is possible that Team A is pre-

erred to Team B, Team B is preferred to Team C, and yet Team C

s preferred to Team A. If transitivity were present, then the rank-

ng of teams would be trivial. In the absence of transitivity, what

s a good ranking? Recall that a ranking R = (i 1 , . . . , i n ) has an im-

licit set of preferences whereby Team i j is preferred to Team i k 
henever i j < i k . We let L C 

i 
denote the number of times that the

mplied preferences based in the ranking R agree with the level L i 
ata preferences. In this sense, L C 

i 
is the number of “correct” pref-

rences in R compared to the level L i preferences determined by

he data. We then define 

(R ) = L C 1 + L C 2 + L C 3 (2) 

s the number of correct preferences. An optimal ranking R ∗ is one

hich maximizes C ( R ) in (2) over the space of the n ! permutations.

lthough we considered assigning varying weights to the terms in

2), we were unable to determine weights having a theoretical jus-

ification. 

.1. Computation 

The first computational problem involves the calculation of the

orrect number of preferences C ( R ) for a given ranking R . A naive

pproach in calculating C ( R ) involves going through all of the L 1 , L 2 
nd L preferences and counting the number that agree with the
3 
mplied preferences given by R . On an ordinary laptop computer,

uch a calculation requires over one hour of computation for a sin-

le ranking R in the NCAA basketball dataset. Since our optimiza-

ion problem involves searching over the space of permutations R ,

 more efficient way of calculating C ( R ) is required. 

To calculate C ( R ) for a given ranking R , we pre-process the

ata by creating three matrices corresponding to preferences at

evels L 1 , L 2 and L 3 . In the n × n matrix D 

(k ) = ( ̄d (k ) 
i j 

) , k = 1,2,3,

e have the average differential d̄ (k ) 
i j 

from the point of view

f Team i versus Team j based on a level L k paired compari-

on. Once these three matrices are constructed, it is easy to cal-

ulate C(R ) = C((i 1 , . . . , i n )) in (2) via L C 
k 

= 

∑ n −1 
j=1 

∑ n 
l= j+1 (I( ̄d (k ) 

i j i l 
>

) + 0 . 5 ∗ I( ̄d (k ) 
i j i l 

= 0)) where I is the indicator function and the

econd term takes ties into account. With the pre-processing, the

alculation of C ( R ) for a new R now takes roughly one second of

omputation. 

Recall that there are n ! ≈ 10 742 rankings R in the NCAA dataset,

nd therefore calculation of C ( R ) for all rankings is impossible. To

aximize C ( R ) with respect to R over the space of the n ! rank-

ngs, we implemented a version of the simulated annealing algo-

ithm [16] . Simulated annealing is a stochastic search algorithm

hat explores the vast combinatorial space, spending more time

n regions corresponding to promising rankings. In this problem,

e begin with an initial ranking R 0 . In the i th step of the al-

orithm, a candidate ranking R new 

is generated in a neighbour-

ood of the ranking R i −1 from step i − 1 . If C(R new 

) > C(R i −1 ) , then

he ranking R i = R new 

is accepted as the current state. In the case

here C(R new 

) ≤ C(R i −1 ) , then R i = R new 

if a randomly generated

niform(0,1) variate u < exp { (C(R new 

) − C(R i −1 )) /t i } where t i > 0 is

 parameter often referred to as the temperature. Otherwise the

urrent ranking R i = R i −1 is set at the previous ranking. The al-

orithm iterates according to a sequence of non-increasing tem-

eratures t i → 0. The states (rankings) R 0 , R 1 , . . . form a Markov

hain. The algorithm terminates after a fixed number of iterations

r when state changes occur infrequently. Under a ‘suitable’ neigh-

ourhood structure, asymptotic results suggest that the final state

ill be nearly optimal. 

Success of the simulated annealing algorithm depends greatly

n fine tuning of the algorithm. In particular, the user must specify

he cooling schedule (i.e. the temperatures t i ) and also the neigh-

ourhood structure for generating successive states from a given

tate. Aarts and Korst [1] discuss fine tuning of the algorithm. 

