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a b s t r a c t 

We propose an efficient method of finding an optimal solution for a multi-item continuous review inven- 

tory model in which a bivariate Gaussian probability distribution represents a correlation between the 

demands of different items. By utilizing appropriate normalizations of the demands, we show that the 

normalized demands are uncorrelated. Furthermore, the set of equations coupled with different items 

can be decoupled in such a way that the order quantity and reorder point for each item can be evalu- 

ated independently from those of the other. As a result, in contrast to conventional methods, the solution 

procedure for the proposed method can be much simpler and more accurate without any approximation. 

To demonstrate the advantage of the proposed method, we present a solution scheme for a multi-item 

continuous review inventory model in which the demand of optional components depend on that of a 

“vanilla box,” representing the customer’s stochastic demand, under stochastic payment and budget con- 

straints. We also perform a sensitivity analysis to investigate the dependence of order quantities and 

reorder points on the correlation coefficient. 

© 2017 The Authors. Published by Elsevier Ltd. 
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. Introduction 

In a competitive global market, a manufacturer usually needs

o provide a wide variety of products with a short amount of lead

ime to improve customer satisfaction and increase market share.

hen an order from a customer arrives, differentiation to the tai-

ored order is often postponed down the assembly line to achieve

oth product variety and short lead time. In general, the more

iverse a product, the longer lead time it requires. Manufactur-

rs often postpone final products and secure semi-finished prod-

cts to meet customers various orders effectively by assembling

he optional components to semi-finished products. Modulariza-

ion and postponement (or delayed differentiation) can be an ef-

ective means to reduce the lead time while maintaining a wide

ariety of products. Many modularization and postponement stud-

es have shown that these concepts offer an advantage in terms

f reducing uncertainty and forecasting errors with regard to de-

and [3,9,10] in addition to creating product variety and cus-

omization at low cost [2] . Thus, modularization and postponement

ave become important concepts in the market to provide better

ervice to customers and make the business process more efficient.
∗ Corresponding author. 
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Saghiri and Barnes [7] investigated the link between supplier

exibility and postponement implementation through empirical

ata, and found that the supplier impacts on postponement imple-

entation for the buying companies depend on the types of post-

onement and supplier flexibility. Simão et al. [8] evaluated the

mpact of postponement on supply chain performance considering

reen supply chain by using computer simulation. They showed

hat packing postponement and logistics can improve the perfor-

ance of logistics and reduce CO 2 emissions. Zhou et al. [13] de-

eloped a two-stage queueing network for form postponement

onsidering correlated demand characterized by Markovian arrival

rocess, and found that the variance and correlation coefficient of

he demand can increase total cost. 

In a product line such as computer retailing or automobile as-

embly, concepts of modularization and postponement are realized

y an assembly process that consists of a semi-finished product

vanilla box” and optional components that are directly used in

he final assembly. The vanilla box consists of components, known

s the commonality of parts, needed to assemble the final prod-

ct with appropriate optional components, and the vanilla box ap-

roach has been shown to be effective under high variance [9] . 

Applications of modularization and postponement to an in-

entory system require a multi-item model in which the de-

and of each of the several optional components depends on the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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demand or the presence of the vanilla box. The vanilla box repre-

sents the customer’s stochastic demand, and optional components,

in turn, depend on the demand of the vanilla box for final assem-

bly. Thus, the demands of the vanilla box and optional components

are stochastically correlated. As the inventory model becomes com-

plicated because of the correlation, it is desirable to find an effi-

cient and accurate method to solve the model system. 

A multi-item inventory model was proposed to comply with

the concept of modularization and postponement [11] . The model

consists of a vanilla box and optional components in which the

correlation between the two types of items is implemented as a

bivariate Gaussian probability distribution whereas the optional

components are independent of each other. This model handles a

continuous review inventory system in which an order quantity

Q is placed whenever an inventory level reaches a certain reorder

point r under the presence of service level and budget constraints.

Subsequently, a stochastic payment is also included in the model

in such a manner that the total inventory cost does not exceed a

predetermined budget [12] . 

There have been investigated two types of the budget constraint

depending on when the purchasing cost is paid. The first type pays

the purchasing cost at the time an order is placed, whereas the

second type pays when an order arrives. The latter case is referred

to as a stochastic budget constraint because the inventory level at

placing an order is, in general, different from that at the arrival

of the order. In this case, the maximum inventory investment is

random due to the random nature of the inventory level. Thus, the

stochastic budget constraint takes a form of a probability in that

the maximum inventory investment to be within a budget should

be greater than a certain level when the purchasing cost is paid at

the time an order arrives. 

In this paper, we propose an efficient method to solve a corre-

lated multi-item continuous review inventory model in which the

correlation between the vanilla box and an optional component is

represented by a bivariate Gaussian probability distribution. In ad-

dition, when the variables are normally distributed, many results,

such as conditional distribution, can be derived analytically in ex-

plicit form. By using appropriate normalizations of the demands of

items, we show that the set of equations coupled with the vanilla

box and optional components can be reduced to sets of decoupled

equations for each item. Furthermore, each set of decoupled equa-

tions is simplified in a closed form and solved without any approx-

imation. Thus, the equations for each item can be solved indepen-

dently of each other. 

The conventional method for solving such a model system is

based on a heuristic of combining a Newton–Raphson method and

a Hadley–Whitin iterative procedure [12] . At each iteration, a can-

didate solution is found by using the Newton–Raphson method in

which numerical integrations are carried out where required. The

iteration proceeds until both Q and r sufficiently converge. Briefly,

the conventional method takes the set of simultaneous equations

for Q ’s and r ’s as a whole and utilizes heuristic approximating pro-

cedures. Given that the conventional method uses a rather compli-

cated approximation and iteration, it requires heavy computation

time. 

In contrast, the proposed method does not rely on any ap-

proximation or heuristics. As a result, the solution procedure for

the proposed method is much simpler, more accurate, and offers

shorter computing time than the conventional method. We apply

the proposed method to a correlated multi-item continuous review

inventory model to demonstrate its usefulness. We also perform a

sensitivity analysis in terms of the correlation to further character-

ize the behavior of the order quantity and reorder point of optional

components. In addition, the proposed scheme can be used as a

dependable method for a more generalized multi-item continuous
c

eview inventory model with much more complicated correlations

mong items. 

The rest of this paper is organized as follows. Section 2 dis-

usses the normalization of the demands and introduces an il-

ustrative model to show how the set of simultaneous equations

an be decoupled and simplified. Section 3 describes the proposed

ethod for solving the model system. Section 4 presents experi-

ental results and discusses the sensitivity analysis, together with

n application of the proposed method to an extended model.

ection 5 summarizes the study and gives our conclusions. 