Our implementation of simulated annealing begins with the

ecognition that our problem shares similarities with the well-

tudied travelling salesman problem. For example, like our prob-

em, the state space in the travelling salesman problem consists of

ermutations, permutations of cities that are visited by the sales-

an. Also, in the same way that an interchange in the order of

wo adjacent cities in a permutation should not greatly affect the

otal travelling distance for the salesman, an interchange in the or-

er of two adjacent teams in a permutation (ranking) should not

reatly affect the expected number of correct preferences C ( R ). Ac-

ordingly, our implementation of simulated annealing uses an ex-

onential cooling schedule in early stages defined by a sequence of

emperature plateaux; this approach has been successively used in

he travelling salesman problem [1] . 

After extensive experimentation, we have tuned our algo-

ithm and we propose an optimization schedule that is suited

o the NCAA basketball seasons under consideration. Specifically,

e consider m = 1 , . . . , 10 blocks (procedures) where the first

ight blocks correspond to simulated annealing. In simulated an-

ealing, the Markov chain consists of B m 

iterations in the m th

lock with temperature t m 

. The temperatures decrease exponen-

ially from one block to the next according to t m 

= 20(0 . 82) m −1 
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Table 1 

Schedule for the optimization algorithm. For the m th block in the Permutation procedure we 

provide the block size B m and the number of consecutive teams k m in the permutation. For the 

non-greedy procedures, we also provide the temperature t m . 

m Procedure B m k m t m m Procedure B m k m t m 

1 Permutation 20 0 0 65 20.00 6 NGShuffle 250 0 0 3.00 

2 Permutation 30 0 0 60 16.40 7 NGShuffle 250 0 0 2.00 

3 Permutation 40 0 0 55 13.45 8 NGShuffle 250 0 0 1.00 

4 Permutation 50 0 0 45 11.03 9 GShuffle 750 0 0 

5 Permutation 60 0 0 40 9.04 10 Housekeeping 
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Fig. 1. A plot of the number of correct preferences C ( R i ) versus the iteration num- 

ber i in the optimization algorithm. 
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where m = 1 , . . . , 5 . Therefore, it is more difficult to accept down-

ward moves (i.e. when C(R new 

) < C(R i −1 )) in the final blocks. In

the first m = 5 blocks of simulated annealing, we refer to genera-

tion of candidate rankings as the “Permutation” procedure. Specif-

ically, within the m th block, consider the previous state R i −1 =
(i 1 , . . . , i n ) and generate a discrete uniform variable l on (1 , . . . , n −
k m 

+ 1) where the parameter k m 

is user-specified. We then ran-

domly permute (i l , i l+1 , . . . , i l+ k m −1 ) yielding ( j l , j l+1 , . . . , j l+ k m −1 ) .

The candidate state in the algorithm is then given by R new 

=
(i 1 , . . . , i l−1 , j l , . . . , j l+ k m −1 , i l+ k m , . . . , i n ) . In the application, k m 

is

the number of consecutive teams in the previous ranking that

are permuted. Once permuted, a candidate ranking is obtained. In

keeping with the heuristic that state changes should be “smaller”

as simulated annealing proceeds, we propose a schedule where the

tuning parameter k m 

decreases as m increases. 

When the first five blocks of the algorithm have completed,

we carry out a procedure referred to as “Shuffle” in blocks m =
6 , 7 , 8 , 9 . The idea behind Shuffle is that whereas the Permuta-

tion procedure can lead to candidate rankings that differ consid-

erably from the current ranking, Shuffle produces new rankings

where only one “misplaced” team shuffles from its current posi-

tion. Specifically, given the previous ranking R i −1 , Shuffle proceeds

by generating a discrete uniform random variable l on (1 , . . . , n ) .

Then another discrete uniform random variable j is generated on

( max (1 , l − 50) , . . . , min (l + 50 , n )) . Shuffle updates from R i −1 to

R new 

if R new 

is accepted and where R new 

has the same ordering as

R i −1 except that the team ranked l is moved to position j . There-

fore, teams as far apart as 100 places could potential switch places;

we did not want to switch teams further apart as such switches are

unlikely to yield an improved ranking. In blocks m = 6 , 7 , 8 , Shuf-

fle is more accurately described as Non-Greedy Shuffle (NGShuffle)

where temperatures t 6 , t 7 , t 8 are specified as part of the simulated

annealing procedure. In block m = 9 , the Shuffle procedure is mod-

ified as Greedy Shuffle (GShuffle). A greedy procedure is one where

only non-negative moves towards the maximum are allowed (i.e.

(R i ) ≥ C(R i −1 ) ). The motivation is that when the algorithm nears

termination, we only want to be moving in directions which pro-

vide improvements. 

Finally, in block m = 10 of the algorithm, we carry out another

greedy procedure which we refer to as “Housekeeping”. House-

keeping investigates the effect of even smaller changes to the rank-

ing R following the GShuffle procedure (i.e. block m = 9) . Specif-

ically, we take R = (i 1 , i 2 , . . . , i n ) and we sweep through the so-

lution by inspecting quintuples (i j , i j+1 , i j+2 , i j+3 , i j+4 ) beginning

with j = 1 and ending with j = n − 4 . For each quintuple, we cal-

culate C ( R ) for the 120 permutations of the quintuple to see if any

of the potential rankings lead to an improved solution. Whenever

an improved permutation is detected, the ranking is updated ac-

cordingly. 

Table 1 summarizes the schedule for the optimization algo-

rithm. In the NCAA basketball example, one run of the optimiza-

tion procedure takes approximately 36 h of computation. This is

not onerous for a task that might be expected to be carried out

once per week. 

v  
Fig. 1 provides a plot of the optimization algorithm correspond-

ng to the preferences obtained in the 2015/2016 NCAA basketball

eason. We see that the algorithm moves quickly towards an op-

imal ranking and then slowly improves. The algorithm was ini-

iated from a promising ranking R 0 (the 2015/2016 season end-

ng RPI rankings). However, the algorithm works equally well using

ess promising initial states. 

The simulated annealing algorithm provides guarantees of con-

ergence to a global maximum. However, in practical computing

imes, it may be the case that our proposed algorithm gets stuck

n a local mode and only gets “close” to a maximum. It is a general

rawback of stochastic search algorithms that there is no definitive

ule for terminating algorithms. Generally, when changes stop tak-

ng place, this is a signal to stop. In our work, we have been mind-

ul of this, and have added an extra layer of insurance by carrying

ut multiple runs of the algorithm. We choose to run the algorithm

 = 20 times which does not take any extra time because we are

ble to submit our job to a cluster colony of processors. We then

hoose the ranking R ∗ which corresponds to the maximum value

f C ( R ) from the M runs. 

The multiple runs also provide us with some confidence that

ur resultant ranking R ∗ yields C ∗ = C(R ∗) which is close to the

lobal maximum. From the M = 20 runs, we have observed that

he resultant maxima C 1 , . . . , C M 

are roughly symmetric. To gain

ome insight, we therefore make the assumption that the maxima

re approximately normally distributed with mean C̄ and standard

eviation given by the sample standard deviation s C . In extreme

alue theory, the probability density function of C ∗, the M th order
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Fig. 2. A plot of the density function (3) of the largest order statistic C ∗ based on 

the optimal C ( R ) values C 1 , . . . , C M from the M = 20 runs of the optimization algo- 

rithm using the 2015/2016 NCAA basketball dataset. 
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tatistic of C 1 , . . . , C M 

is therefore approximately 

f (C ∗) = M 

1 

s C 
φ

(
C ∗ − C̄ 

s C 

)
�

(
C ∗ − C̄ 

s C 

)M−1 

(3) 

here φ and � are the density function and the distribution func-

ion of the standard normal distribution, respectively. In Fig. 2 , we

lot the density function of C ∗ given by (3) based on the observed

axima C 1 , . . . , C M 

from the M = 20 runs. Based on the observed

alue C ∗ = 53388 . 5 , the plot suggests that we can be confident that

e are close to the global maximum. In particular, it looks unlikely

hat C ∗ = 53388 . 5 could be off from the global maximum by much

ore than 6.0. 

. Forecasting 

.1. NCAA basketball data 

We now compare our proposed ranking procedure with four

idely reported ranking systems used in NCAA basketball (Bihl,

assey, Pomeroy and RPI). 

We consider rankings that have been published over five

easons (2011/2012 through 2015/2016) where we note that

he Pomeroy rankings were unavailable in the 2012/2013 and

013/2014 seasons. For each season, we consider 7 time points

 1 , . . . , t 7 where rankings are reported. The time periods roughly

orrespond to mid December, early January, mid January, early

ebruary, mid February, early March and mid March. For each rank-

ng system and for each time period (t i , t i +1 ) , our evaluation con-

iders matches played in the time period and the ranking based at

ime t i . Except for the last time period coinciding with March Mad-

ess, there are approximately 500 matches played in each time

eriod per year. In a given match, the outcome is categorized as

orrect if the home team wins by more than h = 3 . 4 points and

he home team has the higher ranking. The match outcome is also

ategorized as correct if the road team wins or loses by less than

 = 3 . 4 points and the road team has the higher ranking. On a neu-

ral court, the match outcome is considered correct if the higher

anked team wins. 