. Normalization and multi-item inventory model 

.1. Correlation and normalization 

Consider a multi-item inventory model that includes the

orrelation between a vanilla box and an optional component.

urthermore, we allow multiple optional components and each

ptional component is dependent on the vanilla box through

 bivariate Gaussian probability distribution, whereas optional

omponents are independent of each other. 

A bivariate Gaussian probability distribution function (PDF) of

he random variables X v and X j of the demand during the lead time

or the vanilla box and the j th optional component, respectively, is

iven by 

f (x v , x j ) = 

1 

2 π
√ | �| exp 

{ 

−1 

2 

( � x − �
 μ) T �−1 ( � x − �

 μ) 
} 

. (1)

ere, the variable vector � x , the mean vector � μ, the covariance ma-

rix �, and the correlation coefficient ρ j between X v and X j are

xpressed, respectively, as 

  = 

[
x v 
x j 

]
, �

 μ = 

[
μv 
μ j 

]
, � = 

[
σ 2 

v σv j 
σv j σ 2 

j 

]
, and ρ j ≡

σv j 

σv σ j 

(2)

ith | �| being the determinant of the 2 × 2 matrix of �. Given

hat X j depends on X v , we express the bivariate PDF as a product of

he marginal PDF of X v and the conditional PDF of X j given X v = x v .

n this way, the bivariate PDF of Eq. (1) can be written as 

f (x v , x j ) = 

1 √ 

2 πσv 
exp 

{
− (x v − μv ) 2 

2 σ 2 
v 

}
1 

√ 

2 πσ j 

√ 

1 − ρ2 
j 

× exp 

{ 

−
[
x j −

(
μ j + ρ j 

σ j 

σv 
(x v − μv ) 

)]2 

2 σ 2 
j 
(1 − ρ2 

j 
) 

} 

≡ f X v (x v ) f X j | X v (x j | x v ) . (3)

In general, the demand for the vanilla box is equal to the

ustomer’s demand, whereas the demand for each optional com-

onent depends on the safety stock of the vanilla box. Note

hat optional components, by definition, cannot be assembled by

hemselves. Rather, they should be combined with the vanilla

ox to form a final product. Therefore, the demand X j of the j th

ptional component during the lead time depends on the current

evel r v of the vanilla box. That is, the demand of an optional

omponent depends on how many vanilla boxes needed to be

nalized during the lead time (i.e., the current level r v ) in the

ssembly line. In this sense, the PDF of the demand X j of the j th

ptional component during the lead time should be conditioned

or a given X v = r v . Given that the safety stock of the vanilla box

s r v − μv , the demand for each optional component depends

n the reorder point of the vanilla box r v . This implies that the

onditional PDF of X j is evaluated at X v = r v . 
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Motivated by this characteristic, we define the normalized ran-

om variables as 

 v ≡ X v − μv 

σv 
and Z j ≡

X j − μoj 

σoj 

, (4) 

here 

oj ≡ σ j 

√ 

1 − ρ2 
j 

and μoj ≡ μ j + ρ j 

σ j 

σv 
(r v − μv ) . (5) 

ote that the random variable Z j contains not only the demand X j 

f the j th optional component but also the reorder point r v of the

anilla box. With the normalization, the bivariate PDF at X v = r v 
an be rewritten as 

f X v (x v ) f X j | X v (x j | r v ) = 

1 √ 

2 π
e −z 2 v / 2 

1 √ 

2 π
e −z 2 

j 
/ 2 

. (6)

e see from Eq. (6) that the normalization decomposes the bivari-

te PDF into a product of two PDFs of Z v and Z j , both of which can

e regarded as independent standard univariate PDFs. This implies

hat the notion of the conditional PDF does not exist and there is

o distinction between dependent and independent items. In what

ollows, we take a correlated multi-item continuous review inven-

ory system as an illustration of the advantage of normalization. 

.2. Model formulation and set of equations 

The illustrative model we consider in this paper is a correlated

ulti-item continuous review inventory system that includes two

ypes of items: a vanilla box and many optional components. Fur-

hermore, as stated in Section 2.1 , each optional component de-

ends on the vanilla box through a bivariate Gaussian probabil-

ty distribution. We use the following notations to formulate the

odel: 

• A : fixed procuring cost, 
• C : unit variable procurement cost, 
• D : expected annual demand, 
• h : carrying cost, 
• p : unit shortage cost, 
• κ : service cost rate, and 

• β : available budget limit. 

Note that each of these terms can be used for both the vanilla

ox and optional components whenever possible. We distinguish

he vanilla box from the j th optional component by the subscripts

 and oj , respectively. For instance, A v and A oj represent the fixed

rocuring costs of the vanilla component and the j th optional com-

onent, respectively. The model is composed of the sum of the ex-

ected average annual cost (EAC) of the two types of items un-

er budgetary constraint. The budget constraint can be expressed

n terms of the total inventory investment, which consists of the

urchase cost and the service cost. The service cost for the vanilla

ox is assumed to be proportional to the service level, which is the

umulative distribution of demand during the lead time. Thus, the

ervice cost for the vanilla box is κv F X v (r v ) , where κv is the propor-

ionality. Again, similar argument can be applied to the case of the

ptional components. As the stochastic budget constraint assumes

hat the purchase cost is paid at the time an order arrives, the in-

entory level has a stochastic nature in that the probability of total

nventory investment to be within budget should be greater than

 certain value. A detailed account of the model development can

e found in [11,12] . 

The objective of the model is to minimize the sum of EAC for

he vanilla box and m optional components under a stochastic

udgetary constraint. That is, we would like to find ( Q v , r v ) and

( � Q o , � r o ) , where �
 Q o = (Q o1 , Q o2 , . . . , Q om 

) and 

�
 r o = (r o1 , r o2 , . . . , r om 

) ,

hat minimize 

AC( � Q , � r ) = EAC 1 (Q v , r v ) + EAC 2 ( � Q o , � r o ) (7)
ubject to 

P rob 

{ 

C v (Q v + r v − X v ) + 

m ∑ 

j=1 

C oj (Q oj + r oj − X j ) + κv F X v (r v ) 

+ 

m ∑ 

j=1 

κoj F X j | X v (r oj | r v ) ≤ β

} 

≥ η (8) 

or 

 v ≥ 0 , r v ≥0 and Q oj ≥ 0 , r oj ≥ 0 for j =1 , 2 , . . . , m. (9)

n addition, F X v (r v ) and F X j | X v (r oj | r v ) are the cumulative density

unctions (CDFs) of f X v (x v ) and f X j | X v (x j | x v ) , respectively. 