Over all the predictions made during the five year period, we

alculated the percentage of correct predictions by each of the
anking systems. In order of the highest percentages, we observed

omeroy (69.6%), Massey (69.4%), our proposed method (69.2%),

ihl (68.7%) and RPI (67.8%). Although the percentages are reason-

bly close, the five methods exhibited fairly consistent orderings

n a yearly basis. It is interesting that the RPI approach exhibited

he lowest percentage, yet RPI is used by the NCAA Selection Com-

ittee in their March Madness deliberations. 

Table 2 provides the top five ranked teams using the five rank-

ng methods at the end of the 2015/2016 NCAA basketball sea-

on. We observe a lot of agreement in the sets of rankings. How-

ver, our proposed approach is interesting in that it provides a no-

able difference from the other rankings. In particular, Kansas is

xcluded from the top five whereas Xavier is included. This per-

pective is interesting as Kansas had a good season (33 wins ver-

us 5 losses). However, their five losses came against strong teams

Michigan St, West Virginia, Oklahoma State, Iowa State and Vil-

anova), all top 20 AP (Associated Press) teams except for Okla-

oma State. This highlights the importance of the head-to-head

atchups which is discussed in Section 4.1 . We note that our rank-

ng had Kansas in the seventh position. On the other hand, Xavier

not a traditional powerhouse school) had a strong 28-6 record and

ay have been overlooked by some of the other ranking methods. 

.2. Simulated NCAA basketball data 

Although the previous example using actual NCAA basketball

ata was instructive, it did not allow us to make comparisons with

he “truth” since the correct rankings based on team strengths in

ctual seasons are always unknown. In this example, we consider

imulated data sets where we can initially set team strengths so

hat the true rankings are known to us. 

Therefore, in the context of NCAA basketball, we consider n =
51 teams where the team rankings are set according to alphabet-

cal order. For example, Team 1 is the best team and its schedule

s determined by the 2015/2016 schedule for Abilene Christian (al-

habetically first). Team 351 is the weakest team and its schedule

s determined by the 2015/2016 schedule for Youngstown State (al-

habetically last). For a match between Team i and Team j on a

eutral court, the observed point differential in favour of Team i is

odeled according to the Normal (μi − μ j , σ
2 ) distribution where

he normal distribution is a common assumption for NCAA basket-

all [23] , and we set σ = 9 . 3 which is consistent with [25] . If the

ormal variate is greater (less) than zero, then Team i is the win-

ing (losing) team. For home and road matches, winners and losers

re determined by using the same procedure as if the match was

layed on a neutral court. 

We consider two team strength scenarios. In the first case, we

et team strengths according to μi = 35 . 1 − (0 . 1) i such that Team

 has strength 35.0 and Team 351 has strength 0.0. This implies, for

xample, that the strongest team is expected to defeat the weak-

st team by 35 points on a neutral court. In the second case, we

et team strengths according to μi = 52 . 65 − (0 . 15) i which implies

hat the strongest team is expected to defeat the weakest team by

2.5 points on a neutral court. 

Our comparison via simulation proceeds by generating M = 10

easons of matches according to the above description where h =
 . 5 is set as the home team advantage. In the j th season, we take

he resultant ranking R j = ( j 1 , . . . , j n ) and compare it to the true

anking R true = (1 , . . . , n ) . We do this using two comparison met-

ics, C (1) 
j 

= 

1 
n 

∑ n 
i =1 | j i − i | and C (2) 

j 
= 

√ 

1 
n 

∑ n 
i =1 ( j i − i ) 2 . We repeat

he procedure over the M = 10 seasons to obtain the overall com-

arison metrics C (1) = 

1 
M 

∑ M 

j=1 C 
(1) 
j 

and C (2) = 

1 
M 

∑ M 

j=1 C 
(2) 
j 

. 

Our simulation involves a comparison of our proposed ranking

ethod with the Bradley–Terry approach which is considered the

enchmark procedure for paired comparison data. Bradley–Terry
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Table 2 

Final rankings of the top five teams at the end of the 2015/2016 season. 

Method First Second Third Fourth Fifth 

Pomeroy Villanova N Carolina Virginia Kansas Michigan St 

Massey Villanova Kansas N Carolina Virginia Oklahoma 

Proposed Villanova Michigan St N Carolina Xavier Virginia 

Bihl Kansas Villanova N Carolina Oklahoma Virginia 

RPI Kansas Villanova Virginia Oregon N Carolina 

Table 3 

Comparison metrics with standard errors in parentheses for two rank- 

ing systems (Proposed versus Bradley–Terry) studied under two simulation 

cases. 

Proposed Bradley–Terry 

Ranking Procedure Procedure 

Case 1: μi = 35 . 1 − (0 . 1) i C (1) = 12 . 7 (0.39) C (1) = 13 . 2 (0.85) 

C (2) = 15 . 4 (0.44) C (2) = 16 . 9 (0.99) 

Case 2: μi = 52 . 65 − (0 . 15) i C (1) = 09 . 1 (0.25) C (1) = 11 . 7 (0.44) 

C (2) = 11 . 0 (0.34) C (2) = 15 . 0 (0.47) 
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estimation procedure fails when there is more than one winless

team. For this reason, we assign 0.5 wins in those rare cases where

there are winless teams. We note that Bayesian implementations of

Bradley–Terry as mentioned in the Introduction do not suffer from

this drawback. We are unable to make comparisons with some of

the systems that are frequently reported in NCAA basketball (e.g.

Sagarin, Pomeroy, Massey or RPI) since the systems are proprietary

and the code is unavailable. 

Table 3 reports the results of the simulation procedure. The

metrics are interesting as they may be interpreted as the aver-

age deviation between a team’s ranking and its true ranking. We

observe that both ranking procedures are improved in the second

simulation case. This makes sense as there is more variability be-

tween teams in Case 2 than in Case 1, and it is therefore more

likely for a ranking method to differentiate between teams. Note

that any two teams will have a greater mean difference | μi − μ j |
(actual difference in strength) in Case 2 than in Case 1. Further,

we observe that in both simulation cases and using both metrics

that the proposed ranking procedure gives better rankings than

Bradley-Terry. The reported standard errors suggest that the im-

provements are statistically significant in the second simulation

case. We believe that Case 2 is more realistic than Case 1 in de-

scribing a wider range in quality between NCAA teams. 

It would be interesting to repeat the simulation where team

strengths were not linear but followed a Gaussian specification. For

example, one could generate μi from a Normal(0, 36) distribution

and then sort the μi such that μ1 is the largest and μ351 is the

smallest. This may be a more realistic description of a population

of team strengths. 

3.3. English premier League data 

Whereas NCAA basketball consisted of n = 351 teams in

2015/2016, the English Premier League (EPL) is a much smaller

league with n = 20 teams. Therefore, the EPL provides a different

type of challenge for our ranking procedure. 

In the EPL, each team plays both a home and a road game

against every other team for a total of 38 matches in a season. We

begin by setting two dates during the 2016/2017 EPL season where

ranks based on our procedure are determined. These dates roughly

correspond to weeks 19 and 27 of the season. We chose not to

extend the dates to the latter part of the season as unusual play-

ing behaviours sometimes occur. For example, in the latter portion

of the 2016/2017 season, Manchester United was more focused on

their Europa Cup matches than in their EPL matches. It was be-
ieved that they had a greater chance for Champions League qual-

fication from the Europa Cup route. Based on these dates, each

eam had played every other team at least once, and therefore

eam comparisons were based entirely on level L 1 preferences. The

ata matrix D 

(1) was constructed for each of the two dates where

he home field advantage was set at h = 0 . 5 [21] . Recall that the

alculation of paired comparison preferences is insensitive to the

hoice of h in the wide interval h ∈ (0, 1). 

We note that the full strength of the optimization algorithm de-

cribed in Table 1 was not required since we have fewer teams.

e instead initiated the procedure beginning in block m = 6 . We

lso modified the Shuffle procedure where we now generate in-

ependent uniform variates l and j on (1 , . . . , 20) . Under modified

huffle, the candidate ranking R new 

has the same ordering as R i −1 

xcept that team l is inserted into position j . The modified Shuf-

e procedure allows all possible pairs of teams to switch places.

n this case, the optimization procedure was carried out in roughly

5 s of computing for each of the two time periods. 

An advantage of working with a smaller league is the increased

onfidence that optimal rankings are obtained. Multiple runs of

he algorithm based on different initial rankings typically gave the

ame value of C ( R ). However, we did discover that the rankings

ere not unique. We found three optimal rankings at the first date

nd two optimal rankings at the second date. 