The expected average annual total cost consists of the ordering,

urchasing, holding, and shortage costs. The ordering, purchasing,

nd holding costs for the vanilla box are given, in order of prece-

ence, as 

A v D v 

Q v 
+ C v D v + h v 

(
Q v 

2 

+ r v − μv 

)
. (10)

he shortage for the vanilla box occurs when the demand X v dur-

ng the lead time exceeds the current level r v . Thus, the expected

verage shortage (or penalty) cost can be expressed as the expec-

ation value of the cost due to the shortage (x − r v ) for x > r v : 

p v D v 

Q v 

∫ ∞ 

r v 

(x − r v ) f X v (x ) dx, (11)

here f X v (x ) is PDF of X v . The similar argument can be applied to

he optional components taking into account the conditional PDF.

hus, EAC 1 and EAC 2 are given as 

AC 1 (Q v , r v ) = 

A v D v 

Q v 
+ C v D v + h v 

(
Q v 

2 

+ r v − μv 

)
+ 

p v D v 

Q v 

∫ ∞ 

r v 

(x − r v ) f X v (x ) dx, (12) 

AC 2 ( � Q o , � r o ) = 

m ∑ 

j=1 

[
A oj D oj 

Q oj 

+ C oj D oj + h oj 

(
Q oj 

2 

+ r oj − μoj 

)

+ 

p oj D oj 

Q oj 

∫ ∞ 

r oj 

(x − r oj ) f X j | X v (x | r v ) dx 

]
, (13) 

here μoj is defined as in Eq. (5) . It is readily shown that the con-

traint of Eq. (8) can be rewritten as 

 v (Q v + r v ) + 

m ∑ 

j=1 

C oj (Q oj + r oj ) + κv F X v (r v ) + 

m ∑ 

j=1 

κoj F X j | X v (r oj | r v ) 

≤ β + μY + z 1 −ησY , (14) 

here 

Y ≡ C v μv + 

m ∑ 

j=1 

C oj μoj , σ 2 
Y ≡ C 2 v σ

2 
v + 

m ∑ 

j=1 

C 2 oj σ
2 
oj , (15)

nd z 1 −η = F −1 (1 − η) with F −1 (1 − η) being the inverse of the

tandard Gaussian CDF of the probability η. The detailed derivation

f Eq. (14) can be found in Appendix C . 

With the model, the Lagrangian function J using the Lagrangian

elaxation, with λ≥ 0, can be written as 

 = EAC 1 (Q v , r v ) + EAC 2 ( � Q o , � r o ) + λ

{ 

C v (Q v + r v ) + 

m ∑ 

j=1 

C oj (Q oj + r oj ) 

+ κv F X v (r v ) + 

m ∑ 

j=1 

κoj F X j | X v (r oj | r v ) −
(
β + μY + z 1 −ησY 

)} 

. (16) 
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Fig. 1. The list of expressions that are used to simplify the first order necessary condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

z

 

w  

n

 

e  

W  

t

 

 

 

 

 

H

 

 

c  

E  

a  

E  

(  

d  

o  

(  

(  

u  

s  

o

The first order necessary conditions can be achieved by differenti-

ating J with respect to Q v , r v , Q oj , r oj , and λ: 

∂ J 

∂Q oj 

=−A oj D oj 

Q 

2 
oj 

+ 

h oj 

2 

− p oj D oj 

Q 

2 
oj 

∫ ∞ 

r oj 

(x −r oj ) f X j | X v (x | r v ) dx + λC oj =0 

(17)

∂ J 

∂r oj 

= h oj + 

p oj D oj 

Q oj 

∂ 

∂r oj 

∫ ∞ 

r oj 

(x − r oj ) f X j | X v (x | r v ) dx + λC oj 

+ λκoj 

∂ 

∂r oj 

F X j | X v (r oj | r v ) = 0 (18)

∂ J 

∂Q v 
=−A v D v 

Q 

2 
v 

+ 

h v 

2 

− p v D v 

Q 

2 
v 

∫ ∞ 

r v 

(x −r v ) f X v (x ) dx + λC v = 0 (19)

∂ J 

∂r v 
= h v + 

p v D v 

Q v 

∂ 

∂r v 

∫ ∞ 

r v 

(x − r v ) f X v (x ) dx 

+ 

m ∑ 

j=1 

p oj D oj 

Q oj 

∫ ∞ 

r oj 

(x − r oj ) 
∂ 

∂r v 
f X j | X v (x | r v ) dx 

−
m ∑ 

j=1 

(
h oj + λC oj 

)(
ρ j 

σ j 

σv 

)
+ λC v + λκv 

d 

dr v 
F X v (r v ) 

+ 

m ∑ 

j=1 

λκoj 

∂ 

∂r v 
F X j | X v (r oj | r v ) = 0 (20)

∂ J 

∂λ
= C v (Q v + r v ) + 

m ∑ 

j=1 

[
C oj (Q oj + r oj ) 

]
+ κv F X v (r v ) 

+ 

m ∑ 

j=1 

κoj F X j | X v (r oj | r v ) −
(
β + μY + z 1 −ησY 

)
= 0 . (21)

Note that Eqs. (17) –(20) are simultaneous equations for Q oj , r oj , Q v ,

and r v . 

2.3. Simplification of equations using normalization 

Given that Q oj and r oj are coupled with Q v and r v from

Eqs. (17) –(20) , the equations are intractable to solve directly. For

example, two equations Eqs. (17) and (18) contain three variables

Q oj , r oj , and r v . It turns out, however, that the normalizations dis-

cussed in Section 2.1 can not only simplify the various expres-

sions in Eqs. (17) –(20) , but also, more importantly, decouple the

equations for the optional components Eqs. (17) and (18) from the

equations for the vanilla box Eqs. (19) and (20) . 
Similarly to the normalization of Eq. (4) , we further define the

ormalized reorder points as 

 v ≡ r v − μv 

σv 
and z oj ≡

r oj − μoj 

σoj 

= 

(r oj − μ j ) − ρ j 
σ j 

σv 
(r v − μv ) 

σ j 

√ 

1 − ρ2 
j 

, 

(22)

here we have used the definition of μoj of Eq. (5) . Note that the

ormalized reorder point z oj is a function of r oj and r v . 