Table 4 provides both the EPL table (standings) and the opti-

al rankings at the two dates. We observe some meaningful dif-

erences between the tables and the ranks. On the Jan 1/17 date,

he largest discrepancies between the table and the optimal ranks

nvolve Middlesbrough, Arsenal and Watford. The optimal rank-

ngs suggest that Middlesbrough is stronger (9 placings), Arsenal

s weaker (6 placings) and Watford is weaker (6 placings) than the

able indicates. Middlesbrough’s strength (according to our rank-

ng) was aided by “wins” (i.e. taking into account home team ad-

antage) over Manchester City, Arsenal and West Brom. We also

bserve that the three optimal rankings R ∗1 , R ∗2 and R ∗3 on Jan

/17 are similar; the only differences involve the top three sides

helsea, Liverpool and Manchester United. On the Mar 6/17 date,

he largest discrepancies between the table and the optimal rank-

ngs involve Manchester City (7 places lower according to R ∗
1 
), Le-

cester City (6 places higher according to R ∗
1 
) and Sunderland (6

laces higher according to both R ∗1 and R ∗2 ). 
Having observed some of the large discrepancies between the

tandings and the optimal rankings in Table 4 , it is difficult to as-

ess which lists are more sensible as measures of team strength.

erhaps large discrepancies indicate to gamblers that there is

omething interesting about such teams, that there may be a par-

ial explanation for their standings at a given point in time. 

It is also interesting to compare the optimal rankings in Table 4 .

he Jan 1/17 optimal rankings are the same except for the order-

ng of the teams in the first three positions of the table. The Mar

/17 optimal rankings have stability in the bottom half of the or-

erings but contain more overall variability. For example, we ob-

erve Manchester City in 10th place according to R ∗
1 

and in 5th

lace according to R ∗2 . At that stage of the season, Manchester City

as doing well pointwise, sitting 3rd in the table. However, they

ad suffered four of their five losses to “bigger” teams such as Tot-
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Table 4 

EPL table (standings) and optimal rankings R ∗
i 

corresponding to our method. The chosen intervals in the 

2016/2017 season include matches up to and including the specified dates. We also include the final season 

ending table. 

Jan 1/17 Mar 6/17 Final 

Pos Table Gms Pts R ∗1 R ∗2 R ∗3 Table Gms Pts R ∗1 R ∗2 Table 

1 CHE 19 49 CHE MUN LIV CHE 27 66 LIV LIV CHE 

2 LIV 19 43 MUN LIV CHE TOT 27 56 TOT TOT TOT 

3 ARS 19 40 LIV CHE MUN MCI 26 55 ARS CHE MCI 

4 TOT 19 39 TOT TOT TOT LIV 27 52 CHE EVE LIV 

5 MCI 19 39 SOU SOU SOU ARS 26 50 MUN MCI ARS 

6 MUN 19 36 EVE EVE EVE MUN 26 49 EVE ARS MUN 

7 EVE 19 27 MID MID MID EVE 27 44 WBA MUN EVE 

8 WBA 19 26 MCI MCI MCI WBA 27 40 SOU WBA SOU 

9 SOU 19 24 ARS ARS ARS STK 27 35 LEI SOU BOU 

10 BOU 19 24 BOU BOU BOU SOU 26 33 MCI LEI WBA 

11 BUR 19 23 WBA WBA WBA WHU 27 33 STK STK WHU 

12 WHU 19 22 LEI LEI LEI BUR 27 31 WHU WHU LEI 

13 WAT 19 22 STK STK STK WAT 27 31 BUR BUR STK 

14 STK 19 21 WHU WHU WHU BOU 27 27 SUN SUN CRY 

15 LEI 19 20 SWA SWA SWA LEI 27 27 CRY CRY SWA 

16 MID 19 18 BUR BUR BUR SWA 27 27 WAT WAT BUR 

17 CRY 19 16 CRY CRY CRY CRY 27 25 MID MID WAT 

18 SUN 19 14 SUN SUN SUN MID 27 22 BOU BOU HUL 

19 HUL 19 13 WAT WAT WAT HUL 27 21 HUL HUL MID 

20 SWA 19 12 HUL HUL HUL SUN 27 19 SWA SWA SUN 

Table 5 

Percentage accuracy of forecasts implied by the table and the optimal rank- 

ings during two time intervals. 