With the normalization defined in Eqs. (4) and (22) , the various

xpressions in Eqs. (17) –(20) can be simplified as shown in Fig. 1 .

e derive the simplified expressions in detail in Appendix A . With

he normalization, Eqs. (17) –(21) can be re-expressed as 

∂ J 

∂Q oj 

= −A oj D oj 

Q 

2 
oj 

+ 

h oj 

2 

− p oj D oj 

Q 

2 
oj 

σoj L (z oj ) + λC oj = 0 (23)

∂ J 

∂r oj 

= h oj −
p oj D oj 

Q oj 

G (z oj ) + λC oj + λ
κoj 

σoj 

f (z oj ) = 0 (24)

∂ J 

∂Q v 
= −A v D v 

Q 

2 
v 

+ 

h v 

2 

− p v D v 

Q 

2 
v 

σv L (z v ) + λC v = 0 (25)

∂ J 

∂r v 
= h v − p v D v 

Q v 
G (z v ) + λC v + λ

κv 

σv 
f (z v ) = 0 (26)

∂ J 

∂λ
= C v ( Q v +σv z v ) + 

m ∑ 

j=0 

C oj 

(
Q oj + σoj z oj 

)
+κv F (z v )+ 

m ∑ 

j=0 

κoj F (z oj ) 

−
(
β + μY + z 1 −ησY 

)
= 0 . (27)

ere, we define 

f (z) ≡ 1 √ 

2 π
e −z 2 / 2 , G (z) ≡

∫ ∞ 

z 

f (t ) dt , F (z) ≡ 1 − G (z) , 

and L (z) ≡ f (z) − zG (z) . (28)

Note that, owing to the normalization, Eqs. (17) –(20) are de-

oupled into two sets of equations: Eqs. (23) and (24) and

qs. (25) and (26) . Furthermore, each set of equations is identical

nd differs from the other only by the subscript. This implies that

qs. (23) and (24) can be solved independently from Eqs. (25) and

26) . This is expected because the PDF of the bivariate Gaussian

istribution [ Eq. (3) ] can be expressed as the product of the PDF

f the normalized variables Z v and Z j [ Eq. (6) ]. Thus, Eqs. (23) and

24) can be solved for Q oj and z oj directly. Similarly, Eqs. (25) and

26) can be solved for Q v and z v . Once z oj and z v are found, we can

se Eqs. (4) and (22) to get r oj and r v . In the next section, we de-

cribe how to solve the set of Eqs. (23) –(26) under the constraint

f Eq. (27) . 
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. Proposed method to solve the model system 

Similar to the approach by [4] , the proposed method to solve

he model system consists of two parts. First, we regard Eqs. (23) –

26) as a subproblem for a given λ. Second, we repeatedly solve

he subproblem until we find the solution λ to Eq. (27) . 

.1. Procedures for solving the subproblem 

For a given λ, we regard Eqs. (23) –(26) as a subproblem and

olve them for Q oj , z oj , Q v , and z v . The crucial point is that solv-

ng Eqs. (23) and (24) for z oj and Q oj is independent of solving

qs. (25) and (26) for z v and Q v , respectively. Given that G ( z oj ) can

e numerically evaluated for any z oj , we note that Eqs. (23) and

24) are functions of Q oj and z oj only. By eliminating Q oj from

qs. (23) and (24) , we obtain an equation for z oj . In particular,

qs. (23) and (24) can be rewritten, respectively, in terms of Q oj 

s 

 

2 
oj = 

A oj D oj + p oj D oj σoj L (z oj ) 

h oj / 2 + λC oj 

and 

 oj = 

p oj D oj G (z oj ) 

h oj + λC oj + λ
(
κoj /σoj 

)
f (z oj ) 

. (29) 

e can eliminate Q oj from Eq. (29) , resulting in an equation for

 oj ( z oj ) in terms of z oj only: 

 oj (z oj ) ≡
p oj D oj G (z oj ) 

h oj + λC oj + λ
(
κoj /σoj 

)
f (z oj ) 

−
{

A oj D oj + p oj D oj σoj L (z oj ) 

h oj / 2 + λC oj 

}1 / 2 

= 0 . (30) 

There exists a unique solution z oj = z ∗
oj 

of Eq. (30) if the follow-

ng three conditions are satisfied: 

(a) g oj ( z oj ) is a continuous function in z oj . 

(b) g oj ( z oj ) is strictly monotonic in z oj . 

(c) There exist two distinct values z 1 and z 2 such that

g oj ( z 1 ) g oj ( z 2 ) < 0. 

Condition (a) is immediately satisfied because f ( z oj ), G ( z oj ), and

 ( z oj ) are continuous in z oj . The following theorem satisfies condi-

ion (b). 

heorem 1. g oj ( z oj ) is strictly decreasing function in z oj . 

The proof is given in Appendix B . Finally, condition (c) imposes

 restriction on the values of the parameters. Given that g oj ( z oj )

s a continuous and strictly decreasing function in z oj from condi-

ions (a) and (b), by assuming that z oj > 0, the following two in-

qualities should be satisfied to meet condition (c): g oj (0) > 0 and

 oj (+ ∞ ) < 0 . It is easy to see that the condition g oj (+ ∞ ) < 0 is sat-

sfied by noting that G (+ ∞ ) = 0 and 0 < L (+ ∞ ) < ∞ . Therefore,

he values of the parameters have to satisfy g oj (0) > 0. That is, 

 oj (0) = 

1 

2 

p oj D oj 

h oj + λC oj + λκoj / ( 
√ 

2 πσoj ) 

−
{

A oj D oj + p oj D oj σoj / 
√ 

2 π

h oj / 2 + λC oj 

}1 / 2 

> 0 . (31) 

he values of the parameters should satisfy this inequality for

q. (30) to have a unique solution. 

Given that Eq. (30) is a function of z oj only, one can use a sim-

le search technique, such as a bisection method (see, for instance,

5] ), to solve it at least numerically if not analytically. Once the so-

ution z ∗
oj 

of g oj (z ∗
oj 

) = 0 is obtained, we can substitute it back into
q. (29) to get Q 

∗
oj 

, the solution of Q oj . We repeat the same proce-

ure for j = 1 , 2 , . . . , m to obtain the normalized reorder point and

rder quantity for the optional components. 

The normalized reorder point z v and order quantity Q v for the

anilla box can be obtained by applying a method similar to that

sed for the optional components. That is, Eqs. (25) and (26) can

e rewritten respectively in terms of Q v as 

 

2 
v = 

A v D v + p v D v σv L (z v ) 

h v / 2 + λC v 
and Q v = 

p v D v G (z v ) 

h v + λC v + λ( κv /σv ) f (z v ) 
. 