Forecast accuracy 

Time interval Matches Table R ∗1 R ∗2 R ∗3 

Jan 2/17 – Mar 6/17 78 70.5% 66.7% 65.4% 66.7% 

Mar 7/17 – May 1/17 76 61.8% 63.2% 65.8% 
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enham, Chelsea, Liverpool and Everton. In the case of Manchester

ity, it appears difficult for our ranking procedure to clearly iden-

ify its quality. 

We now use the rankings at the two dates in Table 4 to fore-

ast matches beyond week 27 to assess the predictive power of

he rankings. For example, based on the time interval from Jan

/17 to Mar 6/17, we investigated the 78 matches played. We cal-

ulated the percentage of correct forecasts as implied by the table

nd by our rankings as of Jan 1/17. We repeated the procedure for

he time interval Mar 7/17 to May 1/17. The results are provided

n Table 5 . It is difficult to conclude much from Table 5 . In the

rst predictive period, the table appears to do slightly better than

he optimal rankings. In the second period, the opposite pattern

merges. It seems that both the table and the optimal rankings use

ast results in a sensible way to assess team strength. Although the

PL exercise was interesting, we believe the methods developed in

his paper are particularly suited to the more challenging problem

nvolving large numbers of teams such as the NCAA where most

airs of teams do not compete. 

. Nuances of the approach 

.1. Importance of individual matchups 

Although the proposed ranking scheme is conceptually simple

nd does not rely on parametric assumptions, it is sometimes in-

tructive to look at pathological cases to gain a deeper understand-

ng of the approach. 

We therefore consider the case where the number of teams n is

arge, say n > 100. Suppose further that there are two very strong

eams, Team A and Team B, that are preferred in 99% and 90% of

he paired comparisons resulting from matches, respectively. And
uppose that the remaining n − 2 teams are not nearly as strong

s Team A and Team B. Then, following (2), it is apparent that 

((B, A, i 3 , . . . , i n )) = C((A, B, i 3 , . . . , i n )) + 1 (4) 

f Team B has “defeated” Team A (i.e. if Team B is preferred to Team

 in terms of the actual matches). 

The question is whether it is sensible to rank Team B above

eam A according to (4) given that Team A has won a much larger

roportion of matches than Team B (99% versus 90%). The answer

o the question depends on how one views the importance of indi-

idual matchups. We believe that in NCAA basketball and football,

ead-to-head matchups are considered vitally important. 

The above discussion illuminates the importance of individual

atchups in the proposed ranking system. We now contrast this

ith the Bradley–Terry ranking system. In Bradley–Terry, the i th

eam is characterized by a parameter π i such that the probability

hat Team i defeats Team j is πi / (πi + π j ) . Therefore, the π i ’s (by

irtue of their magnitude) determine a ranking of the teams. 

In Bradley–Terry, consider the case where two teams i 1 and i 2 
ave the same strength (i.e. πi 1 

= πi 2 
). Assume further that each of

he n teams has played all of the other n − 1 teams exactly once.

hen, according to the steady state of the Bradley–Terry iterative

stimation procedure [4] , we have 

 

j 	 = i 1 
x i 1 j 

( ∑ 

j 	 = i 1 

1 

πi 1 + π j 

) −1 

= 

∑ 

j 	 = i 2 
x i 2 j 

( ∑ 

j 	 = i 2 

1 

πi 2 + π j 

) −1 

(5) 

here x i j = 1 if Team i defeated Team j and x i j = 0 if Team i lost

o Team j . From (5), we obtain 

∑ 

j 	 = i 1 x i 1 j = 

∑ 

j 	 = i 2 x i 2 j . The implica-

ion for Bradley–Terry is that the equal ranking of the two teams

 1 and i 2 is based on their total number of victories 
∑ 

j 	 = i 1 x i 1 j and
 

j 	 = i 2 x i 2 j which is only slightly dependent on the result of their 

articular matchup. Buhlmann and Huber [5] develop properties of

anking procedures including the recognition that the number of

ins by each team is the sufficient statistic for the Bradley–Terry

odel. 

Given that our procedure is nonparametric, there is no underly-

ng likelihood and no capability for the calculation of model-based

robabilities. For example, there are no parameters to estimate and

ne cannot assess the closeness of rankings. Therefore, it is in-

eresting to consider how the resultant rankings are affected by
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match outcome variability. It seems the only way to assess the im-

pact of match variability is to change a particular match outcome

(or a set of match outcomes). Then one re-runs the ranking algo-

rithm and simply observes how the rankings change. 