(32) 

he existence of a unique solution z ∗v of 

 v (z v ) ≡ p v D v G (z v ) 

h v +λC v +λ( κv /σv ) f (z v ) 
−

{
A v D v +p v D v σv L (z v ) 

h v / 2 + λC v 

}1 / 2 

=0 

(33) 

an be proven in a similar fashion to the case for z ∗
oj 

of Eq. (30) .

hus, we can solve numerically for z v = z ∗v ; subsequently, we can

olve for Q v = Q 

∗
v by substituting z ∗v into either Eq. (25) or (26) . 

.2. Algorithm for solving the model system 

The solution scheme for the subproblem discussed in

ection 3.1 reduces the set of Eqs. (23) –(27) to one equation

 Eq. (34) ] with one unknown λ, which is implicitly dependent on

he variables: 

(λ) = C v ( Q v + σv z v ) + 

m ∑ 

j=0 

C oj 

(
Q oj + σoj z oj 

)
+ κv F (z v ) 

+ t 

m ∑ 

j=0 

κoj F (z oj ) −
(
β + μY + z 1 −ησY 

)
. (34) 

f g ( λ) > 0, then the constraint is violated; otherwise (that is,

 ( λ) ≤ 0), the constraint is satisfied. By using the Lagrangian re-

axation [4] , the proposed algorithm to obtain the optimal re-

rder points and order quantities for the optional components and

anilla box [ r oj , Q oj , r v , Q v ] is as follows: 

Step 1: Find λ1 and λ2 such that g ( λ1 ) > 0 and g ( λ2 ) < 0. 

Step 2: For each λ1 and λ2 , solve the subproblem as follows: 

Step 2(a): For j = 1 to m , numerically solve Eq. (30) for z oj to ob-

tain z ∗
oj 

, and substitute z ∗
oj 

into Eq. (29) to get Q 

∗
oj 

. 

Step 2(b): Numerically solve Eq. (33) for z v to obtain z ∗v , and sub-

stitute z ∗v into Eq. (32) to get Q 

∗
v . 

Step 3: Let λnew 

= (λ1 + λ2 ) / 2 and find Q 

∗
oj 

, z ∗
oj 

, Q 

∗
v , and z ∗v from

Steps 2(a) and 2(b). If g ( λnew 

) > 0, then let λ1 = λnew 

; oth-

erwise let λ2 = λnew 

. 

Step 4: Repeat Steps 2 and 3 until | g ( λ1 )| < ε or | g ( λ2 )| < ε, where

ε is a predetermined error. 

Step 5: Use Eq. (22) to get r ∗v and r ∗
oj 

from z ∗v and z ∗
oj 

, respectively.

e implemented the above algorithm with C language by using

he libraries, such as “trapzd”, “polint”, “qromb”, and “rtbis” in

ef. [6] . 

. Experimental results and discussion 

We illustrate the performance of the proposed method by an

xperiment that consists of one vanilla box and two optional com-

onents (i.e., m = 2 ). The parameters for the vanilla box and two

ptional components are listed in Table 1 . They are the same as

he parameters used in [12] and ε = 10 −7 . Table 2 lists the solu-

ion to the model for a given input from Table 1 together with the

esults of [12] . 
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Table 1 

Parameters for the vanilla box and the two optional components with η = 0 . 9031 so that z 1 −η = 

−1 . 3 . 

A v C v D v h v p v κv μv σ v β

Vanilla box 700 150 10,0 0 0 6 8 40 0 0 300 40 150,0 0 0 

Optional component A oj C oj D oj h oj p oj κoj μj σ j ρ j 

1 40 3 40 0 0 0.7 1.0 200 100 15 0.5 

2 20 2 60 0 0 0.4 0.7 150 170 20 0.8 

Table 2 

Solutions for Q v , r v , Q oj , and r oj , together with λ and the total cost. 

Q v r v Q o 1 r o 1 Q o 2 r o 2 λ EAV ( � Q , � r ) 

Proposed method 860.8246 341.6691 580.8890 121.5989 648.4425 202.7676 0.045190 1,536,070 

[12] 862.3301 340.3125 579.6005 122.7817 647.4532 203.3750 0.045044 1,536,061 

ρ

Fig. 2. Plots of the normalized reorder points z oj for the optional components ver- 

sus the correlation coefficient ρ j . 
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Fig. 3. Plots of the order quantities Q oj for the optional components versus the cor- 

relation coefficient ρ j . 
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As we have stated in Introduction [11,12] solved the simulta-

neous equations for the inventory system as a whole by utilizing

rather complicated heuristical approximations and iteration. Thus,

their method requires relatively a large amount of computational

time and the solutions are not exact. In contrast, the proposed

method is a direct method in the sense that it does not require any

approximation and iteration. Thus, the proposed method is more

accurate because it does not use any heuristical approximation.

Furthermore, the proposed method is also fast since it finds opti-

mal values directly without any iteration. Therefore, the proposed

method is much simpler and more accurate than the methods by

[11,12] . Based on these, although we cannot numerically compare

the performance due to unavailability of the codes for [11,12] , we

believe the proposed method has advantages in finding optimal

solution. 

We also perform a sensitivity analysis of the order quantities

and reorder points for the optional components with respect to

the correlation coefficient. It should be noted that Q v and r v are

independent of ρ j from Eqs. (32) and (33) . For the sensitivity anal-

ysis, we first need to find the behavior of z oj as ρ j varies. Fig. 2

shows that z oj is almost constant with respect to ρ j although

z o 1 decreases slightly for large value of ρ1 . This implies that

the normalized reorder points are insensitive to the correlation

coefficient. 

Fig. 3 shows the behavior of order quantities Q oj of the op-

tional components as the correlation coefficient ρ j varies. From

the first equation in Eq. (29) , we see that the dependence of Q oj 
n ρ j stems from σ oj L ( z oj ). Because z oj is more or less insensitive

o ρ j Fig. 2 , so is L ( z oj ). Thus, considering ρ j dependence only, we

ave 

 oj ∝ σoj ≈ σ j 

√ 

1 − ρ2 
j 
. (35)

his implies that Q oj decreases as the absolute value of ρ j increases

nd Q oj reaches its maximum when ρ j = 0 as shown in Fig. 3 . The

aximum of Q oj at ρ j = 0 can also be proved as follows. From the

rst equation in Eq. (29) , it can be readily shown that 

dQ oj 

dρ j 

= − p oj D oj {
h oj + 2 λC oj 

}{
L (z oj ) + z oj G (z oj ) 

Q oj 

}
σ 2 

j 

σoj 

ρ j . (36)

hus, Q oj is extreme when ρ j = 0 . Furthermore, 

d 2 Q oj 

dρ2 
j 

∣∣∣∣
ρ j =0 

= − p oj D oj {
h oj + 2 λC oj 

}{
L (z oj ) + z oj G (z oj ) 

Q oj 

}
σ j < 0 (37)

mplies that Q oj has its maximum when ρ j = 0 . 

Fig. 4 shows the behavior of reorder points r oj of the optional

omponents as the correlation coefficient ρ j varies. Unlike the or-

er quantity, r oj reaches its maximum at a positive value of ρoj . For

he behavior of r oj , we can rewrite Eq. (22) as follows: 

 oj = μ j + ρ j 

σ j 

σv 
( r v − μv ) + σ j 

√ 

1 − ρ2 
j 

z oj . (38)

ecause z oj is almost independent of ρ j , as ρ j increases, the sec-

nd term on the right-hand side of Eq. (38) also increases while
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ρ
1

ρ

Fig. 4. Plots of the reorder points r o 1 for optional component 1 versus the correla- 

tion coefficient ρ1 while ρ2 = 0 . 5 . Inset: Same plot for optional component 2. 
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∫

B

dr v dz v 2 π
he third term decreases. Thus, there is a trade-off between the

econd and the third terms, resulting in an optimum value of r oj .

urthermore, the maximum r oj occurs when 

max 
j ≈ r v − μv √ 

σ 2 
v z 2 

oj 
+ σ 2 

j 
(r v − μv ) 2 

. (39) 

his implies that ρmax 
j 

depends on the safety stock r v − μv of the

anilla box. Given that the safety stock is a positive quantity, we

ave 0 < ρmax 
j 

< 1 unlike the maximum of Q oj . 

. Summary and conclusion 

In this paper, we presented an efficient method for finding an

ptimal solution ( Q, r ) to a correlated multi-item continuous re-

iew inventory model in which a bivariate Gaussian probability

istribution is used as a correlation between the vanilla box and an

ptional component. By normalizations of the random variables for

he demands, we showed that the bivariate Gaussian PDF can be

xpressed as a product of two independent Gaussian PDFs, which

mplies that the normalized random variables are uncorrelated. 

To demonstrate the usefulness of the normalization, we solved

 multi-item continuous review inventory ( Q, r ) model in which

he vanilla box and optional components are correlated under

tochastic payment and budget constraints. With normalization, we

howed that the set of equations coupled with the vanilla box and

ptional components was decoupled into sets of equations for the

ormalized quantities. Furthermore, each set of decoupled equa-

ions was reduced to a closed form and could be solved numeri-

ally without any approximation. 

We also performed the sensitivity analysis in terms of the cor-

elation. We found that the order quantity and the reorder point of

ptional components depended on the strength of the correlation

s we expected. In particular, we showed that the order quantity of

n optional component reached its maximum when there was no

orrelation between the vanilla box and the optional component.

n addition, the reorder point of an optional component reached

 maximum that depended on the safety stock of the vanilla

ox. 

The decoupling can be possible for other type of distributions

epending on the characteristics of the distribution. The crucial

oint is whether a multivariate PDF can be decomposed into the

roduct of the marginal and conditional probability distribution

unctions. Thus, a multivariate PDF that has an exponential form,
uch as a bivariate exponential PDF, can be decoupled. In contrast,

 multivariate Cauchy PDF, as an example, cannot be decoupled. 

The proposed method is a direct method of solving the model

n the sense that it does not require any approximations and it-

rations that were adopted in the previous studies [11,12] . In this

ense, the proposed method is much faster in computation time

nd more accurate in numerical results than the methods proposed

arly. In addition, the proposed method can be applied to the case

here different optional components are correlated, besides the

orrelation between the vanilla box and each optional component,

y taking advantage of the decomposition property of the multi-

ariate Gaussian distribution. Based on these, we believe that the

roposed method has advantages in finding optimal solution over

he early studies. 

The proposed method can be used as a dependable method for

 generalized multi-item continuous review inventory model with

omplicated interactions among items. It would be interesting to

nvestigate how far the proposed method can be applied to other

ypes of correlation, such as a multivariate Gaussian or other mul-

ivariate distributions. 
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ppendix A. Simplification of various functions 

In this appendix, we show how to simplify the expressions in

qs. (17) –(20) . To this end, we define various normalized variables

s follows: 

 ≡ x − μv 

σv 
and z v ≡ r v − μv 

σv 
, (A-1) 

 j ≡
x − μoj 

σoj 

and z oj ≡
r oj − μoj 

σoj 

, (A-2) 

here 

oj ≡ σ j 

√ 

1 − ρ2 
j 

and μoj ≡ μ j + ρ j 

σ j 

σv 
(r v − μv ) . (A-3) 

n addition, from Eq. (3) , we have 

f X v (x ) = 

1 √ 

2 πσv 
exp 

{
− (x − μv ) 

2 

2 σ 2 
v 

}
and f X j | X v (x | r v ) 

= 

1 √ 

2 πσoj 

exp 

{
− (x − μoj ) 

2 

2 σ 2 
oj 

}
. (A-4) 

inally, the G-function is defined as 

 (z) ≡
∫ ∞ 

z 

1 √ 

2 π
e −z 2 / 2 dz. (A-5) 

1. Evaluation of 
∫ ∞ 

r v 
(x − r v ) f X v (x ) dx and d 

dr v 

∫ ∞ 

r v 
(x − r v ) f X v (x ) dx 

From Eqs. (A-1) and (A-4) , we have 
 ∞ 

r v 

(x − r v ) f X v (x ) dx = 

σv √ 

2 π

∫ ∞ 

z v 

(z − z v ) e 
−z 2 / 2 dz 

= σv 

{
1 √ 

2 π
e −z 2 v / 2 − z v G (z v ) 

}
. (A-6) 

y using the above result, its derivative becomes 

d 

dr v 

∫ ∞ 

r v 

(x − r v ) f X v (x ) dx 

= σv 
dz v d 

{
1 √ e −z 2 v / 2 − z v G (z v ) 

}
= −G (z v ) . (A-7) 

https://doi.org/10.13039/501100003725
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A2. Evaluation of 
∫ ∞ 

r oj 
(x − r oj ) f X j | X v (x | r v ) dx and 

∂ 
∂r oj 

∫ ∞ 

r oj 
(x − r oj ) f X j | X v (x | r v ) dx 

From Eqs. (A-2) –(A-4) , we have 

∫ ∞ 

r oj 

(x − r oj ) f X j | X v (x | r v ) dx 

= 

∫ ∞ 

r oj 

(x − r oj ) 
1 √ 

2 πσoj 

exp 

{
− (x − μoj ) 