4.2. Uniqueness of the optimal ranking 

Since C ( R ) is a discrete function, it is important to consider

whether a derived optimal ranking R ∗ is unique. It is clear that a

solution may not be unique as demonstrated in the following sim-

ple example. Let n = 3 and suppose that the data preferences are:

A is preferred to B, B is preferred to C, and C is preferred to A. In

this case, there are three optimal rankings since 

(A, B, C) = C(C, A, B ) = C(B, C, A ) = 2 . 

The following proposition addresses an aspect of the uniqueness of

optimal solutions. 

Proposition 1. Suppose that B 1 , B 2 and B 3 are ordered blocks of sub-

jects and that R 1 = (B 1 , B 2 , j, B 3 ) is an optimal ranking. Then R 2 =
(B 1 , j, B 2 , B 3 ) is an optimal ranking only if C( j, B 2 ) = C(B 2 , j) . 

Proof. C(R 1 ) − C(R 2 ) = C(B 2 , j) − C( j, B 2 ) . Therefore, the only way

that R 2 can be an optimal ranking is if C( j, B 2 ) = C(B 2 , j) . �

The condition C( j, B 2 ) = C(B 2 , j) in Proposition 1 implies that

j is preferred to exactly half of the subjects in B 2 . However,

there is more that can be said concerning Proposition 1 . Sup-

pose that B 2 = (i 1 , i 2 , . . . , i k ) where k is necessarily even. Then it

must be the case that C( j, i 1 ) = 1 . For if it were not the case,

then C(B 1 , i 1 , j, i 2 , . . . , i k , B 3 ) > C(R 2 ) = C(B 1 , j, i 1 , i 2 , . . . , i k , B 3 ) and

therefore R 2 would not be optimal. Using similar reasoning, it must

also be the case that C( j, i k ) = 0 . In other words, j must be pre-

ferred to the best subject i 1 in B 2 and j must not be preferred to

the worst subject i k in B 2 . We suggest that this is an atypical situ-

ation and it becomes more unusual as k increases. 

“Small” deviations from optimal rankings which lead to alter-

native optimal rankings are not a big concern. What we would

not like to see is “very different” rankings which are optimal. Now

although there can be other optimal rankings which do not take

the form described in Proposition 1 , our investigations suggest that

again, optimal rankings tend to be “close”. The intuition is that in

an optimal ranking R 1 , the strong subjects appear early in the rank-

ing going from left to right. Any reshuffling of the subjects moves

away from this heuristic and is therefore likely not optimal. 

5. Discussion 

With paired comparison data, the ranking problem is a com-

mon problem which has applications to sport. The ranking method

proposed in this paper is conceptually simple although the calcula-

tion of an optimal ranking poses computational challenges. In fact,

the computational demands in NCAA basketball are such that we

envision rankings might only be produced on a weekly basis. 

For NCAA basketball, the ranking problem is particularly chal-

lenging due to the sparsity of games relative to the number of

teams n = 351 . In an ideal world, our method would lead to a

unique global maximum. However, the lack of uniqueness in some

datasets is a consequence of the simplicity of the optimality crite-

rion. The good news is that the rankings belonging to the set of

optimal rankings tend to be “close” to one another. For getting a

sense of the overall quality of teams, we have demonstrated that

our ranking system compares favourably with other ranking sys-

tems. The only occasions where the uniqueness issue may cause

distress is when there is disparity between the top teams. In such

situations, one may consider the introduction of tie-breaking pro-

cedures to differentiate between optimal rankings. 
We note that our ranking criterion C ( R ) in equation (2) as-

igned equal weights to team preferences. That is, we assigned

he same weight to pairs of teams that competed directly ver-

us pairs of teams that competed indirectly. For future research,

e may consider obtaining weights that provide optimal predic-

ive power. The procedure would be computationally demanding

nd optimal weights may vary by sport. The computational hur-

le would require a computationally intensive simulation such was

one in Section 3.2 and have it repeated over different sets of

eights. Another avenue for future research might be to assign

ata preference scores other than 0/1. For example, suppose that

eam A had a data preference of q points over Team B. Then, the

ontribution to C ( R ) for having Team A ranked above Team B in

he ranking R would be worth q points. For example, data prefer-

nce scores could be assigned via considerations based on margin

f victory. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.orp.2018.03.002 
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