2 

2 σ 2 
oj 

}
dx 

= σ j 

√ 

1 − ρ2 
j 

∫ ∞ 

z oj 

(z j − z oj ) 
1 √ 

2 π
e −z 2 

j 
/ 2 dz j 

= σoj 

{
1 √ 

2 π
e −z 2 

oj 
/ 2 − z oj G (z oj ) 

}
. (A-8)

By using the above result, its derivative becomes 

∂ 

∂r oj 

∫ ∞ 

r oj 

(x − r oj ) f X j | X v (x | r v ) dx 

= σoj 

dz oj 

dr oj 

∂ 

∂z oj 

{
1 √ 

2 π
e −z 2 

oj 
/ 2 − z oj G (z oj ) 

}
= −G (z oj ) . (A-9)

A3. Evaluation of 
∫ ∞ 

r oj 
(x − r oj ) 

∂ 
∂r v 

f X j | X v (x | r v ) dx 

By using Eq. (A-4) , the partial derivative becomes 

∂ 

∂r v 
f X j | X v (x | r v ) = 

dμoj 

dr v 

∂ 

∂μoj 

1 √ 

2 πσoj 

exp 

{
− (x − μoj ) 

2 

2 σ 2 
oj 

}

= 

(
ρ j 

σ j 

σv 

)
(x − μoj ) √ 

2 πσ 3 
oj 

exp 

{
− (x − μoj ) 

2 

2 σ 2 
oj 

}
. (A-10)

Thus, by using Eqs. (A-2) and (A-4) , we have 

∫ ∞ 

r oj 

(x − r oj ) 
∂ 

∂r v 
f X j | X v (x | r v ) dx 

= 

(
ρ j 

σ j 

σv 

)∫ ∞ 

r oj 

(x − r oj ) 
(x − μoj ) √ 

2 πσ 3 
oj 

exp 

{
− (x − μoj ) 

2 

2 σ 2 
oj 

}
dx 

= 

(
ρ j 

σ j 

σv 

)∫ ∞ 

z oj 

(z j − z oj ) z j 
1 √ 

2 π
e −z 2 

j 
/ 2 dz j = 

(
ρ j 

σ j 

σv 

)
G (z oj ) . 

(A-11)

A4. Evaluation of d 
dr v 

F X v (r v ) , 
∂ 

∂r v 
F X j | X v (r oj | r v ) , and ∂ 

∂r oj 
F X j | X v (r oj | r v ) 

By using Eqs. (A-1) and (A-4) , we have 

F X v (r v ) = 

∫ r v 

−∞ 

1 √ 

2 πσv 
exp 

{
−(x − μv ) 2 

2 σ 2 
v 

}
dx = 

∫ z v 

−∞ 

1 √ 

2 π
e −z 2 / 2 dz. 

(A-12)

Thus, 

d 

dr v 
F X (r v ) = 

dz v 

dr v 

d 

dz v 

∫ z v 

−∞ 

1 √ 

2 π
e −z 2 / 2 dz = 

1 √ 

2 πσv 
e −z 2 v / 2 . (A-13)

Similarly, by using Eqs. (A-2) –(A-4) , we have 
 X j | X v (r oj | r v ) = 

∫ r oj 

−∞ 

1 √ 

2 πσoj 

exp 

{
− (x − μoj ) 

2 

2 σ 2 
oj 

}
dx 

= 

∫ z oj 

−∞ 

1 √ 

2 π
e −z 2 

j 
/ 2 dz j . (A-14)

hus, 

∂ 

∂r v 
F X j | X v (r oj | r v ) = 

dz oj 

dr v 

∂ 

∂z oj 

∫ z oj 

−∞ 

1 √ 

2 π
e −z 2 

j 
/ 2 dz j 

= −
(
ρ j 

σ j 

σv 

)
1 √ 

2 πσoj 

e −z 2 
oj 

/ 2 
. (A-15)

inally, by using Eqs. (A-2) and (A-4) , we have 

∂ 

∂r oj 

F X j | X v (r oj | r v )= 

dz oj 

dr oj 

∂ 

∂z oj 

∫ z oj 

−∞ 

1 √ 

2 π
e −z 2 

j 
/ 2 dz j = 

1 √ 

2 πσoj 

e −z 2 
oj 

/ 2 
. 

(A-16)

ppendix B. Proof of Theorem 1 

For brevity, we drop the subscript oj for the optional compo-

ent and assume λ> 0. To prove that g ( z ) of Eq. (30) is monotoni-

ally decreasing in z , it suffices to show that for any two values of

 such that z 1 < z 2 , g ( z ) satisfies g ( z 1 ) > g ( z 2 ). We start with 

(z) ≡ pDG (z) 

h + λC + λκ/σ f (z) 
−

{
AD + pDσ L (z) 

h/ 2 + λC 

}1 / 2 

, (B-1)

here the loss function L ( z ), the standard Gaussian PDF f ( z ), and

 ( z ) are defined, respectively, as 

 (z) ≡ σ

{
1 √ 

2 π
e −z 2 / 2 − zG (z) 

}
, f (z) ≡ 1 √ 

2 π
e −z 2 / 2 , 

and G (z) ≡ 1 √ 

2 π

∫ ∞ 

z 

e −t 2 / 2 dt. (B-2)

From Eq. (B-1) , we have 

(z 1 ) − g(z 2 ) = 

{
pDG (z 1 ) 

h + λC + λκ/σ f (z 1 ) 
− pDG (z 2 ) 

h + λC + λκ/σ f (z 2 ) 

}

+ 

√ 

pDσ

h/ 2 + λC 

√ 

L (z 2 ) − L (z 1 ) . (B-3)

ince L ( z 1 ) < L ( z 2 ) for z 1 < z 2 , the second term on the right hand

ide of Eq. (B-3) is positive. The first term can be rewritten as 

pDG (z 1 ) 

h + λC + λκ/σ f (z 1 ) 
− pDG (z 2 ) 

h + λC + λκ/σ f (z 2 ) 

}

= pD 

{
(h + λC) { G (z 1 ) −G (z 2 ) } + λκ/σ { G (z 1 ) f (z 2 ) −G (z 2 ) f (z 1 ) } 

{ h + λC + λκ/σ f (z 1 ) } { h + λC + λκ/σ f (z 2 ) } 
}

(B-4)

rom the definition of G ( z ), we have G ( z 1 ) > G ( z 2 ) when z 1 < z 2 .

hus, to show that g ( z 1 ) > g ( z 2 ) when z 1 < z 2 , we are left with

howing that G (z 1 ) f (z 2 ) − G (z 2 ) f (z 1 ) is positive. 

To this end, consider the following expression: 

 (z 1 ) − h (z 2 ) ≡ G (z 1 ) f (z 2 ) − G (z 2 ) f (z 1 ) 

f (z 1 ) f (z 2 ) 
= 

G (z 1 ) 

f (z 1 ) 
− G (z 2 ) 

f (z 2 ) 
. 

(B-5)

iven that f ( z ) > 0, to show g ( z 1 ) > g ( z 2 ) when z 1 < z 2 is equivalent

o proving that h ( z 1 ) > h ( z 2 ) when z 1 < z 2 . That is, h ( z ) is a mono-

onically decreasing in z . Now, we express G ( z )/ f ( z ) in terms of an

nfinite series in z by using [1] 

 (z) ≡ G (z) 

f (z) 
= 

∞ ∑ 

n =0 

(−1) n 
(2 n − 1)!! 

z 2 n +1 
> 0 , (B-6)
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here 

(2 n − 1)!! ≡ 1 · 3 · 5 . . . (2 n − 3) · (2 n − 1) . (B-7)

y letting m = n − 1 , h ( z ) can be rewritten as 

 (z) = 

∞ ∑ 

n =0 

(−1) n 
(2 n − 1)!! 

z 2 n +1 
= 

1 

z 
+ 

∞ ∑ 

n =1 

( −1) n 
( 2 n − 1)!! 

z 2 n +1 

= 

1 

z 
+ 

∞ ∑ 

m =0 

(−1) m +1 (2 m + 1)!! 

z 2 m +3 

= 

1 

z 
−

∞ ∑ 

m =0 

(−1) m 

(2 m + 1)!! 

z 2 m +3 
> 0 . (B-8) 

ince h ( z ) > 0 for all z , we have, from Eq. (B-8) , 

∞ ∑ 

 =0 

(−1) m 

(2 m + 1)!! 

z 2 m +3 
< 

1 

z 
. (B-9) 

To show that h ( z ) is monotonically decreasing in z , we will

how that dh ( z )/ dz < 0. From Eq. (B-6) , the derivative becomes 

dh (z) 

dz 
= 

∞ ∑ 

n =0 

(−1) n (2 n − 1)!!(−1) 
(2 n + 1) 

z 2 n +2 

= (−z) 
∞ ∑ 

n =0 

(−1) n 
(2 n + 1)!! 

z 2 n +3 
. (B-10) 

y using Eq. (B-9) , dh ( z )/ dz can be expressed as 

dh (z) 

dz 
= (−z) 

∞ ∑ 

n =0 

(−1) n 
(2 n + 1)!! 

z 2 n +3 
< ( −z) 

1 

z 
< −1 . (B-11)

ince dh ( z )/ dz < 0 for all z , we have h ( z 2 ) < h ( z 1 ) when z 2 > z 1 . That

s, 

 (z 1 ) − h (z 2 ) ≡ G (z 1 ) 

f (z 1 ) 
− G (z 2 ) 

f (z 2 ) 
= 

G (z 1 ) f (z 2 ) − G (z 2 ) f (z 1 ) 

f (z 1 ) f z 2 
> 0 . 

(B-12) 

his completes the proof. �

ppendix C. Derivation of stochastic budget constraint 

The stochastic budget constraint is given as 

 rob 

{ 

C v (Q v + r v − X v ) + 

m ∑ 

j=1 

C oj (Q oj + r oj − X j ) + κv F X v (r v ) 

+ 

m ∑ 

j=1 

κoj F X j | X v (r oj | r v ) ≤ β

} 

≥ η. (C-1) 

he above expression Eq. (C-1) can be rewritten as 

 rob 

{ 

C v X v + 

m ∑ 

j=1 

C oj X j ≥ A − β

} 

≥ η, (C-2) 

here 

 ≡ C v (Q v + r v ) + 

m ∑ 

j=1 

C oj (Q oj + r oj ) + κv F X v (r v ) 

+ 

m ∑ 

j=1 

κoj F X j | X v (r oj | r v ) . (C-3) 

ince X v ∼ N(μv , σ 2 
v ) and X j ∼ N(μoj , σ

2 
oj 

) , we have 

 v X v ∼N(C v μv , C 
2 
v σ

2 
v ) 

and 

m ∑ 

j=1 

C oj X j ∼N 

( 

m ∑ 

j=1 

C oj μoj , 

m ∑ 

j=1 

C 2 oj σ
2 
oj 

) 

, (C-4) 
y assuming that demands for optional components are indepen-

ent each other. From Eq. (C-4) , we have 

 v X v + 

m ∑ 

j=1 

C oj X j ∼N 

( 

C v μv + 

m ∑ 

j=1 

C oj μoj , C 
2 
v σ

2 
v + 

m ∑ 

j=1 

C 2 oj σ
2 
oj 

) 

. (C-5)

y defining Y ≡ C v X v + 

∑ m 

j=1 C oj X j , we can normalize Y as 

 ≡ Y − μY 

σY 

∼ N(0 , 1) , (C-6) 

here 

Y ≡ C v μv + 

m ∑ 

j=1 

C oj μoj , σ 2 
Y ≡ C 2 v σ

2 
v + 

m ∑ 

j=1 

C 2 oj σ
2 
oj . (C-7)

Using Eq. (C-6) , the stochastic budget constraint of Eq. (C-2) can

e expressed as 

 rob 

{
Z ≥ A − β − μY 

σY 

}
= 1 − F 

(
A − β − μY 

σY 

)
≥ η, (C-8)

here F ( · ) is the standard normal cumulative density function.

urthermore, Eq. (C-8) can be rewritten as 

 

(
A − β−μY 

σY 

)
≤ 1 −η, or 

A −β−μY 

σY 

≤ F −1 ( 1 −η) (C-9) 

ence, we have 

 ≤ β + μY + F −1 ( 1 − η) σY (C-10) 

By the definition of Eq. (C-3) and letting F −1 (1 − η) ≡ z 1 −η, the

tochastic budget constraint [ Eq. (C-1) ] becomes 

 v (Q v + r v ) + 

m ∑ 

j=1 

C oj (Q oj + r oj ) + κv F X v (r v ) + 

m ∑ 

j=1 

κoj F X j | X v (r oj | r v ) 

≤ β + μY + z 1 −ησY . (C-11) 
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